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The physics-AI dialogue in drug design†

Pablo Andrés Vargas-Rosales and Amedeo Caflisch *

A long path has led from the determination of the first protein structure in 1960 to the recent

breakthroughs in protein science. Protein structure prediction and design methodologies based on

machine learning (ML) have been recognized with the 2024 Nobel prize in Chemistry, but they would not

have been possible without previous work and the input of many domain scientists. Challenges remain in

the application of ML tools for the prediction of structural ensembles and their usage within the software

pipelines for structure determination by crystallography or cryogenic electron microscopy. In the drug

discovery workflow, ML techniques are being used in diverse areas such as scoring of docked poses, or the

generation of molecular descriptors. As the ML techniques become more widespread, novel applications

emerge which can profit from the large amounts of data available. Nevertheless, it is essential to balance

the potential advantages against the environmental costs of ML deployment to decide if and when it is best

to apply it. For hit to lead optimization ML tools can efficiently interpolate between compounds in large

chemical series but free energy calculations by molecular dynamics simulations seem to be superior for

designing novel derivatives. Importantly, the potential complementarity and/or synergism of physics-based

methods (e.g., force field-based simulation models) and data-hungry ML techniques is growing strongly.

Current ML methods have evolved from decades of research. It is now necessary for biologists, physicists,

and computer scientists to fully understand advantages and limitations of ML techniques to ensure that the

complementarity of physics-based methods and ML tools can be fully exploited for drug design.

1. Introduction
1.1 The path to protein structure prediction

More than 60 years ago, the first protein structures were
determined experimentally. The three-dimensional
conformations of myoglobin and hemoglobin were described by
scientists at Cambridge and appeared published in 1960.1,2 First
hand accounts of this momentous event help us understand
the difficulty and work that went into these discoveries which
today are routine work.3–5 This set the course for the beginning
of the structural biology revolution and protein structure-based
drug design (Fig. 1). Nevertheless, most protein structures
remained unknown and biochemical analyses were the main
method to obtain information about protein function and
behavior. In 1961, Anfinsen et al., showed that a ribonuclease
could be reversibly denatured, and regain function after
renaturing.6 Levinthal et al., proceeded in similar way using
alkaline phosphatase, from Escherichia coli and Serratia
marescens, and not only found they could obtain active enzymes

after renaturing them, but also that the interspecific dimer of
the two was active as well. They therefore theorized that both
must share a conserved active site, and a configuration which
allows for active heterodimers.7 Thanks to the advances in the
availability of protein sequence information, Perutz et al.
proposed in 1965 that despite poor sequence conservation, the
structure of globins was similar across all vertebrates.8 The
foundational advances of the first half of the 1960 decade
enabled Guzzo to postulate in 1965 that there was enough
evidence that in proteins, “sequence implies structure”, and a
thermodynamically most stable form must be the native and
active one.9 These were the first building blocks for the
successful protein structure prediction methods of today.

Already in the 1960s scientists tried to predict the
structure of proteins from their sequence. In his paper,
Guzzo did not only task himself with the understanding of
protein function and its relationship to structure, but mostly
with the prediction of protein structure.9 Due to the
complexity of the task, he focused instead on predicting the
secondary structure of proteins, with the hope that solving a
smaller part of the problem might prove easier than
predicting the whole tertiary structure, while still giving
valuable insight into the fold of the protein. He analyzed the
sequences and structures of myoglobin and the α- and
β-hemoglobin to predict that α helices are disrupted by
“critical residues”: P, D, E. and H. He later applied this
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prediction to TMV capsid and lysozyme.9 Such prediction was
later expanded by Prothero, who gave more complex and
complete rules on the influence of residues to secondary
structure.10 The turn of the decade brought further research,
incorporating more data, and more advanced analyses. Pain
and Robson proposed a new approach in 1970, where pairs
of residues were screened to understand the “helix-forming
power” of each residue. They had the advantage of having
more structures available.11 It was not until 1973 that Nagano
proposed a statistical analysis based on 95 available proteins
to predict helices, but also loops and β-strands. They did not
only focus on pairs of adjacent residues, but also recognized
the long-range influence of other residues away from the
position considered.12 These years saw many more attempts
at the prediction of protein secondary structure, with varying
levels of success.13,14 Ten more years would still pass, until
enough structures were available to generate a detailed and
unambiguous definition of secondary structure.15

