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Biobased substitutes for plastics are a future necessity. However, the
design of substitute materials with similar or improved properties is a
known challenge. Here we show an example case of optimizing the
mechanical properties of a fully biobased methylcellulose-fiber compo-
site material. We tackle the process—structure—property paradigm using
Bayesian optimization with Gaussian process regression to map the
processed material composition to the final mechanical properties of
new bio-based solid foams. We exploited the fast-to-measure rheologi-
cal properties of the liquid biofiber suspensions processed into foams to
show how these collapse to an auxiliary sub-space of low dimensionality
for design. The optimal compositions for methylcellulose-fiber foams
shown here correspond to two distinct cases: high methylcellulose
content for the formation of strong closed-cell foams, and high fiber
contents with approximately equal amounts of methylcellulose for the
formation of methylcellulose-bound fiber networks. The novel approach
is transferable to other biobased foam compositions with different fibers
and additives. This new approach allows the rational design of bio-based
plastics replacements by encompassing desired final material properties,
descriptors of materials processed, and knowledge of the process.

1. Introduction

Plastics are lightweight, mechanically resilient, and inexpensive."
However, they have severe negative impacts on the environment,
and plastic pollution is a growing problem worldwide.>* The most
viable solution to this problem—finding replacements for these
plastics—is a crucial part of the green transition® and meeting the
United Nations sustainable development goals.”> The manufacturing
methods should be industrially viable* and follow circular principles
to decouple manufacturing from the sole use of natural resources.
To achieve this goal, data-driven approaches® explore and exploit the
material design spaces and learn the process-structure—property
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New concepts

We demonstrate a novel framework of dimensionality reduction and
Bayesian optimization (BO) to map the properties of a material from
the liquid state to the solid state. The fast measurements in the liquid
state are first reduced to a two-dimensional auxiliary sub-space with
principal component analysis (PCA) and again to mechanical properties
of the solidified material with BO. The proposed process enables the use
of small data in multidimensional input spaces by capturing the hidden
correlations between measurables not captured by simplified physical
models. The dimensionality reduction results in a geometrically
interpretable view of the property space, instead of a black-box
function. As a practical application, we use the method to optimize the
yield stress of a bio-based plastic replacement foam material using
rheological measurements in the liquid state as surrogate experiments,
minimizing the labour and time compared to mechanical compression
experiments after aerating and drying the foam. The framework would
also be transferable to other clustering and machine learning algorithms,
not just PCA or BO that are used here.

relationships. The candidates for biodegradable plastics sub-
stitutes usually comprise several bio-based constituents from
widely varying sources, as when circular economy raw material
sources are utilized, making them complex systems to model."

A natural solution to this problem is machine learning by
Bayesian methods, where prior knowledge is utilized in combination
with the data to arrive at a posterior estimate in the form of a
probability distribution with naturally quantified uncertainty in the
form of Bayesian optimization (BO).*™* BO consists of two compo-
nents: a surrogate model and a utility function. Good models for
new materials often do not exist, so a simple choice for the surrogate
model is a Gaussian process (GP), which approximates the expensive
“black box” functions associated with composition-structure-prop-
erty relationships.”™®"” Compared to an alternative for BO—a
Bayesian neural network'®*—GPs require far fewer hyperparameters
and are thus computationally cheaper, while retaining the ability to
represent functional relationships with widely varying shapes. A
utility function is then used to implement active learning,”*'>'*>?
where the extremum of the utility function gives the choice of the
next sampling point.
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Packaging materials are an important industry where new
and efficient replacements are needed, as in Europe, 19%
of packaging waste is plastic packaging.’® Cellulose-based
materials®>*™° are a promising alternative to petrochemical-
based packaging that comprises mostly polystyrene foams.
We developed hierarchically structured biodegradable foams
made from forest-derived materials.'>>*>*>>° These foams have
mechanical properties that are well-suited for packaging appli-
cations (orthotropic strength, making the material strong in
one direction and soft in another), and they can be manufac-
tured in a scalable, continuous manner. The manufacturing
process consists of preparing an aqueous suspension of methyl-
cellulose and cellulose fibers, wet-foaming the suspension, 3D
printing the liquid foam, and evaporating the water to obtain a
solid foam material.

The iterative experimentation of material compositions
through foam manufacture is slow, so ideally, the properties
of the solid foam should be optimized by choices made before
the foam manufacturing process.'**'7** The suspension rheol-
ogy of a viscoelastic material is fast to measure and has been
suggested to describe the properties of the material when it
takes a viscoelastic solid conformation.** This sets up a com-
position-process—structure—property path with a constant man-
ufacturing process where the structure is inferred from the
viscoelastic properties of the liquid suspension.

