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Liquid ferrofluid synapses for spike-based
neuromorphic learning†

Charanraj Mohan, a Marco Crepaldi,a Diego Torazza,b Andrew Adamatzky,c

Gisya Abdi, d Aleksandra Szkudlarekd and Alessandro Chiolerio *ce

Solid-state memory devices have emerged as promising synapses for

neuromorphic engineering and computing. However, features such

as limited endurance, static sensitivity, and lower ON/OFF ratios, as

well as the need for peculiar conditions including current compli-

ance and forming, still make their adoption challenging. Here we

report a liquid state neuromorphic device based on a ferrofluid that

exhibits short-term plasticity featuring extraordinary properties: a

lower dynamic range, a high endurance, a fault tolerance capability,

a deterministic resistance switching behavior, and no need for

prerequisites such as a forming procedure and compliance current

requirements. We also show how to stabilize nanoparticles using

oleic acid as the surfactant, resulting in a yield increase and a smaller

resistance variance. Additionally, we propose a low-power inference

system on such a liquid synapse by applying the minimal magnitude

of read biases, which are only affected to about 10% by the offset,

gain errors, and noise of the system. Finally, we show the liquid

synapse’s feature to scale down the size and the capability to classify

digits using a spike-based unsupervised learning method.

1 Introduction

The word ‘unconventional’ computing1 was coined, when
Calude and Casti first predicted the decay of Moore’s law2 in
the mid-1990s. The ardent developments in unconventional
computing in the next two decades took the computational

world by storm by motivating radical rethinking of possible
futuristic information processors, architectures, learning tech-
niques, and supporting technologies.3,4 ‘Beyond Moore’ further
nurtured the exploration of alternate processing devices (such
as nanowire FETs, spinFETs, tunneling transistors, memris-
tors, etc.), information processing architectures, and learning
approaches inclined with nature.5–8 ‘Neuromorphic computing’
is one such approach that traces back to the late 1980s when
Mead first proposed the idea of morphing biological neurons
on custom silicon.9 Memristive neural networks are being used
to classify patterns, cluster data, recognize patterns and edges,
etc. using different learning rules like the perceptron, Sanger’s
rule, spike time dependent plasticity (STDP), etc.10–14 An over-
view of STDP and an illustrative comparison of biological and
neuromorphic vision systems are presented in Section S1 of the
ESI.† The von Neumann bottleneck, in other words the latency
between the memory and processor, still represents an issue,15
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New concepts
This work pioneers the concept of liquid ferrofluid-based synapses for spike-
based neuromorphic learning, via introducing liquid robotics into the realm
of neuromorphic hardware. Moving beyond conventional solid-state
memristive devices, in which challenges like limited endurance, stochastic
switching, and vulnerability to electrostatic discharge are encountered, our
ferrofluid synapse achieves deterministic resistance switching, exceptional
fault tolerance, and endurance surpassing 10 million cycles—without the
need for forming procedures or current compliance. By stabilizing magnetic
colloids with oleic acid, we enhance device stability and enable ultra-low-
power operation, applying read biases as low as 14 mV, advancing the
frontier of low-energy computing. Beyond the memory functionality, these
liquid-state synapses embody reconfigurable, adaptive material behavior
that synergizes with liquid robotics concepts, opening pathways for self-
healing, deformable, and scalable computational units. Supporting spike-
timing dependent plasticity (STDP), our system learns patterns and classifies
digits at the materials level, uniting soft matter physics, colloidal chemistry,
and neuromorphic engineering. This work offers transformative insights for
materials science, establishing ferrofluids not just as passive media but as
active, scalable elements for unconventional computing architectures poised
for integration in flexible electronics, soft robotics, and sustainable, beyond-
Moore information processing systems.
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as well as reliability in connection to emerging memory tech-
nologies. These setbacks justify the research for new possible
paradigms and materials for memories: colloids that allow us
to rethink the way memories exist and store information. The
colloidal form of magnetite is one potential candidate that
stores information and outsmarts emerging memory technolo-
gies. An illustrative comparison of the device structure of the
solid-state memories with the LiRAM (liquid random access
memory), ferrofluid in the form of an 1T1R synapse, is shown
in Fig. 1(b).

Magnetite (Fe3O4) was used in ancient days (as a ‘lodestone’)
to magnetize the soft iron wire in a mariner’s compass. Its high
Néel temperature (described in Section S9 (2) of ESI†) makes
it suitable for room-temperature spintronic applications.
Nanosized magnetite particles have interesting features, and
incorporation of such materials can enable a magnetic response
in polymeric materials,21,22 or stabilization in liquid carriers
results in globally homogeneous fluids responsive to magnetic
fields,23 also known as ferrofluids. Colloids comprising nano-
sized magnetite particles suspended in a liquid medium date
back to the 1960s, when Steve Papell invented it for pumping
liquid fuel in a zero-gravity environment using magnetic fluid.24

Ferrofluids have been widely used in applications like magnetic
seals for pumps and mixers,25 inertial and viscous damping for
loudspeakers and stepper motors,26 bearings,27 lubricants,28

heat transfers,29 and soft-robots.30–32

We have investigated the potential of in-memory computing
in a ferrofluid,33 and we have demonstrated that a volume of it
can be seen as a system, that is, a reservoir of computing nodes,
capable of showing complex features. Here, we focus on the use
of a ferrofluid as a single device in direct replacement of a two-
terminal solid-state memristor device, in compliance with its
standard parameters and performance metrics. We are report-
ing its DC switching characteristics using a custom-made
setup, whose characterization results are excellent when com-
pared to its solid-state memory counterparts. Ferrofluid, in its
liquid form, combines the advantages of several memory
technologies. Firstly, the ferrofluid is tolerant towards damages
due to accidental electrostatic discharge (ESD), which most
solid-state memories intrinsically lack (ESD effects on solid
state memories are elaborated with other reliability issues in
Section S2 of the ESI†). Using this system also paves tolerance
to liquid loss and stability to liquid injection (volumetric
changes of the functional liquid). Other comparable results
include a high endurance, lower dynamic range, and no sto-
chastic switching behaviors.

