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Developments related to large language models (LLMs) have deeply impacted everyday activities and are

even more significant in scientific applications. They range from simple chatbots that respond to a prompt

to very complex agents that plan, conduct, and analyze experiments. As more models and algorithms con-

tinue to be developed at a rapid pace, the complexity involved in building this framework increases. Addi-

tionally, editing these algorithms for personalized applications has become increasingly challenging. To this

end, we present a modular code template that allows easy implementation of custom Python code func-

tions to enable a multi-agent framework capable of using these functions to perform complex tasks. We

used the template to build DynaMate, a complex framework for generating, running, and analyzing molec-

ular simulations. We performed various tests that included the simulation of solvents and metal–organic

frameworks, calculation of radial distribution functions, and determination of free energy landscapes. The

modularity of these templates allows for easy editing and the addition of custom tools, which enables rapid

access to the many tools that can be involved in scientific workflows.

Introduction

The first half of this decade has been strongly impacted by
developments in artificial intelligence (AI) and all its subdivi-
sions. Combined with the unprecedented availability of pub-
lic and scientific data, it was imminent that various forms of
AI made their way into everyday activities. These range from
simple algorithms that recommend movies to complex large
language models (LLMs) agents that make decisions based
on an optimization parameter. The usability of AI tools will
continue to increase in everyday activities and the scientific

community. For many complex workflows, LLMs and agents
will present an opportunity to automate repetitive and time-
consuming tasks, allowing researchers to focus their efforts
on building new and more complex tools that accelerate the
discovery of scientific knowledge.

Open-source efforts such as LangChain1 and Huggingface2

have played a significant role in making LLMs and tools pub-
licly available. As a result, more people than ever before can
use, modify, and fine-tune various models for specific tasks.
Initial efforts evaluating the general chemistry knowledge of
GPT-3 and open-source models without fine-tuning showed
that, given reasonable prompts, the models could answer
expert-level questions with an average accuracy of 72% in
topics related to molecular dynamics (MD), cheminformatics,
and quantum mechanics.3 Studies like this promoted the inter-
est in the usability of LLMs for more complex tasks, and very
rapidly, these models were fine-tuned and modified to predict
chemical properties from SMILES strings,4 structures of
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Design, System, Application

Large language models (LLM) are increasingly being adopted to automate complex tasks and scientific workflows. While numerous LLM-based agents have
been developed for specific applications, they often lack flexibility for adaptation to tasks beyond their original design. To address this limitation, we devel-
oped a modular template for building multi-agent systems designed to simplify the integration of user-defined tools and streamline the automation of re-
petitive, time-consuming tasks. We demonstrate the utility of this template by constructing a multi-agent framework that automates the setup, execution,
and analysis of molecular dynamics simulations. Given a user prompt, the agents coordinate to complete the specified tasks efficiently. The modular design
allows new tools and agents to be integrated with minimal changes, typically requiring only three targeted modifications. Any functionality accessible
through Python can be incorporated, making the framework highly extensible and usable for various research fields. This approach encourages the develop-
ment of a growing library of user-contributed scientific tools, and we hope it will foster a collaborative community where researchers share and integrate
their tools to collectively build more versatile and robust agent frameworks.
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proteins,5 high-yield products from a forward synthesis pro-
cess,6 and predict chemical structures from IR spectroscopy.7

Recent developments in LLM agents have improved the ca-
pabilities of LLMs by allowing them to interact with tools. In
this context, tools are independent algorithms used to solve
tasks of interest. For example, a Python function to calculate
a value, or a function that computes self-diffusivity from a
molecular simulation trajectory. Some initial advancements
in this direction were built for retrieval-augmented genera-
tion (RAG) tasks. By integrating external data retrieval into
the text generation process, the answers given by LLMs are
no longer limited to their training context. An external knowl-
edge base can be assigned to an agent as a tool to be used
when questions about the specific context included in the ex-
ternal knowledge base are used as prompts.8 This workflow
significantly improved the accuracy of LLM-generated an-
swers to domain-specific questions, allowing a new technique
to achieve complicated tasks requiring specific documenta-
tion. Many tools and RAG frameworks were developed for
multiple fields, including biomedical,9 financial,10 regulatory
compliance,11 legal question answering,12 etc.8

The continued development of more complex tools gave
rise to robust frameworks that used RAG capabilities and
other tools for autonomous research for catalytic cross-
coupling experiments,13 synthesis of organic compounds,14

and other general applications.15,16 These efforts highlight
the new ability of LLMs to plan experiments, interact with re-
search hardware to generate data, and analyze this data. The
field of molecular simulations has also seen the development
of tools and agents that accelerate the process of applying
computational methods, validating experimental results with
numerical approximations, and analyzing results.17–19

MDCrow,20 for example, is an LLM agentic assistant with
over forty expert-designed tools for molecular simulations. It
automates complex tasks involved in developing, producing,
and analyzing molecular trajectories, effectively reducing the
time required for each step. Similarly, ChemCrow21 and
ChatMOF22 have demonstrated the capability of automating
workflows, designing novel chemical syntheses, and
predicting and preparing metal–organic framework materials,
respectively. The benefits and performance of these agent
frameworks have sparked increasing interest in their usage
for custom workflows, but current developments are domain-
specific, limiting their transferability between domains.

