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Abstract

The fenarimol analogue EPL-BS1246 was previously discovered to be potent against 

Madurella mycetomatis, the causative agent of the neglected tropical disease eumycetoma. 

Further evaluation of a small set of fenarimol analogues in vivo revealed a correlation between 

efficacy and the lipophilicity (logD) of the analogues. To explore both this correlation and the 

series structure-activity relationship (SAR), we have evaluated a total of 185 fenarimol 

analogues derived from five different daughter chemotypes. Potent (MIC50 < 9 μM) in vitro 

activity was found for 22 analogues, five of which gave promising results in an in vivo larval 

survival assay. Again, a trend towards prolonged larval survival (better in vivo activity) was 

noted in analogues with logD values < 2.5. Insights into the SAR could be gleaned that 

suggested optimal substituents for the rings forming the fenarimol core.
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Introduction

Mycetoma is a neglected tropical disease characterized by tumorous swellings of the 

subcutaneous tissues.1 This disease can be caused by more than 80 different agents of either 

bacterial or fungal origin, the most common of which is the fungus Madurella mycetomatis.2 

Characteristic of mycetoma is that the causative agents organize themselves in the form of 

grains which protect them from stress, host responses and antimicrobials.3-5 Bacterial 

mycetoma is treated with a combination of antibiotics and often with a good cure rate. 

However, to treat fungal mycetoma, a combination of prolonged medication and surgery is 

needed. Typically, this therapy consists of 6 months of 400 mg itraconazole daily followed by 

surgery and another 6 to 12 months of 400 mg itraconazole daily.6 Surgical treatments range 

from excision of the lesion to amputation of the infected limb.7 Even after prolonged treatment, 

the causative agent often is viable at the time of surgery and recurrences are common.8, 9 Other 

azoles have been used to treat fungal mycetoma with different degrees of success, but there are 

concerns over the implementation of the newer generation azoles due to low accessibility and 

affordability in endemic regions.10 Therefore, there is an urgent need to find an effective, safe 

and affordable drug to treat eumycetoma (hereafter, just “mycetoma”).

For neglected tropical diseases that lack prioritization and support in drug discovery programs, 

drug repurposing or repositioning studies have proven to be quite effective, due to a lowered 

risk and the reduced costs in discovery and development. Open source drug-repurposing 

studies were previously performed to discover new compounds with activity against M. 

mycetomatis.1, 11, 12 In those studies, a total of 1200 compounds from the Pathogen Box, Stasis 

Box and Pandemic Response Box obtained from Medicines for Malaria Venture (MMV) were 

first tested in vitro.1, 11, 12 Promising compounds from in vitro assessment were then tested in 

vivo for their efficacy in our M. mycetomatis Galleria mellonella larval model.1, 11, 12 Fenarimol 

analogue MMV698244, also known as EPL-BS1246, was amongst the most potent hits 

identified in vitro, with an IC50 of 1.35 µM. The molecule was previously identified as a potent 

inhibitor of the Chagas disease-causing Trypanosoma cruzi and it shows druglike properties 

suitable for preclinical development.13-15 Fenarimol is a fungicide that is commonly used to 
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control powdery mildew. It acts as a potent inhibitor of ergosterol biosynthesis by interfering 

with the oxidative demethylation of lanosterol.16, 17

EPL-BS1246’s potency against M. mycetomatis led to the evaluation of another 35 fenarimol 

analogues, chosen from a library of 800 molecules originally developed to identify new drugs 

for Chagas disease;13-15 these were tested in vitro and in vivo for activity and efficacy against 

M. mycetomatis.1 Out of five fenarimol analogues tested in the in vivo G. mellonella model, 

only three were able to prolong larval survival. A correlation was observed between survival 

and the calculated lipophilicity (logD value at pH7.4) of the fenarimol analogues and other 

compounds previously evaluated in this model.

Such a correlation would be useful for the future design of compounds that should exhibit better 

in vivo performance, so to explore this further we have utilized the Open Source Mycetoma 

project (MycetOS, https://github.com/OpenSourceMycetoma) to pinpoint the physiochemical 

properties needed for activity against M. mycetomatis. Additional analogues were designed 

and synthesized based on the structure and logD of previously tested fenarimol analogues that 

showed potency. Further analogues were obtained from the fenarimol library previously 

exploited in the original screening campaign.1 We report here the in vitro activity and in vivo 

efficacy of all the newly-obtained compounds. In line with the open source rules of MycetOS, 

all data and ideas have been shared publicly as the research was proceeding and anyone could 

participate.18 The project remains live online for future contributors.