Here we show the switching characteristics of a liquid
synapse between a high resistance state (HRS) and a low
resistance state (LRS), which is retained for a short time thereby
proving short term plasticity (STP), both by DC sweep experi-
ments and by applying dynamic pulses. An experimental
improvement in yield and reduction in variation of LRS and

Fig. 1 (a) A fully connected memristive crossbar and (b) ferrofluid LiRAM (liquid random access memory) device structure compared with its solid state
counterparts.16–20
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HRS values was obtained when stabilizing the colloid with oleic
acid. The liquid synapse was proven to be compliant with low-
power operation during inference whose results are only influ-
enced by the DC offset, gain errors, and noise of the set-up. We
also experimentally validate the scalability feature of the ferro-
fluid synaptic system by reducing the volume and distance
between the conducting electrodes, which enables the possible
integration with silicon. Lastly, we simulated the ferrofluid’s STP
capabilities at the circuit and systems level to classify patterns
through an unsupervised spike-based learning mechanism.

2 Physico-chemical properties of
ferrofluids

This work has employed two commercial water-based magne-
tites (or ferrofluids), purchased from Ferrotech (U.S.A.), the
EMG 601p,34 and from PlasmaChem (Germany), the PL-M-
Fe3O4.35 We will refer to them as EMG and PL, respectively,
in the following text. UV-Vis absorption spectra of the materials
in solution are recorded using a single-beam diode-array spec-
trophotometer (Agilent 8453, USA) in 1 cm quartz cells. Fig. 2(a)
depicts UV-Vis spectra of the two ferrofluids functionalized
with different surfactants. The higher concentration of dodecyl
sulfate as the surfactant in PL compared to ammonium sulfate
or carboxylate in EMG (see further XPS analyses) results in a
better dispersion and a steeper slope in the absorption spec-
trum, and suggests smaller particles. A higher absorbance in
the PL is found, which is composed of two peaks: magnetite,
Fe3O4 with a band comprised between 300 and 400 nm, and
hematite, Fe2O3 with absorption in the range 450 to 500 nm.
The ATR-FTIR spectra of powder samples on a diamond crystal
are recorded using a Bruker TENSOR II spectrometer in the
350–4000 cm�1 range (Fig. 2(b)).

The measurements, with a resolution of 1 cm�1, are based
on 16 scans. The ATR-FTIR spectra of the two samples after
evaporation of solvent under vacuum at room temperature
shows distinct peaks corresponding to different functional
groups and bonding interactions. In the case of PL, the sharp
peak observed around 2900–3000 cm�1 suggests the presence
of C–H stretching vibrations, likely from the alkyl chains of
the surfactant, oleic acid. The absence of a broad peak near
3400 cm�1 confirms the removal of water, as this region

typically corresponds to O–H stretching vibrations. Peaks in
the range of 1000–1200 cm�1 can be attributed to sulfate
(SO4

2�) symmetric and asymmetric stretching modes, indicat-
ing the presence of a sulfate-based surfactant used for ferro-
fluid stabilization, like sodium dodecyl sulphate. Additionally,
two peaks below 560 cm�1 and 370 cm�1 correspond to Fe–O
stretching vibrations, confirming the presence of iron oxide
nanoparticles such as Fe3O4 (magnetite) or g-Fe2O3 (maghe-
mite). The bands in the 1400–1600 cm�1 region could be
related to C–H bending or possible carboxylate (COO�) stretch-
ing of a carboxyl-based stabilizer. In the EMG sample, Fe–O
stretching vibrations can be observed. However, the peaks
before 3000 cm�1 related to the alkyl group in sulfate-based
surfactant can be ignored, suggesting the absence of this
stabilizing agent. The carboxylate (COO�) group presents two
characteristic peaks in the 1500–1650 cm�1 and 1300–1450
cm�1 regions that correspond to asymmetric and symmetric
stretching vibrations. The morphology, homogeneity of the
particles and size distribution are investigated using scanning
electron microscopy (SEM), energy-dispersive X-ray spectro-
scopy (EDX) and transmission electron microscopy (TEM).
SEM images are obtained using a Helios 5 PFIB CXe ultra-
high-resolution scanning electron microscope (Thermo Fisher
Scientific), equipped with a Schottky field emission gun. Ima-
ging is performed at 25 kV, with a beam current of 0.8 nA and a
working distance of 5 mm. A 20 mL ferrofluid aliquot was drop-
cast onto a Si wafer. EDX is carried out using an Ultim MAX 60
EDX detector (Oxford Instruments) at 25 keV beam energy and
1.6 nA beam current. TEM images are acquired using a Tecnai
TF 20 X-TWIN (Thermo Fisher Scientific, formerly FEI), equipped
with a field emission gun, at an acceleration voltage of 200 kV. A
20 mL ferrofluid aliquot is drop-cast onto a 3 nm C-coated Au
TEM holey grid. Selected area diffraction was conducted using a
200 nm aperture. Data analysis was performed using CrystBox.36

SEM images of samples prepared from diluted solutions which
are dispersed on silicon wafer and dried under vacuum are
shown in Fig. 3(a) and (b).

