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Discerning order from chaos: characterising the
surface structure of liquid gallium†

Krista G. Steenbergen, a Stephanie Lambie b and Nicola Gaston *a

Liquid metal (LM) technologies are rapidly advancing in modern

materials science, with low melting point metals playing a pivotal

role in emerging applications. Recent studies reveal that doped

liquid gallium systems form spectacular and diverse surface struc-

tures during cooling, [Tang et al., Nat. Nanotechnol., 2021, 16,

431–439] sparking renewed interest in the possible geometric

structuring at the surface of pure liquid gallium. Distinct from the

known increase in surface density, this lateral surface order has

long been hinted at experimentally and theoretically but has

remained enigmatic. Here, we quantitatively characterise the depth

and nature of this surface ordering for the first time, using highly

accurate and large scale molecular dynamics simulations coupled

with machine learning analysis techniques. We also quantify the

enhanced structural order introduced by the addition of a gallium

oxide film as well as the disruption due to a dopant (bismuth).

‘‘We adore chaos because we love to produce order’’ (M.C.
Escher, n.d.). While ‘‘chaos’’ might be a strong term for the
atomic disorder of a liquid, this phase of matter is literally
defined by ever-changing, dynamic and largely random displa-
cements of atoms. However, this isn’t quite the whole story.
Look a little closer and you see that many liquids, particularly
metals, exhibit some degree of short-range order1,2 based on an
energetically preferred, though temperature-broadened, first
nearest neighbour distance. In certain liquids, such as liquid
crystals, a unique type of longer-range order exists.3 In others,
such as liquid gallium, experiments have hinted at an enig-
matic geometric structuring without surface freezing,4–8 which
may play a role in the spectacular structures emerging from
doped liquid gallium systems.9–13 While the order in liquid
crystals has been at least broadly characterised, the structuring

of the liquid gallium surface has remained speculative and
qualitative.

Experimentally, the difficulty in characterising any liquid
surface structuring arises from both the dynamic nature of the
liquid and the opacity of gallium to both light and electrons.12

Theoretical explorations have been hindered by limits on
the simulation size that have significant consequences for
accurately modelling important material properties, such as
the predicted melting temperature.14 Density functional theory
(DFT) imposes a relatively small limit on simulation size, but
force fields that enable larger scale simulations have been
historically inaccurate for gallium.15–17 The theoretical limita-
tions have recently been eliminated by the emergence of highly
accurate first-principles machine learning force fields (DFT-
MLFF).18–24 This coincides with the increased interest in these
methods due to the emergence of liquid gallium as a solvent in
many emerging liquid metal (LM) technologies. The possible
advancements offered by liquid gallium-based systems include
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New concepts
We demonstrate geometric ordering parallel to the surface of liquid
gallium, distinct from the well-known surface density increase. We
prove this decades-old conjecture by providing a detailed geometric
description of the surface structure of liquid gallium. Through the
development of a highly accurate first-principles machine learning
force field, we perform simulations of liquid gallium with both liquid–
vacuum and liquid–oxide interfaces at an unprecedented scale. Applying
newly-designed machine learning-based analytical methods, we establish
for the first time properties of foundational importance to liquid metal
research and broad interest to materials science: the depth of surface
ordering, a minimum depth for a true bulk liquid environment, the
enhanced structuring introduced by an oxide film, and the disruption
caused by a dopant. These findings offer valuable insights that will shape
future research on liquid metals and are key to emerging gallium-based
liquid metal technologies. Furthermore, the adaptable analytical
methods presented here can be applied to the study of any liquid
surface or bulk system, broadening the impact of this work across
materials science.
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increased catalytic yield and selectivity,25–29 solar thermoelec-
tric generation,30 medical applications,31 improved battery
technologies,32 and enhanced gas-sensing performance.33

Furthermore, interfacing liquid gallium with its native oxide
has recently shown utility in novel electronic applications,34

such as transparent and flexible conductors,35 and its presence
dramatically lowers interfacial tension, positioning it as a
potential new class of surfactant.36 Clearly, further investiga-
tion into the existence and characterisation of surface structur-
ing in liquid gallium is strongly justified. But the question still
remains: Is it even possible to discern order from apparent
chaos? If there is order, can we detect or even quantify
modifications to that structuring that might be introduced
with the addition of a dopant or oxide layer? Armed with the
tools of statistics and machine learning algorithms, our answer
to all these questions is a resounding ‘‘yes!’’

