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Why does silicon have an indirect band gap?†

Emily Oliphant, a Veda Mantena, a Madison Brod, b G. Jeffrey Snyder b

and Wenhao Sun *a

It is difficult to intuit how electronic structure features—such as

band gap magnitude, location of band extrema, effective masses,

etc.—arise from the underlying crystal chemistry of a material. Here

we present a strategy to distill sparse and chemically-interpretable

tight-binding models from density functional theory calculations,

enabling us to interpret how multiple orbital interactions in a

3D crystal conspire to shape the overall band structure. Applying

this process to silicon, we show that its indirect gap arises from a

competition between first and second nearest-neighbor bonds—

where second nearest-neighbor interactions pull the conduction

band down from C to X in a cosine shape, but the first nearest-

neighbor bonds push the band up near X, resulting in the char-

acteristic dip of the silicon conduction band. By identifying the

essential orbital interactions that shape the conduction band, we

can further rationally tune bond strengths to morph the silicon

band structure into the germanium band structure. Our computa-

tional approach serves as a general framework to extract the crystal

chemistry origins of electronic structure features from density

functional theory calculations, enabling a new paradigm of

bonding-by-design.

Introduction

Silicon has an indirect band gap, with the valence band maxi-
mum (VBM) at the G point and the conduction band minimum
(CBM) at a low-symmetry point B85% of the way between the G
and X points. This indirect band gap determines the essential
electronic and optical properties of silicon, and thereby its
performance in photovoltaic and electronic devices.1–3 Although
the low-symmetry CBM of silicon is a basic fact of semiconductor

physics, it is not so simple to answer why silicon has an indirect
band gap. Similar ‘why’ questions can be generally raised about
the electronic structures of materials. Why does germanium have
a CBM at the L point, despite also being a group IV semiconductor
in the diamond structure? Why does zinc blende GaAs have a
direct band gap, with such a light electron effective mass? With-
out a conceptual framework to approach why questions, one must
rely on simple heuristics, which may post-rationalize the chemical
origins of band structure but fall short in accurately predicting
band structure features. Consequently, the search for next-
generation thermoelectrics, p-type transparent conducting oxides,
topological insulators, and other advanced electronic materials4–6

must proceed by brute-force screening via a ‘‘needle-in-a-haystack’’
approach,7–9 rather than by rational and intuitive design.

Roald Hoffman presented a beautiful theoretical framework
to examine how physics and chemistry meet in the solid-
state,10–12 arguing that chemists approach electronic structure
from a bottom-up linear combination of atomic orbitals
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New concepts
Electronic band structure is represented in reciprocal space, but arises
from the chemical bonds between atoms in real space. Because bonding
environments in crystals are so complex, it has been difficult to isolate
which specific atomic orbitals contribute to shaping certain band struc-
ture features. For this reason, design and discovery of new semiconduc-
tors typically proceeds through a ‘needle-in-a-haystack’ approach, where
high-throughput DFT screening approaches are guided by simple and
limited chemical heuristics. Here, we present a new conceptual and
computable framework to extract chemical bonding insights from DFT-
calculated band structures, enabling us to rigorously and intuitively trace
the impact of individual crystal bonds on band structure features. As a
key example, we explain here the low-symmetry conduction band
minimum of silicon, which profoundly impacts its properties for use in
photovoltaics and electronics. Even in this basic semiconductor material,
our approach leads to new insights to understand and engineer its
conduction band minimum position. These calculation techniques can
be broadly applied to reveal the crystal chemistry origins of electronic
structure features in other optical, electronic and magnetic materials.
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(LCAO). Alternatively, physicists adopt a top-down planewave
interpretation of electronic structure, often using density
functional theory (DFT) for accurate band structure calcula-
tions. The tight-binding (TB) model is a periodic version of
LCAO that offers a bridge from bonds to bands, and back
again.13 If a band in the electronic structure is dominated by a
single orbital interaction, tight-binding offers a conceptual
pathway to interpret how bonding in the wavefunction modu-
lates across reciprocal space, thus explaining the band’s
shape. However, when bands in 3D materials are formed by
multiple orbital interactions, from multiple neighboring atoms, it
becomes difficult to deconvolute how specific orbitals conspire to
shape a band structure feature.