Compound Numbering

In this paper, the numbering of the compounds retains the numbering used in the online Open 

Source Mycetoma (MycetOS) project, in order to maintain the connection between this paper 

and the live research project. Molecules in MycetOS are numbered according to a convention 

described online (https://github.com/opensourceantibiotics/OSA_Tech_Ops/wiki/Molecule-

Numbering-Convention). In brief, a compound’s identifier takes the form of MYOS_[integer 

identifier including prefix zeroes]_[XX]-[YY] where XX refers to the salt form and YY refers 

to the batch. Codes used in this paper are the simplest integer identifier. For example, 

MYOS_00012_00_01 becomes 12.
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Results and discussion

In total, 185 fenarimol analogues were evaluated in this, and our previous, study. The 

compounds included 108 fenarimol analogues obtained from the Epichem library (of which 35 

were screened in our previous study1 and 73 that were screened during this study) and a further 

77 analogues that were synthesized for this study. To determine their potential to inhibit M. 

mycetomatis growth in vitro, these analogues were tested at concentrations of 100 μM and 25 

μM. Of those tested, 76 analogues were able to inhibit metabolic activity of M. mycetomatis 

at 100 μM and 41 at 25 μM (Supplementary Information, Table S1). To determine at which 

concentration 50% of the M. mycetomatis cells were inhibited, the IC50 values were determined 

for these 41 analogues against M. mycetomatis isolate mm55. Those compounds with values 

of 9 μM or lower were considered potent in vitro inhibitors and were further evaluated on a 

panel of nine other M. mycetomatis isolates with a different genetic background or 

geographical origin. To determine the concentrations at which 50% of these isolates were 

completely inhibited in growth, the MIC50 values were determined and these ranged from 0.25 

μM to >16 μM with a median of 4 μM (Table 1). In total, 22 analogues exhibited potent in 

vitro activity with MIC50 values < 9 μM; 9 and 12 were the most potent, both with a MIC50 of 

0.25 μM. 

To determine if there was an association between certain physiochemical properties and the 

analogues’ performance in vitro, their molecular weight (Figure 1A), logD (at pH 7.4)(Figure 

1B and 1E), flexibility (Figure 1C) and number of rotational bonds (Figure 1D) were compared 

to the resulting percentage growth in vitro. Analogues with a lower molecular weight were 

associated with lower growth percentages (i.e., more potent compounds) at 100 μM (Figure 

1E, Mann-Whitney, p=0.0023). Compounds with a logD value >2.5 (Figure 1F, Mann-

Whitney, p=0.0051) or <5 rotational bonds (Figure 1G, Mann-Whitney, p=0.0006) were 

associated with lower growth percentages at 100 μM.
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Figure 1: Correlation between Fungal Growth and Physicochemical Properties of the 

Molecules Tested. Percentage growth at 100 μM vs. molecular weight (panel A), log D at pH 

7.4 (panel B), the flexibility of the molecule (panel C) and the number of rotational bonds 

(panel D). Each black dot represents a different fenarimol. In panel E, the percentage growth 

is plotted for compounds with molecular weight of <400 Da versus compounds with a 

molecular weight of >400. A lower percentage growth is observed when fungi are exposed to 
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fenarimols with a lower molecular weight (Mann-Whitney, p=0.0023). In panel F, the 

percentage growth is plotted for compounds with a logD value <2.5 versus compounds with a 

logD value >2.5. At higher logD values a lower percentage growth is observed (Mann-

Whitney, p=0.0051). In panel G, the percentage growth is plotted for compounds with 5 or less 

rotational bonds versus compounds with 6 or more rotational bonds. A lower percentage 

growth is noted for compounds with 5 or fewer rotational bonds (Mann-Whitney, p = 0.0006).

In vivo efficacy

In total, 30 potent analogues (in vitro MIC50 values < 9 μM) were evaluated in the G. 

mellonella larvae model for their in vivo activity. In this model M. mycetomatis produces 

grains similar to those found in human mycetoma.19 Furthermore, this G. mellonella model 

could predict the therapeutic outcome of itraconazole and amphotericin B in a M. mycetomatis 

grain model in mice.20, 21 Of the 30 fenarimol analogues evaluated in this model, five had 

already been evaluated in a previous study1 and the data were used in subsequent analyses. The 

remaining 25 analogues were obtained, synthesized and evaluated in this study. None of the 

analogues displayed any toxicity at a concentration of 20 μM. In total, six of the analogues 

prolonged larvae survival, 23 had no significant effect and l increased the death rate (Figure 

2). The analogues that increased larvae survival were 1, 4, 8, 16, 167 and 310 (Log-rank, 

p=0.020, p<0.0001, p=0.044, p=0.0004, p<0.0001 and p=0.0024, respectively). We 

resynthesized 1 and confirmed that it does indeed significantly prolonged larval survival (Log-

Rank, p= 0.015) (Figure 2A). For 174, a trend towards shortened larval survival was noted 

(Log-Rank, p=0.07) (Figure 2E). 
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Figure 2: Survival of Infected Galleria mellonella Larvae Treated with the Fenarimol 

Analogues. Panel A display the results obtained in our previous study,1 while panels B, C, D, 

E, F and G each display molecules selected or synthesized during this study. In each panel, the 

dotted line represents healthy uninfected larvae treated with solvent. The black line represents 

M. mycetomatis infected larvae treated with distilled water. The colored lines represent M. 

mycetomatis infected larvae treated with the different compounds during the first three days of 

infection. Survival was compared to the infected control line (black line) with the Log-Rank 
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test. Compounds which significantly prolonged or decreased larval survival were indicated 

with an *. A single * represents a p-value between 0.01 and 0.05, ** p-value ≤ 0.01, *** p -

value ≤ 0.001.