After evaporation of the solvent, both samples show a
distribution of the residual solid which is highly inhomoge-
neous, featuring both chain-like and fractal particle alignments
(see Fig. S3, ESI†). Due to such inhomogeneity, a quantitative
analysis by EDX is not possible; nevertheless, the presence
of characteristic peaks for a given element is represented in
Fig. S4 (ESI†). Fig. 3(c) and (d) displays the TEM images. The
size distribution (as an inset image) shows that PL particles
have an average size of less than 9 nm, with a more uniform
size distribution. In contrast, EMG features larger particles,
exhibiting a size range comprised between 8 and 24 nm, with
an average size of slightly less than 15 nm. Both materials have
similar XRD and SAED patterns in Fig. S5 (ESI†), and the
composition of both materials appears as a mixture of maghe-
mite and magnetite iron oxides. The size of the particles and
the d-spacing are represented in Fig. S5 (ESI†), panels (c) and
(d). HRTEM images are displayed in Fig. S6 (ESI†).

XPS analyses are performed using a PHI VersaProbeII scan-
ning XPS system, employing monochromatic Al Ka (1486.6 eV)

Fig. 2 UV-Visible absorption spectra of the ferrofluids: (a) PL spectrum,
(b) EMG spectrum, ATR-FTIR spectra of the ferrofluids, (c) PL spectrum,
and (d) EMG spectrum.
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X-rays focused on a 100 mm spot. The photoelectron take-off
angle was set to 451, with a pass energy of 117.50 eV for survey
scans and 46.95 eV for high-resolution spectra. A dual-beam
charge compensation system, utilizing 7 eV Ar+ ions and 1 eV
electrons, is employed to maintain a constant sample surface
potential, regardless of sample conductivity. All XPS spectra are
calibrated to the unfunctionalized, saturated carbon (C–C) C 1s
peak at 285.0 eV. The analysis chamber pressure is maintained
below 3 � 10�9 mbar. Spectral deconvolution was performed
using PHI MultiPak software (v.9.9.3), and the Shirley method
was applied to subtract the background. The macroscopic
feature of PL is its viscous, foaming liquid with a dark brown
color, whereas EMG has a less viscous consistency and black
color. These differences in appearance arise from the distinct
compositions of the two samples. To investigate further, XPS
spectroscopy is used to identify the surface composition and
characteristic elements at the microscopic level, and the results
are presented in Table 1. Wide survey spectra are shown in Fig.
S7 (ESI†) and high-resolution spectra of both samples are
represented in Fig. 4.

In the Fe 2p3/2 region, the spectra are fitted with five
components (see Fig. 4(a) and (g)). The first peak at 708.9 eV
suggests a low concentration of Fe2+, while the second peak at

710.4 eV corresponds to Fe3+. The three additional peaks
between 711 and 715 eV result from multiplet splitting.37,38

Due to this splitting, which causes the Fe 2p line to be
described by four to five components for each oxidation state,
it is difficult to precisely determine the concentration of indi-
vidual species without risking over-interpretation. The ratio of
Fe2+ to Fe3+ shows that sample PL has more Fe3+ than sample
EMG. The C 1s spectra are fitted with four components (see
Fig. 4(b) and (h)). The first peak at 284.6 eV corresponds to
CQC sp2 bonds, the second peak at 285.0 eV is attributed to
aliphatic C–C sp3 bonds, the third peak at 286.3 eV indicates
C–O–C, CQO, and/or C–NH bonds, and the fourth peak at
288.4 eV is associated with O–CQO bonds.39,40

In the N 1s region, two peaks are observed (see Fig. 4(c)). The
first, at 400.1 eV, originates from amine C–NH2 bonds, while
the second, at 401.8 eV, attributes to ammonium NH4

+ which is
present only in the EMG sample. The O 1s spectra are fitted
with up to four components (see Fig. 4(d) and (i)). The first peak
at 530.1 eV indicates O–Fe and/or O–S bonds, while the second
peak at 531.8 eV is attributed to OQC and/or O–Fe defective
bonds. The third peak at 533.3 eV is associated with –OH and/
or O–C bonds and some contribution from the Auger Na KLL
line. The fourth peak at 536.2 eV is solely attributed to the
Auger Na KLL line. The S 2p spectra (see Fig. 4(e) and (j)) are
fitted with a doublet structure, with a separation of 1.18 eV
between the p3/2 and p1/2 peaks. The p3/2 peak at 168.4 eV
indicates the presence of SO4

2� ions. The Cl 2p spectra (see
Fig. 4(f)) are found in sample EMG only and are fitted with a
doublet structure, with a separation of 1.6 eV. The main peak at
198.2 eV is indicative of Cl� ions in chlorides such as NaNH4.
The Na 1s spectrum (see Fig. 4(k)) is found in the PL sample
only and was fitted with a single peak at 1071.7 eV, indicating
the Na+ oxidation state, primarily found in Na2SO4.

3 Experimental setup

The hardware design is shown in Fig. 6(a) for emulating the
resistance states of the ferrofluid.34 In this design, two OpAmps
are connected to a vial (containing o5 mL of ferrofluid) using
shielded RF cables. The design details of the vial is described in
Section S4 of the ESI.† OpampA is in a buffer configuration
while OpampB facilitates different feedback loops for various
characterization tasks which mainly include establishing a
read, a programming, and an idle path. The read path enables
inferring the internal state of the ferrofluid. The programming
path is used to apply programming biases (both write and erase

Fig. 3 SEM images of ferrofluids drop-cast onto a Si wafer: (a) PL
nanoparticles, (b) EMG nanoparticles, TEM images of dried nanoparticles,
with size histograms in the insets: (c) PL nanoparticles, and (d) EMG
nanoparticles.

