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Bioisosterism, a fundamental concept in medicinal chemistry, involves the substitution of chemical groups

with structural analogs that preserve similar physicochemical properties while potentially modulating

potency or toxicity. To systematically investigate shifts in pChEMBL values upon such substitutions, we

developed a KNIME workflow that extracts and analyzes compound pairs featuring literature-curated

common bioisosteric exchanges. The workflow retrieves pChEMBL values across 88 off-targets from

ChEMBL and supports decision-making through pair-level quality metrics such as the document

consistency ratio and assay context consistency ratio, which assess the consistency of the source data.

Our analysis revealed that ester-to-secondary-amide replacements at the muscarinic acetylcholine

receptor M2 (CHMR2) result in a significant mean decrease in pChEMBL of 1.26 across 14 compound pairs

(p < 0.01). In contrast, phenyl-to-furanyl substitutions at the adenosine A2A receptor (ADORA2A) led to a

mean increase in pChEMBL of 0.58 across 88 compound pairs (p < 0.01). Furthermore, a second KNIME

workflow was developed to assess selectivity profiles by analyzing pChEMBL shifts at secondary targets.

Among 66 compound pairs active at both ADORA2A and ADORA1, the mean change at ADORA1 was only

+0.14 ± 0.52, indicating a selective potency increase at ADORA2A. This exemplifies a potential case of

increased potency at an off-target associated with adverse effects, while maintaining activity at a

pharmacologically desirable target. Conversely, furanyl-to-phenyl replacements may selectively reduce

undesired potency at ADORA2A while preserving potency at ADORA1. This framework enables systematic,

data-driven evaluation of potency shifts induced by bioisosteric replacements, aiding in the identification of

substitutions associated with off-target potency increases or decreases during lead optimization. The

workflow offers a semi-automated, reproducible approach that integrates bioisostere generation, activity

mapping, and statistical assessment in a single platform, making it readily adaptable to other compound

series and target panels. In addition, it evaluates whether activity at other known targets remains

unchanged, thereby providing an assessment of selectivity of the replacements. The workflow can be

applied to prioritize replacement strategies that reduce off-target risks, evaluate selectivity profiles, and

generate curated potency shift data to support predictive modeling efforts.

1 Introduction

Bioisosterism, rooted in the concept of isosterism, involves
replacing one molecular fragment with another that retains
similar steric or electronic characteristics.1 In medicinal
chemistry, such replacements are widely employed to improve
potency, selectivity, and pharmacokinetic profiles.2 Classical
bioisosteres, such as –OH and –NH2, share valency and size,
whereas non-classical bioisosteres mimic biological effects
through spatial or electrostatic similarity.1,3 Beyond
optimizing primary target interactions, these transformations

can also modulate off-target binding and reduce toxicity.4,5

Systematic evaluation of defined bioisosteric replacements,
such as esters-to-secondary-amides, across pharmacologically
relevant proteins thus supports a more rational design of
safer drugs.

Computational tools have become indispensable for the
systematic identification and analysis of bioisosteric
replacements, enabling medicinal chemists to explore
structure–activity relationships and optimize molecular
properties efficiently. Among these tools, matched molecular
pair (MMP) analysis, originally introduced by Hussain and
Rea,6 has become one of the most widely used approaches. It
has been implemented in platforms such as mmpdb,7 the
Matcher web application,8 and workflow based environments
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like KNIME9 using RDKit and Vernalis nodes.10 Several other
resources leverage MMP analysis to extract and organize
bioisosteric replacements: the SwissBioisostere database
catalogs transformations and their impact on potency,11 the
Base of Bioisosterically Exchangeable Replacements (BoBER)
mines curated bioisosteric and scaffold hopping
replacements from ChEMBL using MMP analysis and
similarity calculations,12 and BioisoIdentifier extracts
bioisosteric replacements from the Protein Data Bank (PDB)
and clusters them using unsupervised machine learning.13

Bajorath and colleagues have made significant contributions
to the advancement of MMP analog analysis. This includes
matched molecular series, which consider broader sets of
structurally related compounds, enabling the derivation of
structure–activity relationship (SAR) rules and exploration of
potency modifying changes across large compound sets.14–17

Ertl and coworkers have developed cheminformatics-based
methods for systematically identifying bioisosteric and
scaffold-hopping replacements, and for proposing new core
structures in lead optimization.18–20 Collectively, these tools
and methodologies underpin contemporary approaches for
rational compound design and optimization.