Figure 3: Relationship Between Physiochemical Properties of the Analogues and their Efficacy 

in vivo. (Percentage larval survival at day 10) vs. Panel A: molecular weight, Panel B: logD, 

Panel C: flexibility, Panel D: number of rotational bonds. 
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Figure 4: Compound logD <2.5 Correlated with Higher Percentage Survival. In this graph the 

larval survival percentages were grouped according to their calculated logD. In the left column 

the obtained survival percentages for compounds with a logD <2.5 are plotted, in the right 

column the obtained survival percentages for compounds with a logD >2.5. Significance is 

determined using the Mann-Whitney U-test.

Dependency of Potency on Physicochemical Properties

When comparing different physiochemical properties of the analogues to their efficacy in vivo, 

it was discovered that lower logD values (<2.5) were correlated with higher survival 

percentages in the G. mellonella larvae (Mann-Whitney)(Figures 3 and 4). This suggests that 

compounds with a lower logD value are more likely to penetrate M. mycetomatis grains, inhibit 

growth and subsequently increase larval survival. Lipophilicity, here approximated by 

calculated logD, is a physiochemical parameter of a compound that affects solubility, 

membrane permeability, distribution and elimination of a compound or drug in the body. The 

higher logD value of a compound, the more lipophilic it is, the more likely they are to encounter 

off target binding to lipophilic pockets such as non-polar active sites of metabolic CYP 

enzymes.22, 23 The fact that in general more lipophilic compounds were able to inhibit the 

metabolic activity in M. mycetomatis hyphae in vitro, but less lipophilic compounds showed a 

trend to prolonged larval survival demonstrates that a balance of chemical properties is likely 

to be needed to penetrate the mycetoma grain and kill the pathogen. This will be an important 

criterion for future rounds of analogue design.
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Structure-activity Relationships

A previous study found the potent inhibition of M. mycetomatis by the fenarimol analogue 10 

and further screening of 35 other fenarimol analogues revealed four other potent leads (Figure 

5) showing diverse chemical groups that could contribute to potency.1 Analysis of activity for 

these 35 compounds did not produce conclusive SAR observations, which was attributed to the 

diversity of structures screened.1

Figure 5: The Best-performing Compounds in the Fenarimol Series (“Series 1”) Previously 

Identified 

The present study expanded on these preliminary findings by conducting an SAR analysis on 

196 Series 1 fenarimol analogues biologically evaluated in the Open Source Mycetoma project, 

and which were contributed from various sources (details of the contributions are available in 

Supplementary Information Table 1 and the online Master List of compounds (which is 

updated in real time).

The compounds were generalized into two scaffolds (S1 and S2, Figure 6). Scaffold S1 

consisted of three aromatic rings along with an additional functional group (Y) giving a 

quaternary carbon. Of the three rings, one (Ring 1) was typically pyridyl or pyridyl-like, one 

(Ring 2) was typically substituted with a halogen and one (Ring 3) featured a lower variety of 

substitution and may be aliphatic. The second scaffold, S2, featured similar groups for Rings 

1 and 2, but the third substituent, the tail, consisted of more saturated groups usually connected 

to the core, a tertiary carbon, via a nitrogen atom. Analogues were grouped into S1 or S2 and 

the analysis focussed on identifying matched pairs of analogues where single changes resulted 

in different potencies. The compounds analysed included changes that had previously been 

proposed,1 including modification of the pyridyl group (Ring 1), modification of the core (Y), 

N

Cl

N

O

N

CF3

10 (rac)
4 (S)

N

HO

CN Cl

N

HO

F CF3NC

N

N

FCl
N O
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12

variation of substitution patterns (Rings 2 and 3), variation of ring aromaticity, variation of the 

Ring 3 Tail and conformational restriction through ring-locking. Values for the in vitro and in 

vivo potencies for all compounds are provided in Supplementary Information Table 1 and in 

the online Master List24 for the Open Source Mycetoma Consortium. 

Figure 6: The Fenarimol Analogues may be Grouped as Two Scaffolds, S1 and S2.