Since protein sequence encodes structure,9,16 it was
theorized that the sequences of an entire protein family may
also contain information about its tertiary structure.17 Pazos
et al.18 showed in 1997 that the evolution of a protein must
be, in some way, constrained by the sequence of that of its
interaction partners, and these correlated mutations could be
discovered in multiple sequence alignments (MSA). In the
end they used this information to predict the interfaces
between interacting proteins.18 Afterwards, Fariselli et al.
used neural networks to predict the contact maps from a
database of 173 proteins, with at least 15 sequences in each
MSA. They obtained a relatively low accuracy, albeit the best
for its time.19 Hopf et al. continued this line of work, using

the higher number of sequences available 20 years later.20,21

In 2011, Morcos et al. used direct-coupling analysis to predict
contact maps from MSAs.22 Coevolution methods continued
to ripen in the decade of 2010 with new methodologies and
proposed applications at the level of structures and
interfaces, but also others such as binding site
prediction.23,24

1.2 Comparative and ab initio modelling

A huge step in the protein prediction history can be traced to
the introduction of the critical assessment of methods of
protein structure prediction (CASP)25 in 1995. The
standardized experiments, occurring every two years, started
yielding information about the main bottlenecks in protein
prediction.26 One category of such prediction methods was
the ab initio method, where protein sequence is the main
input for the prediction. Ab initio modelling usually follows
physical principles, using techniques such as Monte Carlo
sampling,27,28 threading (fold recognition),29 fragment based
prediction,30 or stepwise secondary structure and then fold
prediction.31,32 ROSETTA started as an ab initio prediction
software based on the assembly of small fragments. It
managed root mean square deviations of around 6 to 4 Å with
respect to the native structure in CASP3.33 Distance based
prediction methods also showed promise, when scientists
realized that a subset of native inter-Cα distances could be
used as additional restraints to generate native-like
conformations using ab initio methods.34,35

Furthermore, the genomic explosion of the early 2000s
generated a huge gap between the number of sequenced

Fig. 1 The number of publications mentioning drug design or drug discovery (DD) has continually increased since the 1960s (violet curve). The
discovery of the structure of hemoglobin in 1960 opened the door to structure-based drug design. In the 1990s, the number of DD publications
that mentioned MD simulations (red curve) or AI tools (blue curve) started to grow steadily. Since the late 2010s, the gap of DD publications based
on AI methods versus MD simulations has narrowed.
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genes and their solved structures. For all the proteins for
which their genetic sequences were known in 2004, only
around 1% had their structure experimentally determined.36

Nevertheless, already since the 1980s, and thanks to previous
observations such as those by Levinthal et al.,7 it had been
proposed that there exists a strong relationship between
sequence identity and fold conservation.37 This is why
homology (or comparative) modelling also surged as an
important category of protein structure prediction for proteins
with known sequence but yet undetermined structure.
Homology modelling usually consists of the following steps:
identification of a template based on evolutionary closeness,
alignment of target and template, modelling of conserved
regions, modelling of divergent regions, assignment of
sidechain rotamers, and refinement.38 For targets with strong
evolutionary relationship to the templates, model building
was usually simple except for nonconserved regions and
loops, while more distant evolutionary relationships required
more advanced alignment methods for finding templates.39

Early homology methods were able to correctly align models
to templates with sequence similarities above 50%, while
quality deteriorated for sequence identities lower than 35%.40