In this work, we utilise the support vector classification
(SVC)37–42 and k-means cluster analysis41,43–45 machine learning
(ML) algorithms to address an open question in materials science:
Is there geometric ordering at the surface of liquid gallium beyond
a simple increase in density and, if so, what is its structure?
We explore the depth and nature of surface ordering in pure
liquid gallium through ML analysis of DFT-MLFF molecular
dynamics (MD) simulations, benchmarked against pure first-
principles MD simulations. We further investigate the geo-
metric changes to the surface layers of liquid gallium with
the introduction of a surface oxide film, as well as the disruption
due to the addition of a dopant atom (bismuth). Determining the
depth and nature of the atomic scale structure at the surface of
liquid gallium is of significant importance to our current body of

work on LM systems9–11,46–49 and LM catalysis.27,28,50 This study
builds on our recent work on bulk liquid gallium, which demon-
strated an unexpected increase in covalency with rising tempera-
ture and resolved decades of debate about bulk liquid structure.51

Here, we shift the focus to surface structure through the introduc-
tion of an interface (vacuum or oxide). While this work specifically
focuses on gallium, we anticipate that our methods will be broadly
applicable to other liquid systems.

The paper is organised in three tiers of detail. In Section 1,
we give an overview of all key results without technical detail,
intended for the broadest range of scientific specialists.
In Section 2, we provide additional details on methods and
evidence leading to our key findings. The third tier is the ESI†
where detail is provided at the level of reproducibility. ESI† is
extensively referenced in Section 2 as section and figure refer-
ences with a leading ‘S’.

1 Summary of key results

Using thin atomic discs of 17 atoms with faces parallel to the
liquid surface, extracted from MD snapshots (Fig. 1a), we
capture local structural environments of liquid gallium and
investigate liquid surface structuring using two ML analysis
methods: SVC binary classification and k-means clustering. For
binary classification, the geometry of each disc is represented
by a vector that characterises distances and angles between the
disc atoms (Fig. 1b). For k-means clustering, the disc geometry
is represented by a graph which better captures connectivity
(Fig. S12 and Section S4, ESI†).

Fig. 1 (a) A snapshot of the pure liquid gallium MD supercell, highlighting two thin atomic discs used for training the classification (SVC) model: one
representing the liquid surface (blue) and the other representing the bulk liquid (red). Note that all atoms shown are gallium atoms, with the colours used
only to differentiate the discs. (b) Top and side views of an example atomic disc are given, along with a graphical depiction representing how the disc is
transformed into a vector (x

-
) of geometric measures for use in SVC. The disc is constructed as a central atom (labeled 0), and a set of n nearest

neighbours that lie within �Dz/2 of that central atom’s z coordinate. The vector x
-