Given this complexity, creating tight-binding (TB) models in
3D structures requires a fundamental trade-off between sim-
plicity and interpretability. Simple tight-binding models are
usually constrained to first nearest neighbors (1NN), where one
asserts a priori which bonds are considered. While the resulting
models are usually easy to interpret, they may not be physically
robust. In the case of silicon, achieving a CBM near the X point
using 1NN tight-binding has relied on including an additional
s* and/or d states, which have limited physical relevance as they
may not describe the precise physics of the actual excited
states.14–22 On the other hand, tight-binding models that
consider further atomic neighbors, such as by interpolation
from DFT band structures or fitting with many-NN, increases
the accuracy of a TB model but the model combinatorically

explodes in the number of terms—precluding chemical inter-
pretability.23–35

This paper aims to bridge the chemical intuition of Hoff-
mann and the practical toolkit of DFT, so that we can better
interpret the chemical origins of electronic structure in real
materials. To do so, we start from a tight-binding interpolation
of the DFT-calculated electronic structure using maximally
localized Wannier functions (MLWFs).36 From this tight-binding
interpolation, we chemically interpret how band shapes in k-space
derive from orbital interactions in real space. We present a three-
step process, illustrated in Fig. 1, which proceeds by determining:
(1) which orbitals contribute to a band—specifically, what are
the orbital characters (coefficients) that contribute to the wave-
function. (2) How orbitals bond across k-space—where the
k-dependent phase (eik�R) of each orbital changes the bonding/
antibonding/non-bonding interactions between the orbitals in
real space. (3) How strongly the orbitals bond—determined by
the magnitudes of the TB hopping parameters. These three steps
systematically sieve through hundreds of TB parameters to build a
sparse and physically robust model to interpret chemical bonding
contributions to the electronic structure.

Here, we begin with an illustrative 1D model system to
emphasize the impact of multi-orbital and 41NN interactions
on band structure. Then we apply our three-step process to
build a concise and chemically robust TB interpretation for how
multiple orbital interactions combine to form a low-symmetry
CBM in silicon. Specifically, we find that this low-symmetry

Fig. 1 Tight-binding offers a pathway from crystal chemistry to band structure. Our 3-step framework explains the reverse path—how to interpret a DFT
electronic structure with the chemical understanding of tight binding. In the ‘for silicon’ section bright green and red is used for positive and negative
isosurfaces for example atomic orbitals, Bloch orbitals, and crystal wavefunctions.
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CBM along the G–X line derives primarily from a cosine shape
from second nearest neighbor (2NN) px–px bonds, combined
with a linear shape near X from 1NN orbital bonds. Finally, we
present a new computational tool to interactively execute our
three-step process for any band and k-point in an electronic
band structure (https://viz.whsunresearch.group/tb/). This tool
enables us to precisely identify which bonds affect which
segments of the silicon band structure. We then rationally tune
these orbital interactions to morph the silicon band structure
towards the germanium band structure, in accordance with
the actual chemical differences between Si and Ge. Altogether,
our work serves as a general blueprint to extract the crystal
chemistry origins of electronic band structure, and provides a
pathway for rational band-structure engineering by chemical
and structural design.

Uncovering the chemistry in band structure

All electronic properties of a material—including band gap,
effective mass, band extrema location, etc.—are characterized
by its band structure. The chemical origin of these electronic
properties can be elucidated from accurate TB interpolations of
DFT-calculated electronic structure. Tight-binding decomposes
a band structure into a summation of terms, similar to a
Fourier decomposition, but with basis functions that corre-
spond to physically-relevant orbital interactions.37 This decom-
position enables one to trace back which bonds manifest which
specific band features of interest. Fig. 1 offers a hierarchical
mind-map that captures the tight-binding pathway from crystal
chemistry to the band structure.

The central assumption of tight binding is to write the
crystal wavefunction, ck

n, as a linear combination of atomic
Bloch orbitals, Fk

a, weighted by the coefficient ck
na as in eqn (1).

The indices k, n, and a represent k-point, band, and orbital.
An atomic Bloch orbital is the sum over atomic orbitals, fa, in
each cell of the crystal related by a lattice vector translation R.
The complex phase of each atomic orbital is modified by the
phase factor e�ik�(Ra), where Ra = ra + R and ra is the atomic
orbital center in the primitive cell.

ck
n

�� �
¼
X
a

ckna Fk
a

�� �
¼
X
a;R

cknae
�ik� Rað Þ fa Rað Þj i (1)

With an atomic decomposition of the crystal wavefunction,
each band dispersion (shape in E-k space) expands as the
combination of numerous pairwise bonds between atomic
orbitals. In eqn (2), the overall shape of the band, En(k) for
band n, results from the sum of ‘bond energies’ En,ab(k)—which
is the E-k shape of the bond between Bloch orbitals a and b.

EnðkÞ ¼ ck
n Ĥ
�� ��ck

n

� �
¼
X
a

X
b

ckynac
k
nb Fk

a Ĥ
�� ��Fk

b

D E

¼
X
a

X
b

En;abðkÞ (2)

This equation substitutes the crystal wavefunction with the
middle expression in eqn (1). From this, the bond energy,
En,ab(k), is the bond weight, ck†

nack
nb, multiplied by the bond

run, which we name the Hamiltonian matrix element between

Bloch orbitals a and b, hFk
a|Ĥ|Fk

bi. The name ‘bond run’ is
inspired by Hoffmann’s discussion10 that bands made from s
orbital bonds ‘run up’ in energy from G to the Brillouin zone
edge (from bonding to antibonding), while bands from p
orbital bonds ‘run down’ from G to the Brillouin zone edge
(from antibonding to bonding).