Despite their poor performance for distantly related proteins,
comparative methods were pioneering in the use of
evolutionary data at large scale. These homology modelling
programs incorporated a combination of MSAs and structural
methods to improve the alignment methods.41 One of the
pioneering automated servers for homology modelling is
SWISS-MODEL,42 which is still in use today.43 The current
engine of SWISS-MODEL, ProMod3, implements homology
modelling, as well as the loop and sidechain reconstruction,
and inclusion of ligands in the binding pocket.44 A stand-
alone program for comparative modelling is MODELLER,
which implements all the steps of homology modelling
described above. Unlike SWISS-MODEL, MODELLER is based
on a probabilistic description of spatial restraints which guide
the structural prediction.45 The alignment of templates is
used to generate a probabilistic density function on which the
template is aligned.46 The modelling of loops is achieved
through a combination of structural restraints, the
probabilistic information from the alignment, and force field
information.47 This serves as an example that, as the years
passed, the division between ab initio and comparative (data-
driven) methods started to dilute.48 Another example of the
fusion of different modelling methods comes from TASSER,
where threading was used for template identification and
followed by refinement.49 The increase in protein structures
deposited in the PDB led Zhang and Skolnick to declare in
2005 that the protein folding problem could be solved based
on the entries available at the time, given efficient fold
recognition algorithms that could be used to assign templates
to the sequence being predicted.50 The following years
continued with incremental advances being reported for ab
initio and comparative methods at the successive CASPs,
albeit at a more modest pace than before,51–53 until the
introduction of the first AlphaFold model at CASP13.54,55

Today, artificial intelligence (AI) and deep learning (DL) based
methods for protein structure prediction and design are
widely regarded as a revolution in life sciences, to the point
that we talk of structural biology in terms of the times “before
and after AlphaFold2”.56 The main developers of AlphaFold,
John Jumper and Demis Hassabis, have shared the 2024
Nobel award in Chemistry with David Baker who has
pioneered computational protein design (Fig. 1).

2. AI applications in structure
prediction
2.1 Deep learning-based prediction

Today, after the explosion of machine learning (ML) in the
2010s, computer and biological scientists alike have worked
to transfer the advances of AI, creating data-driven methods
for protein structure prediction with a high level of success.57

The dream of scientists from the early 2000s of achieving
proteome-scale prediction, uncovering new protein folds, and
helping predict new functions,58,59 was finally achieved in
2023 (ref. 60) thanks to the establishment of the AlphaFold
Protein Structure Database.61 It has been claimed that neural
networks seem to have “largely solved” the protein folding
problem at the domain level,62 although as Bowman correctly
points, fields are advanced, not solved.63 Such claims can
derive from a lack of understanding of the background of
AlphaFold, and the work behind it which explains how it
achieved such remarkable accuracy at the prediction of
tertiary structure. Recapitulating some points discussed
above, the biochemical studies of 1960s elucidated the
structural similarity of proteins related by evolution. This was
exploited by scientists who tried to predict contacts based on
evolutionary information, the ones who tried to model novel
structures based on already available structures of
homologous proteins, or the ones who tried to recognize
folds from primary sequence. In parallel, decades of
experimental structure determination yielded a database of
globular proteins which is complete enough for an advanced
data mining strategy to take advantage of it. The success of
AlphaFold2 can then be understood as the result of an
excellent fold recognition procedure, which exploits the
completeness of the library of single-domain proteins in the
PDB.64 Therefore this revolution did not occur in isolation,
half a century of research paved the way for the AI-based
methods of protein structure prediction and design.

A common feature of all the AlphaFold models,55,65,66 and
indeed of other related methods such as RosettaFold,67,68 is
the use of MSAs to find evolutionary relationships that can
be used to predict inter-residue contacts.22 The first
AlphaFold model used the MSAs to bias a statistical potential
of inter-residue interactions69 that better satisfies these
contacts.55 AlphaFold2 uses the transformer architecture70 to
integrate the information from the MSA and structural
templates together.65 The MSA is so important to AlphaFold2,
that it has been pointed out that AlphaFold2 has learnt a
MSA–structure relationship, not a sequence–structure
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relationship as claimed.71 AlphaFold3 still uses the MSA to
find information on close-by residue pairs, but the MSA is
not used as input to the network directly.66 The MSA is
completely ignored in ESMFold, a language model which
captures evolutionary relatedness by learning dependencies
between aminoacids at the sequence level, and then using
this information to predict the contact map.72 The
architecture of the ML models also reflects the directions of
research in the deep learning community in general. While
the transformer is present in the AlphaFold2 and ESMFold
structure modules,73 AlphaFold3 and RosettFoldAllAtom use
diffusion models to generate the final structures.66,68