is a combination of distances and angles, e.g., Ds1 (distance between
atoms 0 and 1) and f1,0,2 (angle between atoms 1 and 2, with atom 0 as the vertex). The side view exemplifies the disc height Dz. (c) The SVC classification
probability that a disc is from the surface class, P(s), indicates the extent to which the disc’s geometry resembles a surface structure. Tracking each disc’s
depth (z) and averaging the surface probabilities over thousands of MD snapshots (hP(s)i), we obtain a curve showing how deeply the surface structuring
extends. Here, hP(s)i as a function of depth is shown for both the gallium liquid + oxide (red) and the pure gallium liquid (black), overlaid on an opaque
background giving a side view of the liquid + oxide supercell. The liquid surfaces for both simulations are highlighted with blue rectangles, with the finite
width of the rectangle reflecting the approximate variation in the liquid’s depth over the course of the MD simulations. The three geometrically structured
surface layers lie in the regions between the blue rectangles and the dashed lines. The true bulk liquid structure exists only between the two dashed lines.
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Using SVC, we demonstrate that discs from the liquid sur-
face can be statistically distinguished from those of the bulk to
a high degree of accuracy (84%). Tracking each disc’s depth and
including a classification probability analysis, we find that
higher-than-average surface-like character persists for 3 distinct
surface layers in pure liquid gallium (Fig. 1c, black line), in
excellent agreement with experimental findings.4–8 We show
that bulk liquid geometries do not statistically dominate until
8.5 Å from the surface, meaning that a system with two liquid–
vacuum interfaces requires a depth that exceeds 17 Å for any
part of the system to represent a true bulk liquid environment.
This explains the atypical melting temperatures observed
for 2D multilayer gallenene slabs with depths ranging from
B5–13 Å.14,52 To confirm that these results are not influenced
by surface freezing, we also conduct a mobility analysis verify-
ing that the surface remains fully liquid (Section S3, ESI†).

Applying k-means clustering and subsequent statistical ana-
lyses, we find a high degree of geometric order in the surface
discs, which is characterised by 2 concentric shells of atoms
(at 3 Å and B5.4 Å) surrounding a central atom, with approx-
imate hexagonal angular symmetry and most frequent nearest
neighbour angles of 40 and 501 (Fig. 2a, red). In stark contrast,
the bulk local environment is entirely disordered (Fig. 2a, blue).

We also demonstrate that the addition of a gallium oxide
film alters only the surface layer closest to oxide (Fig. 1c, red),
enhancing the surface-like features of that single atomic layer.
The statistical analysis of k-means results confirms that the oxide
layer increases the degree of surface geometric order through a
significant contraction (0.3 Å) and finer resolution of nearest
neighbour distances, as well as an increased angular symmetry
in the first shell of atoms around the central atom (Fig. 2b).

Finally, we show that the addition of a bismuth dopant
entirely destroys the 2-shell structure and disrupts the angular
symmetry of the surface geometries (Fig. 2c). Using k-means
analysis to compare between discs from different environments
(surface, bulk, oxide-adjacent and bismuth-disrupted), we find
that the disorder introduced by a bismuth dopant at the surface
creates a local environment more similar to the disordered bulk
liquid than the geometrically ordered liquid surface (Fig. 3).

2 Methods and additional detail
2.1 Simulations

The structures analysed in this work are derived from the
trajectories of four different density functional-based MD simu-
lations completed using the Vienna Ab Initio Simulation Package
(VASP) version 6.2.4.53–56 We employ the Perdew–Becke–Ernzerhof
for solids (PBEsol) exchange–correlation functional57 and
the projector augmented wave (PAW) method58,59 for density
functional calculations. Each simulation utilises periodic
boundary conditions with at least 29 Å of vacuum padding in
the z-dimension, resulting in two liquid–vacuum interfaces
perpendicular to the -

z-axis. All simulations are thermostatted
to 450 K and tested to ensure a fully liquid state. Three of the
four simulations utilise an MLFF generated using the on-the-fly
ML algorithm as implemented in VASP.22–24 Section S1 (ESI†)
gives details of testing, settings and force field training, with
top and side view snapshots of all simulation unit cells in
Fig. S1 (ESI†).

The four simulations are as follows: (1) a pure liquid gallium
system with 320 gallium atoms where the forces between the