For this reason, most currently developed frameworks
present a steep learning curve in editing or customization for
new tools, even more so for entirely new workflows. The
LangChain1 community has developed and provided Python
libraries that significantly reduce the hardships of building
chatbots and agents, but the code structures and modularity
of the tools built with this library can be improved. This work
focuses on developing a template for a multi-agent frame-
work that can be easily implemented for custom workflows.
The modularity of this approach allows users to copy and
paste custom tools into a file and rapidly build an LLM assis-
tant for any research workflow. We used the template to build

DynaMate, a multi-agent framework that assists with generat-
ing, submitting, and analyzing molecular simulations. The
usage of this template for this specific workflow highlights
its modularity and customizability. The multi-agent frame-
work was created in the context of molecular dynamics, but
the developed template can be used to expand its tools in
many research areas and applications, including colloidal
systems, catalysis, drug delivery, etc. The advantages of the
modularity of the template include the automation of time-
consuming and repetitive tasks, easy access to in-house tools
and workflows through a chatbot, and improved learning
processes for researchers starting in a specialized field.

The structure of this paper is organized as follows: first,
we describe the code template and discuss how it works and
how it can be modified for building multi-agent frameworks
for specific tasks of interest. Then, we discuss the agents and
tools involved in DynaMate and what they can do. Followed
by a detailed discussion of representative examples of com-
plex tasks being performed by the multi-agent framework.
The examples present the outcomes of the evaluations, show-
casing prompts, outputs, and challenges encountered.

Description of multi-agent-LLM
framework code

LLMs can be readily used as chatbots, meaning they can only
interpret text and generate responses. Different models exist
and they show better and worse capabilities for multiple
tests. However, without modifications, LLMs can only inter-
act with the input text. If asked, for example, to generate a
plot using Python, it will fail because it does not have the re-
quired tools to achieve that goal. Thanks to the teams' efforts
at LangChain, we now have access to code that allows the de-
velopment of frameworks for various tasks using Python
code. Now, we can use LangChain packages to give LLMs ac-
cess to Python functions, for example, and now it can make
plots, perform calculations, and run custom functions. This
LLM can now be identified as an agent since an Agent is an
LLM that has access to tools.

LangChain has a series of built-in tools that can be used,
but it also offers the ability to use customized tools. This
means that tools developed for in-house workflows can be
added and used as tools for LLM agents. It is possible to gen-
erate several agents for specific tasks and define them as
tools for a different agent, referred to as the Scheduler. The
scheduler's job is to determine which of the agents it has ac-
cess to has the correct tool to achieve the goal given in the
prompt. In this paper, we present a template for building a
multi-agent framework using the tools developed by
LangChain and OpenAI. Specifically, we use the framework to
build an agent that automates tasks involved in generating
and analyzing MD simulations, which we named DynaMate.
It is important to mention that the workflow is based on the
BaseTool and StructuredTool packages in LangChain. Three
main pieces should be carefully constructed when dealing
with structured tools for agents. These are the classes for input
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types, which define the type of inputs and include their de-
scription. The Python function that performs the action of
the tool being designed, and, finally, the structure tool puts
everything together to fully define the tool. A template for
these three sections of the code is available in the GitHub re-
pository of this project, and its contents with the three men-
tioned sections are presented in Fig. 1.

When building agents with structured tools, the first step
is to define a Python class using the BaseModel package,
which will define the input type (i.e., string, integer, bool-
ean, etc.) and its description, as shown in the red rectangle
in Fig. 1. This description must be as clear and specific as
possible since it is what the LLM will use when executing
the tool. The number of inputs here is dependent on the in-
puts required by the function shown in the second step
(blue rectangle in Fig. 1). The code within this function is
the heart of the tool the agent will access, so any Python
code used for your workflows can be substituted here to
convert it into an agent tool. Once the inputs and the func-
tion have been defined, the StructuredTool package is used
to combine the class with inputs and the function, as
shown in the green rectangle in Fig. 1. The structured tool
also has a description, which must be as detailed as possi-
ble since the agent will use it to decide which tool to use to
solve the task at hand.

Once various tools have been developed, they can be
assigned to different LLMs to generate a series of agents
with specific abilities. More importantly, we can use these
agents as tools for a main agent (i.e., scheduler), which
results in a multi-agent framework like the one presented
in Fig. 2. The agent that has other agents as tools is the
scheduler. As previously mentioned, it oversees interpret-
ing the input and assigning the agent with the correct
tools to achieve the goal asked in the input. Once the
corresponding agent is selected, it is responsible for

choosing which tool to use and generating a response,
which is passed back to the scheduler, which generates
the final output.

It is important to mention that obtaining each response
becomes less efficient as more tools and agents are included
in the framework. This is because of memory requirements,
additional steps when passing the input information through
the framework, and more loading time for the scheduler to
distinguish between the agents. More research is needed in
this direction to understand these limitations and how to
deal with them appropriately.

Overview of agents and tools

For any workflow, the first step should be defining the task
and what precisely we want the agent to achieve. In this case,
DynaMate is an LLM agent with multiple capabilities that as-
sist in preparing LAMMPS23 input files and analyzing MD
simulations. This workflow has five agents and one sched-
uler. Table 1 presents the names of the agents, a brief de-
scription of the assigned tasks, and the number of tools each
agent has access to. In addition, the current version does not

Fig. 1 Content of agent framework template used to build personalized tools. The class for input definition, Python function to be used as a tool,
and structured tool definition is presented in red, blue, and green rectangles, respectively.

Fig. 2 Schematic of multi-agent workflow architecture. The scheduler
receives input and assigns it to the agent with the adequate tools to
respond to it.
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include an agent in charge of collecting and organizing meta-
data from each step or task completed. It is the user's respon-
sibility to maintain a well-organized repository so the agents
can identify the paths correctly and use their tools efficiently.
Current efforts are focused on developing an administrative
agent that will gather and make reports of the generated
metadata.