To isolate the impact of atomic orbital bonds, the bond
run—written as Hab(k)—is expanded by substituting the Bloch
orbitals with the sum of k-modulated atomic orbitals, as in
eqn (1). This results in eqn (3), which is a sum over bonds
between an atomic orbital a at ra and atomic orbital b at rb + R.
Each interaction is then the TB hopping parameter,
hfa|Ĥ|fb(R)i � Vab(R), multiplied by a factor which modulates
the complex phase based on the phase difference between
orbital centers for a given k.

Fk
a Ĥ
�� ��Fk

b

D E
� HabðkÞ ¼

X
R

VabðRÞeik� ra�rb�Rð Þ (3)

Here, the k-dependence of a bond run arises from the sum of
phase factors eik�(ra�rb�R). When the bond run is negative for a
given k, it indicates the Bloch orbitals a and b are overall
bonding, whereas positive indicates net antibonding. While
the phase of the coefficients ck†

nack
nb must also be included to

determine the precious bond type for each band, this complica-
tion is reserved for later when eqn (4) is introduced.

Our three-step process is grounded in these two fundamen-
tal equations, offering a way to back solve from a given band
structure the chemical bonding contributions, as diagrammed
in Fig. 1. Step 1 is bond weight, where ck†

nack
nb quantifies the

bonds (between orbitals a and b) that may contribute to
the band. While step 2 is the shape of the bond run, which
describes how the bond-type (bonding, antibonding, or non-
bonding) changes across k-space. Step 3 is the maximum
absolute energy of the bond, dictated by the hopping parameter
between two atomic orbitals a and b, Vab(R).

Eqn (2) is the same theoretical starting point as the crystal
orbital Hamiltonian population38,39 method, but the imple-
mentation of an analytical representation in eqn (3) (instead
of a numerical calculation, for example as done through
LOBSTER40) requires a tight-binding interpolation, which
enables us to then break down the contributions from indivi-
dual bonds. These analytical representations of each orbital
wavefunction lets us visualize and further separate into NN or
long-range interactions.

To examine how multiple orbitals and further nearest-
neighbor interactions manifest in both real space wavefunction
and the reciprocal space bands, here we present an illustrative
example on a one-dimensional monatomic chain, with two
orbitals (s and p) per atom. Traditionally, 2NN and further
terms are neglected in simple TB models, but here we show
how they could induce major qualitative changes to the band
structure. The details of the derivation are in SI.1 (ESI†).

Plotted in Fig. 2a, the 1NN bond runs Hss and Hpp are cosine
curves with extrema at the high symmetry points, but all other
bond runs (Hsp and 2NN bonds) have extrema at low sym-
metry points. Using eqn (2), we sum together the bond runs
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multiplied by their bond weight (orbital character) to find the
band energy. With only 1NN, H2(k) is dominated by Hpp(k),
which has extrema at high symmetry points. We next add 2NN
interactions, with an exaggerated bond strength of half the
1NN, which results in a qualitative change in the overall band
shape. This additional strong 2NN interaction pulls the bands

together near
X

2
while pushing them apart near G and X,

creating a low-symmetry band extremum reminiscent of
silicon.

When we ground our tight-binding intuition in 1D models,
the 2NNs are so far away that their contributions tend to
be small. However, in 3D crystals, atoms have much higher
coordination numbers. These 2NNs are also much closer in 3D
crystals than they are in 1D systems, meaning the 2NN con-
tribution to the tight-binding interactions can be substantial.
In the case of silicon, the twelve 2NNs are only 1.6� further
than the four 1NNs, with a geometry that allows for strong
overlap between p orbitals. By studying silicon, we will show
how bonds of similar strength with different frequency of bond
runs leads to band extrema away from high symmetry points.
Another common cause for low symmetry band extrema is an
avoided crossing from s–p orbital mixing. However, avoided
crossings will always result in a band inversion (switching of
orbital character), which the silicon CBM does not exhibit.
Thus, if there is a low symmetry band extremum on a band
that does not have a band inversion, long-range interactions
beyond 1NN are a likely culprit.

In our ambition to eventually design band structure from
the underlying bonds, we need to first elucidate the orbital and

bonding nature at the specific k-point of a band. The key term
linking real space chemical bonding with reciprocal space band
structure is the phase factor eik�R, manifesting in the crystal
wavefunction of eqn (1). For a given k-vector, the combined
coefficient eik�Ra ck

na for each atomic orbital a dictates the bond
type (bonding, antibonding, or non-bonding) between atomic
orbitals in real space (step 2). If the complex phases of neigh-
boring orbitals are orthogonal (e.g. real and imaginary), they do
not interact and are non-bonding. If they are nonorthogonal
(e.g. real and real, or imaginary and imaginary), they are
bonding or antibonding, depending on the signs of the
wavefunction.