Fig. 2 The frequency distribution analyses for the (top) most common interatomic distances and (bottom) angles of various subsets of geometric discs:
(a) (red) the discs most representative of surface geometries compared to (blue) those most representative of bulk from the pure gallium liquid simulation
(Section S5.2, ESI†); (b) shallow-depth discs (z o 1.5 Å) from (red-dashed) the pure liquid gallium simulation compared to (orange) those from the
liquid gallium + oxide simulation (Section S5.3, ESI†); and (c) the discs most representative of surface geometries from (red-dashed) the pure liquid
gallium simulation compared to those (purple) with a surface bismuth central atom from the liquid + Bi dopant simulation (Section S5.4, ESI†). The height
of the disc, Dz, varies for different analyses and is explicitly given in each plot. Note that the terms nodes, node-distance, and node-angle are detailed in
Section 2.3.
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atoms at each time step are calculated by first-principles but
the time-evolution is governed by the classical equations of
motion (labeled GaLiqdft, Fig. S1a, ESI†); (2) an MLFF simula-
tion of pure liquid gallium with 3608 gallium atoms (labeled
GaLiq, Fig. S1b, ESI†); (3) an MLFF simulation of liquid gallium
with an oxide film, having the same 3608 liquid gallium atoms
and adding a six-monolayer gallium oxide (Ga2O3) film to one
surface (labeled GaLiq + Ox, Fig. S1c, ESI†); and (4) an MLFF
simulation of bismuth-doped liquid gallium, with 3606 gallium
atoms, one bismuth atom seeded in the upmost surface
layer and a second bismuth seeded in the z-centre of the liquid
(labeled GaLiq + Bi, Fig. S1d, ESI†). Note that the surface
bismuth atom remains within 3.5 Å of the simulation surface
for the entirety of the simulation, despite being unconstrained.

2.2 Support vector classification

SVC is a type of support vector machine, which is a widely-used
supervised ML algorithm most commonly associated with
spam e-mail filtering. Supervised ML algorithms require a set
of feature vectors with corresponding labels in order to train
the model. A feature vector represents the attributes or proper-
ties of the data, while the label indicates the category (class) to
which the data belongs. In this work, we would like to capture
geometric differences between the surface and bulk environ-
ments, therefore our feature vector will be comprised of geo-
metric descriptors and our labels will be surface and bulk
(Section S2.1, ESI†).

We capture the surface and bulk environments through the
geometric discs shown in Fig. 1a and b. The disc construction
was based on experimental results indicating that surface
ordering in liquid gallium is largely lateral (parallel to the
surface), persisting only B3 atomic layers below the surface.4–6

Therefore, the face of each disc is parallel to the liquid–vacuum
interface, and the effective radius of the disc’s face is approxi-
mately an order of magnitude larger than its height (Dz), as
illustrated by the example disc in Fig. 1b. Each disc is constructed

around a central atom (labeled 0) by selecting the nearest n
neighbour atoms that fall within �Dz/2 of the central atom
(NNDz). The set of NNDz atoms are labeled according to distance
from the central atom (1 is nearest, n is farthest). Example
surface and bulk discs are shown in the simulation cell in
Fig. 1a and Fig. S3 (ESI†).

Each disc is then geometrically characterised by a vector
(feature vector in the language of ML) comprised of: the
distances from the central atom to each of the other disc
atoms; and all unique angles less than 1801 with a vertex on
the central atom and endpoints on the 6 nearest NNDz. Using
the labelling shown in Fig. 1b, the feature vector will be:
-
x = Sortm(Ds1,Ds2,. . .,Dsn)8Sortm(f1,0,2,f1,0,3,. . .,f5,0,6). Here,
Ds1 is defined as the distance between atoms 0 and 1, while
f1,0,2 designates the angle between atoms 1 and 2, with atom
0 as the vertex. By carefully distinguishing surface from bulk
discs, we train a supervised SVC model to distinguish bulk from
surface geometries. The maximum SVC model accuracy of 84%
was obtained using training and test data from the GaLiq
simulation, Dz = 1.2 Å and n = 16. Sections S2.1 and S2.2 (ESI†)
give details of the SVC model training, testing and feature
vector construction. We note that while we have selected SVC,
five other ML binary classifiers have been tested yielding
similar, but slightly lower, accuracies (Section S2.3, ESI†).