Existing computational approaches often analyze
bioisosteric replacements at scale, covering wide chemical
and biological spaces. In contrast, our method applies a
focused strategy by examining a predefined set of well-
established medicinal chemistry transformations across a
curated panel of safety-relevant off-target proteins, as defined
by Brennan et al.21 This focus on off-target pharmacology is
particularly important, because unintended protein
interactions frequently cause adverse drug reactions and
contribute to clinical failure. Within this context, our analysis
captures not only large potency shifts but also more
moderate yet consistent changes. Some bioisosteric
replacements alter potency at one off-target protein while
leaving activity unchanged at another known target, an effect
newly captured by our KNIME workflow, providing deeper
insights into selective modulation across off-targets. Another
key feature of the workflow is the use of decision-making
ratios, which systematically capture and contextualize these
effects, enabling transparent evaluation of bioisosteric
replacements across proteins. Notably, when only a small
number of bioisosteric replacement pairs are available for an
off-target protein, meaningful trends can still emerge. To our
knowledge, such combined analysis of differential activity
and decision-making ratios has not been reported in other
data-driven studies.

To enable broader applicability, we developed a semi-
automated, modular KNIME workflow. It streamlines the
analysis, allows easy adaptation to other datasets and
bioisosteric transformations, and facilitates the identification
of replacements that may contribute to the design of safer
compounds. By systematically linking bioisosteric
substitutions to changes in potency and off-target profiles,
and providing quantitative decision-making ratios, this
workflow can help medicinal chemists prioritize

modifications, optimize compound selectivity, and make
data-driven decisions during early-stage drug design.

2 Results and discussion
2.1 Overview of compound selection and bioisosteric
replacements for 88 off-targets

Notably, after applying filters for exact molecular weight
(≤600 Da), exclusion of 2H-, 3H-, and 11C-labeled isotopes,
and removal of tripeptides and larger peptides, most
compounds matching para-phenylene were found in the
ChEMBL database, as shown in Table 1. Among the panel of
88 off-targets, para-phenylene was also associated with the
highest number of unique bioactive compounds, totaling
42 811, including 38 756 with inhibitory activity and 4055
with activation. Furthermore, phenyl exhibited the highest
number of original-bioisosteric replacement pairs with a total
of 5278 pairs, comprising 4862 with inhibitory activity and
416 with activation.

2.2 Compound-target pair statistics and off-target coverage

Within the panel of 88 off-target proteins and the predefined
replacement set, no bioisosteric compound pairs were
identified for the Mas-related G-protein coupled receptor
member X2, serine/threonine-protein kinase 35, and voltage-
gated L-type calcium channel alpha1C subunit. As shown in
Fig. 1, the vascular endothelial growth factor receptor 2
(VEGFR2) exhibited the highest number of bioisosteric
replacement pairs and the most potency shifting
substitutions (ΔpChEMBL ≥ 0.5). Among the top 10 off-
targets with the highest number of bioisosteric replacement
pairs, the distribution comprised five G protein-coupled
receptors (GPCRs), two kinases, two enzymes of other classes,
and one transporter. Notably, the human Ether-à-go-go-
Related Gene (hERG) potassium channel, a common off-
target protein known to cause preclinical and clinical safety
failures due to its association with cardiotoxicity, particularly
QT interval prolongation and risk of Torsade de Pointes, was
ranked 12th.22,23

2.3 Assessment of bioisosteric effects on off-target potency

In the evaluated off-target panel and bioisosteric replacement
space, 58 off-target replacement cases involving more than
ten compound pairs exhibited statistically significant potency
shifts ( p < 0.1), with 56 of these reaching higher significance
( p < 0.05). Among the 58 cases, 53 were associated with
inhibition and five with activation. Significant cases included
five cases for esters, six for secondary amides, four for
carboxylic acids, 19 for phenyl, 12 for ortho-phenylene, nine
for meta-phenylene, and three for para-phenylene.
Importantly, all bioisosteric replacements can be interpreted
in both directions. This means that ester-to-secondary-amide
and secondary-amide-to-ester replacements were counted
separately, even though they represent the same compound
pairs evaluated in opposite directions.
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2.4 Examples of bioisosteric shifts at selected off-target
proteins

Three representative examples were selected for further
analysis and discussion based on the relevance of the off-
target protein, the number of available bioisosteric
replacement pairs, and the magnitude of the observed mean
change in bioactivity. These examples highlight cases where
bioisosteric substitutions led to notable shifts in potency.
The mean change in pChEMBL values and the associated
significance reported in Table 2 were calculated as the
average of the individual differences between each original-
replacement compound pair.

At the muscarinic acetylcholine receptor M2 (CHRM2),
replacement of an ester with a secondary amide resulted in
an approximate one order of magnitude decrease in activity
across 14 compound pairs. Furthermore, substituting a
phenyl with a cyclohexyl ring at the adenosine A2a receptor
(ADORA2A) resulted in a mean pChEMBL decrease of 0.86
across 17 compound pairs. These substitutions are thus
pointing towards a decrease in off-target potency. Also, at
ADORA2A, replacing a phenyl with a furanyl group resulted