Diffusion models are increasingly being used in structural
biology and drug discovery,74 finding applications in protein
design,75,76 conformer generation,77 and small molecule
binder design.78

2.2 The challenges of DL-based methods

Despite the claims of protein structure prediction being
“solved”,63 several challenges remain. Even some globular
proteins can be predicted incorrectly,79 and extreme care
must be taken when using AI structure prediction tools for
disordered proteins.80 For example, AlphaFold2 overestimates
the confidence of structure predictions in thousands of
intrinsically disordered regions that fold upon binding or
modification.81 Several strategies have been implemented to
make “safer” predictions of these disordered regions. Bret
et al. used fragments of disordered regions and different
MSA schemes to predict interfaces of interacting disordered
proteins.82 In recent work, we combined AlphaFold
predictions of amyloid β dimers with molecular dynamics
(MD) simulations to validate the predicted structures.83

Another important challenge in protein structure prediction
is the generation of conformational ensembles. The prediction
of single structures has been pointed as the current main
limitation of these models.84 The generation of multiple
structural models has been achieved in AlphaFold2 for example
by activating dropout layers during prediction,85 subsampling
the MSAs,86,87 MSA subsampling in combination with
enhanced-sampling MD,88 in silico mutagenesis of the MSA,89

flow matching,90 and others.91 Novel diffusion models are also
emerging which are able to generate conformational ensembles,
even of novel proteins.92 Finally, Cfold is an implementation of
an architecture similar to AlphaFold, which was specifically
trained with different conformations of the same sequence.93

A deeper understanding of the physics behind these models
is also crucial to make the most of AI-powered protein structure
prediction. Outeiral et al. found that the AI-based models are
not appropriate tools to investigate folding, as the folding
pathways they produce are inconsistent with experimental
data.94 For fold-switching proteins it was found that AlphaFold2
assumes a “most-probable” fold while missing the other.
Additionally, the chosen fold is predicted with an overestimated
confidence due to the high conservation of these proteins.95

Later research theorized that prevalence of a single

conformation is due to a memorization of the structures in its
training set and not due to learning of a biophysical energy
function. This renders the models unable to predict alternate
conformations even in the presence of their binding partners.96

Indeed, it was shown that the performance of AlphaFold suffers
with proteins that adopt diverse conformations.97 Such evidence
is in clear contrast with previous claims that AlphaFold has
learned an approximate biophysical energy function.98,99 It has
been proposed that while AlphaFold and related methods learn
the contacts between residues at the minimum of the free
energy funnel characteristic of globular proteins, the shallow or
multi-funneled landscapes of disordered and fold switching
proteins counter this principle.100 A recent study in which
perturbations were introduced to binding sites showed that
AlphaFold3 does not predict binding based on molecular
interactions, but based on general protein patterns. Thus non-
physical predictions are possible because of overfitting to
specific subsets of structural data.101 It is important to point out
that the study was limited by the fact that AlphaFold3 was only
available as a web server with limited capability for small
molecule prediction. The fully open access to these deep
learning models is not only essential to use them efficiently, but
also to find new ways to improve them.