Table 1 Surface composition (atomic %) of the two ferrofluid samples after XPS analyses

Fe C N O S Cl Na

Binding energy [eV] 708.9 248.6 285.0 286.3 288.4 400.1 401.8 530.1 531.8 533.3 168.4 198.2 1071.7
Oxidation state Fe2 +/Fe3+ CQC C–C C–O,C–N O–CQO –NH2 –NH4

+ O–Fe O–Fe,OQC O–C,O–H SO4
2� Cl� Na+

PL sample 2.7 26.0 36.7 3.6 1.2 0.0 0.0 7.4 13.1 1.5 2.4 0.0 5.4
EMG sample 5.1 9.6 27.3 14.9 2.6 5.3 3.9 14.8 11.1 2.9 1.0 1.4 0.2
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biases) across the vial while the idle path is chosen to keep both
the terminals of the vial at a similar virtual ground levels.
A MicroPython board41 is used to apply analog biases (VinA and
VinB) through its 8-bit digital to analog converters (DACs), save
the analog values of the nodes – A, B and C through its 12-bit
analog to digital converters (ADCs) and digitally control the
switches to pick the feedback paths of OpampB using a multi-
plexer. A computer is used to send commands and save data via

the USB cable that connects the MicroPython board. Fig. 5
shows the illustration of the experimental setup.

4 Electronic characterization methods
DC sweep experiment

Fig. 6(b) shows the proposed flowchart for carrying out the DC
sweep experiments to plot the IV curves of the ferrofluid.
Initially, the values of the read time (tr), erase time (te), write
time (tw), read voltage (vr), sweep voltage for erasing (vse), sweep
voltage for writing (vsw), step voltage (vs) (described in Section
S9 (3) of ESI†), number of cycles (cycle), threshold post-write
resistance (rw), threshold post-erase resistance (re), and feed-
back resistance (rf) are fed to the system. The number of
positive voltage steps (nw), the number of negative voltage steps
(ne), and the number of cycles (c) are initiated. The write biases
are applied across the terminals of the vial, B and A for tw s with
incremental magnitude starting from 0 V to vsw in vs step
voltage. Following each write bias a read bias of magnitude vr

is applied for tr s and the analog values (VA, VB and VC) of the
nodes – A, B, and C are collected through the MicroPython
board’s ADCs. Due to the ferrofluid’s STP, the approach to
target a particular sample during ‘read’ is carried out and this is
explained in Section S5 of the ESI.†

Applying write biases is carried out in incremental steps of
vstep until the observed resistance (RAB) reaches the threshold
resistance, rw. After attaining rw, a train of read biases is applied
in numbers similar to the numbers of vstep needed to reach rw.
Similarly, erase biases are applied in decremental steps of vs

until the observed resistance (RAB) reaches below re and when
this is attained, a train of read biases is applied in numbers

Fig. 4 XPS high resolution spectra of the two colloidal samples: from (a)–(f): EMG sample. From (g)–(k): PL sample.

Fig. 5 Setup used for implementing the liquid synapse. On the right, a
polymeric vial with open lid, showing the black ferrofluid inside, has been
adapted to host the two SMA connectors. RF cables connect the reservoir
with a test PCB (middle left of the image) hosting the OpAmps and MUX.
On top left, the MicroPython board is shown which renders digital controls
and analog input sources to the liquid synapse.
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similar to the number of vss needed to reach re. In this way,
both the alternate positive and negative DC sweeps are carried
out for the desired cycle(s) until the corresponding threshold
resistance values are reached. Nf refers to the total number of
incremental/decremental vs needed or the accumulated nw or ne

to reach corresponding threshold resistances.
The ferrofluid’s resistance RAB and the current flowing

through it, IA, are determined as follows:

RAB ¼
rf

VB � VC
� vr (1)

IA ¼
vr

RAB
(2)

When a positive voltage sweep is performed from 0 to vsw, at
a certain voltage (called as vset) the current increases with a
superlinear trend. This corresponds to a ‘set’ or ‘write’, where
the change of resistance from HRS to LRS occurs. When a
negative voltage sweep is performed from 0 to –vse, at a certain
voltage (called as vreset) the current drops and this corresponds
to ‘reset’ or ‘erase’ where the change of resistance from LRS to

HRS occurs. The IV characteristics of the ferrofluid for 30 full
cycles of switching between the erase and write cycles are
shown in Fig. 6(c).

Colloids, having characteristic lengths on the order of
hundreds to thousands of nm, exhibit Reynolds numbers that
are significantly lower than 1 (Re { 1). This indicates a regime of
creeping motion where inertial forces are negligible compared to
viscous forces. For colloids solvated in water, the fluid behaves as
viscous as molasses does to humans. A key consequence of such
low Reynolds numbers is articulated using the scallop theorem,42

which states that no momentum can be accumulated while
moving in the fluid. Therefore, the dissipation of any structure
resulting from the ordering, eventually anisotropic effects,
induced by applied fields is not instantaneous, emphasizing the
memory of the colloidal arrangements. We have found several
other colloidal systems enabling memory, namely a suspension of
polyaniline nanorods,43 graphitic carbon nitride,44 zinc oxide
nanoparticles45 and several others. In the case of polyaniline,
the involved mechanism is based on the fact that polyaniline can
be considered as a polyelectrolyte: a macromolecule characterized
by several charges. When exposed to apolar and/or aprotic