in a mean pChEMBL increase of 0.58 across 88 compound
pairs. Importantly, reversing these substitutions resulted in
the opposite effects. Detailed statistics for all 58 cases are
provided in the SI (Table S1). To support informed decision-
making, four metrics were developed to assess the reliability
of observed potency shifts: assay context (ACCR), standard
type (STCR), salt form (SFCR), and document consistency
(DCR) ratios. For example, in the phenyl-to-furanyl
replacement set at ADORA2A, the assay context consistency
ratio was 0.90, the standard type consistency ratio was 0.92,
the salt form consistency ratio was 1.00, and the document
consistency ratio was 0.67, based on data from 52
publications (Table 2). The observed potency increase is
supported by high consistency in assay conditions, standard
types, and compound forms, while some variability across
sources (document consistency) informs the confidence level
of this observation. Low consistency ratios or cases where all
replacement pairs were measured in a single document
suggest that potency changes should be interpreted with
caution, as they may reflect experimental variability or study-
specific biases, respectively, rather than true effects. A shift
may be considered highly reliable if all consistency ratios
equal 1 and the number of unique source documents
matches the number of compound pairs, while the degree of
confidence for other cases can be judged on these metrics.

2.5 Extended evaluation of potency shifts at an off-target
while preserving activity at a known target

For all bioisosteric replacements with significant pChEMBL
shifts, a second workflow was established to assess whether
the same compound pairs also retained activity at another
known target (i.e., a target with experimentally reported
interactions; non-shift target in Table 3). For example, the
substitution of phenyl with furanyl at ADORA2A led to a
mean pChEMBL increase of 0.58 across 88 compound pairs.
Analysis of compounds from these groups at the Adenosine
A1 receptor (ADORA1) revealed a smaller difference of 0.14 ±
0.52 in 66 compound pairs. A third exchange, replacing a
phenyl with a cyclohexyl ring, yielded a mean pChEMBL
decrease of 0.86, however within this group, a smaller
difference of 0.21 ± 0.82 (statistically not significant due to
high standard deviation) was observed at ADORA1 for 11

Table 1 Compounds from the ChEMBL database containing the specified functional groups, represented across 88 off-targets, along with the
corresponding bioisosteric pairs

Compounds
in ChEMBL

Unique bioactive compounds
(at 88 off-targets)

Bioisosteric pairs
(at 88 off-targets)

Activation Inhibition Activation Inhibition

Ester 187 417 774 5330 44 400
Secondary amide 596 202 3778 30 281 71 810
Carboxylic acid 193 693 759 4268 47 403
Ortho-Phenylene 189 149 1583 10 780 228 2223
Meta-Phenylene 228 400 1554 17 560 172 2558
Para-Phenylene 645 053 4055 38 756 229 3149
Phenyl 433 700 2935 26 440 416 4862

Fig. 1 Top 10 off-targets ranked by frequency of bioisosteric
replacement pairs and number of pairs with potency shifting
substitutions (ΔpChEMBL ≥ 0.5).
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compound pairs. Notably, ADORA1 is not included in the 88
off-targets reported by Brennan et al., representing a scenario
in which potency at this target is maintained while off-target
potency decreases. All 16 cases showing shifts at an off-target
protein, accompanied by only minor changes at another
known target (based on more than five compound pairs), are
summarized in the SI (Table S2).

2.6 Docking into muscarinic acetylcholine receptor M2

In 14 cases involving bioisosteric substitutions of esters
with secondary amides at CHRM2, a decrease in potency
was observed, with mean pChEMBL values dropping from
7.55 (0.028 μMolar, esters) to 6.28 (0.53 μMolar, secondary
amides). To explore the structural basis of this effect, two
representative compounds – CHEMBL558910 (ester), which

was co-crystallized in CHRM2 (PDB ID: 3UON)24 and
CHEMBL3401640 (amide) – were docked into the receptor
using Maestro (Schrödinger Release 2022-4). CHRM2 was
selected for this analysis because the availability of a co-
crystallized ester ligand from the 14 pairs allowed
redocking of the ester and docking of the corresponding
amide, providing a rapid proof-of-concept validation of the
workflow.

Fig. 2 summarizes the docking scores and hydrogen
bonding interactions with Asn404 for the same enantiomers
of the ester and its corresponding amide. The amide
consistently exhibits higher (less favorable) docking scores
and weaker hydrogen bonding with Asn404 compared to the
ester. The corresponding docking poses and molecular
interactions are illustrated in Fig. 3 (ester: carbon atoms
shown in yellow, amide: carbon atoms shown in purple).

Table 2 Impact of bioisosteric replacements on potency at off-target proteins, showing mean pChEMBL changes with pair counts, statistical
significance (p-values) and decision-making ratios. (mean orig. pChEMBL = mean pChEMBL value of the original compounds; mean repl. pChEMBL =
mean pChEMBL value of the replacement compounds; SD = standard deviation; ACCR = assay context consistency ratio; STCR = standard type
consistency ratio; SFCR = salt form consistency ratio; DCR (unique docs.) = document consistency ratio based on unique sources)

Replacement Target

Mean
orig.
pChEMBL

Mean
repl.
pChEMBL

Mean
change of
pChEMBL ±
SD

Pair
count p-Value Test

Mechanism
of action ACCR STCR SFCR

DCR
(unique
docs.)