3. AI and the physics-based methods
3.1 Small molecule docking

Two physics-based methods essential to protein structure-based
ligand design are MD simulations,102–104 and small molecule
docking.105–110 Docking relies on scoring functions to describe
protein–ligand interactions. The scoring functions have been
classified into three main categories: force field-based,
empirical, and knowledge-based.111 Force fields are analytical
functions that make use of classical physics approximations of
the potential energy of (macro)molecules which is calculated by
the sum of bonding and non-bonding (van der Waals and
Coulomb energy) contributions.112 The bonding interactions are
calculated for pairs of atoms separated by one, two, or three
covalent bonds, e.g., Hooke's law is employed for the covalent
bonds which does not allow the rupture of bonds or formation
of new ones. The parameters of the force field are derived either
from quantum mechanical calculations (e.g., the partial charges
for the Coulomb term) or by fitting to experimental data.113,114

The force fields might also include some desolvation terms,
usually based on an implicit representation of solvent
effects.115–117 For docking large libraries of compounds, the
binding free energy is usually approximated by the difference
between the energy of the protein/ligand complex and the
energy of the unbound protein and ligand. Most frequently, the
flexibility of the protein is ignored and entropic effects are
neglected or approximated coarsely. Force field-based energy
functions include those available in the docking programs
SEED118 and AutoDock Vina.119 An additional sub-category,
which is related to the force field-family, is the use of quantum
mechanical descriptors for scoring. One example is the use of
quantum mechanical “probes” which approximate a subset of
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the polar groups in the binding pocket of the target protein.120

Zhou and one of us screened a large library of compounds by
the interaction energy with the probes calculated at a semi-
empirical level of theory. In this way a novel and selective low
micromolar inhibitor of the EphB4 tyrosine kinase was
identified from a large library of compounds.120 Quantum
mechanics-based scoring methods are less approximated than
classical force fields, but are computationally more
expensive.121–123

Unlike force field-based scoring functions, empirical
scoring functions approximate the binding affinity directly.
Analogous to force fields, they contain individual interaction
descriptors of binding, trained using a regression model to
fit the descriptors to the experimental binding affinity. Such
descriptors can include intermolecular interactions like van
der Waals and Coulomb terms, electrostatic desolvation
penalty, ligand entropy and torsion, etc.124 Glide125 and
ChemScore126 are examples of empirical scoring functions.
Empirical scoring functions can also be employed for
positioning small molecules in electron density maps
determined by cryogenic electron microscopy (CryoEM).127

Knowledge-based scoring functions calculate the frequency
of occurrence of the diverse atom pairs in a database from
which, using the inverse Boltzmann relation, they obtain an
approximation of the potential of mean force.69,116 An example
of this type of functions is DrugScore.128 Interestingly, the
concept of predicting and minimizing the potential of pairwise
interactions was used as the basis of the first AlphaFold
model,55 while the idea itself was already published in 1990.129

Due to the rapid changes and the different hybrid forms, Liu
and Wang proposed in 2015 a new classification of scoring
functions: physics-based methods (force field and quantum
mechanics), empirical scoring functions, knowledge-based
potentials, and descriptor-based scoring functions (such as
those derived from ML).130

ML methods are becoming frequent in diverse aspects of
scoring functions, and have performed well even when using
simple methods such as a random forest.131 Two examples of
ML-based scoring functions are PointVS132 and GNina.133

Guedes et al. have used linear and nonlinear ML methods to
fit the coefficients of the physics-based terms of DockTScore,
an empirical scoring function.134 Fujimoto et al. used
molecular fingerprints of the protein–ligand interactions to
build a regression model to approximate the potential mean
force.135 As mentioned above, AlphaFold also incorporates
concepts from knowledge-based scoring to predict protein
structure.55 While not a knowledge-based model per se, Isert
et al. used deep learning and quantum mechanics hand in
hand for predicting protein–ligand binding affinity from
CryoEM maps, giving strong emphasis to the study of
interatomic interactions.136 Indeed with the deep learning
explosion, came new and more data-hungry methods which
unfortunately do not necessarily perform better than simpler
“traditional” ML methods.137,138 Some of these deep learning
methods were actually found to be even worse at generalizing
than traditional docking methods.139 An important factor to

keep in mind is that many ML scoring functions are applied
at a postprocessing stage, with only select ones (such as
GNina) being integrated into docking workflows.140 The use
of different paradigms for sampling poses of the ligand and
scoring them is not optimal. As an example, a force field-
based sampling engine might not reach protein/ligand
structures close to poses with optimal ML-based scores. The
co-folding of proteins with their binding partners, for
example as proposed by AlphaFold3, uses ML for both posing
and scoring but can be affected by overfitting.101