Fig. 6 (a) Proposed system architecture, (b) flowchart for carrying out the IV characteristic experiment of the ferrofluid, and (c) IV characteristics of the
ferrofluid for 30 full cycles of switching between the erase and write cycles.
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solvents, positive and negative ions associate in the chains form-
ing ion pairs that favor a coil conformation of the molecular
chain. In contrast, in the presence of polar and/or protic solvents
(e.g., water) the enhanced solvation of the charges lead to a more
open and expanded molecular conformation (tail-like). Any effect
that enhances the distance between positive and negative charges
causes the expansion of the polymeric chain conformation and an
increase in conductivity. Here, the application of an electric
stimulus can be considered responsible for the polarization of
polymeric chains enhancing the distance between positive and
negative charges with a beneficial effect on the materials con-
ductivity. Once the polarization drops, the electrical equilibrium
of the system is restored by Brownian motion in some seconds,
but the morphological changes remain for a longer time scale,
providing an increased DC resistance. This memory effect lasts for
longer times and provides the observed learning. In the case of
carbon nitride, another relevant property is found to provide a
memory effect: the mechanisms of oxidation and reduction
present in the aqueous suspension of g-C3N4 are not symmetrical,
resulting in a non-symmetric hysteresis loop, and in the appear-
ance of a mem-fractive behaviour, or a memory effect that involves
resistance, inductance and capacitance in this complex colloid.
In the case of ZnO, the conductive network generation upon the
application of a voltage stimulus is time dependent, leading to
the development of a concept known as dynamic percolation. The
time of dropping resistance depends on the length of stimulation,
linearly. The resistance increases slowly during 120 h after stop-
ping stimulation indicating memory existence in the colloid.45 To
conclude with the case of ferrofluids, we have already demon-
strated that a water-based system containing magnetite nano-
particles can provide a slowly fading memory, which can also be
profitably used to implement computational schemes, such as
reservoir computing.33 One further note is about the negative
differential resistance (NDR) seen in the low voltage regime, first
quadrant of Fig. 6(c). This particular behaviour is observed in
materials where residual charge is stored in surface defects and
Coulomb repulsion opposes to a growing voltage stimulus, result-
ing in lower currents instead of higher.46 FF nanoparticles act as
electron scavengers and become negatively charged particles,
slowing the carrier speed. In our case, surface charges may diffuse
in the surfactant layer and be trapped or released depending on
the voltage, screened by the same molecules. In order to better
link the algorithmic description of Fig. 2 to the physical properties
of the materials, let us analyse in detail the four phases of the
write/erase procedure. The writing phase occurs in the first
quadrant of Fig. 6(c), with a first brief phase experiencing NDR
due to trapped charges. When the ferrofluid dissipates such
charges, a steady behaviour is found with positive differential
resistance, until the current reaches a plateau and the ‘‘write’’
state is achieved. Now reducing the voltage brings the material to
a slightly different impedance state, until zero bias conditions.
The measured current is positive by definition, therefore in
Fig. 6(c) we are not able to see the third quadrant. By bringing
the system to negative voltages, we experience an abrupt change
in the current, that reaches higher values and a steeper descent.
This is due to the inductive component of the ferrofluid

impedance,47 bringing higher currents when the system is char-
acterized at lower frequencies (remember that the time constant
for the erase phase is 66.6 ms, while for the write phase it is 20 ms,
see Table S2, ESI†). Once the minimum negative voltage has been
reached, the erase phase is complete, and the voltage gradually
moves to zero. The curve does not close perfectly because of the
nano-battery effect,48 in this case disregarded, but alternatively a
useful property that can also be programmed to store
information.49 The bias conditions for the DC sweep experiment
are shown in Table S1 of the ESI.†

Switching in pulse mode

We experimentally characterize the ferrofluids in pulse mode
where switching between resistances is carried out using a
short programming pulse followed by a read pulse of lower
magnitude, thereby opening doors to low-power inference,
whose measurements are only affected by gain and offset errors
of the DAC, the DC offset voltages across the read path, and
noise in the system. For this, we take advantage of the DACs in
the MicroPython board for setting the tiniest magnitude of the
read pulses and implement an additional check for the read
magnitude to be a positive value. This additional check is
carried out because the dominant factors – DC offset voltages,
gain errors, and high frequency noise can cause negative read
voltages when attempting to apply the mean read pulses of
magnitude of about 14 mV. A similar ‘read’ approach of
targeting a particular sample as done in the DC sweep experi-
ment is carried out here during ‘read’. The bias conditions for
the resistance switching are shown in Table S2 of the ESI.†
Fig. 7(a) illustrates the flowchart for switching the EMG ferro-
fluid’s resistances in dynamic pulse mode. An endurance test
has been carried out, whose average results of every decade for
10 million cycles using a mean read voltage of 14 mV is shown
in Fig. 7(b). Unlike IV characteristics (shown in Fig. 6(c)), the
switching characterization using pulse mode has a higher ON/
OFF ratio due to the applied optimal switching conditions as
listed in Table S1 of the ESI.† Furthermore, in analog comput-
ing and neuromorphic systems, memristors often operate in a
continuum of resistance states rather than binary states. This
allows them to emulate synaptic weights with gradual changes,
making a high ON/OFF ratio less essential.50 The endurance
characterization of all 10 million cycles, the statistical distribu-
tion of the HRS and LRS values, and the applied read voltages
are shown in Fig. S11(a)–(d) of the ESI.† The reason for
restricting the measurements to 10 million endurance cycles
is explained in Section S9 (4) of the ESI.†