Agent 1 oversees preparing input files for MD simulations in
LAMMPS. These files involve the coordinates of the system to
study, force field parameters to describe atomic interactions,
and input parameters to define the simulation conditions. This
agent also has access to the Moltemplate24 and Packmol25

packages, which aid in generating more complex systems.
Moltemplate enables the usage and generation of templates for
any system of interest, and Packmol adds molecules to a simu-
lation box while avoiding overlapping atoms. Moltemplate in-
cludes the OPLSAA26 and GAFF27 force fields by default, but
they offer instructions on including custom force fields. The
agent also has access to the lammps_interface28 package,
which enables the generation of LAMMPS data files from CIF
files. Combining these tools gives this agent a flexible frame-
work to develop systems of interest. Below is a list of this
agent's tools and their descriptions.

Tool 1.1: mosdef_tool

• Generate LAMMPS data file for a molecular system using
the SMILES string. The inputs are the molecule's name,
SMILES string, box size, and number of molecules.

∘ Uses MosDEF29 for assigning force fields to molecular
systems. Offers the possibility of using custom force fields.

Tool 1.2: rdkit_template_tool

• Generate LAMMPS files for a molecular system starting
from the SMILES string of the system of interest. The inputs
are the molecule's name, the SMILES string, charge, number
of molecules, and box size.

∘ Uses RDKit30 to generate molecular systems and
Moltemplate for force field values.

Tool 1.3: data_from_cif_tool

• Generate LAMMPS data file using the CIF file of the system
of interest. The inputs are the name of the CIF file, force field
to be used, and whether to generate a pdb file or not.

Tool 1.4: data_to_template_tool

• Generate Moltemplate files from the data file and the input
file with force field parameters. The inputs are the name of
the molecule, template file, input file, data file, and the name
of the molecule in the template.

Tool 1.5: packmol_moltemplate_tool

• Generate LAMMPS files for a system with multiple types of
molecules. The inputs are a list with the number of molecules
of each type, a list with the names of molecules of interest,
and the size of the box. Uses lists as inputs.

Fig. 3 shows how the template presented in Fig. 1 was
modified to create the system preparation agent's mosdef_tool.
Similar modifications were performed for all other agents,
and the same process can be performed for customized
frameworks. First, we define the Python class, which defines
the type of inputs and their description. In this case, there are
four inputs, three strings, and one integer. By defining what
these inputs represent, the LLM can understand them and
use them accordingly when used in a prompt. The blue block
represents the Python function that performs the task
assigned to this tool. In this case, it takes the inputs and gen-
erates a LAMMPS data file for a molecular system, given the
molecule's name, its SMILES string, the number of molecules
in the system, and the size of a cubic box. This function can
be replaced by any Python function used in personal
workflows and be rapidly implemented into the framework.
Finally, everything is put together using the structured tool,
where the function and the class of inputs are connected and
are ready to assign to an agent. All tools are defined in inde-
pendent Python scripts, enabling easy modifications to the
function and rapid additions or eliminations. The code struc-
ture followed in this project defines every agent in an inde-
pendent folder, which stores all the scripts to that agent's
tools. Inside each folder is an additional script called
agent_response, which loads all the tool scripts and defines
an agent executor, enabling the agent to run. In this way, one
can build many specialized agents by simply editing the class
of inputs, functions, and structured tools. Once all the direc-
tories with the agents are created, the scheduler is created the
same way as the other agents but using the agents rather than
tools. Therefore, when the user sends a prompt to the sched-
uler, it reads the structure tool description of the agent to se-
lect the appropriate one, then the agent reads the prompt and
selects the tool to generate a response. The response is

Table 1 Agents in the architecture of DynaMate

Agent Name Description Number of tools

1 System preparation Generates LAMMPS input and configuration files 5
2 Simulation runner Runs MD simulation using LAMMPS 2
3 Post-processing Check the convergence, calculate averages, and thermodynamic properties 2
4 Enhanced sampler Prepares input for enhanced sampling simulations 6
5 RAG Extract information from embedded data 2
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returned to the scheduler, which generates the final output.
The modularity of this code enables easy incorporation of
multiple specialized agents and the development of very com-
plex workflows.

The tools of Agent 2 enable the preparation of LAMMPS
input files, which define the type and parameters of the MD
simulation, and the execution of the ‘lmp’ command to start
the simulation. The current input file generates the system
to undergo energy minimization, then equilibrates its vol-
ume using an NPT simulation, and finally, performs an NVT
simulation. The temperature and pressure are inputs, but
the inputs and type of simulation can be modified by going
to the tool's source code. Current efforts aim to increase the

flexibility of this tool by allowing an agent to generate the in-
put file from scratch. Below is a list of this agent's tools and
their descriptions.

Tool 2.1: lmp_create_tool

• Generate the LAMMPS input file and run the simulation.
Inputs are LAMMPS input file name, temperature, pressure,
and number of CPUs to use.

Tool 2.2: lmp_run_tool

• Run the LAMMPS simulation. Inputs are LAMMPS input
file name and number of CPUs to use.

Fig. 3 Modified agent framework template used to build system preparation tools for agent 1. The class for input definition, Python function to be
used as a tool, and structured tool definition is presented in red, blue, and green rectangles, respectively.
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Agent 3 can check for the convergence of a simulation's
thermodynamical properties. Our in-house code reads proper-
ties from a running or finished trajectory to determine if more
simulation time is required, given some desired property con-
vergence. This agent also can calculate atom-to-atom radial dis-
tribution functions (RDFs) and generate and save plots.

Tool 3.1: RDF_calc_tool

• Calculate RDF from LAMMPS trajectory using the data file,
trajectory file, names of the atoms, selections of the atoms,
and output file name.