Compounds have been evaluated for in vitro efficacy as judged by observed fungal growth at 

100 µM and 25 µM dosages, half-maximal inhibitory concentration (IC50), and minimum 

inhibitory concentration (MIC50). The observed fungal growth at 25 µM and MIC50 were 

selected to explore in vitro SAR trends as these were the threshold values determining whether 

an analogue would be selected for further evaluations. At 25 µM, a value of ≤20% observed 

fungal growth was defined as no observed growth (complete inhibition) and >20% was defined 

as observable growth (incomplete inhibition). All analogues which resulted in no observed 

growth at 25 µM were selected for further in vitro evaluation (IC50 and MIC50). Additionally, 

all analogues with MIC50
 ≤8.0 µM were selected for in vivo evaluation.

Of the examined analogues, using the above criteria, fifty completely inhibited fungal growth 

and 145 compounds did not inhibit fungal growth. Of the 61 analogues evaluated for MIC50, 

38 compounds had MIC50 values ≤8.0 µM and 23 compounds had MIC50 values >8.0 µM. To 

facilitate evaluation of the SAR, a traffic light visualization was implemented where green 

denoted compounds with “excellent potency” (≤20% growth at 25 µM and MIC50 ≤8.0 µM), 

amber denoted compounds with “moderate potency” (≤20% growth at 25 µM but MIC50 >8.0 

µM) and red denoted compounds with “poor potency” (>20% growth at 25 µM and MIC50 >8.0 
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µM). This classification returned 35 compounds with excellent potency, 12 compounds with 

moderate potency, and 145 compounds with poor potency. The following subsections explored 

the SAR of chemical space within the S1 and S2 scaffolds, including Ring 1, Core Y, Ring 2 

and Ring 3/Tail positions. 

Scaffold S1 In Vitro Results

SAR exploration of Ring 1 and Core Y

For Ring 1, the 3-pyridyl group (175) displayed better potency than the phenyl (163) or 5-

pyrimidyl (511) groups when Ring 2 was kept as 4-chlorophenyl, Ring 3 as 4-bromophenyl 

and the core as Y=OH (Figure 7, Ring 1); moving the bromine substituent to the 2– (rather 

than the 4–) position reclaimed potency for the pyrimidine substituent (510). Varying the 

Core’s quaternary centre (keeping ring 1 as 3-pyridyl, Ring 2 as 4-chlorophenyl and Ring 3 as 

2-bromophenyl) revealed that diverse functional groups able to undergo hydrogen bonding (12 

(Y=OH), 17 (Y=NH2), 9 (Y=OMe)) produced better activity than the analogue featuring only 

a hydrogen atom at this position (27). With these results in mind, variations in Ring 2 and Ring 

3 were explored while keeping Ring 1 as 3-pyridyl and the Core as Y=OH.
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Figure 7: Scaffold S1 Variants and the Corresponding in vitro Inhibition of M. mycetomatis 

Growth. High (green) is defined as complete inhibition (≤20% fungal growth) at 25 μM and 

MIC ≤ 8.0, moderate (amber) as complete inhibition at 25 μM and MIC > 8.0, low (red) as 

incomplete inhibition (>20% fungal growth) at 25 μM and MIC > 8.0. For matched pairs from 

Rings 2 and 3, Ring 1 is kept constant as 3-pyridyl and the Core is kept constant as Y=OH. 

Parentheses denote the substitution patterns that were unchanged when a single SAR change 

was explored.

SAR exploration of Ring 2

Various substituents at the 2-position on Ring 2 (8, 2-CN; 12, 2-Br; 2, 2-Cl; Figure 7, Ring 2) 

gave excellent activity while 4-monosubstitutions of the same groups reduced potency (23, 4-

CN; 175, 4-Br) (Ring 3 was kept constant as 4-chlorophenyl). 2-Fluorination (455, 2-F) or 

where this fluorine is combined with other substituents in the 4-position on Ring 2 (3, 2-F, 4-

NC, 5, 2-F, 4-Br) led to better potency than those compounds lacking the 2-F substituent (19, 
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4-NC, 21, 4-Br). Overall, the SAR for Ring 2 suggests strong potency for 2- or 2,4-substituted 

phenyl groups at this position, while showing lower potency for mono 4-substitution. The 

effect of 3-substitution was not explored in this work but could be addressed in future.

SAR exploration of Ring 3

When Ring 2 was 4-bromophenyl, a phenyl group at Ring 3 gave excellent activity (166), with 

potency maintained when the aromatic group was changed to alicylic (130, 451) or aliphatic 

(131) groups (Figure 7, Ring 3). The potency was lost when Ring 3 was changed from phenyl 

to benzyl (166 vs. 170). 4-Substitution patterns on Ring 3 also resulted in moderate (175, 4-Cl) 

to complete (21, 4-CF3) loss of activity. This result, combined with SAR on Ring 2, suggests 

poor tolerance of 4-trifluoromethyl (4-CF3) phenyl group, as well as the combination of 4-

substituted phenyls on both Rings 2 and 3 being deleterious.

When Ring 2 was an unsubstituted phenyl group, a phenyl group on Ring 3 still resulted in 

excellent potency while a change to benzyl again caused a complete loss of activity (168 vs. 