The trained SVC model is primarily used to determine a
probability score60 which indicates the likelihood that a given
feature vector belongs to the surface or bulk class, P(s) or P(b),
respectively. Calculating the shortest distance between a disc
and the liquid surface (depth, z), binning the discs by depth
and averaging P(s) for each bin over all MD snapshots, we can
determine the average probability that a disc has surface-like
geometric features, hP(s)i, as a function of z (Section S2.4, ESI†).
Fig. 1c gives the results of this analysis for both the GaLiq
(black line) and GaLiq + Ox (red line) simulations, clearly
illustrating the increased surface character introduced by
the gallium oxide film with the notably higher hP(s)i for the

Fig. 3 K-means results (K = 4) for the concatenated set of graphs, derived from geometric discs representing the gallium liquid surface (circles), gallium
liquid bulk (triangles), gallium liquid at oxide interface (cross) and bismuth-disrupted gallium liquid surface (square), as outlined in the main text.
A K-means analysis groups data into clusters by minimizing the variance within each cluster, effectively grouping similar data points together. Here, the
grouping of the bismuth-doped surface discs with the disordered bulk liquid discs emphasizes the disruption introduced by a single dopant atom. Note
that for this analysis, the graphs are derived from geometric discs with a height of Dz = 2.0 Å.
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GaLiq + Ox result nearest the oxide–liquid interface. Note that
this probability analysis is completed with the SVC model
trained on the GaLiq dataset, meaning that feature vectors
from the GaLiq + Ox simulation are statistically compared with
those from the GaLiq simulation (Section S2.5, ESI†).

There is no statistically significant difference in hP(s)i as a
function of depth between the GaLiq + Bi and pure GaLiq
simulations. As previously mentioned, the surface-seeded bis-
muth atom remains within 3.5 Å of the surface throughout the
simulation. However, despite the limited z-range of that bismuth
dopant, gallium-centered discs vastly outnumber bismuth-
centered discs by at least two orders of magnitude, effectively
diluting any impact that the bismuth atom might have on hP(s)i.

For comparison and benchmarking, the same probability
and depth analysis is completed for the GaLiqdft simulation.
Again, the feature vectors from the pure DFT simulation are
statistically compared with the SVC training set from the GaLiq
MLFF simulation. Apart from minor deviations, the hP(s)i as a
function of depth is identical between the GaLiq and GaLiqdft

simulations (Fig. S8, ESI†), validating that the MLFF has been
well-trained.

Finally, the probability scores can also be used to determine
which geometric features differentiate discs with high P(s) from
those with high P(b). Using discs from the GaLiq simulation
with a very high (499%) P(s) and P(b) score, the average feature
vector of each class is calculated (Section S2.6, ESI†), with the
result given in Fig. S10 (ESI†). The largest difference arises from
the notably shorter distances of the high-P(s) vectors. Remem-
bering that these distances represent the bond lengths between
the disc’s central atom and each of the NNDz, we note that the
statistical differentiation of the surface geometries might arise
from the known increase in surface density of many LMs.61–63

In order to investigate whether geometric structuring might
also play a role in distinguishing the surface discs, we require a
geometric descriptor that includes connectivity: a graph.

2.3 Graph construction

In order to better capture the geometric connectivity of the local
environment discs, the geometric descriptor is changed from
a distance-angle vector to a graph. Graphs consist of a set
of nodes and edges, each of which can have multiple features.
A simple example of a graph is a transportation network, where
the cities are represented as nodes (example features: popula-
tion size or geographic area) and the roads connecting them
are represented as edges (example features: distance or speed
limit).

Here, graphs will be constructed from the same geometric
discs used for SVC, which contain a central atom and 16 NNDz.
Graph features are selected from the following geometric
measures. For each atom i in the disc, the distances to the 6
nearest NNDz atoms are labeled as Dri,j (where j is associated
with a second atom in the disc, i a j). The 6 smallest angles
between the 6 nearest NNDz centred on atom i are labeled yi,n

(n = [1,6]). Finally, the distance between the geometric centre
of the disc to each of the 17 atoms is calculated (DRcent,i).
The graphs are then constructed as:

� Nodes: each of the 17 atoms in the disc becomes a node in
the graph;
� Node features: one distance (DRcent,i) and 6 angles (yi,n);
� Edges: pairwise (unidirectional) connections between all

atoms in the disc (total of 256 edges);
� Edge features: one distance (Dri,j), which is set to 0 beyond

the 6 nearest NNDz distances of atom i.
The nodes are numbered according to the ascending dis-

tance from the central atom: zero for the central atom and 16
for the farthest atom. For each node, the 6 angles are sorted in
ascending order. By setting node and edge features using only
the 6 nearest NNDz atoms and using more node-angles than
node-distances, the graph focuses on local environment con-
nectivity, which is emphasised over interatomic distances.
Section S4 (ESI†) provides more detail, including an example
graph with representative node and edge features in Fig. S12
and Section S4.1 (ESI†).