In Fig. 2b, we illustrate the relationship between phase
factor and real-space cX/2

2 wavefunction at k = X/2, which
requires a 4-unit cell superstructure in real space. Across the
4 atoms in Fig. 2b, the phase factor ei(X/2)�R modulates as +1,
+i, �1, and �i. Because ck

2 coefficients are real and positive for s
orbitals, whereas they are imaginary and negative for p orbitals,
we see that the real part of cX/2

2 has s orbitals on atoms 1 and 3;
and p orbitals on atoms 2 and 4. Therefore, the only 1NN
interaction is s–p antibonding. The phase sign switching
between atoms 1 (2) and 3 (4) yields 2NN s–s antibonding
(2NN p–p bonding). This example visualizes how chemical
bonding in real space implicitly derives from each k-point in
reciprocal space.

Detangling the silicon band structure

Although silicon has been studied for decades, the crystal
chemistry origins of its low-symmetry conduction band

Fig. 2 Multiple bonds combine to form band energy with a monoatomic s + p 1D tight-binding model. When adding 2NNs, band extrema at low-
symmetry k-points manifest. In (a), the bond runs, bond weights,41 and bond energies are plotted for onsite (orbital energy), 1NN, and 2NN bond
contributions to the second band, E2. The bond energies sum to create the E2 band energy, where the orange/blue circle size indicates orbital character,
|ck

s/p|. To make them real, �iHsp(k) and ick†
2sc

k
2p are plotted for the sp bonds. On the right, 2NN terms are added, perturbing the bond weights and band

energies to create a low symmetry extremum off-X. In (b), the real part of the CX/2
2 wavefunction is plotted to highlight the real-space bonding implicit

in band structure. The orbital at each atom is determined by the phase factor, ei(X/2)�x, multiplied by the orbital coefficients, cs = 0.49 and cp = �0.87i.
The nonzero bond energies are written and circled in red on the reciprocal-space plots.
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minimum still lack satisfactory explanation. Tight-binding (TB)
models fitted with only 1NN incorrectly produce a conduction
band minimum at G. While Vogl produced a CBM off-X with an
additional excited s* state, he acknowledges that ‘‘the inclusion
of some such excited states in any minimal basis set is
physically important—although the precise physics of the
actual excited states need not be faithfully and quantitatively
reproduced.’’16 Indeed, while the sps* model fits the G–X
line, it sacrifices the accuracy of the rest of the conduction
band structure along nearly every other k-path, as detailed in
SI.2 (ESI†).

Since band structure arises from the complex interactions
between multiple orbitals, it is often possible to have multiple
non-unique solutions that fit a singular band feature. Following
Vogl, others have included additional orbital states to their TB
models—for example Jancu et al. and others added d states,
producing a reasonable fit of the lowest conduction bands but
again with little physical insight regarding the additional
parameters.17–22 Tight-binding models with 41NN were also
fit (often with s* states) for silicon and zinc blende semi-
conductors with varying degrees of 2NN contribution.23–32,35

From a model-building perspective, it is not satisfactory to
include terms ad hoc just to match a single band structure
feature—rather, a term that is physically valid should improve
the fit of all band energies throughout the entire Brillouin zone.
This is especially important if one aims to later engineer and
design the band structure by modifying chemical interactions,
which requires one to accurately identify the true chemical
origin of band features.

At the other end of the spectrum, one can perform a TB
interpolation directly from DFT—which obtains the hopping
parameters from a Fourier transformation of the k-dependent
orbital Hamiltonian. This TB interpolation circumvents the
need to assume which interactions are present, but the result-
ing many-NN TB models can have hundreds of non-trivial
interactions, which is too complex to interpret chemically.
Sanchez-Portal, and later Qian et al., applied a TB interpolation
which includes many NNs to silicon finding a low symmetry
minimum along the G–X line with only a sp basis, indicating
that s* and d states are not strictly required to reproduce the
minimum off X.33,42 Since then, TB interpolations of silicon are
frequently achieved using MLWFs and similar methods, but a
simple chemical understanding has not yet been detangled
from the hundreds of hopping parameters found.

Here, we apply our three-step process to build a chemical
interpretation for the conduction band minimum in silicon
along the D1 band. Our DFT calculations were done with the
Vienna ab initio Simulation Package using Perdew–Burke–
Ernzerhof pseudopotentials, a plane wave energy cutoff of
520 eV, and k-point density of 0.23 Å�1.43–45 Details of our
MLWF parameters and process are discussed in SI.3 (ESI†). Our
3-step process is implemented as follows: (step 1) we determine
which orbitals contribute to the D1 band—finding that it is
480% px orbital character, with the remaining character being
s orbitals. (Step 2) we determine how the orbitals bond across
k-space—finding from the bond runs that the second nearest

neighbor px–px is the only interaction that decreases the band
energy at the X point. (Step 3) we determine how strongly the
orbitals bond—showing that the 2NN px–px bond has large
hopping parameters and high coordination which makes it a
significant influence on the band structure.