172). This time, changes from aromatic Ring 3 to aliphatic groups were not tolerated (168 vs. 

133, 169). When Ring 2 was 4-chlorophenyl, a thiophenyl group at Ring 3 (14) showed 

superior potency while other heteroaromatic groups were not tolerated (42, 36, 141, 142).

Refinement of SAR for Rings 2 and 3

Since some of the early SAR data were acquired with suboptimal substituents (e.g., Ring 3, 4-

Br), further analogues were synthesized to clarify the trends (Figure 8) clearly showing the 

preference for Ring 2 2-substitution and for the direct attachment of non-polar rings to the core 

as Ring 3. The 2-fluoro 4-chloro substitution on Ring 2 yielded the most potent MIC50 values 

for the phenyl (455, MIC50=0.5 µM), cyclohexyl (449, MIC50=0.3 µM) and cyclopentyl (452, 

MIC50=0.1 µM) Ring 3 variants. Locking of Ring 2 and Ring 3 resulted in inferior potency 

(168 vs. 132, Figure 8).
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16

Figure 8. Focussed Matched Pairs of Ring 2 and Ring 3 Variations. Ring 1 was maintained as 

3-pyridyl and Core Y was maintained as hydroxyl. The numbers shown are compound codes 

(Bold; coloration as for Figure 7) and MIC50 values (nt = not tested). Also shown are 

compounds 168 and 132 indicating that ring-locking caused loss of in vitro activity. n/a = 

compound not made.
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Scaffold S2 In Vitro Results

Compounds represented by Scaffold 2 feature similar groups to Scaffold S1 for Rings 1 and 2, 

but the third substituent consists of more saturated groups connected to the central carbon via 

a nitrogen atom (Figure 9). Structures were explored with variation in the third substituent 

while keeping groups at Ring 1 as 3-pyridyl and Ring 2 as 4-chloro-2-fluorophenyl, both of 

which demonstrated superior activity for Scaffold 1. (The full set of screened compounds is 

shown in Supplementary Information Table 1 and in the online Master List 24.)

Scaffold 2 – Ring 3 Piperazyl SAR

Keeping the ethyl-carbamate group constant (1), the piperazyl group showed excellent potency 

which was lost upon ring mono- (29, 30) and di- (28) methylation (Figure 9). Compound 29 

(SS, RR enantiomers) was more potent than 30 (SR, RS), revealing a differential impact of 

stereoisomeric forms on the activity. When the un-methylated piperazyl group was kept 

constant, alkyl R groups on the carbamate had superior activity (15, methyl; 1, ethyl, 11, tert-

butyl) to aromatic groups such as phenyl (71) or benzyl (31). Removing the ester moiety of the 

carbamate caused a complete loss of activity (189, Figure 9, amine box) and indeed all other 

changes to the amine–R group led to inferior activity, including polar aliphatic (140, 33) and 

aromatic groups (6, phenyl; 25, 197 substituted phenyl; and heteroaromatic 34, 35) with the 

exception of the 3-pyridyl group (196). A smaller subset of compounds that replaced the 

carbamate with amide or sulfonamide linkers also yielded medium to poor activity.
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Figure 9: Scaffold S2 Piperazyl Variants and the Corresponding in vitro Inhibition of M. 

mycetomatis Growth. Coloration used is as for Figure 7.

Scaffold 2 – Ring 3 Piperidyl SAR

At the third substituent position of Scaffold S2, changing the piperazyl (189) to a piperidyl 

group (16) maintained excellent activity (Figure 10). Further expanding the piperidyl ring to a 

tetrahydroisoquinoline (136) or indolinyl (321) moiety maintained potency but the smaller 

pyrrolidyl ring (191) and the larger bridged bicyclic substituent (149) yielded lower activity. 

Variants of 4-substitution on the piperidyl ring generally resulted in inferior activity, such as 

cyano- (192), difluoro (137), hydroxy (151, 195) and carbonyl (139); 4-methoxy (150) was an 

outlier, with good potency. Changing the 4-carbon to heteroatoms such as nitrogen (189) or 

oxygen (24) was not tolerated. The “open ring” equivalents of 136 and 321 (i.e., 148 and 145) 

maintained potency but several simple variants of these (e.g., anilines 144, 204) did not; 

benzylamines 147 and 310 were potent, while the orthologous 4-methoxy substituted ether 311 
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was not. Conversion of the carbamate 1 into the ester (203) reduced potency. Acyclic aliphatic 

amine substituents (205, 206) were not tolerated.

Figure 10: Scaffold S2 Piperidyl Variants and the Corresponding in vitro Inhibition of M. 

mycetomatis Growth. Coloration used is as for Figure 7.