Tool 3.2: Ensemble_average_tool

• Computes the ensemble average of a property from a
LAMMPS log file. It does this by extracting the trajectory from a
LAMMPS log file and then determining convergence based on
the change of the cumulative running average across the steps.

Agent 4 oversees the generation of PLUMED31 input files for
umbrella sampling32 or metadynamics33,34 simulations. The us-
ability of this tool assumes a LAMMPS version compiled with
PLUMED. Additional enhanced sampling methods can be im-
plemented by modifying the source code of this agent's tools.
Even though unbiasing a simulation is considered a post-
processing task, this agent also has the tools to obtain the un-
biased free energy surface of the system of interest.

Tool 4.1: UmbSamp_input_gen_tool

• Generate PLUMED input files for umbrella sampling simu-
lations using atomic distance as a collective variable.

Tool 4.2: UmbSamp_Multi_run_tool

• Run multiple umbrella sampling simulations in parallel.

Tool 4.3: wham_analysis_tool

• Perform weighted histogram analysis method (WHAM)
analysis on umbrella sampling simulations using one collec-
tive variable.

Tool 4.4: UmbSamp_analysis_tool

• Analyze umbrella sampling simulations using one collective
variable.

Tool 4.5: Prep_Metad_Inps_tool

• Generate PLUMED input files for metadynamics simula-
tions using dihedral angles as collective variables.

Tool 4.6: MetaD_analysis_tool

• Analyze the output of a metadynamics simulation in one or
two dimensions. The inputs are the path to the metadynamics
production run, the dimension of the free energy surface (1 or
2), and the name of the collective variable to be analyzed.

Agent 5 can perform retrieval augmented generation
(RAG), which is a method in which an LLM can interact with

a knowledge base in the form of a vector store of embedded
data. This enables the LLM to deliver responses based on the
knowledge included in the vector store. By referencing exter-
nal knowledge, the RAG agent reduces hallucinations and im-
proves the accuracy of the LLM outputs.

Tool 5.1: RAG_DB_gen_tool

• Generate a vector store from a PDF file. First, embed the
data and store it for later usage.

Tool 5.2: RAG_Retreive_DB_tool

• Retrieve information from a vector store.
The framework is complete when all tools are defined and

assigned to specific agents, and each agent is designated as a
tool for the scheduler agent. When a user submits a prompt,
the scheduler analyzes it and forwards it to the agent whose
description best matches the prompt. The chosen agent then
uses the tool mostly aligned with the prompt's description to
complete the task. Users are encouraged to build custom
agents and workflows and share them with the community as
part of the “Community Agent Framework”, where custom
workflows and tools are combined to develop a more robust
agent. The code for this framework is available in a GitHub
repository: https://github.com/omendibleba/DynaMate.

Representative examples of DynaMate
agents

The repository includes a tutorials directory with step-by-step
instructions on how each agent's and tool's code functions,
providing a useful guide for developing custom tools for spe-
cific workflows. This section covers several common examples
of each agent's functionality, while comprehensive examples
for all agents and tools can be found in the GitHub repository.

First, we tested Agent 1 and its tools. The test generates a
LAMMPS data file for a molecule, given only the system's SMILES
string, number of molecules, and system size. The tool assigns
the OPLS-AA force field by default, but this can be customized.
Fig. 4 presents the input and the agent's generated response.

The first output that appears is “Entering new
AgentExecutor chain…” which refers to the input being proc-
essed by the scheduler. In the background, the scheduler de-
cides that it needs to send the task to the system preparation
agent (agent 1) since its description best matches the prompt.
Then, this latter agent selects which tool it needs to use to com-
plete the task. In this case, the selected tool is the mosdef_tool
(i.e., Tool 1.1). Once the tool is invoked, we see that a dictionary
is generated, storing the pertinent inputs for the tool. Finally,
an output message is generated by agent 1 after performing the
task, and this output is passed on to the scheduler. The sched-
uler, finally, repeats the output message and gives it as an out-
put message to the user. Next to the output is a visualization of
the generated data file using VMD.35

The next test evaluates the agent's ability to generate a
LAMMPS data file from a CIF file in P1 symmetry, as
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specified in the lammps_interface documentation. The in-
puts for this tool are the path of the CIF file and the force
field to use. In this case, we use a CIF file for IRMOF-1 and
the UFF4MOF force field. Fig. 5 presents the input and re-
sponse from the agent.

The output shows that the scheduler properly sends the
prompt information to the right agent and selects the correct
tool for the task. This is confirmed by invoking the
‘lmp_interface_tool’ (i.e., Tool 1.3) and correctly generating the
data file of interest. The generated data files are visualized
and presented next to the output to confirm the integrity of
the files and the structure. Lammps_interface also generates
input files defining the type of equations to describe the sim-

ulation's interactions. This file should be edited with parame-
ters specific to the type of simulation of interest, and the force
fields must be tested and validated before using the files for
production runs. The next test involves using the generated
data file for IRMOF-1 to generate a Moltemplate file that
stores the force field parameters of this system. These tem-
plates present a great benefit since they can be later used to
generate custom and complex systems involving this or any
other molecule of interest. This is achieved by invoking the
‘data_to_template_tool’ (i.e., Tool 1.4) as shown in Fig. 6.

More complex systems may include multiple types of
molecules. Therefore, we are interested in combining multi-
ple templates of MOFs and solvents, for example. The

Fig. 4 DynaMate test 1 results. The test consists of generating a configuration file of one ethanol molecule inside a box with sides of 2.0 nm using
its SMILES String. Next to the output is a visualization of the generated file. Red is oxygen, cyan is carbon, and white is hydrogen.