3.2 Simulating the motion of atoms

Simulations are another important technique in drug design.
They yield insights on the time-resolved behavior of
biomolecules on an atomic scale. There are several types of
atomistic simulations, such as Monte Carlo,141 MD,142 and
quantum mechanics calculations.143 Monte Carlo simulations
make use of random perturbations for iteratively evolving a
molecular system. They can sample a thermodynamic
ensemble but usually do not preserve the kinetic properties.
In contrast, MD simulations are based on the classical
Newtonian equations of motion (solved numerically) and thus
not only reproduce a thermodynamic ensemble but also
correctly reproduce the kinetics.142 Quantum mechanical
simulations solve a system's electronic structure. This means
they are very accurate and can describe processes such as
chemical reactions, but are too slow to be applied to whole
systems.144 Therefore, they are usually employed in
combination with MD as multiscale simulations.145 MD has
been used since long to obtain thermodynamics and kinetics
of small molecule binding to proteins, validate predicted
binding modes, to generate conformations for docking,
identification of cryptic pockets, or (relative) binding free
energy calculations.146,147 Simulations have been used to
study the folding pathway of the cellular prion protein, from
which druggable pockets were identified and targeted using
small molecules to arrest folding.148 In another translational
study, umbrella sampling MD simulations were successfully
employed to predict the relative binding free energy of a series
of anti-prion compounds which were then validated in vivo.149

Many simulation studies have been launched by different
groups to analyze the self-assembly process of amyloid (poly)
peptides.150 MD has also been used to try to open new
avenues of treatment for amyloid diseases, by subjecting
either small amyloidogenic fragments,151 or dimers of Aβ42
(ref. 83) to external electric fields. In our group, we have used
MD and quantum mechanics (semi-empirical level)
simulations to propose a catalytic mechanism for the human
methyltransferase METTL3.152 We have also used MD to find
structural information about binders for which no bound
structure could be determined experimentally.153

MD simulations offer a means to evaluate the interaction
free energy between a small-molecule ligand and its protein
target, and rank ligands by relative affinity.154 In contrast to
docking, MD simulations can take into account the full

RSC Medicinal Chemistry Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Ja

nu
ar

y 
20

25
. D

ow
nl

oa
de

d 
on

 1
/1

4/
20

26
 2

:0
0:

52
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4md00869c


1504 | RSC Med. Chem., 2025, 16, 1499–1515 This journal is © The Royal Society of Chemistry 2025

flexibility of the protein target, ligand, and surrounding solvent.
They make use of the full force field, i.e., including the bonded
terms which is essential for reproducing the strain in the ligand
upon binding. Free energy methods usually rely on a
thermodynamic cycle to calculate the free energy differences
between the states of interest. Since the direct calculation of the
transformation of interest is usually difficult to obtain, a series
of transformations is constructed that yields the same energy
difference through simpler calculations.155 Two alchemical
transformation protocols which can be used for free energy
calculations are thermodynamic integration and free energy
perturbation.156–158 Thermodynamic integration calculates the
free energy difference between two states by numerically
integrating the thermodynamic path between them. The path
corresponds to an interpolation between the two end states'
Hamiltonians, and is controlled by a coupling parameter.159