Finally, individual chemical bonds are assessed for their
contribution to the total shape of the D1 band. From this, we
determine that the low-symmetry conduction band minimum
of silicon manifests from a linear shape of the 1NNs near X,
combined with the cosine shape of the 2NN px–px bond.
Crucially, including the 2NN px–px bond not only improves
the D1 band, but the band structure across all other high-
symmetry lines (details in SI.2, ESI†), validating its physical
significance in creating the low-symmetry Si CBM.

(1) Orbital character of bands. First, we determine which
orbitals in the D1 band are present to bond. In a sp model,
silicon in the diamond structure has eight orbitals, four for
each of the two atoms in the primitive cell. This amounts to 72
Hamiltonian matrix elements—8 onsite, 32 1NN, and 32 2NN
interactions. After symmetry and group theory considerations,
a wavefunction along the G–X line will have either s + px orbitals
or py + pz orbitals. With only s and px orbitals are on the D1

band, the 72 matrix elements can be reduced to 8 unique
elements. To separate the character of a general band, it is
essential to use atomic orbitals as the momentum-dependent
crystal wavefunctions rarely reduce to the hybrid atomic
orbitals of simple molecular wavefunctions.

Fig. 3 plots positive (red) and negative (green) isosurfaces for
the real part of the complex wavefunctions in one of each of the
four doubly-degenerate bands at X. For all the X1 bands, the
first atom in the basis set has only px orbitals and the second
atom has only (distorted) s orbitals. Away from X, the X1

degeneracy splits into D1 (CBM band) and D2 bands with s
and px orbital character, while the X4 bands remain degenerate.
In silicon, tight-binding analysis of the D1 conduction band
character shows it is predominantly (480%) px orbital char-
acter. The X1 antibonding wavefunction is mainly 1NN s–px

antibonding and 2NN px–px bonding. Importantly, the 2NN
px–px interaction is the only one that is bonding along the
x-direction and contributes to lowering the energy at X.

Although these arguments explain the lowering of the D1

band energy at X, the actual CBM is at a low-symmetry point
B85% of the way from G to X. In the next two steps, we examine
the shape (step 2) and magnitude (step 3) of the participating
bonds. Then in the final section, we combine multiple bonds to
achieve the D1 band dispersion and observe how the minimum
off-X manifests.

(2) Shape of bonds in k-space. Second, we uncover how
bonding changes with k-space. The real-space bond type can
be visualized in the full wavefunctions by mapping the
k-dependent phase modulations onto the atomic orbitals, as
in Fig. 2b. For the sake of brevity, we have included this
visualization and discussion in SI.4 (ESI†). In this section, we
focus on how the real-space bonding manifests as higher or
lower energies in reciprocal space, forming the shape that each
bond has along the D1 band.
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As discussed in the first section, a bond’s contributed shape
is referred to as the bond energy, which is the bond run
multiplied by bond weight. Because the bond run defined in
eqn (3) can be any phase and does not vary with band, here we
introduce a band-dependent bond run HR

n,ab(k), eqn (4). This
includes the phase of the orbital coefficients for band n,
ensuring that HR

n,ab is real and the correct sign for band n.
The superscript R is included to indicate that only the primitive
cell vectors for onsite, 1NN, or 2NN bonds are included during
the sum over R in eqn (3). Finally, using eqn (2) and (4) we write
the bond energy, HR

n,ab(k), as band-dependent bond run multi-
plied by the absolute value of the orbital coefficients, eqn (5).

HR
n;abðkÞ �

ckna
ycknb

ckna
�� �� cknb

��� ���H
R
abðkÞ (4)

HR
n,ab(k) = |ck

na||ck
nb|HR

n,ab(k) (5)

In the top of Fig. 3, we plot the band-dependent bond runs
HD1,ab and the bond energies HD1,ab for the onsite, 1NN, and
2NN interactions. The bond run shapes are similar to the
illustrative 1D example from Fig. 2a, but with half the length
in reciprocal space since silicon has a two-atom primitive cell.
The bond run magnitudes are dictated by the hopping para-
meter. The onsite orbital energy terms are most simple, for

example the onsite px term is E0
D1;xx

¼ ep ckD1;x

��� ��� ckD1;x

��� ���, where ep is

the px-like orbital energy, ckD1;x
is the px orbital coefficient. The

1NN and 2NN terms require more derivation, which is left to SI.5
(ESI†). Most importantly, the 2NN px–px orbital bond energy is

E2NN
D1;xx

¼ ckD1;x

��� ��� ckD1 ;x

��� ��� � 8Vxxð110Þ cos kxpð Þ þ 4Vxxð011Þ½ �, the right

part of which is the bond run H2NN
D1;xx
ðkÞ, which reveals how the

2NN px–px interaction changes bond-type throughout the D1

band. Crucially, the dominant 1NN s–s and s–p bonds are higher
in energy at X than G, encouraging a CBM at G. Whereas the
positive cosine in the bond run for the 2NN px–px interaction
lowers the energy at X, enabling a minimum near X.