To determine the robustness of our system for resistance
switching in dynamic pulse mode, we carried out yield estima-
tion for all 10 million characterization cycles. Our yield is
mainly affected by two factors – a possible negative read voltage
(vr o 0) and the post-programming resistances are out of range
of the threshold resistances (re 4 RAB 4 rw). Fig. 7(c) shows the
average yield (in %) of the HRS and LRS values for about every
1 million characterization cycles of the EMG ferrofluid. As a
similar number of samples are targeted during ‘read’ after
‘write’ and ‘erase’, the negative read voltage affects more the
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HRS values when compared to the LRS values. This is mainly
due to the transient signal, VB which takes a few milliseconds
time to settle during ‘read’ of the HRS value. Fig. 7(d) shows

contributing factors that affect the yield for determining the
HRS and LRS values, where we can see an average yield of 85%
and 94% for the HRS and LRS values respectively. Interestingly,

Fig. 7 (a) Flowchart for switching the EMG ferrofluid’s resistance between HRS and LRS in pulse mode, (b) endurance test results of 10 million switching
cycles between the LRS and HRS using a mean read voltage of 14 mV, (c) yield distribution of the HRS and LRS values for 10 million cycles using a mean
read voltage of 14 mV, (d) factors affecting the yield of the HRS and LRS values.
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the ferrofluid’s resistance, RAB reaching beyond the threshold
resistance limits is dominant when reading LRS while the
impact of negative read voltage, vr is dominant when reading
HRS. The memory fades exponentially within a few millise-
conds (please refer to labels Swi with i = 1 : 10 in Fig. S10 of the
ESI†), particularly for the LRS value. Considering these experi-
mental values, retention is comparatively low (in the range of a
few milliseconds), due to the STP property. This low retention
also exists in solid-state memories that have STP. To overcome
the STP, we pick a particular sample uniformly in the visible
LRS region throughout the experiments.

An improvement in the yield is noticed when replacing the
water-soluble surfactant of the ferrofluid (EMG) with a capping
layer of oleic acid surrounding the nanoparticles (PL), which
provides increased stability of the particles. The IV character-
istics of this PL ferrofluid for 30 DC sweep cycles are shown in
Fig. 8(a), where a higher reset voltage is observed. Its corres-
ponding resistance (RAB) is plotted in Fig. S13 of the ESI.† A 10
million endurance cycle test using dynamic programming

pulses is also carried out, where it is found that the program-
ming window needed for the PL ferrofluid is only 4.4 ms,
whereas, for EMG ferrofluid, it is 11 ms. We know that the
electrodynamics of the system reflects its impedance versus
frequency behaviour: oleic acid acts as an insulator, while water
soluble surfactants might be more conductive and dissipate
higher currents, negatively affecting the duration of the mea-
sures and optimal timings. In addition to this, a reduction in
error when reading HRS and LRS values is also observed.
Fig. 8(b) and (c) show the comparison of error between the
two categories of ferrofluids when reading HRS and LRS values.
The oleic acid cap layer reduces the negative read voltage error
by half and the error due to increased post-write resistance by
35% when reading LRS values. Also, when reading HRS values
there is a slight reduction of error due to negative read voltage.
Surprisingly, the nano battery effects are also minimized due to
the stabilization of oleic acid whose results can be compared
from Fig. 6(c) and 8(a). The high-performance colloid’s 100
million endurance characterization switching cycles, the

Fig. 8 (a) IV characteristics of PL ferrofluid for 30 full cycles of switching between the erase and write cycles, (b) comparison of error (in %) due to
negative read voltage and post-erase resistance reaching below threshold post-erase resistance when reading HRS values, (c) comparison of error (in %)
due to negative read voltage and post-write resistance reaching above threshold post-write resistance when reading LRS value, (d) statistical spread of
the DC offset, gain errors, and noise across the read path of the characterization set-up.
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statistical distribution of the HRS and LRS values, and the
applied read voltages are shown in Fig. S12(a)–(d) of the ESI.†
The increased stability of nanoparticles in the ferrofluid with
oleic acid has also led to the reduction of variation (3s) to about
46% in the LRS and HRS values whose differences are observed
in Fig. S12 and S13 of the ESI.† Considering the resolution of
the output of the 8-bit DAC in the MicroPython board and the
applied read voltage across the ferrofluid, we experimentally
determined the value of the dominant factors – DC offset, gain
errors, and noise (vo), whose mean value is about 1.2 mV and its
statistical spread is shown in Fig. 8(d).

Table S3 (ESI†), presented in Section S7 of the ESI† com-
pares the specifications of the proposed liquid-based memory
with its solid-state counterparts. The magnetite (Fe3O4) based
liquid synapse combines the advantages of FERAM and ReRAM
by having high endurance cycles and lower dynamic range. We
also applied a low-power read operation in pulse mode by
applying read voltages of about 14 mV amplitude, which are
only influenced by DC offset, gain errors, and noise. The high
frequency noise resulting mainly due to the setup gets averaged
and passes through when we apply read pulses.51 Resistance
switching in liquid-based memories (such as ferrofluid) is also
quite deterministic, unlike solid-state memories where intrin-
sic stochasticity is inherent. The fault-tolerant capability of the
ferrofluid-based liquid memories does not age or die out like
the conventional solid-state memories, which are highly vulner-
able to ESD (electrostatic discharge) and accidental damages.
The primary reason to apply the least magnitude of read bias is
to make a low-power inference at the system level when
classifying patterns, etc., and by doing so, we join the group
of specific memory technologies where read biases of less than
100 mV are applied and this comparison along with the ON/
OFF ratio is shown in Fig. S15 of the ESI.† The feature of scaling
down the size of ferrofluid synapse is experimentally validated
by minimizing the distance between the electrodes and the
volume of the ferrofluid using a newly designed vial with
adjustable volume (as detailed in Section S4.2 of the ESI†).
The results of these experiments are shown in Fig. S16 of the
ESI,† which prove the capability of scaling down the ferrofluid
synapses thereby obtaining higher electric field similar to
nanoscale solid state memories. This opens a new era of
possibility of monolithic integration of ferrofluid synapses with
technologies such as thin film transistors52 in the future.