Free energy perturbation160 is based on the conversion of a
molecule to another passing through unphysical intermediates
of the two molecules.161 Instead of direct integration, the
differences between small steps is used.155 If the systems are
carefully prepared, which is time consuming and requires an
in-depth knowledge of simulation protocols, free energy
perturbation calculations yield an accuracy almost comparable
to experimental measurement errors for relative binding free
energy determination.162,163 Some challenges faced by these
methods are the accuracy of the force fields used (which results
in a systematic error) and the convergence of sampling
(statistical error).154,155 Thermodynamic integration and free
energy perturbation can be used for calculating both relative
and absolute binding free energies.164 They have diverse
applications in drug design, such as derivatization of ligands,
scaffold-hopping, and binding pose validation.165 It is also
possible to perform binding free energy calculations by Monte
Carlo simulations in implicit solvent, using a thermodynamic
cycle between the complex and the free protein and ligand. In a
recent study, Monte Carlo sampling in implicit solvent with
explicit ions as competitors, and the integration over multiple
protonation states of protein and ligand, were assessed as a tool
for virtual screening, and for the ranking of derivatives of hits
obtained by docking.166

Several challenges remain in biomolecular modelling.167

One challenge is improving the physical models behind the
simulations such as adjusting force fields to better represent
disordered proteins114 or nucleic acids,168 in particular
RNA.169,170 A second challenge of simulations is the timescales
that can be reached. Even with recent advances in computing
hardware, all-atom simulations remain prohibitive beyond the
microsecond timescale. One possible solution is to leverage
multiscale simulations to explore larger conformational
spaces.145,171,172 Another interesting simulation protocol is
enhanced sampling,173,174 for example by using swarms of
trajectories to rebuild a reaction coordinate,113,175,176 or by using
a(n approximate) reaction coordinate to reseed trajectories in a
diverse manner.177 A good source of enhanced sampling
protocols is PLUMED. The PLUMED library is a modular, open-
source initiative which provides algorithms for enhanced-

sampling MD, free energy methods, and analysis tools. Finally,
steps are also being taken to optimize the different simulation
packages to take advantage of current hardware architectures
such as GPUs.178,179 A third challenge of biomolecular
simulation is the integration of experimental data into the
simulations.167 These integrative approaches incorporate data
from different sources to understand biomolecules.180

Experimental data such as NMR or CryoEM has been used in
conjunction with MD to understand RNA conformational
diversity and dynamics.181 In the case of enhanced sampling
protein simulations, it is very important to validate the obtained
data against experimental data, due to the bias introduced.182

An example of an integrative modelling approach is
metainference,183 which allows the construction of an ensemble
of models consistent with experimental data by introducing the
measurements as part of the energy function of the system.184

ML is also entering the world of biomolecular simulations.
In the area of enhanced sampling, ML techniques have been
applied to calculate reaction coordinates or collective variables
for biased sampling.185 Designing or learning these reaction
coordinates is difficult, and the simulation must be biased to
sample the Boltzmann distribution appropriately. A more
efficient approach would be to sample directly from the
Boltzmann distribution to obtain the different conformations of
the system. This is the idea behind Boltzmann generators.
Boltzmann generators use neural networks to learn a
transformation from a normal to a Boltzmann distribution,
such that sampling from the normal can be used to generate
many independent Boltzmann-distributed samples. Unlike
enhanced sampling, they are not dependent on trajectory-based
methods such as long simulations to obtain the samples.186

Another way to convert between distributions is flow matching,
which has been used together with AlphaFold and ESMFold to
predict protein ensembles. Similar to Boltzmann generators,
flow matching uses a generative neural network to
approximately transform a prior distribution to a Boltzmann
one. Jing et al. proposes then to change AlphaFold from a
regression model into a generative one, by feeding it with the
noisy conformation generated by sampling from the prior and
converting it to an approximately Boltzmann-distributed
conformation. AlphaFold then “denoises” these generated
coordinates and produces a high quality model based on this
sample.90 In the force field development area ML applications
have been extensively reviewed by Unke et al. and Chen
et al.187,188 An example of a deep learning force field is shown
by Majewski et al. They used MD data to construct an ML
coarse-grained force field to recreate protein dynamics.189 Also,
tools such as TorchMD enable researchers to run simulations
using both classical force fields and ML potentials.190 A
different application of deep learning are convolutional neural
networks for reintroducing atomic detail into coarse grained
models.191 Another approach employed a generative adversarial
network to solve the backmapping problem, using as an analogy
the image-to-image problem of going from a low to a high
resolution image.192 Flow matching has also been used to
describe coarse-grained force fields which match all-atom
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ones.193 Although progress has been made, these ML force
fields are not yet considered mature enough to be used in
production simulations and are mostly applied to small
molecules or single elements.194 In the future, optimization of
these force fields is likely to better approximate the interactions
between (candidate) drugs and their targets resulting in
improved accuracy in virtual screening and MD simulations,
but further research is needed.188