SAR exploration of Ring 2 extension

A small set of variants of the 4-chloro substituent on Ring 2 was explored (Figure 11). While 

the 4-chloro variant (1) had excellent potency, the three variations (morpholinyl (517), 

piperidyl (519) and tert-butyl piperazine-1-carboxylate (520)) caused loss of activity.
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Figure 11: Scaffold S2 Ring 2 Extension and the Corresponding in vitro Inhibition of M. 

mycetomatis Growth. Coloration used is as for Figure 7.

Scaffold S1 In Vivo Results

Compounds that yielded excellent in vitro activity (complete inhibition of in vitro fungal 

growth at 25 μM, with a minimum inhibitory concentration less than 8.0) were progressed to 

in vivo evaluation in the G. mellonella larvae model described above. All such analogues 

contained the 3-pyridyl group at Ring 1 (Figure 12). At the Core, the hydroxy group (12, 

Y=OH) had the highest activity, which was slightly reduced when changed to an amino group 

(17, Y=NH2) and further reduced when changed to a methoxy group (9, Y=OMe) (Ring 2 fixed 

as 2-bromophenyl, Ring 3 as 4-cholorophenyl). The hydroxy group at the Core was maintained 

when exploring the remaining SAR for this section.

For Ring 2, the 2-cyanophenyl group (8) showed superior activity to 2-bromo or 2-

chlorophenyl groups (12, 2), when Ring 3 had a 4-chloro substitution. Disubstituted 4-chloro-

2-fluorophenyl group (167) was more potent than 4-bromo-2-fluorophenyl group (174) when 

Ring 3 was an unsubstituted phenyl group. Compound 455 was not tested in vivo because the 

in vitro results showed an undesirable increase in fungal growth at higher concentration. When 

Ring 3 was changed to 4-trifluoromethylphenyl, the disubstituted 4-cyano-2-fluorophenyl 

group (3) at Ring 2 had a slightly higher activity than 4-bromo-2-fluorophenyl (5) and losing 

4-substition here did not reduce activity any further (7).
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For Ring 3, the unsubstituted phenyl group (166) showed inferior activity to a cyclohexyl group 

(130) and a straight-chain butyl group (131), when Ring 2 was a 4-bromophenyl. Compound 

131 showed the strongest activity amongst the three compounds. Removing all substitutions 

on phenyl rings 2 and 3 caused a complete loss of activity (168 vs. 166). When Ring 2 became 

4-chlorophenyl, having a thiophene on Ring 3 (14) did not yield superior activity.

Figure 12: Scaffold S1 in vivo Activity, Showing Larval Survival Rate (%) at Day 10. 

#Compound 455 showed undesirable increased in vitro fungal at higher dosage and was 

excluded from in vivo screening. Parentheses denote the substitution patterns that were 

unchanged when a single SAR change was explored. Compounds leading to survival rates 

>20% are shown in green, 10-20% amber and <10% in red.

Scaffold S2 In Vivo Results

For Scaffold S2 with a piperazyl moiety at Ring 3, the carbamate R-group with highest activity 

was an ethyl group (1), with activity reduced when the R-group became shorter (15, R=methyl) 

or more bulky (11, R=tert-butyl) (Figure 13, top box). The plain piperidyl moiety at Ring 3 had 

comparable activity to compound 1 which was reduced when there was an attached aromatic 

ring (136, tetrahydroisoquinoline); the open ring analogue (310) performed reasonably well, 
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while similar variants (147, 148) without a hydroxy group had significantly reduced in vivo 

activity. The best activities observed are comparable to the best previously seen for compound 

4 (Figure 5, 19%), which was more potent than the corresponding racemate (7%), implying 

that it may be productive to evaluate the activities of enantioenriched 1 and 16.

Figure 13: Scaffold S2 in vivo Activity, Showing Larval Survival Rate (%) at Day 10.

Summary of key SAR findings and gaps

The SAR analysis showed high in vitro potency for 3-pyridyl group at the Ring 1 position 

(Scaffolds S1 and S2) and 2,4-disubstituted phenyl group at Ring 2 with the 2-fluoro-4-chloro 

pattern most frequently present in potent analogues (S1 and S2). Potency tolerated diverse 

motifs at Ring 3/Tail positions (S1 and S2) including phenyl, thiophenyl, alicyclic (cyclohexyl 

and cyclopentyl) and aliphatic (butyl), piperazyl and piperidyl groups. Furthermore, in vivo 

potent analogues typically had a 3-pyridyl group at Ring 1 (S1 and S2), a hydroxyl Core Y 

(S1) and 2,4-disubstituted phenyl groups at Ring 2 (S1 and S2). Monosubstituted phenyl group 

at Ring 2 showed inferior in vivo potency compared to their disubstituted matched pairs (S1). 