2.4 K-means clustering

K-means clustering41,43–45 is an unsupervised ML algorithm
that partitions the data into a specified number of clusters
(K) by grouping data points. In overview, this grouping is done
through an iterative process of choosing K centroids, assigning
data points to the nearest centroid based on a chosen distance
metric (e.g., Euclidean distance), and recalculating each clus-
ters centroid. This process repeats until the centroids stabilise.
For k-means analysis, the geometric descriptor is the previously-
described graph. K-means analysis is employed for two primary
purposes: (1) to discern whether the connectivity patterns of
different sets of discs can be statistically differentiated by an
unsupervised model (i.e., without training or labels) and (2) to
use the clustering statistics to summarise the most representa-
tive patterns of a given set of discs (Section S5, ESI†).

To discern connectivity patterns between surface and bulk
discs of the GaLiq simulation, a combined set of graphs is
created from two subsets of discs: (1) those within the first two
surface layers of the liquid with a 497% P(s) and (2) discs
located near the liquid’s midpoint with a 497% P(b). For
interest, we added 12 graphs constructed from the non-
thermalised gallium 2D bilayer (gallenene),64 which serves as
an excellent reference system since it is in solid form. In total,
43000 graphs are analysed using a k-means model configured
with 3 clusters (K = 3). More information and settings are given
in Section S5.1 (ESI†).

The results are graphically illustrated in ESI,† Fig. S13, using
the first two principal components of a principal component
analysis (PCA) transformation for ease of visual representation.
The model identifies two distinct main clusters, showing that
the connectivity patterns can be statistically differentiated
between bulk and surface discs. Benchmarking against our
known labels showed that the clustering was c99% accurate
(Table S2, ESI†), which is excellent for the highly fluxional
liquid environment. Despite configuring k-means to identify
three distinct clusters, the solid gallenene graphs are assigned
to the same cluster as the high P(s) graphs, indicating the high
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degree of similarity between the gallium bilayer and the liquid
surface structuring.

The connectivity of each group can then be statistically
compared. We identify the ‘most representative’ graphs as the
100 graphs that are nearest (Euclidean distance) to the
the centroid (mean) of each subset of graphs, then calculate
distance and angle frequency distribution plots for these repre-
sentative graphs (Section S5.2, ESI†). We also calculate the
average of these representative graphs (Fig. S15, ESI†).

The average node distances for the 100 representative
graphs (Fig. S15b, ESI†) shows that surface graphs have one
clear shell of 6 NNDz atoms, with a second shell of 6 NNDz also
discernible. This two-shell structuring of the surface discs is
also supported by the node-distance distributions (Fig. 2a, top),
with one distance peak at B3 Å and another broader peak from
4.8–6 Å. The node-angle distributions are given in Fig. 2a
(bottom) for the inner shell of atoms. The surface graphs again
show a high degree of angular symmetry, with peaks at 401 and
501. Node distance and angle distributions for the bulk discs
show nothing but diffuse noise. Edge-distance and outer node-
angular distributions are given in Fig. S14a and b (ESI†), also
showing the increased geometric order of the surface discs.

In summary, Fig. 2a and Fig. S15 (ESI†) demonstrate a clear
structuring of the localised geometric environments lateral to
the gallium liquid surface. This structuring is characterised by
a central atom surrounded by two distinct shells of atoms, each
consisting of 6 atoms. Additionally, the angular distribution for
the first shell of atoms is narrowly peaked at 401 and 501,
indicating a high-degree of angular symmetry. The bulk dis-
tance and angle distributions show only geometric disorder.