5 Pattern recognition using
spike-based unsupervised learning

To evaluate the capabilities of the ferrofluid, a circuit-level
simulation is carried out to learn patterns and digits in the
Simulink environment of MATLABs using the experimental
resistance switching characteristics of the ferrofluid and other
behavioral circuits and components. Unlike conventional digi-
tal approaches in computational neuroscience, the ANN is
simulated at the circuit and system level to give an insight into
the analog in-memory computing perspective. The considered

patterns and the numbering of the pixels are shown in Fig. 9(a).
The scheme of the 4 � 4 synaptic crossbar is shown in Fig. 9(b)
where four pre-synaptic drivers, pre{a,b,c,d} are fully connected to
the four post-synaptic neurons, pos{a,b,c,d} with sixteen liquid
synapses, s{1,2,. . .,16}, whose switching characteristics are equiva-
lent to the ferrofluid characterized earlier. A switch is used in
series with each synapse to avoid sneak path currents,53 pro-
vided our preliminary characterization experiments (explained
in Section 4) reveal – the ferrofluid does not require any
compliance currents for ‘erase’ or ‘write’ tasks. This aspect
marks a gap in comparison to solid-state memories, where
delimiting switches are needed for healthy resistance switch-
ing. The switches in the crossbar also facilitate selecting a
synapse and applying the desired bias without disturbing the
states of the other synapses. A spike processor control block is
implemented where the STDP learning rule is carried out. It
collects and compares the time of occurrence of the digital
output spikes, tpos{a,b,c,d} from the post-synaptic neurons and
the time of occurrence of the incoming pre-synaptic spikes,
tpre{a,b,c,d} whose inputs are the pixels of the patterns in the
form of read pulses fed to the system within the time frame.

The scheme of the pre-synaptic drivers, post-synaptic neu-
rons, and the digital control for the switch inputs (g{a,b,c,d}) is
shown in Fig. 9(c), which primarily has OpAmps and two sets of
switches connected in combination so that one set of switch
connections is used to select the synaptic task (like ‘read’,
‘erase’, ‘write’, ‘idle’, and ‘reset’), while the other is used to
choose a synapse in the 4 � 4 synaptic array. ‘idle’ condition is
applying similar biases at the terminals of the synapse without
changing its state whereas, the ‘reset’ of the post-synaptic
drivers is carried out after every pixel input. The pre-synaptic
driver’s OpAmps are connected in buffer configuration, while
one of these post-synaptic OpAmps is used to establish differ-
ent feedback loops to implement specific synaptic tasks, and
during ‘read’ the integrated (using the capacitor, cint) outputs
are compared with a reference bias, vc using the comparator
OpAmps. During on-chip implementation attenuation of infer-
ence current is carried out by implementing circuits like
Gilbert’s current normalizer,54 MOS-ladder,55 and modified
current normalizer (MCN)56 to minimize the size of the inte-
grating capacitor (cint), particularly when reading the post-write
resistance. The digital nodes, A and B are used to pick the
desired synaptic task, while RA, RB, CA and CB are used to
choose a synapse in the array. As the same feedback loops are
used for ‘erase’, ‘write’, ‘idle’, and ‘reset’, it further reduces the
number of switches.

The analog biases applied on the crossbar terminals are
categorized into ‘active’ and ‘default’ biases. When a synapse is
chosen, active biases are applied across its terminal whereas the
unselected synaptic terminals are applied with default biases.
The active biases applied at the top of the synapse are – vtra (for
‘read’), vtwa (for ‘write’), vtea (for ‘erase’) and vtia (for ‘idle’), while
its default biases are – vtrd (for ‘read’), vtwd (for ‘write’), vted (for
‘erase’) and vtid (for ‘idle’). Similarly, the nomenclature of the
names of the active and default biases applied at the bottom of
the synapse are replaced with ‘b’ in the above eight biases (for
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Fig. 9 (a) Numbering of the 2 � 2 pixel and different patterns considered for learning, (b) scheme of the 4 � 4 synaptic crossbar where the patterns are
applied as read pulses across the rows, (c) scheme of the pre-synaptic drivers and post-synaptic neurons with their digital control signals, and (d)
flowchart for carrying out spike-based unsupervised learning for pattern recognition.

Materials Horizons Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 1

1/
11

/2
02

5 
3:

04
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4mh01592d


4204 |  Mater. Horiz., 2025, 12, 4193–4207 This journal is © The Royal Society of Chemistry 2025

example – vbra, vbwa, vbea, and so on). The biasing conditions and
values of the components, used in the pre-synaptic drivers, post-
synaptic neurons, and control for the switches (near synapses)
are listed in Table S4 of the ESI.† The switch condition (either
open or closed) shown in Fig. 9(c) is when the digital input,
‘reset’ is activated. For example – if we want to choose the
synapse, s7 and apply ‘erase’, the digital signals applied are –
reset = LOW, A = HIGH, B = LOW, RA = LOW, RA = HIGH, CA =
LOW, and CA = HIGH. In this way, an ‘erase’ is carried out across
s7 thereby leaving other rows, r{a,c,d} and columns, c{a,c,d} being
biased with default biases to leave unchanged the state of other
unselected synapses.