Ester-to-secondary-amide CHRM2 7.55 6.28 −1.26 ± 0.70 14 1.4 ×
10−5

Paired
t-test

Inhibition 0.93 0.93 1 0.50 (5)

Phenyl-to-cyclohexyl ADORA2A 7.26 6.41 −0.86 ± 0.85 17 1.0 ×
10−3

Paired
t-test

Inhibition 0.94 1 1 0.94 (13)

Phenyl-to-furanyl ADORA2A 7.07 7.65 +0.58 ± 0.87 88 1.3 ×
10−8

Paired
t-test

Inhibition 0.90 0.92 1 0.67 (52)

Table 3 Summary of bioisosteric exchanges with target-specific shifts in pChEMBL, showing minimal changes at other known targets. (mean orig.
pChEMBL at non-shift target = mean pChEMBL value of the original compounds at the known non-shifting target; mean repl. pChEMBL = mean
pChEMBL value of the replacement compounds at the known non-shifting target; SD = standard deviation)

Replacement
Shift
target

Shift
target
mean
change

Non-shift
target

Mean orig.
pChEMBL at
non-shift target

Mean repl.
pChEMBL at
non-shift target

Pair count
at non-shift
target

Non-shift
target mean
change ± SD

Mechanism of
action at
non-shift target

Phenyl-to-cyclohexyl ADORA2A −0.86 ADORA1 6.93 6.73 11 −0.21 ± 0.82 Inhibition
Phenyl-to-furanyl ADORA2A +0.58 ADORA1 7.11 7.25 66 0.14 ± 0.52 Inhibition

Fig. 2 Docking scores for the same enantiomers of CHEMBL558910 (ester) and CHEMBL3401640 (secondary amide) at CHRM2, illustrating
reduced binding affinity and weaker hydrogen bonding with Asn404 of the amide analog.
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Both compounds engage in a salt bridge with Asp103 and
π-cation interactions with Tyr104, Trp400, and Tyr403,
alongside hydrogen bonding with Asn404. In addition to
these shared interactions, the amide forms a π–π stacking
between one of its phenyl rings and Tyr104, as well as a
hydrogen bond to the carbonyl oxygen of Asp103. Conversely,
the ester's positively charged nitrogen establishes an
additional hydrogen bond with Ser107.

In this study, we applied commonly used bioisosteric
replacements from medicinal chemistry to systematically
investigate their effects on a defined panel of 88 off-target
proteins. This study aimed to assess whether consistent
bioisosteric replacement trends in the ChEMBL dataset could
help reduce off-target activity for specific targets across
groups of compounds. To this end, we examined compound
pairs differing only by a single bioisosteric substitution and
evaluated off-target potency decreases or increases, with three
representative cases illustrated. Of these, two exemplify a
particularly informative scenario in which a bioisosteric
exchange preserves potency at a known target while reducing
potency at a secondary off-target. The observed potency shifts
were further examined with respect to the underlying
mechanistic rationale associated with the bioisosteric
replacements, thereby illustrating the applicability of the
KNIME workflow as a systematic approach to investigating
such structure–activity relationships.

The muscarinic acetylcholine receptor M2 (CHRM2), part
of the Gi/Go family of G protein-coupled receptors, is central
to parasymphathetic regulation of cardiovascular function via
activation of G protein-coupled inwardly-rectifying potassium
(GIRK) channels.24 It is the only muscarinic acetylcholine
receptor subtype known to directly modulate cardiac
parameters such as heart rate and contractility.25 The

receptor is widely expressed in the heart, brain, urinary
bladder, and gastrointestinal tract, and has been extensively
characterized pharmacologically, with both orthosteric and
allosteric ligands.24,26 The physiological relevance of
muscarinic receptors has made them important targets in
the development of drugs for conditions such as Parkinson's
and Alzheimer's disease.27 However, M2-selective antagonists
are not widely used clinically due to poor selectivity and the
risk of cardiac side effects, particularly tachycardia.28

Replacing an ester with a secondary amide at CHRM2 led
in 14 cases to a potency decrease of slightly more than one
order of magnitude in pChEMBL. Docking scores indicate
higher binding affinity for the ester-containing compound
(CHEMBL558910) compared to its amide analogue
(CHEMBL341640), consistent with weaker hydrogen bonding
of the amide to Asn404 (Fig. 3). It has been proposed by Haga
et al. that Asn4046.52 forms a stabilizing hydrogen bond with
the ester group of 3-quinuclidinyl-benzilate
(CHEMBL558910).24 However, Korczynska et al. reported that
switching from an ester to an amide had little effect on total
antagonist binding. Nevertheless, more broadly, they
observed that compounds lacking the ester R1-moiety lost
binding cooperativity.29 The discrepancy with our results,
which show a potency decrease of more than one order of
magnitude upon ester-to-secondary amide substitution, can
be explained by differences in compound coverage and
experimental readouts: the triazolo-quinazoline analogs
studied by Korczynska et al. were not part of the ChEMBL
dataset analyzed here, and they reported allosteric EC50
values, whereas the observed potency decrease in our study
refers specifically to inhibitory activity measured by IC50 and
Ki values.