For scaffold S2, the ethyl carbamate piperazyl group and the piperidyl group at the Ring 3 Tail 

position showed potent in vivo activity. Two other S2 analogues with potency in vivo (4 

(Figure 5) and 310 (Figure 13)) without a piperazyl or piperadyl motif were found, but matched 
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pairs to these analogues were not explored during the present campaign. Compounds that can 

be explored in future include 3-monosubstituted and 3,5-disubstituted phenyl Ring 2 (S1 and 

S2), and disubstitution patterns simultaneously present on both Ring 2 and Ring 3 (S1). 

Matched pairs would be beneficial to further elaboration of SAR for Ring 3/Tail positions (S1 

and S2). 

Concluding Remarks and Future Directions

From the 196 fenarimol analogues evaluated vs. M. mycetomatis, five analogues exhibited 

good in vivo activity in the G. mellonella model (8 and 167 from S1 and 1, 16 and 4 from S2), 

suggesting they may have promise as starting points for optimization projects aimed at the 

development of new drug leads for the treatment of mycetoma. Importantly, our results point 

to a delicate balance needed in the logD of any drug candidate. While compounds with logD 

values greater than 2.5 tended to perform better in the in vitro hyphae assay, compounds with 

logD values lower than 2.5 appeared to be associated with improved larval survival in the in 

vivo assay. This correlation in based on calculated logD values; it will be important to validate 

the correlation through the measurement of logD for selected compounds.

The pharmacokinetic properties of Scaffold S114 and Scaffold 215 compounds were evaluated 

in the manuscripts originally reporting their activity vs T. cruzi, so this has not been pursued 

again as part of this study, but it was found that kinetic solubility was low to moderate (range 

of ca. 1 to 100 g/mL at pH 6.5) and the compounds exhibited medium to high levels of 

intrinsic clearance in human and rat liver microsomal assays. A good in vitro-in vivo 

correlation was observed, with selected members of the original library exhibiting good plasma 

exposures in mice following oral administration. It was reported that, perhaps unsurprisingly, 

there was no correlation between potency vs the pathogen and in vivo efficacy, but these data 

provide supporting evidence for the overall potential of these scaffolds as the basis for new 

treatments for mycetoma.
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Should molecules in this series be identified with suitable in vitro potency as well as potency 

in the in vivo model, progression would depend upon acceptable selectivity over host cells, 

good in vitro clearance and good solubility data; these would in turn allow reasonable free 

exposure in an in vivo PK study in mouse or rat.

CYP51 inhibition as a probable mechanism of action

The SAR findings presented in this study support the idea that sterol 14-demethylase 

(CYP51) inhibition is the likely mechanism of action for fenarimol analogues against M. 

mycetomatis; in the absence of a crystal structure of this protein bound to a fenarimol it is 

possible to form a preliminary conclusion based on the available literature on CYP51 inhibition 

by azole and fenarimol analogues for other pathogens, helping future compound design.

CYP51 is a cytochrome P450 (CYP) enzyme that catalyses the removal of 14-methyl group 

from sterol precursors.25, 26 Found in all biological kingdoms, CYP51 is essential for the 

biosynthesis of sterols, such as cholesterol in humans and ergosterol in fungi. CYP51-mediated 

sterol production plays an important role in maintaining cell membrane integrity and signalling 

pathways, making it a major drug target for antifungal treatment by azoles,27-29 one of the largest 

classes of antifungal drugs in clinical use.30, 31 Azoles inhibit CYP51 through coordination of 

the heme group in the active site pocket, lowering the reduction potential of CYP51 and 

preventing cleavage of 14-methyl from the sterol precursors.32, 33 Additionally, azoles form 

non-coordinating interactions with amino acid residues in the active site and around the access 

channel into the active site, thus competing with the sterol substrates. 

Several azoles and fenarimol analogues are known to inhibit CYP51 (Figure 14). Our initial 

fenarimol analogue drug discovery study identified 13 compounds with potent activity against 

mycetoma, seven of which had known mechanisms of action for other pathogens and four were 

from the CYP51 inhibitor class.1 Three of the CYP51 inhibitors were the azole antifungals 

posaconazole, bitertanol and difenoconazole, and one was the antiprotozoal EPL-BS1246, the 

lead fenarimol analogue (10) target for the present project. Posaconazole was shown to bind to 

CYP51 of T. cruzi (protozoa)34 and C. albicans (fungus),32 fluconazole was shown to bind to 

CYP51 of M. tuberculosis (bacterium)35 and T. cruzi34 and, in a homology model study, 
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ketoconazole was shown to bind to A. fumigatus (fungus) CYP51.36 These CYP51 inhibitors 

feature common structural motifs such as an aromatic ring (5-membered or 6-membered) with 

one or more nitrogen atoms, a halogenated phenyl ring and a longer “tail”, features that map 

well to the active core of the fenarimols in the present study. 

Figure 14: Examples of Azoles (Posaconazole, Ketoconazole and Fluconazole) and Fenarimol 

Analogues (4, 10 and 61) with Known CYP51-bound Complexes.