Pattern recognition using the STDP learning algorithm is
based on – updating the weights of the synapses using the
STDP rule i.e. by determining the time of occurrence of the pre-
synaptic and post-synaptic pulses. When the post-synaptic
pulse spikes after the pre-synaptic pulse, the weight of the
corresponding synapse is strengthened, and when the pre-
synaptic pulse spikes after the post-synaptic pulse or when
there is no pre-synaptic pulse, the weight of the corresponding
synapse is weakened. Fig. 9(d) shows the flowchart for carrying
out the STDP learning for pattern recognition where the indi-
cated variables – ‘m’ and ‘n’ are the number of rows and the
number of patterns considered. The times of occurrence of
tpos{a,b,c,d} and tpre{a,b,c,d} pulses are stored in a memory array
for each pixel throughout the simulation. Hence, we will have
four values of times of occurrence for each post-synaptic pulse

when the whole pattern is fed into the system. The internally
stored time of occurrence of tpos{a,b,c,d} is compared with the
time of occurrence of its corresponding tpre{a,b,c,d} and the
appropriate synaptic weight s{1,2,. . .,16} is updated using
the spike processor control based on the STDP learning rule
and an additional condition. The condition is – when two or
more post-synaptic pulses spike at the same time, priority for
weight update is given to the contributing neuron with a
‘minimum index’ number and the one that hasn’t learned
any pattern yet. The STDP binary weight update is done in
steps for the synapses in the crossbar such that the weights
evolve from ‘random values’ to reach ‘learned values’, which
results in each post-synaptic neuron learning an individual
pattern. In this combination of using STDP learning rule and
using integrate and fire neurons as post-synaptic neurons, the
neuron that learns has to fire faster, thereby correlating with an
applied particular pattern and the STDP weight updates con-
tinue until all neurons distinctly learn an input pattern. Also,
after learning, the final results of pattern recognition using the
unsupervised STDP learning rule differ for different initial
weights. Fig. S17 of the ESI† shows the waveforms of the
applied pre-synaptic pulse, the output waveforms of the post-
synaptic neurons, the output of the integrators of the post-
synaptic neurons, the binary weights updates, reset signal,
cycle, etc. for a randomly assigned initial weight of the 4 � 4
synaptic crossbar. Fig. S18 of the ESI† shows how the weights
evolve from four different random weights to become learned

Fig. 10 (a) Numbering of the 3� 3 pixel and pixel arrangement of digits (0 to 9) considered for learning, (b) STDP weight updates applied on four random
initial weights to achieve learned weights for learning digits, 0 to 9. The weights of the post-synaptic neurons that faced STDP weight updates are
highlighted at every weight update.
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weights thereby making different neurons in all four cases learn
uniquely the applied patterns. The approach is extended to
classify digits, 0 to 9 in a 3 � 3 image pixel using STDP learning
rule and by implementing an additional condition, which is – the
synapses of the neurons that have already learned do not take part
in the future weight updates. This is done to keep the number of
weight updates uniform in the learning process for all random
initial weights. Note that each digit corresponds to a unique
combination of serialized bits. A 9 � 10 synaptic crossbar is used
to realize the learning results. Fig. 10(a) shows the numbering of
the 3 � 3 pixel and the pixel arrangements for digits from 0 to 9,
which our neural network classifies. Fig. 10(b) shows how the
weight evolves from four different initial weights to become
learned weights thereby making the post-synaptic neurons learn
the digits uniquely for different initial weights. For example – in
the first case the first post-synaptic neuron learns digit 1 whereas
in the second case, the same neuron learns digit 7, and so on.

6 Conclusions

In this work, we show the features of a ferrofluid-based neuro-
morphic liquid synapse that has excellent resistance switching
properties, including high endurance, lower dynamic range,
deterministic switching behavior and exhibits short term plas-
ticity (STP). It does not require either forming or current
compliance requirements. We experimentally observe the
improvement in yield and reduction in variation of the resis-
tance values by stabilizing the PL ferrofluid with oleic acid,
instead of polar surfactants as in EMG one. The entire setup is
based on low-cost components, and read biases feature low
magnitudes, thereby paving the way for a low-power inference
system, whose results are only affected by offset, gain errors,
and noise of the system. Ferrofluid volumes are taken as small
aliquots from a batch size of up to 1 L volume. In an industrial
production chain, device-to-device variability can be avoided by
properly sizing the amount of raw materials needed and stored
as homogeneous reservoir, partitioned and dispensed in the
smaller volumes necessary for production. This represents a
competitive advantage of the liquid electronic devices over
conventional solid state ones. We finally validate the feature
for scaling down the size of the ferrofluid synapse and extend
the characterization results to verify the capabilities of the
ferrofluid used as neuromorphic liquid synapses matrix in
artificial neural networks to classify digits from 0 to 9 in a
3� 3 image pixel by applying the spike-based learning rule. The
experimental DC characterization results, verification of short
term plasticity, and capability of scaling down the size of the
neuromorphic liquid synapse make it a promising futuristic
candidate for CMOS integration in realizing ANNs for analog
in-memory computing.
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