Similarly, Barlow et al. showed that replacing the ester
with an amide in a series of diphenylacetic acid derivatives
reduced affinity for muscarine-sensitive acetylcholine
receptors in the guinea-pig ileum by 40- to 100-fold. With
similar series of phenylacetic acid derivatives, the reduction
had been only 2- to 4-fold. They suggested that the onium
moiety bound the receptor in a similar manner in both esters
and their corresponding amides, and that the difference in
affinity primarily arose from reduced contributions of the
phenyl groups in amides. According to their interpretation,
this diminished binding may have resulted from the
increased stiffness of the amide bond, which restricted the
optimal positioning of the phenyl rings. This effect was more
pronounced, in their analysis, in compounds that included
two phenyl groups than in those with only one.30

At ADORA2A, replacing a phenyl group with a cyclohexyl
moiety consistently reduced binding affinity by approximately
one order of magnitude across 17 compound pairs. Structural
studies indicate that the role of aromatic interactions at this
site depends on the ligand binding mode. Jaakola et al.
showed that the phenyl ring of the antagonist ZM241385
primarily forms hydrophobic interactions with Leu2677.32

and Met2707.35, suggesting that aromaticity may be less
critical in this region.31 Supporting this, a ZM41385

Fig. 3 Docking poses of the ester (CHEMBL558910, yellow carbon
atoms) and its corresponding amide (CHEMBL341640, purple carbon
atoms) in CHRM2 (PDB ID: 3UON),24 generated using Maestro
(Schrödinger Release 2022-4). Key residues involved in binding are
shown with their interactions color-coded as follows: hydrogen bonds
in yellow, salt bridges in pink, π–π stacking in turquoise, and π-cation
interactions in green.
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derivative (LUF5477) with a cycloalkyl instead of a
phenylmethylene group maintained high affinity,
highlighting substituent flexibility in solvent-exposed-
hydrophobic regions of the binding pocket.31–33 In contrast,
co-crystal structures of other ADORA2A antagonists reveal key
aromatic interactions involving the phenyl ring, such as π–π

stacking with His2506.52 (T-shaped) and Trp2466.48

(stacked).34 Additionally, some ligands access an adjacent
binding pocket stabilized by conformational changes in
aromatic residues like Tyr91.35 and Tyr2717.36.33 Substituting
aromatic groups, such as methoxyphenyl, with aliphatic rings
(e.g. cyclopropyl) disrupts these interactions and pocket
engagements, often resulting in potency loss.31,33,35 These
observations indicate that although some regions tolerate
cycloalkyl groups, the variable position and orientation of the
ADORA2A binding pocket can disrupt essential aromatic
contacts upon phenyl-to-cyclohexyl substitution, resulting in
pronounced, context-dependent losses of potency.31

In contrast to ADORA2A, where 17 compound pairs
showed a significant potency shift upon substituting a phenyl
with a cyclohexyl group, the same modification resulted in
only a small change in potency in 11 pairs at the ADORA1
receptor. This observation is consistent with previous
structural studies. Cheng et al. and Glukhova et al. identified
a key structural variation at residue 2707.35: ADORA1 contains
a threonine that allows access to a hydrophobic pocket,
whereas the bulkier methionine in ADORA2A blocks it. This
single residue variation functions as a “gatekeeper” and is
thought to contribute to ligand selectivity between the
subtypes.36,37 As a result, the hydrophobic pocket
accommodating the cyclohexane moiety, observed in
compounds like DU172 and other C-8 substituted ADORA1-
selective antagonists, is accessible in ADORA1 but occluded
in ADORA2A, limiting interactions with other key residues
such as Met1775.35, Leu2536.54 and Thr2576.57.36,38,39

Another notable substitution involving ADORA2A was the
replacement of a phenyl ring with a furanyl moiety, which
resulted in an average increase in pChEMBL of approximately
0.6 across 88 compound pairs (Table 2). This observation
suggests a potential potency increase through the furanyl
moiety. Bolteau et al. reported an alternative binding mode
in which the aromatic furanyl ring, positioned at the C4 of
their compound, is oriented toward the bottom of the
binding pocket. This configuration allows the oxygen atom of
the furan ring to form a hydrogen bond with Asn253, thereby
strengthening the interaction.35,40

Glukhova et al. showed that in their ADORA1 model, the
residue Asn2546.55 (equivalent to Asn2536.55 in ADORA2A)
interacts with the 6-oxy and N7 atoms of the xanthine-based
ligand DU172, whereas in ADORA2A, the corresponding
Asn2536.55 forms a hydrogen bond with the oxygen of the
furan ring in ZM241385. This difference in hydrogen bonding
pattern repositions DU172 deeper in the ADORA1 orthosteric
site and is further stabilized by an interaction with Tyr121.35,
as well as multiple hydrophobic interactions.36 Therefore, a
different ligand orientation within the ADORA1 binding

pocket likely contributes to the smaller effect of furanyl
substitution, as this pocket does not support the same
interactions as ADORA2A, consistent with the modest average
pChEMBL difference of 0.14 observed for the corresponding
66 compound pairs.