(3) Strength of hopping parameters. Third, we examine the
magnitude of atomic orbital interactions using hopping para-
meters. Based on intuition from 1D models, we would antici-
pate the hopping parameters for 1NNs to generally be much
larger than for 2NNs. However, here we find that the 2NN bonds
are very important in silicon, as supported by the hopping
parameters from our atomic-like MLWF tight-binding interpola-
tion in Table 1. When including bond multiplicity, the twelve 2NN
px–px parameters sum as 8Vxx(110) + 4|Vxx(011)| = 2.00 eV, which

is 4� larger than the four 1NN px–px parameters Vxx
1

2

1

2

1

2

� �
.

Here, Vxx(110) indicates the hopping parameter between px–px

orbitals on atoms separated by the vector 1x + 1y + 0z (or a
symmetrically equivalent vector), where the Cartesian xyz unit
vectors are half the unit cell length. Combined with the dominant
orbital character being px, the 2NN px–px contributes significantly
to the energy of the D1 wavefunctions. Other tight-binding models
which have included 2NN parameters either did not include a
Vxx(110) term, or they were B10� smaller than our MLWF-derived
result.24–32 An exception to this is Grosso & Piermarocchi who fit a
Vxx(110) about 2� larger than our result in Table 1.35 In all cases,
the 2NN contributions were not individually analyzed for their
role in shaping the CBM.

Fig. 3 The crystal wavefunctions at the X point in silicon with the X1 conduction band highlighted to show orbitals and bond type. Each of the four
doubly degenerate bands is accompanied by the present 1NN bond and the plotted real part of a wavefunction. The atom sites are spheres colored to
indicate the z-coordinate. The red and green show the positive and negative isosurfaces of the real wavefunction, where neighboring same color lobes
are bonding and different color lobes are antibonding. Bonding lobes often mesh together while antibonding lobes are distorted apart. By looking closer
at the X1 band, we determine 1NN and 2NN bond-types, where the 2NN px–px interaction is the only bonding along the x-direction.
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The small hopping parameter between 1NN px–px orbitals
can be understood from the geometry as discussed by Slater.46

The hopping parameter between two px orbitals is given by
l2Vpps + (1 � l2)Vppp, where l is the direction cosine in the x
direction. If the px–px lobes are facing each other (like N–N)
then there is perfect s bonding, where l = 1, whereas if px–px

lobes are parallel (like 8-8) then l = 0 and there is perfect p
bonding. Because Vpps and Vppp have opposite sign, an inter-
mediate orientation between perfectly aligned (N–N) and
perfectly parallel (8–8), will result in the hopping parameter
canceling to zero.

In the tetrahedral coordination environment of the diamond
structure, 1NN have l2 = 1/3, such that the Vpps and Vppp

components nearly cancel. The 2NN have four neighbors with
l2 = 0, meaning the Vxx(110) parameters are entirely p bonding,
while the other eight neighbors have l2 = 1/2, allowing the
stronger s antibonding to dominate the weaker p bonding in
the Vxx(110) parameters.

Steps 1 + 2 + 3: the low-symmetry D1 minimum in silicon

Finally, we create the total shape of the silicon D1 band disper-
sion from individual bonds and determine which bonds are
necessary to capture the correct qualitative band shape. Each
bond contributes a distinct shape over some high-symmetry
line of the band structure. To obtain the correct band disper-
sion that matches a DFT band structure, all significant bonds
must be included. As Vogl showed, a 1NN tight-binding model
with an sp basis cannot produce a low-symmetry conduction
band minimum,16 whereas an many-NN sp basis can.33,42 This
indicates that physically significant bonds are missing from
the 1NN sp model, which as we have argued, are the 2NN
interactions.

The D1 band energy as a function of the bonds can be
simplified from the sum over each matrix element, eqn (2), to
a sum over unique elements for the s and px (written as x)
orbitals, eqn (6). As discussed earlier, this reduces the 72
parameters for the G–X line to only 8: two onsite (orbital energy)
terms, three 1NN terms, and three 2NN terms.

ED1
ðkÞ ¼ 2E0

D1;ss
þ 2E0

D1;xx
þ 2E1NN

D1;ss
þ 4E1NN

D1;sx
þ 2E1NN

D1;xx

þ 2E2NN
D1 ;ss
þ 4E2NN

D1 ;sx
þ 2E2NN

D1;xx

(6)

Each term has an analytical expression as seen from eqn (5),
which is the product of relevant orbital coefficients (a multi-
plicative factor) with the band-dependent bond run (a cosine or

sine shape). For full derivation and decomposition of eqn (6),
see SI.5 (ESI†).