Here, we show how biodegradable foams can be designed as
plastic substitutes in packaging by optimizing the mechanical
properties of a biobased foam material using a simple BO
approach. We used Gaussian process regression (GPR) to map
the composition-process—structure-property path from the
constituent materials to the mechanical properties via the
structure-determining rheological properties. Using an auxili-
ary rheology space enables the transferability of the results to
extended and optimized raw material design spaces.

2. Results

2.1. Machine learning predictor

The input data used by the machine learning predictor consists
of compositions and rheological observables for suspensions
with varying concentrations of MC and fibers, as well as output
data of the mechanical testing results of the corresponding
solid foams. The composition of the suspension and the solid
foam can be thought of as a vector in the composition space
(where the components are the concentrations ¢ in the wet
cMmMC

suspension) ¢ =
Cfiber

} € €. Here, we use MC and one type of

fiber, so our composition space % is 2-dimensional.
The rheological measurements then determine the vectors
5min
€ Z residing in the rheology space %. The space is
Tgel
set up by the 11 rheological observables (described in more
detail in the Methods section), thus 11-dimensional. However,
these 11 observables are not independent, and principal
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component analysis (PCA) can be used for dimensionality
reduction.®*’ This maps from the rheology space Z to the
principal component space Z based on the experimentally
measured points. Alternative dimensionality reduction techni-
ques, such as t-distributed stochastic neighbor embedding*®
(t-SNE) or uniform manifold approximation and projection®”
(UMAP), require hyperparameters and can arrive at different local
optima with different initializations. These methods might be
more appropriate with highly nonlinear data, but PCA has the
advantage of being unique and free of hyperparameters.

Finally, we have the mechanical properties of the solid
foams. Here, we have only used the yield stress g, € ./ (as it
well characterizes the mechanical behavior of the material®®),
so the space of mechanical properties .# is one-dimensional,
but other choices could easily be made. As several measure-
ments of the yield stress are made for each composition, these
are all added to the dataset, corresponding to the same point in
the PCA reduced rheology space. This enables the GPR to learn
the inherent sample-to-sample variability in the data.

The machine learning predictor was used to circumvent the
laborious iterative experimentation through foam forming and
mechanical testing. Instead, the fast-to-measure rheology was
used to infer the mechanical properties using the predictor. See
Fig. 1 for a description of this workflow.

The predictor comprises two steps. The first step is to find a
mapping from % to # (or to the dimensionally reduced
version 2). This is initially done by the fast rheology measure-
ments, and then we used GPR to define a direct mapping
fi € — 2 where fwas a GP. The second step was to define
another mapping g: # — .4 where g was again a GP. A more
detailed description of the GPR can be found in the ESL¥

2.2. Mapping the composition to the rheology

To construct the initial dataset, we made suspensions of wet
foam with varying concentrations of MC and fibers, measured
the rheology, made a solid foam, and did compression tests on
the solid foam to determine the yield stress (Fig. 1). The
suspensions in the initial dataset were composed of a grid-
like set of compositions, as depicted in Fig. 2a-c.

The rheology observables had strong correlations, and there-
fore, the dimension of the rheology space % was reduced using
PCA to yield points in the 2D space (Fig. 2d). In two main
directions, the unit vectors related to temperature observables
map to vectors almost perpendicular to the other rheology
observables (Fig. 2d). This was also seen in the explained
variance ratio (EVR) of the PCA, which was over 90% with just
two components (inset of Fig. 2d).

The studied concentrations set up a domain of feasible
rheologies achievable from this material combination. They
are the result of mapping all the concentrations in the con-
sidered region (0.6% < cyc < 2.0% and 0% < Cpiper < 2.0%) to
the PCA reduced rheology space (shaded region in Fig. 2d). The
mapping f has very reasonable accuracy (Fig. 2e). Furthermore,
in Fig. 2a and b, we visualize how the mapping f behaves in the
composition space; this aids in understanding the unit vectors
and the effect of composition on the magnitude of the PCA

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 A workflow with slow iterative experimentation and fast Bayesian optimization. Solid foams can be produced from a wet foam using foam forming
and probing the mechanical properties using compression tests. Alternatively, the rheology of the wet foams can be measured and then use the ML
methods presented in this paper to predict the mechanical properties. The rheometry figure in the top-right corner shows the different rheological
observables extracted from the experiments. The compression curve in the bottom-right corner shows the yield stress point used to optimize the
mechanical quantity. The different yield stress points correspond to different experiments, illustrating the sample-to-sample variation.

components (Fig. 2d). Lastly, Fig. 2c depicts the combined
standard deviation of the principal components APC =

VAPC2 + APC3? as a function of the composition.