Substituting a phenyl with a furanyl moiety led to
increased potency at ADORA2A, while the reversed
substitution led to a decrease. This may mitigate ADORA2A-
mediated side effects such as elevated blood pressure,
increased heart rate, platelet aggregation, and aggression as
reported by Lynch et al.41 This effect is relevant given the
widespread expression of ADORA2A in the striatum, immune
cells, spleen, thymus, blood platelets, heart, lung, and blood
vessels, where it regulates inflammation, vascular tone, and
neurotransmission.42–46 Importantly, this replacement
preserves antagonistic activity at ADORA1, enabling diuretic
effects useful in the treatment of fluid-retention disorders
including congestive heart failure.42,47 In contrast, ADORA2A,
when considered the intended target, benefits from enhanced
antagonism upon replacement of a phenyl with a furanyl
group. In the context of Parkinson's disease, ADORA2A
antagonists slow down dopaminergic neurodegeneration,
and demonstrate antidepressant properties.47–49 Replacing a
phenyl with a cyclohexyl group similarly reduced activity at
ADORA2A while retaining activity at ADORA1.

Trends in potency shifts across sets of bioisosteric
replacements were analyzed using p-values to assess
statistical significance. To support confident decision-
making, four additional metrics were calculated. The assay
context consistency ratio reflects how often replacements
were tested under the same BioAssay Ontology (BAO) label,
which organizes and standardizes high-throughput (HTS)
assay data to improve comparability and interpretation.50

The salt form consistency ratio shows how often the same
salt form or parent compound (non-salt) was used within the
bioisosteric compound pairs, providing a sense of
formulation-related variability. While salt forms do not
typically alter the intrinsic potency at the molecular target,
they can influence solubility, stability, or bioavailability.51–53

The standard type consistency ratio captures the proportion
of replacements reported using the same activity type (e.g.,
IC50 vs. IC50), ensuring comparability of potency values. This
is essential as IC50 and Ki may not be directly comparable
without accounting for assay conditions and inhibition
mechanisms.54 Notably, combining IC50 and Ki data from
multiple sources can introduce significant noise, as
demonstrated by Landrum and Riniker.55 To address this,
the document consistency ratio captures how often data
points for bioisosteric replacement pairs originate from the
same publication. This metric helps distinguish between
inter-assay variability, differences arising from experiments
conducted under varying conditions in different laboratories,
and more systematic effects. In contrast, when potency
changes are mainly reported from a single publication or
laboratory, intralaboratory variability or lab-specific biases
may be sources of uncertainty.56 To assess such variability, it
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is useful to examine how consistently these effects are
reported across studies. A higher number of unique
documents supporting a given replacement may increase
confidence in the observation and improve the
generalizability of these findings, while also increasing inter-
assay variability. Together, the four described metrics provide
critical context on the consistency, comparability, and scope
of the underlying data, enabling decision-makers to better
judge the reliability of observed potency shifts.

3 Conclusion

We developed a semi-automated KNIME workflow to analyze
frequently used classical and non-classical literature-curated
bioisosteric replacements across a panel of 88 off-targets. By
identifying subtle yet significant potency shifts, we uncovered
58 cases in which bioisosteric replacement pairs led to either
increased or decreased off-target potency (ΔpChEMBL ≥ 0.5).
Additional cases showed significant potency changes at an
off-target without corresponding shifts at another known
target. These findings provide a valuable resource for guiding
safer bioisosteric design by highlighting sometimes nuanced
off-target effects that might otherwise be overlooked. To
support robust decision-making, we provide four metrics –

assay context, standard type, salt form, and document
consistency ratios between bioisosteric compound pairs,
along with the number of unique source documents.
Limitations of this study include the limited number of
compound pairs available, which restricts the statistical
power of the analysis. Moreover, only ChEMBL was used as a
data source, and validation with additional databases would
strengthen the findings. Furthermore, it remains uncertain
whether the annotated off-target interactions truly represent
off-targets for each compound. Finally, the observed trends
in potency do not necessarily translate into differences in
absorption, distribution, metabolism, excretion, or toxicity
(ADMET) profiles, nor can it be concluded that they would
lead to reduction in side effects, so the clinical relevance of
the findings remains uncertain. Future work could explore its
application to larger compound collections and integration
with pharmacokinetic and safety profiling to further support
medicinal chemistry efforts. In addition, coupling the
workflow with data imputation and regression modeling
approaches could help to fill in missing bioactivity values
and better capture quantitative potency differences, thereby
amplifying the effect size and reliability of reported changes
between bioisosteric pairs. Ultimately, these computational
extensions should be complemented by prospective
experimental validation, providing direct evidence of whether
the observed increases or decreases in potency translate into
meaningful differences in biological systems and, ultimately,
clinical outcomes. Beyond this, our analysis provides
medicinal chemists with guidance in early drug discovery,
enabling rapid analysis of their datasets to prioritize
compound modifications to improve potency and reduce off-
target effects.