Fig. 5 DynaMate test 2 results. The test generates a LAMMPS data file for IRMOF-1 starting from a CIF file. The response of the agent is included.
Next to the output is a visualization of the generated file. Gray is zinc, red is oxygen, cyan is carbon, and white is hydrogen.
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following test combines the generated template for the MOF
and the OPLSS force field to describe liquid ethanol interactions.
The exact process can be used to generate systems with N types
of molecules. Fig. 7 shows the input and output of the agent
when asked to generate a template from the given data file.

The agent's output shows that the selected tool to gener-
ate the template was packmol_template_tool. The agent suc-
cessfully called the correct templates and generated the re-
quired files for an MD simulation using LAMMPS. The
generated input file calls all the required files, but depend-
ing on the templates used, it may not be readily usable for
simulations and may require manual editing. Next to the
agent's output is a visualization of the system generated
using the templates for IRMOF-1 and ethanol. The same ap-
proach can be used to generate complex systems of interest.

DynaMate includes tools for preparing LAMMPS input files
with predefined protocols.

The following example shows how to use the frame-
work to generate an input file that includes system mini-
mization, NPT, and NVT equilibrations at the input tem-
perature and pressure for a system of liquid water. This
version of DynaMate does not include a tool that allows
an agent to generate the input from scratch without a
template. Current efforts are focused on this direction and
will be discussed in future publications. However, the cur-
rent version of LLMs may contain sufficient knowledge to
generate simple input files that might be sufficient for
test simulations. We recognized this as a limitation on
the automatization of this workflow, but it represents a
step in the right direction. Fig. 8 presents how the

Fig. 6 DynaMate generates template files for Moltemplate using a LAMMPS data file and input file. The files are successfully generated by the
agent and are found in the repository.

Fig. 7 DynaMate uses templates to generate a system with one IRMOF-1 and twenty ethanol molecules. Next to the output is a visualization of
the generated file. Gray is zinc, red is oxygen, cyan is carbon, and white is hydrogen. Ethanol molecules are painted blue for simplicity.
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developed template was used to generate the LAMMPS in-
put file used in this example. As previously discussed, the
class defining the inputs is modified to account for all
the inputs of interest and their types. For this example,

the inputs are the name for the input file, temperature,
pressure, and number of CPUs to run the simulation.

It is important to highlight that the number of inputs can
be customized by simply adding them or modifying them in

Fig. 8 The modified agent framework template used to build LAMMPS input file generation tool for agent 2. The class for input definition and
Python function to be used as a tool are presented in red and blue, respectively.
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this section. Similarly, the primary function in this example
has a general LAMMPS simulation file, which is filled with
the values used as inputs. Since this workflow uses
Moltemplate, the default name for the data file is ‘system.
data’ Specific settings of the simulation may be modified in
this file (DynaMate/chatbot/agent_2/A2_tool_1.py). This exam-
ple demonstrates the framework's modularity and is a clear
example of how input files for virtually any simulation engine
can be implemented within this multi-agent framework. This
template was used to run the simulation and Fig. 9 presents
the input prompt and outputs of the tool used to generate a
default LAMMPS input file, enabling a simulation to equili-
brate a system of interest.

The inputs in the prompt include the temperature (K),
pressure (bar), and number of CPUs to run the simulation.
Note that the outputs from the function include the path to
the directory where the simulation is running. The name of
the selected tool is lmp_create_tool (Tool 2.1). Below the

agent's output is the simulation output confirming the simu-
lation ran stably for five ns. A future version of this frame-
work will include, among other new tools, an agent capable
of generating a LAMMPS input file from scratch with all the
required inputs for the simulation of interest. In cases when
an input file is readily accessible, DynaMate has a tool called
‘lammps_run_tool’, which takes as input the name of this in-
put file and the number of CPUs to run the simulation. Then,
the agent can submit this simulation directly. Fig. 10 shows
an example of how to use this tool.

Once the output is presented, the simulation will run in
the background, and users can open the log files to confirm
that it is running properly. Once the simulation is finished,
we use the agent for post-processing analysis. DynaMate in-
cludes various tools for analyzing results and trajectories for
MD simulations, and tutorials for all are presented in the tu-
torial notebook for agent 3. For this publication, we present
an example of using the agent to calculate and plot the atom-

Fig. 9 DynaMate generates a (default) LAMMPS input file that includes an energy minimization, NPT, and NVT equilibration. Inputs are the
temperature (K), pressure (bar), and number of CPUs to run the simulation.
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to-atom radial distribution function (RDF) of the oxygen–oxy-
gen pair in liquid water. The used prompt and generated out-
put are shown in Fig. 11. The obtained RDF matches the re-
sults presented in the literature.36

The tool being used is called ‘calc_rdf_tool’ (Tool 3.1), and
it takes as inputs the name of the data file and trajectory in
DCD format, names of the selections, and types of selected
atoms. Currently, the user must specify the number of each
atomic type of interest. This might present a limitation for
inexperienced users, but the agent can be used to read the
LAMMPS data file and identify the type of each atom. This in-
formation can later be used to ask for the RDF which is cur-
rently calculated using PyLAT37 and with MDAnalysis.38,39

Specific types of simulations, such as enhanced sampling
simulations, require a LAMMPS executable compiled with addi-
tional packages, like PLUMED. DynaMate has tools that can
prepare PLUMED input files for umbrella sampling and meta-
dynamics simulations and tools to recover the free energy sur-
face from each of them. Assuming the user has the correct
compilation of these packages, the user can use it to prepare
an input for a metadynamics simulation. In the following ex-
ample, DynaMate generates a PLUMED input file for a 2D
metadynamics simulation of alanine dipeptide in vacuum. The
inputs include the number of atoms that correspond to each
collective variable, and biasing parameters such as height,

width, and pace of added Gaussians, the bias factor, and tem-
perature. Fig. 12 shows the tested prompt and its outputs.