2.3. Mapping the rheology to the mechanical properties

This method allowed the prediction of the yield stress of the
solid foams by using GPR to determine the mapping g from the
PCA reduced rheology space to the space of mechanical proper-
ties (Fig. 3). This mapping worked very well (Fig. 3a), and it is
noteworthy that there is a lot of scatter in the yield stress values
for different samples made using the same suspension. The
yield stress had a highly nontrivial landscape in the rheology
space (Fig. 3b). Such rugged landscape could be the result of
overfitting, but by using a portion of the data as a test dataset
we have checked that this is not the case.

The yield stress has a multimodal character, with two very
clear peaks at differing values of the first principal component
of the rheology space (Fig. 3b). We computed a utility func-
tion—the expected improvement (EI)—in the rheology space to

This journal is © The Royal Society of Chemistry 2025

exploit this new mapping approach. EI was chosen among the
many utility functions for its simplicity and as it is
hyperparameter-free and balances data exploitation and
exploration (see ESIt for more details on the choice of utility
function). The EI has clear peaks at specific points in the
rheology space (Fig. 3c) where the surrogate function can be
expected to improve over the current optimum. These two cases
correspond to high moduli G at medium characteristic tem-
peratures T, and high characteristic temperatures at medium
moduli. Based on Fig. 2a and b, we can identify two distinct
rheological behaviors linked to different foam compositions
that increase the yield stress. The first approach involves
maximizing the MC content in the foams, while the second
entails a strategic combination of MC and fibers.

Maximizing the MC content yields closed-cell foam
structures,>® where the small amounts of fiber only serve to
reinforce the structure. These compositions have high gelation
temperatures. On the other hand, starting from a high fiber
concentration forms a structure which is a matrix of fibers and
the addition of MC then binds the fibers to each other. The

Mater. Horiz., 2025, 12,1855-1862 | 1857
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Fig. 2 Mapping from composition space to the rheology space. (a) The compositions of fiber and MC in the suspensions of the initial dataset as blue
points. The contours represent the first principal component derived from the GPR mapping f to the PCA reduced rheology space. (b) As panel a but for
the second principal component. (c) The combined standard deviation of the mapping f. (d) The mapping of the rheology observables into the PCA space,
where the shaded area represents the whole composition space (fiber content between 0 and 2.0 wt%, MC content between 0.6 and 2.0 wt%) and the
points the actual measured points. The vectors shown are the unit vectors of the rheology space mapped to the PCA space, scaled for clarity of visual
presentation. The inset shows the explained value ratio as a function of the number of PCA components and our chosen number of principal
components n = 2 (dashed line). (e) The goodness-of-fit of the GPR mapping f for both of the principal components.
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Fig. 3 Mapping from the rheology space to the space of mechanical properties and exploiting this mapping. (a) The goodness-of-fit of the GPR
mapping g from the (PCA reduced) rheology space to the space of mechanical properties. The blue points are the original dataset, the purple ones are the
test set, and the yellow ones are the extended dataset, including additives. (b) The mean GPR prediction of the yield stress plotted in the PCA reduced
rheology space. The colors of the points are as in panel (a). (c) The EI computed using the GPR prediction of the yield stress in the PCA reduced rheology
space.
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high fiber content also reduces the gelation temperature due to
the enhanced connectivity of the gel matrix."> Additionally,
fibers also reduce the thermal softening of the suspension,
observed by a smaller gap between the moduli at the room
temperature and the gelation temperature. The worst compo-
sitions—the ones far from the EI peaks—have high energy
dissipation (high ¢ values), which means that the ratios of
MC and fiber are unfavorable for developing elastic gel
matrices.

The two EI peaks are in the domain of feasible rheologies
given by our mapping from the composition space to the
rheology space. Therefore, we made a test set of two measure-
ments using the compositions that would give us the rheologies
pointed out by these locations of maximum expected improve-
ment. One of the resulting solid foams had a yield stress of
150 kPa, which is among the strongest in our dataset, and it is
composed of 1.8 wt% MC and 0.0 wt% fibers, achieving an
improvement of 70 kPa over the mean yield stress of the
dataset. The other sample in the test set corresponded to an
equal ratio of MC and fibers (1.5 wt%). Thus, our approach
demonstrates that BO can be used to exploit the information
gathered to design stronger materials.