Studies on posaconazole bound to CYP51 of T. cruzi (protozoan) and C. albicans (fungus) 

showed the active site fully encapsulating the triazole ring, the dihalogenated phenyl ring and 

the proximal portion of the tail, while the access channel into the active site accommodated the 

middle and distal portions of the tail.32, 34 C. albicans CYP51 bound with posaconazole showed 

the triazole nitrogen coordinating to the heme group in the active site and the additional non-

coordinating interactions facilitating the closed state of entry into the site.32 Similarly, triazole 

nitrogens were shown to coordinate to the heme group when a CYP51 homology model was 
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derived of ketoconazole bound to A. fumigatus (fungus) through comparison with the known 

structure of fluconazole bound to the protein in M. tuberculosis.35, 36 From studies such as these, 

clues may be gleaned about the role of dihalogenated phenyl rings and the hydroxyl core in the 

inhibition of CYP51. Fluconazole, being smaller than posaconazole, was shown to be fully 

buried in the active site when bound to T. cruzi and M. tuberculosis CYP51.31, 36 In the T. cruzi 

CYP51–fluconazole complex, the fluorinated aromatic ring disrupted hydrogen-bonding of 

tyrosine side chain residues that support the heme rings, to which was attributed fluconazole’s 

selective inhibition of T. cruzi CYP51 despite its smaller size.11 For the M. tuberculosis 

CYP51-fluconazole complex, the hydroxyl core of fluconazole was found to be hydrogen-

bonded to the CYP51 heme group.36 

Fenarimol analogues 4 and 61 were shown to bind to T. cruzi CYP51 in a similar fashion to 

Posaconazole.33 The pyridine nitrogen was shown to coordinate to the heme iron, forming iron-

nitrogen bonds longer (2.31 Å for 4 and 2.34 Å for 61) than those in CYP51-azole complexes 

(2.07–2.15 Å). The longer (weaker) coordination of pyridine nitrogen with the heme iron was 

suggested as a beneficial trait for fenarimol analogues as 4 and 61 showed weaker influence on 

human CYP51 and a higher selectivity for T. cruzi CYP51. Moreover, the trifluoromethyl 

group (CF3) in the 4 tail also disrupted tyrosine H-bonding to the heme group, further 

contributing to potency. Compounds 4 and 61 also formed more non-coordinating contacts 

with amino acid residues in the active site vs. posaconazole. 

The SAR data in the present study supports CYP51 inhibition as a probable mechanism of 

action, when compared to the literature evidence described above. Firstly, the pyridyl group 

(Ring 1) showed superior potency and the removal of the nitrogen atom on this ring caused 

loss of activity, similar to related literature studies.32, 34-36 Secondly, the hydroxyl core (Core Y) 

showed stronger potency compared to a matched analogue without this motif and compounds 

with halogenated phenyl groups (Ring 2) showed higher potency than unsubstituted ones. 

Literature evidence showed the hydroxyl core and halogenated phenyl group of fluconazole 

disrupting the tyrosine H-bonding supporting the CYP51 heme group.34, 36 Thirdly, SAR 

showed potency-tolerating variations in the Ring 3 and Tail positions in scaffolds S1 and S2 

for a wide range of motifs, consistent with the diverse range of tail lengths and motifs reported 
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in the literature, which were shown to offer additional non-coordinating interaction with 

residues around the entrance to the CYP51 active site, facilitating a closed–state of entry.32, 34 

Overall, comparison of SAR findings with evidence from the literature suggests inhibition of 

CYP51 as a probable mechanism of action for fenarimol analogues against M. mycetomatis. 

Recently, the M. mycetomatis CYP51 gene was sequenced, and the homology 3D model of the 

M. mycetomatis CYP51 protein was produced, allowing the modelling of itraconazole and 

ravuconazole bound to CYP51.37 In support of this hypothesis, a comparison was made 

between an experimentally-determined structure of compound 4 bound to the T. cruzi Cyp51 

and a calculated structure for the orthologous M. mycetomatis protein eburicol 14-alpha-

demethylase bound to the same molecule (Figure 15). There is good overlap, clearly indicating 

the expected coordination of the pyridine ring to the haem iron atom and extension of the 

hydrophobic portion of the molecule into the hydrophobic tunnel that accommodates a wide 

range of azole “tail” motifs.

Figure 15. Overlap of T. cruzi sterol 14-alpha demethylase (Cyp51) in complex with compound 

4 (green, from PDB 3ZG2) and predicted binding (Protenix) of compound 4 with the 
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orthologous M. mycetomatis eburicol 14-alpha-demethylase (blue); inset: coordination with 

haem. Images rendered in PyMol, see Supporting Information for more details.

While docking remains an ongoing part of Open Source Mycetoma38 direct elucidation of the 

interaction (including through recombinant expression of the protein and an experimental 

evaluation of protein binding or inhibition) could assist the future rational development of 

improved fenarimol analogues.
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