The agent calls the correct tool for the task, which is
called ‘prep_Metad_inp_tool’ (Tool 4.5), and creates the input
dictionary properly from the prompt. Finally, it generates the
metadynamics input file, and if all other required files are al-
ready accessible, the simulation can be run in the same way
presented in Fig. 9. After the simulation finishes, use tools to
analyze the sampling on the simulation and recover the unbi-
ased free energy surface. By using the ‘MetaD_analysis_tool’
(Tool 4.6) we can obtain this information using a prompt
such as the one presented in Fig. 13.

The default name for the PLUMED output file is “colvar.dat”,
but any name should be defined in the input path and loaded
properly. The function returns ‘None’ because the structured
tool option to return direct is set to True, so after running the
function, it returns the function output and not an LLM mes-
sage. Since this tool generates and shows plots, incorrect LLM
messages can appear as if the agent did not properly achieve the
goal. Fig. 13, panel A) shows the biased CVs versus time, panel
B) shows CV1 vs. CV2, and panel C) is the recovered free energy
surface of the system as a function of CV1 and CV2, which
agrees with results in the literature.40 This tool also has the ca-
pability of recovering the FES of 1 of the two biased variables,
and the changes in the analysis will be automatically performed

Fig. 10 DynaMate runs a LAMMPS simulation when given the name of the input and the number of CPUs to run the simulation.

Fig. 11 DynaMate calculates and plots the radial distribution function of the oxygen–oxygen pair in liquid water. At the left is the agent function,
and on the right is the plotted RDF.
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if the PLUMED file has two biased CVs, but the user specifies
one dimension in the prompt. More detailed information about
this and all other tools is available in the tutorial notebooks.

Agent 5 is currently a typical RAG agent, which enriches
its responses from the information in a vector store. For this
test case, the knowledge base includes the documentation of
LAMMPS, and this agent can be used to answer questions

about the inputs and LAMMPS requirements for specific
types of simulations. An additional tool enables the agent to
generate a new vector store from a given PDF file, which can
then be used as a knowledge base. Detailed examples of how
to use the agents with its RAG functionalities are available in
tutorial notebooks in the project's repository. The retrieval
process involves identifying relevant sections from the

Fig. 12 DynaMate prepares a PLUMED input file for a metadynamics simulation of alanine dipeptide in vacuum biasing the phi and psi torsion angles.

Fig. 13 DynaMate prepares plots to analyze the sampled CVs in the metadynamics simulation of alanine dipeptide in vacuum. Phi and psi
dihedrals versus time in A, psi versus psi in B, and 2D FES of ADP as a function of the phi and psi dihedrals in C.
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LAMMPS documentation using semantic similarity calcula-
tions, ensuring that the agent accesses the most pertinent in-
formation needed to address specific queries about setups.
The generation component of the RAG agent then synthesizes
this information, presenting answers or suggesting modifica-
tions in a coherent and contextually appropriate manner.
Augmentation further enhances the response by fine-tuning
the information retrieved, ensuring that the suggestions are
accurate and aligned with the latest LAMMPS standards.

The presented examples showcase the modularity of
DynaMate's agent framework and the relative ease of includ-
ing custom code related to personal research workflows.
Using templates reduces the effort needed to generate tools
and enables agent communication. This research represents
our first effort in generating an agent framework for generat-
ing and analyzing molecular dynamics simulations. There-
fore, some tools are currently not at the desired automation
level. Future versions of this framework will include newer
tools that give the agent more control, allowing for more
complex prompts. In addition to the benefit of automation,
this modular framework presents a different way of storing
and interacting with code from other users.

Outlook

We present a code template that can be used to build multi-
agent frameworks that leverage LLMs to automate time con-
suming tasks involved in complex molecular modeling
workflows. Using open-source libraries and models, this
modular template enables the facile incorporation of func-
tions in Python code into a semi-automated process. Our
tests showed how DynaMate can generate molecular configu-
rations, assign force field parameters, run simulations, and
perform various types of post-processing analysis. Moreover,
DynaMate provides a modular framework that allows the ex-
change of tools between researchers and significantly reduces
the learning curve related to building tools for non-experts
on the task of interest. Due to its versatility, we believe
DynaMate will be used to automate repetitive research tasks
and aid researchers in developing molecular modeling
workflows at a faster pace. Moreover, we believe that the com-
munity will continue to build on this framework, which will
allow for faster automation and more robust scientific
workflows. Users and developers are encouraged to share
their tools and agents developed for custom workflows with
the objective of building a more robust and interdisciplinary
agent framework.
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com/omendibleba/DynaMate.

Conflicts of interest

The authors have no conflict to disclose.

Acknowledgements

This work was performed using the computational resources
provided by the Notre Dame Center for Research Computing
(NDCRC). Y. C. acknowledges funding support from the U.S.
Department of Education (award no. P200A210048) and the
University of Notre Dame. U. C. acknowledges funding sup-
port from the University of Puerto Rico – Mayagüez.

References

1 V. Mavroudis, Vasilios Mavroudis To Cite This Version: HAL Id:
Hal-04817573 LangChain, 2024.

2 S. M. Jain, Hugging Face BT – Introduction to Transformers for
NLP: With the Hugging Face Library and Models to Solve
Problems, ed. S. M. Jain, Apress, Berkeley, CA, 2022, pp. 51–
67, DOI: 10.1007/978-1-4842-8844-3_4.