To conceptually understand how the CBM arises from multi-
ple orbital interactions, we compare and combine the relevant
bond runs and energies in the top panels of Fig. 4 to create the
bottom panel. When looking at the bond runs, the onsite and
1NN terms dominate the 2NN, with the 1NN s–px and s–s
spanning B8 eV each, while the 2NN px–px only reaches 2 eV.
But once the strong px orbital character is included with ED1,ab,
the px–px terms are nearly unchanged, while the s–px decrease
significantly, and the s–s drops nearly to zero. This puts the
[onsite + 1NN] energy magnitude in the same range as the 2NN
px–px, where each span B1.5 eV (Fig. 4 bottom panel). The
shape of onsite + 1NN is a pseudo-linear increase near X, which
results primarily from the E1NN

D1;ss
shape. The cosine-like shape of

E1NN
D1;ss

results from the sine curve of E1NN
D1 ;ss

being heavily distorted

by the coefficient weight |cD1s||cD1p| increasing from G to X.
Finally, the pseudo-linear shape of the onsite + 1NN near X

plus the cosine curve of the 2NN px–px combine to form the
conduction band minimum away from the high-symmetry X
point in silicon. Importantly, including the 2NN px–px bond
also provides a good band structure fit on all other k-paths
(see SI.2 for details, ESI†), compared to the s* state from Vogl
et al.,16 which validates the physical importance of 2NN bond-
ing in governing the low-symmetry conduction band minimum
of silicon.

Towards bonding-by-design

Band engineering for solar cells, semiconductors, and thermo-
electrics frequently requires control over the energy level of
bands at specific k-points. Because we now have a theoretical
pathway to connect the bonding interactions to the band
structure, we can examine the inverse electronic structure
design problem—How can I modify chemical interactions to
morph an existing band structure to a new band structure with
more desirable features? As a representative example, here we
will modify the bonding interactions to shift the CBM from the
G–X line in silicon to the L point as it is in germanium. This
illustration paves the way to a vision of bonding-by-design,
where instead of searching for pristine materials with a given
band structure feature, we can rationally tune the chemistry
(by substitutional doping or alloying) to morph a given band
structure towards a desired one.

Thoroughly analyzing a band structure feature is arduous,
which motivated us to create a computational analysis package
(https://viz.whsunresearch.group/tb/) which systematically
executes our three-step process. Our package features an inter-
active interface that populates tables with the orbital character
and important bonds for any selected point of the E(k) diagram.
In addition, the band-dependent bond runs and bond energies
for any of the important bonds can be plotted upon selection,
allowing a user to rapidly discern how each bond contributes to
the band shape. A detailed explanation and tutorial are pro-
vided in SI.6 and SI.7 (ESI†). Our new utility marks an improve-
ment from tools which plot the atomic orbital character on

Table 1 Silicon hopping parameters (eV) from MLWF used to reconstruct
the D1 band. The s and p orbital onsite terms are es and ep. Importantly, the
2NN terms Vxx(110) and Vxx(011) are similar or larger than the 1NN term

Vxx
1

2

1

2

1

2

� �

es ep Vss
1

2

1

2

1

2

� �
Vsx

1

2

1

2

1

2

� �
Vxx

1

2

1

2

1

2

� �
Vxx(110) Vxx(011)

�5.467 1.650 �1.639 1.075 0.126 0.117 �0.267
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band structure47,48 (only the first step in our 3-step process) by
bringing the band energy interpretability of the Extended
Hückel method49,50 to the higher accuracy of density functional
theory. Here we use our package to demonstrate how different
segments of a band can be selectively raised or lowered towards
a desired shape by modifying a single bond.

Fig. 5a demonstrates a lower off-X minimum is achieved by
strengthening the 2NN px–px hopping parameters which, as
described previously, contributes a shifted cosine shape to the

D1 band. As k-point moves along the G–L line in the [111]
reciprocal-space direction, the orbitals of the nearest-neighbor
atom in the (111) real-space direction change phase in accor-
dance with eik�R. The change in phase facilitates bonding at the
L point between the p–p orbitals of atoms with a displacement
along (111). Thus, in Fig. 5b the L point is lowered by strength-
ening this 1NN p–p hopping. The lowest conduction band at G
is an antibonding electron wavefunction of entirely s orbital
character. Thus, in Fig. 5c the G point is lowered by weakening

Fig. 5 The role of chemical bonding in band extrema. In (a)–(d) the original Si band structure (gray) is plotted against augmented band structures (red),
which changes one bond to selectively lower X, L, or G (plots (a), (b), and (c), respectively) or changes bonds based on the chemistry of Ge (plot (d)).