A k-means analysis is also completed for the GaLiq + Ox
simulation (Section S5.3, ESI†). Here, the discs are limited to
shallow-depth (z o 1.5 Å), in order to focus on only the upper
surface layer which demonstrated the greatest oxide-induced
modification (Fig. 1c). Graphs are created for these shallow
depth discs for both the GaLiq + Ox and GaLiq simulations, and
compared using a k-means analysis (K = 2). While the results
show partially overlapping clusters (Fig. S16, ESI†), the GaLiq +
Ox discs are still distinguished from those of the GaLiq
simulation with 75–78% accuracy. A more detailed picture
emerges from an analysis of the most representative graphs.
The node-distance distribution for the first two shells of atoms
shows that the first shell contracts significantly from 3 Å to
2.7 Å once the oxide film is added (Fig. 2b, top). Additionally,
the two split peaks in the angular distribution of the GaLiq
results become one finer peak from 50–551 (Fig. 2b, bottom).

Taken together with the SVC analysis (Fig. 1c), these results
demonstrate that the oxide layer does, in fact, increase the
structuring in the topmost layer of the gallium liquid surface.
The change induced by the oxide is a significant contraction
and an increased order within the distances and angles of the
first shell of atoms. These results are consistent with experi-
mental results indicating that the oxide layer stabilises and
‘smooths’ the liquid gallium surface.65,66

Finally, we complete a k-means analysis for discs centred
on the surface bismuth atom in the GaLiq + Bi simulation

compared to GaLiq high-P(s) discs (Section S5.4, ESI†), where
both subsets of discs are required to meet the surface criteria
(depth o 6 Å). Extensive testing showed that the k-means
statistical differentiation between the two datasets was maxi-
mised when the height (Dz) of each geometric disc was
increased from 1.2 Å (as used in previous analyses) to 2.8 Å.
This result itself is intriguing as it suggests that the bismuth
atom disrupts the liquid surface structure both parallel and
orthogonal to the surface. Additionally, the graphs yielding
the greatest cluster distinction contain only node features
(no edges), indicating that the substantive difference between
the two sets of discs does not arise from the local pairwise
interatomic distances.

The 2-cluster k-means analysis yields well-separated groups
(Fig. S17, ESI†) with a 95% accuracy, illustrating the clear
difference in connectivity for the bismuth-centred discs com-
pared to the undisrupted gallium surface graphs. Fig. 2c gives
the distance and angle frequency distributions for the 100 most
representative graphs of each subset. The discs with bismuth
central atoms (purple) are entirely disordered, in stark contrast
to the GaLiq surface results which have three narrow, distinct
peaks at 2.7, 3.1 and 4.9 Å. Note that these results differ from
the previous GaLiq results as Dz has more than doubled. The
angular distribution of the inner shell of atoms peaks at 501 for
both subsets of graphs; however, the GaLiq + Bi results show a
disorder-induced broadening and lowering of the main peak.

Taken together, the bismuth atom completely disturbs the
surface order in liquid gallium by expanding and disrupting the
surface bond networks and the inner-node angular symmetry
of the disc. These results are consistent with the findings of
our previous work,46 where the bismuth atom was found to
have disturbed the surface layer of a small bismuth doped
gallium nanoparticle. Here, the larger geometric size and non-
curved liquid surface has allowed us to better quantify that
disturbance.

2.5 Comparing all sets of discs

As a final question, we address whether k-means can yield
additional information from a combined analysis of graphs
derived from all different types of geometric environments.
To be statistically sound, all graphs need to be created using
the same disc constraints. Setting Dz = 2.8 Å optimises the k-
means differentiation for GaLiq + Bi, while Dz = 1.2 Å yielded
the clearest cluster distinction for the other 3 analyses. Here,
the analysis is completed with a ‘middle ground’ Dz = 2.0 Å,
keeping n = 16. To account for the changed disc height, a new
SVC training and classification with probability analysis is
performed on the discs from the GaLiq simulation, resulting
in the SVC probabilities P(s)2.0 and P(b)2.0, which indicate the
likelihood that a disc originates from a surface or bulk environ-
ment, respectively (Section S5.5, ESI†).