Finally, to demonstrate the transferability of the results, we
extended the dataset by conducting two additional experi-
ments: one using a different type of fiber in the suspension
and one incorporating lignin into the suspension as an addi-
tive. The yield stress results obtained for these new measure-
ments agree well with the GPR, which predicted, for example, a
yield stress of 90 kPa for the lignin foam (Fig. 3a). This shows
the exploitability of the auxiliary rheology space to predict the
mechanical properties when the observed rheologies of the new
measurement points are in the same region as the training data

rigid polymer

foams
N
\

104_

cork

> flexible polymer
foams

10°
plkgm=?]

Fig. 4 Comparison between our material and other packaging materials.
The Ashby plot of density vs. yield stress shows how our material (blue
points and grey background) performs when comparing to other materials
such as rigid polymer foams (blue), flexible polymer foams (green), and
cork (orange). The red point corresponds to the optimal sample in our
dataset.

This journal is © The Royal Society of Chemistry 2025

View Article Online

Communication

(Fig. 3b). With just these few additional measurement points
we have shown that the method is transferable to extended
composition spaces without any knowledge of the mechanical
properties for any of the points in the extended composition
space. Thus, using an auxiliary rheology space becomes a
valuable tool that allows a rheologist to favor either a strong
or soft mechanical response in the foams with additives.

To compare our foams with other packaging materials, we
have compared the yield stress vs. density characteristics of
different types of materials in Fig. 4. Our material achieves
strength comparable to high-strength flexible polymer foams
with similar or lower densities. The strength is also close to the
strength of rigid polymer foams or cork, with similar or lower
density. Our optimized foams also have yield stress comparable
to low-density expanded polystyrene®' (commonly known as
Styrofoam).

3. Discussion

Here we have shown how plastic substitutes made from
cellulose-derived ingredients can be designed to have opti-
mized properties—such as mechanical strength—for practical
applications including packaging. We use the material compo-
sition and the measured rheology of the resulting suspension
to predict the mechanical properties of the solid foam, without
resorting to slow iterative experimentation. The predictor
used—BO with GPR on a dimensionally reduced space—is a
simple machine learning method to tackle the process-struc-
ture-property paradigm.

Including the auxiliary rheology space has two advantages
over predicting the mechanical properties directly from the
composition. Firstly, the rheology of viscoelastic suspensions
infers the properties of the solid foams and is essentially the
structure part in the process-structure-property path. Sec-
ondly, it enables the transferability of the results to extended
design spaces. We show this by extending the composition
space to different types of fibers and adding lignin—an additive
not at all present in the training set—to the suspensions. The
use of additives—such as plasticizers, hydrophobizers, and fire
retardants—is a common practice in polymer processing. The
additives increase the dimensionality of the composition space
but using the methods described here, the composition space
can essentially be ignored in favor of using only the observed
rheology of the new suspensions. The general idea of our new
concept—using auxiliary spaces and dimensionality reduction
to obtain additional information for prediction—is easily trans-
ferable to other systems.

The observed optimal rheologies correspond to two distinct
cases: high MC content, and having high contents of both MC
and fibers. This nontrivial result can be understood by con-
sidering the resulting structures, where high MC content
provides a strong closed-cell foam, and having high fiber
content forms a fiber network, which needs binding through
high amounts of MC. Compositions far from these MC-fiber
ratios are unfavorable for elastic gel matrix development.

Mater. Horiz., 2025, 12, 1855-1862 | 1859
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To search for even better mechanical strength, one can vary
e.g. the fiber type and use the methods developed here to
exploit the fast-to-measure rheology to find the optimal com-
position with the new foam constituents. When circular econ-
omy raw material sources are considered, the deciding factor in
fiber selection is often the availability of the raw material rather
than the optimal performance, so we have here not explored the
effect of fiber type further.

A rheology expert might interpret the measurements and
make a good choice of 2-3 key rheology observables that do not
have the problem of being correlated and needing dimension-
ality reduction. However, our method obviates the need for
such expertise and automates the design of biofoams to
better identify suitable space using dimensionality reduction.
Methods such as anisotropic distance kernels could also be
used to similar effect. We have checked that our results are not
very sensitive to the number of observables used.