4 Materials and methods
4.1 KNIME

KNIME (Konstanz Information Miner) Analytics Platform
(version 4.7.7) was used for data processing, conducting
bioisosteric replacements, and analysis. This open-source
software provides a robust environment for data science
through an intuitive, node-based interface.9

4.2 Data collection

Bioactivity data were retrieved from ChEMBL version 34.57

The dataset was filtered to include only bioactivity
measurements for human targets with a standard relation of
‘=’. To ensure a precise distinction between different modes
of action and their potential implications for side effects and
toxicity, either inhibitory data (IC50, Ki) or activation data
(EC50) were selected. For compounds with multiple
pChEMBL entries for a given target, the maximum pChEMBL
value was selected within the defined mode of action to
reflect the strongest reported potency. This choice may bias
results toward higher apparent potency, while using the
mean or median could underestimate high-potency
interactions or be influenced by outliers. The maximum was
chosen to ensure that the strongest observed potency, which
is the most relevant for assessing potential off-target effects,
is captured. Tripeptides and larger peptides were excluded,
and only compounds with molecular weight equal or below
600 Da were retained to align with drug-like chemical space.
Salts and charged forms were included as reported in
ChEMBL. Compounds labeled with stable or radioactive
isotopes such as deuterium (2H), tritium (3H), or carbon-11
(11C) were excluded from the analysis.

4.3 Functional group identification

Compounds containing predefined functional groups were
identified using the RDKit58 substructure filter node in
KNIME. SMARTS patterns were used to filter acyclic esters,
secondary amides, carboxylic acids, as well as phenyl and
phenylene groups as shown in Table 4. Cyclic esters
(lactones) and amides (lactams) were excluded from the
analysis. The list of functional groups can be extended as
required.

Table 4 Substructures and their corresponding query SMARTS patterns
used for substructure filtering

Substructure Query SMARTS for substructure filter

Ester [c,C:0]–[C;!r](O)–O–[c,C:1]
Secondary
amide

[c,C:0]–[C;!r](O)–[NH;!r]–[c,C!$(C(O))]

Carboxylic acid [*:0]–C(O)–[OH]
Phenyl c1(:[cH1]:[cH1]:[cH1]:[cH1]:[cH1]:1)[*:1]
Ortho-Phenylene [c;R1]1([*:1]):[c;R1]([*:0]):[cH1;R1]:[cH1;R1]:[cH1;

R1]:[cH1;R1]:1
Meta-Phenylene c1(:[cH1]:c(:[cH1]:[cH1]:[cH1]:1)–[*:1])–[*:0]
Para-Phenylene c1(:[cH1]:[cH1]:c(:[cH1]:[cH1]:1)–[*:1])–[*:0]
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4.4 Safety-relevant off-target panel

Only compounds containing the predefined substructures
and reported bioactivity against at least one of the 88 human
off-targets from Brennan et al. were retained for generating
bioisosteric replacements. This curated panel includes
pharmacologically important proteins frequently associated
with adverse drug reactions, such as GPCRs, ion channels,
and nuclear receptors.21 The list of targets can be adapted as
needed to suit different toxicological profiling objectives.

4.5 Defining SMARTS reaction patterns (SMIRKS)

Bioisosteric replacements were generated using the RDKit
one component reaction node in KNIME. For this purpose,
eight SMIRKS patterns were defined for esters, five for
secondary amides, seven for carboxylic acids, six for phenyl
and 17 for phenylene groups: seven, six, and four for ortho-,
meta-, and para-phenylene groups, respectively, as depicted
in Fig. 4. SMIRKS (SMILES reaction extensions) encode
generic reaction transformations using a text-based
notation.59 These patterns were curated from three sources:
the Cambridge MedChem Consulting bioisostere database,60

Jayashree et al.,3 and Stepan et al.61 To identify and correct
false replacements, molecular weight differences between
original and substituted compounds were calculated using
RDKit descriptor nodes, as the expected weight difference for
a given replacement type (e.g. ester-to-secondary-amide) is
fixed between each original and replacement compound. The

list of defined SMIRKS can be extended and adapted
depending on the specific research focus.