Subsequently, two new subsets of graphs are created: one
created from discs with P(s)2.0 4 95% and a depth o 6 Å and
one created from discs with P(b)2.0 4 95% and a depth within
�1 Å of the liquid’s midpoint along the z-axis. Two additional
graph subsets are also added: one created from GaLiq + Ox
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discs that have a central atom at a shallow depth of o1.5 Å, and
a fourth consisting of all discs from the GaLiq + Bi simulation
that have a surface bismuth central atom. This provides us with
one large set of graphs derived from four physically relevant
datasets, characterised as:

– gallium liquid surface
� all discs from the GaLiq simulation with high P(s)2.0 and a

depth o 6 Å;
– gallium liquid bulk
� all discs from the GaLiq simulation with high P(b)2.0 and a

depth within �1 Å of the liquid midpoint along the z-axis;
– gallium liquid at oxide interface
� all discs from the GaLiq + Ox simulation with a shallow

depth o 1.5 Å; and
– bismuth-disrupted gallium liquid surface
� all discs from the GaLiq + Bi simulation that have the

surface bismuth atom as a central atom (z o 6 Å).
Fig. 3 gives the results of a k-means analysis (K = 4) on the

concatenated set of graphs, where once again, only the node-
features are included in the analysis (edges are excluded). Sum-
marising these results accounting for each subset of graphs:

(1) 94% of the gallium liquid surface graphs are grouped in
cluster 4 (red);

(2) 98% of the gallium liquid at oxide interface graphs are
also grouped in cluster 4 (red);

(3) 95% of the gallium liquid bulk graphs are grouped in a
combined cluster 1 + 2 (blue and green);

(4) 36% of the bismuth-disrupted gallium liquid surface
graphs are grouped in cluster 3 (purple), while 48% are in the
combined cluster 1 + 2.

This analysis reveals a number of things about how surface
ordering is altered or enhanced with the introduction of new
elements. First, while 36% of the bismuth-disrupted surface
graphs are clustered in a unique group (cluster 3), nearly 50%
of the bismuth-disrupted surface graphs are clustered with the
gallium liquid bulk graphs (clusters 1 + 2). Since previous
analysis showed that the bulk graphs have considerably higher
disorder (Fig. 2a and Fig. S14, ESI†), this clustering indicates the
significant disruption caused by the single Bi dopant atom: the
gallium networks surrounding a bismuth central atom become
more disordered and bulk-like. Secondly, even with an allowance
for four cluster centres, k-means clusters the gallium liquid
surface graphs together with the gallium liquid at oxide interface
graphs (cluster 4), further indicating the geometric similarity of
these two subsets. Lastly, an analysis of the subset components of
cluster 4 revealed that, compared to the gallium liquid surface
graphs, the gallium liquid at oxide interface graphs are farther
(Euclidean distance) from the disordered discs (gallium liquid
bulk and bismuth-disrupted), giving additional evidence that the
oxide layer enhances the surface ordering in liquid gallium.

3 Next steps

Looking forward, while we have applied these statistical analysis
techniques to investigate geometric ordering in liquid gallium,

the methods outlined here are highly generalisable. The geo-
metric representations (vectors and graphs) are inherently flexible
and can be straightforwardly applied to any atomic liquid system.
Even in the absence of surface ordering, these methods can assess
the depth of surface modification or the structural impact of any
interface, such as in interfacial templating.

One particularly impactful application could be determining
the extent and nature of surface layering in liquid alkali metals,
which has direct relevance to high-temperature battery techno-
logies.67 With the addition of orientational measures, we
anticipate that these methods could also be readily extended
to molecular liquids. Future work in our group will explore
structural changes introduced by variations in liquid metal
solvents and solutes. Here, it has been a particular pleasure
to dive into (and swim a bit in) the chaos of liquid gallium, only
to emerge at the surface to find order. We believe M.C. Escher
would approve.
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