3 A. D. White, G. M. Hocky, H. A. Gandhi, M. Ansari, S. Cox,
G. P. Wellawatte, S. Sasmal, Z. Yang, K. Liu, Y. Singh and
W. J. Peña Ccoa, Assessment of Chemistry Knowledge in
Large Language Models That Generate Code, Digital
Discovery, 2023, 2(2), 368–376, DOI: 10.1039/D2DD00087C.

4 K. M. Jablonka, P. Schwaller, A. Ortega-Guerrero and B. Smit,
Leveraging Large Language Models for Predictive Chemistry,
Nat. Mach. Intell., 2024, 6(2), 161–169, DOI: 10.1038/s42256-
023-00788-1.

5 J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O.
Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A.
Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J.
Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J.
Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M.
Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S.
Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K.
Kavukcuoglu, P. Kohli and D. Hassabis, Highly Accurate
Protein Structure Prediction with AlphaFold, Nature,
2021, 596(7873), 583–589, DOI: 10.1038/s41586-021-03819-2.

6 G. Pesciullesi, P. Schwaller, T. Laino and J.-L. Reymond,
Transfer Learning Enables the Molecular Transformer to
Predict Regio- and Stereoselective Reactions on Carbohy-
drates, Nat. Commun., 2020, 11(1), 4874, DOI: 10.1038/
s41467-020-18671-7.

7 M. Alberts, T. Laino and A. C. Vaucher, Leveraging Infrared
Spectroscopy for Automated Structure Elucidation, Commun.
Chem., 2024, 7, 268, DOI: 10.1038/s42004-024-01341-w.

8 M. Arslan, H. Ghanem, S. Munawar and C. Cruz, A Survey on
RAG with LLMs, Procedia Comput. Sci., 2024, 246, 3781–3790,
DOI: 10.1016/j.procs.2024.09.178.

9 G. Xiong, Q. Jin, Z. Lu and A. Zhang, Benchmarking Retrieval-
Augmented Generation for Medicine, 2024.

10 A. J. Yepes, Y. You, J. Milczek, S. Laverde and R. Li, Financial
Report Chunking for Effective Retrieval Augmented Generation,
2024.

11 J. Kim and M. Min, From RAG to QA-RAG: Integrating Generative
AI for Pharmaceutical Regulatory Compliance Process, 2024.

12 J. A. Recio-garcia and M. G. Orozco-del-castillo, Case-Based
Reasoning, 2024.

MSDE Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 1
2:

54
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://github.com/omendibleba/DynaMate
https://github.com/omendibleba/DynaMate
https://doi.org/10.1007/978-1-4842-8844-3_4
https://doi.org/10.1039/D2DD00087C
https://doi.org/10.1038/s42256-023-00788-1
https://doi.org/10.1038/s42256-023-00788-1
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41467-020-18671-7
https://doi.org/10.1038/s41467-020-18671-7
https://doi.org/10.1038/s42004-024-01341-w
https://doi.org/10.1016/j.procs.2024.09.178
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5me00062a


598 | Mol. Syst. Des. Eng., 2025, 10, 585–598 This journal is © The Royal Society of Chemistry and IChemE 2025

13 D. A. Boiko, R. MacKnight, B. Kline and G. Gomes,
Autonomous Chemical Research with Large Language
Models, Nature, 2023, 624(7992), 570–578, DOI: 10.1038/
s41586-023-06792-0.

14 C. W. Coley, D. A. Thomas, J. A. M. Lummiss, J. N. Jaworski,
C. P. Breen, V. Schultz, T. Hart, J. S. Fishman, L. Rogers, H.
Gao, R. W. Hicklin, P. P. Plehiers, J. Byington, J. S. Piotti,
W. H. Green, A. J. Hart, T. F. Jamison and K. F. Jensen, A
Robotic Platform for Flow Synthesis of Organic Compounds
Informed by AI Planning, Science, 2019, 365(6453), eaax1566,
DOI: 10.1126/science.aax1566.

15 Significant-Gravitas, AutoGPT, GitHub repository, GitHub,
2023.

16 yoheinakajima, babyagi, GitHub repository, GitHub, 2023.
17 A. D. McNaughton, G. K. Sankar Ramalaxmi, A. Kruel, C. R.

Knutson, R. A. Varikoti and N. Kumar, CACTUS: Chemistry
Agent Connecting Tool Usage to Science, ACS Omega,
2024, 9(46), 46563–46573, DOI: 10.1021/acsomega.4c08408.

18 S. Liu, Y. Lu, S. Chen, X. Hu, J. Zhao, T. Fu and Y. Zhao,
DrugAgent: Automating AI-Aided Drug Discovery Programming
through LLM Multi-Agent Collaboration, 2024.

19 A. Ghafarollahi and M. J. Buehler, AtomAgents: Alloy Design
and Discovery through Physics-Aware Multi-Modal Multi-Agent
Artificial Intelligence, 2024.

20 S. Cox, Q. L. Campbell, J. Medina, B. Watterson and A.
White, MDCROW: Automating Molecular Dynamics Workflows
with Large Language Models, 2025.

21 A. M. Bran, S. Cox, O. Schilter, C. Baldassari, A. D. White
and P. Schwaller, Augmenting Large Language Models with
Chemistry Tools, Nat. Mach. Intell., 2024, 6(5), 525–535, DOI:
10.1038/s42256-024-00832-8.

22 Y. Kang and J. Kim, ChatMOF: An Artificial Intelligence
System for Predicting and Generating Metal-Organic Frame-
works Using Large Language Models, Nat. Commun.,
2024, 15(1), 4705, DOI: 10.1038/s41467-024-48998-4.