4.6 Compound identifier retrieval and off-target activity
mapping

Following bioisosteric replacements, the chemical structures
of the new compounds were converted to InChI keys using
the RDKit to InChI node. These InChI keys were mapped to
ChEMBL IDs and subsequently linked to bioactivity data
specifically reported for the panel of 88 off-target proteins
(Fig. 4). If InChI keys were incorrectly generated, the
corresponding InChI codes were used instead. Compound
pairs consisting of an original molecule (e.g., ester) and its
bioisosteric replacement (e.g., secondary amide) were
identified based on the availability of reported bioactivity
values for both compounds against the same off-target.
Compound pairs were discarded when InChi key or InChi
code information was missing for either the original or the
replacement in ChEMBL. If both the parent (non-salt) and
salt form pairs were present for a given off-target replacement
combination, only the non-salt form pair was retained. All
compound pairs representing the same type of bioisosteric
replacement were then grouped by off-target, for example, all
ester-to-secondary-amide pairs were grouped for CHRM2.

4.7 Statistical analysis

For each compound pair within the same replacement type
and off-target protein, the difference in pChEMBL values

Fig. 4 Workflow overview illustrating substructure retrieval, bioactivity annotation from ChEMBL, application of predefined bioisosteric
replacement SMIRKS, and analysis of ΔpChEMBL values per off-target and per replacement to assess increases and decreases in off-target
potency.
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between the original and replacement compound was
separately calculated. Afterwards, these pairwise differences
were averaged to obtain a mean shift in potency for each
bioisosteric replacement type and off-target protein. A
Shapiro–Wilk test assessed the normality of the distribution
of these differences. If normality was confirmed, a paired
t-test was applied; otherwise, the non-parametric Wilcoxon
signed-rank test was used. Only combinations with more
than 10 compound pairs, a statistically significant result ( p <

0.1), and mean pChEMBL shifts larger than 0.5 were
considered for further interpretation. A significance
threshold of p < 0.1 was chosen to allow detection of subtle
potency shifts in small compound pair sets. This relatively
lenient threshold provides sensitivity for exploratory analysis
while maintaining a minimum standard for statistical
confidence. For more stringent evaluation, a stricter
threshold of p < 0.05 was also applied.

4.8 Decision-making ratios

To ensure confident interpretation of bioactivity changes
following bioisosteric replacements, four additional ratios
were calculated per replacement type-off-target combination.
First, the assay context consistency ratio assessed whether
both the original and replacement compounds were tested
under the same BioAssay Ontology (BAO) label (e.g., cell-
based vs. cell-based), which reflects the experimental format.
Second, the standard type consistency ratio evaluated
whether compounds were measured using the same
bioactivity endpoint (e.g., IC50 vs. IC50). Third, the salt form
consistency ratio determined if both compounds were either
in salt form or non-salt form. Fourth, the document
consistency ratio was calculated, indicating the proportion of
bioisosteric replacement pairs whose bioactivity values
originated from the same document. Additionally, the total
number of unique documents per replacement and off-target
protein was determined. All documents reporting either the
original or replacement compound with a pChEMBL value
were considered when counting unique documents per
replacement type-off-target combination. Importantly, to
isolate the effect of the structural replacement itself, only
compound pairs with matching stereochemistry at all chiral
centers were included in the analysis.

4.9 Extended evaluation of potency shifts at an off-target
while preserving activity at a known target

To evaluate changes in off-target potency associated with
bioisosteric replacements, we analyzed shifts in pChEMBL
values between sets of compound-bioisostere pairs. There are
increases and decreases in off-target potency associated with
bioisosteric replacements. To further support this analysis,
the KNIME workflow was extended to assess the number of
compound pairs within each replacement-off-target
combination that showed increased or decreased activity at
an off-target but maintained potency at a known target.

4.10 Docking into M2 muscarinic acetylcholine receptor

To support the analysis of a significant off-target potency
decrease involving the substitution of an ester with a
secondary amide at CHRM2, a structure-based analysis was
conducted. The docking protocol involved extracting the
ligand from the crystal structure of CHRM2 (PDB ID:
3UON),24 duplicating it, and modifying one copy by replacing
the ester group with a secondary amide. Both ligands were
prepared using LigPrep (Schrödinger Release 2022-4: LigPrep,
Schrödinger, LLC, New York, NY, 2022.) with default settings,
except for the ionization, where the pH was set to 7.4 ± 0.4.
Chirality was determined from the 3D structure. The receptor
(PDB ID: 3UON) was prepared using the protein preparation
(Schrödinger Release 2022-4: protein preparation workflow;
Epik, Schrödinger, LLC New York, NY, 2022; Impact,
Schrödinger, LLC, New York, NY; Prime, Schrödinger, LLC,
New York, NY, 2022.) with default settings. The receptor grid
was centered around the co-crystallized ligand and the grid
size was set to “Dock ligands similar in size to the workspace
ligand”. Docking was performed in Glide62,63 (Schrödinger
Release 2022-4: Glide, Schrödinger, LLC New York, NY, 2022.)
first in standard precision (SP) and subsequently in extra
precision (XP) mode, both with default parameters. In
contrast to SP, XP utilizes a different scoring function and
conformational sampling protocol, which is computationally
more expensive and assigns higher penalties on poor
conformational complementarity between the ligand and the
protein.64 The OPLS4 (ref. 65) forcefield was used in all
preparation and docking steps.
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