Fig. 4 Deconstructing how each bond contributes to the D1 conduction band in silicon by plotting the band-dependent bond runs HD1,ij and
corresponding energies ED1,ij for the onsite (atomic orbital energy), 1NN, and 2NN bonds. Interactions between px–px, s–px, and s–s orbitals are colored
purple, teal, and yellow, respectively, which corresponds with the orbital character color bar used in the total energy plots HD1

. Altogether, the linear
behavior near X achieved with onsite + 1NN bonds and the cosine shape of the 2NN px–px bond combine to form the minimum near X. The gray lines in
the bottom right plot show the silicon band structure with all onsite, 1NN, and 2NN bonds, where the small error between the colored and gray D1 band
results from including the 2NN s–px and s–s bonds.
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the 1NN s–s hopping parameters. Notably, the s character
dramatically decreases from 100% to B50% at only 0.1 L along
the G to L line, which creates the sharp curvature near G and
leads to low effective masses in direct-gap tetrahedral semi-
conductors like GaAs.

Altogether, it is possible to morph the Si band structure
towards the Ge band structure by increasing bonding between p
orbitals while decreasing bonding of s orbitals. This effect is
qualitatively consistent with changing chemistry from Si to Ge.
In Ge, the occupied d shell incompletely screens nuclear charge
which attracts the valence shell––an effect called scandide
contraction. The additional density near the nucleus in s
orbitals is disproportionately impacting by the poor screening,
thereby reducing the s orbital radius of Ge compared to the p
orbital radii. Yuan et al. also found that the d orbitals are
important in changing CBM location,51 which we find results
from the indirect screening effects of d orbitals on s and p
orbitals. Thus, when augmenting Si in Fig. 5d by increasing all
1NN p–p interactions by 30% and decreasing all 1NN s–p and
s–s bonds by 15%, we reproduce the characteristic band
structure of Ge with a CBM at the L-point. Further discussion
of the Si and Ge MLWF band structure can be found in
SI.8 (ESI†).

The theoretical framework and automated analysis package
developed in this manuscript can readily be applied to any
tight-binding (TB) model. While our package does not yet
directly support spin–orbit coupling, since it is not relevant in
silicon, incorporating spin–orbit coupling is theoretically
straightforward. One would decompose the bands into bonds
that specify both the orbital and spin of each electron, where
spin–orbit coupling driven changes would manifest in the
interaction between orbitals of different spin.

While our framework is generally applicable, it is limited
by whether a reliable TB model can be generated from DFT.
For silicon, we have justified the use of maximally localized
Wannier functions (MLWFs) to generate a TB model (justification
in SI.3, ESI†). However, analysis using MLWF may not always yield
chemically interpretable results. When the Wannier functions
deviate too much from atomic orbitals—becoming combinations
of multiple atomic orbitals across several atoms—our three-step
process cannot elucidate the atomic origins of electronic structure
features. Instead, it reflects the behavior of these hybridized

Wannier functions. Despite these challenges, our method holds
promise for application to a broader range of materials. Future
work will focus on extending our framework to incorporate spin–
orbit effects and developing strategies for constructing suitable TB
models in complex systems.

Outlook

Here we presented a computable and chemically motivated
framework that considers (1) Which orbitals are in a band,
(2) How are they allowed to bond, and (3) How strongly do
they bond? This framework produces a sparse and therefore
interpretable tight-binding model that can help us intuitively
understand the crystal chemistry origins of band structure.
When we applied our approach to silicon, we found that the
low-symmetry conduction band minimum of silicon originates
primarily from 2NN px–px bonds, which significantly lowers the
energy at X. The significance of the 2NN px–px orbital bond
compared to the 1NN is explained from the geometry of the
bonding angles, in addition to there being 3� as many 2NN
atoms than 1NN. This explanation is a revision on Vogl’s sps*
model, which captures the CBM position in silicon but at the
expense of other conduction bands in the Brillouin zone. Our
interpretation provides a clear physical mechanism compared
to previous sp models with multiple NN.

Broadly speaking, our approach allows us to pinpoint the
physical origin of electronic structure features in complex 3D
crystals. This framework is general and can be applied to any
tight-binding interpolation of a DFT-calculated band structure.
By better understanding how crystal chemistry translates to
major electronic structure features, we can more intuitively
design chemistries and bonding environments to yield a
desired band structure feature. A major advantage of this
approach is the opportunity to search within the ‘perturbation
space’ of a given material, allowing us to find best-in-class
semiconductors which are often minor perturbations (strain,
doping, alloying, etc.) from their pristine forms. This approach
would invert the design paradigm from electronic ‘materials-by-
design’ to the inverse approach of bonding-by-design
(Fig. 6)—where instead of searching for materials with specific
properties, we can chemically or structurally modify the band

Fig. 6 In materials-by-design, the electronic properties of pristine materials are calculated from DFT. By inverting this paradigm to bonding-by-design,
one starts with the desired band feature for a given application, and rationally tunes the crystal chemistry to achieve this band feature.
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structure of a given material to tune it towards next-generation
electronic, optic, thermoelectric, and correlated quantum
materials.

Data availability

All data supporting the conclusions of this paper can be found
in the ESI.† The interactive visualization tool used to tune the
tight-binding model to morph between the silicon and germa-
nium band structure can be found at https://viz.whsunre
search.group/tb/.
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