23 A. P. Thompson, H. M. Aktulga, R. Berger, D. S.
Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in't Veld, A.
Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J.
Stevens, J. Tranchida, C. Trott and S. J. Plimpton, LAMMPS –

A Flexible Simulation Tool for Particle-Based Materials
Modeling at the Atomic, Meso, and Continuum Scales,
Comput. Phys. Commun., 2022, 271, DOI: 10.1016/J.
CPC.2021.108171.

24 A. I. Jewett, D. Stelter, J. Lambert, S. M. Saladi, O. M.
Roscioni, M. Ricci, L. Autin, M. Maritan, S. M. Bashusqeh, T.
Keyes, R. T. Dame, J.-E. Shea, G. J. Jensen and D. S.
Goodsell, Moltemplate: A Tool for Coarse-Grained Modeling
of Complex Biological Matter and Soft Condensed Matter
Physics, J. Mol. Biol., 2021, 433(11), 166841, DOI: 10.1016/j.
jmb.2021.166841.

25 L. Martínez, R. Andrade, E. G. Birgin and J. M. Martínez,
PACKMOL: A Package for Building Initial Configurations for
Molecular Dynamics Simulations, J. Comput. Chem.,
2009, 30(13), 2157–2164, DOI: 10.1002/jcc.21224.

26 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives,
Development and Testing of the OPLS All-Atom Force Field
on Conformational Energetics and Properties of Organic Liq-
uids, J. Am. Chem. Soc., 1996, 118(45), 11225–11236, DOI:
10.1021/ja9621760.

27 J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A.
Case, Development and Testing of a General Amber Force
Field, J. Comput. Chem., 2004, 25(9), 1157–1174, DOI:
10.1002/jcc.20035.

28 peteboyd, lammps_interface, GitHub repository, GitHub,
2019.

29 R. S. DeFever, R. A. Matsumoto, A. W. Dowling, P. T.
Cummings and E. J. Maginn, MoSDeF Cassandra: A
Complete Python Interface for the Cassandra Monte Carlo
Software, J. Comput. Chem., 2021, 42(18), 1321–1331, DOI:
10.1002/jcc.26544.

30 rdkit, Rdkit, GitHub repository, GitHub, 2013.
31 G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni and

G. Bussi, PLUMED 2: New Feathers for an Old Bird, Comput.
Phys. Commun., 2014, 185(2), 604–613, DOI: 10.1016/j.
cpc.2013.09.018.

32 J. Kästner, Umbrella Sampling, Wiley Interdiscip. Rev.: Comput.
Mol. Sci., 2011, 1(6), 932–942, DOI: 10.1002/WCMS.66.

33 A. Barducci, M. Bonomi and M. Parrinello, Metadynamics,
WIREs Comput. Mol. Sci., 2011, 1(5), 826–843, DOI: 10.1002/
wcms.31.

34 D. Branduardi, F. L. Gervasio and M. Parrinello, From A to B
in Free Energy Space, J. Chem. Phys., 2007, 126(5), 54103,
DOI: 10.1063/1.2432340.

35 W. Humphrey, A. Dalke and K. Schulten, VMD –

Visual Molecular Dynamics, J. Mol. Graphics, 1996, 14,
33–38.

36 J. Wang, G. Román-Pérez, J. Soler, E. Artacho and M.
Fernández-Serra, Density, structure, and dynamics of water:
The effect of van der Waals interactions, J. Chem. Phys.,
2011, 134(2), 024516, DOI: 10.1063/1.3521268.

37 M. T. Humbert, Y. Zhang and E. J. Maginn, PyLAT: Python
LAMMPS Analysis Tools, J. Chem. Inf. Model., 2019, 59(4),
1301–1305, DOI: 10.1021/acs.jcim.9b00066.

38 N. Michaud-Agrawal, E. J. Denning, T. B. Woolf and O.
Beckstein, MDAnalysis: A Toolkit for the Analysis of
Molecular Dynamics Simulations, J. Comput. Chem.,
2011, 32(10), 2319–2327, DOI: 10.1002/jcc.21787.

39 R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N.
Melo, S. L. Seyler, J. Domański, D. L. Dotson, S. Buchoux,
I. M. Kenney and O. Beckstein, MD Analysis: A Python
Package for the Rapid Analysis of Molecular Dynamics
Simulations, in Proceedings of the 15th Python in Science
Conference, ed. S. Benthall and S. Rostrup, 2016, pp. 98–105,
DOI: 10.25080/Majora-629e541a-00e.

40 Z. Šućur and V. Spiwok, Sampling Enhancement and Free
Energy Prediction by the Flying Gaussian Method,
J. Chem. Theory Comput., 2016, 12(9), DOI: 10.1021/acs.
jctc.6b00551.

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 1
2:

54
:4

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1038/s41586-023-06792-0
https://doi.org/10.1126/science.aax1566
https://doi.org/10.1021/acsomega.4c08408
https://doi.org/10.1038/s42256-024-00832-8
https://doi.org/10.1038/s41467-024-48998-4
https://doi.org/10.1016/J.CPC.2021.108171
https://doi.org/10.1016/J.CPC.2021.108171
https://doi.org/10.1016/j.jmb.2021.166841
https://doi.org/10.1016/j.jmb.2021.166841
https://doi.org/10.1002/jcc.21224
https://doi.org/10.1021/ja9621760
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.26544
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1016/j.cpc.2013.09.018
https://doi.org/10.1002/WCMS.66
https://doi.org/10.1002/wcms.31
https://doi.org/10.1002/wcms.31
https://doi.org/10.1063/1.2432340
https://doi.org/10.1063/1.3521268
https://doi.org/10.1021/acs.jcim.9b00066
https://doi.org/10.1002/jcc.21787
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1021/acs.jctc.6b00551
https://doi.org/10.1021/acs.jctc.6b00551
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5me00062a

	crossmark: 