In our case we have just standardized the observables to zero
mean and unit variance. In cases where nonlinear behavior
with more widely varying observables is encountered, either the
nonlinear dimensionality reduction methods mentioned pre-
viously (such as t-SNE or UMAP) or some linearizing transfor-
mations might be more appropriate. In the case of rheology this
might be log-transformation, as many of the quantities behave
in exponential or power-law fashion. Similarly our method
assumes homoscedastic sample-to-sample variation, and in
more complicated cases heteroscedastic variants of GPR*?
might be needed.

These types of machine learning methods are usually good
at interpolating between the points in the training data but less
useful for extrapolation. This is also true here, as using sta-
tionary kernels in the GPR means that the predictions for
rheologies far from the ones measured in the training set
(around one kernel lengthscale away) tend to the mean value.
Here we do not encounter this problem, as the test set and the
additional tests with different fibers and additives have rheol-
ogies sufficiently close to the mapped part of the search space.
When rheologies far from the training sets are encountered, the
training data should be amended in this region.

A direction for further work would be to utilize high-throughput
experimental methods such as an automated rheometry setup’ to
probe the composition and rheology spaces. Using this type of
blind brute-force approach would enable the exploration of truly
vast regions of possible material compositions.

In practical scenarios one might also be interested in other
properties of the foams, e.g. their water resistance.”*** One can
then utilize the method shown here for any number of
these properties and using standard multitarget optimization
methods, such as expected hypervolume improvement,**> pro-
ceed to find a Pareto front.

Similarly, in our case the composition space searched was chosen
so that the compositions explored are all foamable and show a gelling
transition, enabling the formation of dry foams. Also the measure-
ment points suggested by the expected improvement were in this
domain of feasible rheologies. In cases where this is not true, the use

of feasibility aware optimization methods*®*” might be necessary.
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4. Methods

4.1. Materials

We make wet foam suspensions out of methylcellulose, water,
and fibers. Three different fibers were used. The foams are
dried into a solid 3D configuration using previously reported
methodologies.">?**?* Five samples were made for each com-
position. The initial training set consists of 26 compositions
with fiber content between 0 and 2.0 wt% and MC content
between 0.6 and 2.0 wt%. These ranges were chosen so that the
resulting suspensions are foamable, show a gelling transition,
and can therefore be used to make dry foams. Two composi-
tions were then made as a test set, as well as two compositions
to show the transferability of the results to different fibers and
additives. Further details on the materials used and the foam
manufacture can be found in the ESIL.}

The densities of the foams are measured simply by weighing
them and dividing this by the outer dimensions of the tested
foam block. The comparison data for other materials in Fig. 4 is
gathered from the Ansys GRANTA EduPack software.*®

4.2. Experimental methods

The rheological properties of the suspensions were character-
ized using dynamic mechanical thermal analysis (DMTA). In a
Couette geometry we apply a sinusoidal strain y to the suspen-
sion with an amplitude of 1.0% and a constant angular
frequency o = 6.28 s ', while heating the sample at a rate of
1 °C min~" from 15 to 60 °C. The viscoelastic response of the
sample is characterized by recording the storage modulus G’
and the loss modulus G” as a function of the temperature 7.
Additionally we observe the phase shift angle ¢ = arctan(G"/G’).
A more detailed description of the rheometry methods can be
found in the ESIL.t

For the GPR we record 11 rheological observables. These are
the phase shift angle at the minimum of its gradient with
respect to temperature when the material exhibits the sol-to-gel
transition Onn, the storage modulus corresponding to this
angle G}, the storage modulus at 25 °C temperature Gs.c,
the storage modulus at 60 °C temperature Gy . (high tempera-
ture), the minimum value of the storage modulus G/, , the loss
modulus at room temperature G5s.., the loss modulus at high
temperature G¢,.c, the minimum value of the loss modulus

" the minimum storage modulus temperature Tg — the
minimum loss modulus temperature Tgr and the sol-to-gel
transition temperature Tye|.

We test the mechanical properties of the solid foams by
performing compression tests. The experiments consist of
compressing the samples with a constant engineering strain
rate of 0.033 s~ ', and recording the force F and displacement d.
From these the engineering stress o = F/A (where A is the initial
cross-sectional area of the sample) and engineering strain
¢ = d/h (where h is the initial height of the sample) are
calculated.

For the GPR we determine the yield point of the sample, and
characterize the strength of the material by the value of the

This journal is © The Royal Society of Chemistry 2025
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yield stress o;. A more detailed explanation of the compression
test methods can be found in the ESIL.}
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