The interface between biophysical knowledge and ML
methods is of utmost importance to expand the capabilities of
these models and understand their limitations (Fig. 2). Domain
scientists have used and expanded the ML methods, to a great
extent. In contrast to CASP14, where AlphaFold2 had a clear
dominance, during CASP15 many groups incorporated the ideas
from AlphaFold into their pipelines, and the difference in
performance was less pronounced.195 Structural biologists have
also improved ML prediction of proteins by associating different
depths of the MSAs with different folds, for example for fold
switchers,96 disordered proteins,80,100 or proteins with different
conformations.97 Also, knowledge of the biological and
biophysical behavior of macromolecules has led scientists to
propose ways to incorporate ML into physical methods such as
docking or simulations. Janela and Bajorath in particular call
for an integration of computational studies into well-planned
experimental evaluations to assess the predictive capacity of the
different ML methods which are being increasingly proposed.138

This is evidence that the interplay between the “hard” ML
computer science and the domain application is necessary to
find good applications and solve the shortcomings of the
original models. It also highlights the importance of the open-
source code, which allows scientists to build upon previous
work to improve it or find new instances to use it.

4. AI applications in drug discovery

An important question is if the recent computational
advances can help in hit discovery and/or lead optimization.
This question has been asked 20 years ago by Hillisch et al.

while assessing possible applications of homology modelling
in the drug discovery process. Some applications proposed
back then included the prediction of binding pockets in
homology models of clinically-relevant target proteins, site-
directed mutagenesis to (de)sensitize a target to a compound,
design of ligands based on the homologous modelled
structures, prediction of drug metabolism and toxicity, etc.36

Modern drug discovery is profiting from AI in several ways,
such as studies of structure–activity relationship and data
integration.196 In contrast, generative drug design does not
seem (yet) to be of genuine utility for designing novel
molecules in medicinal chemistry campaigns. Thus, for
discriminating between hype and real utility it is essential to
follow the guidelines formulated by Walters and Murcko for
publications of results of generative modeling.197 Despite the
lack of novel molecules, we hope to see new applications of
generative AI in medicinal chemistry. An example is its recent
application to scaffold hopping.198,199

4.1 Describing and quantifying molecules and their
interactions

Quantitative structure–activity relationship (QSAR) studies are a
natural subject for deep learning integration. Traditionally,
linear equations were used to correlate the functional groups
and compound properties with the activity observed, but deep
learning has also been increasingly used to find relationships
between properties and activity.200 Unlike “traditional” QSAR,
deep QSAR learns the embeddings of the molecules directly,
and can also be pretrained with large unlabelled datasets.201 An
example is provided by Li and Fourches, who trained a general
domain model using the ChEMBL database, which then is fine-
tuned with target-specific experimental data, to finalize by
tranferring these pre-trained model weights to a final QSAR
network which is used for the final predictions.202 Also related
to QSAR is the generation of novel molecules using ML. Initially,
de novo generation was done by fragment based approaches or
evolutionary algorithms.203,204 Today, fragment based methods
are still in use, having the advantage that the synthetic
accessibility can be easily predicted when using rule-based
fragment joining.205,206 Other generative AI methods include
variational autoencoders, generative adversarial networks, flow-
based methods, transformer models, diffusion-based, and
others, working on different molecular representations such as
SMILES or graphs.207 An interesting example is provided by
Munson et al., who use a variational autoencoder to target two
proteins at the same time. They present the problem in an
analogous way as networks trained to generate images along
different variables, such as age or mood. This allowed them to
target pairs of proteins which are together relevant to disease.208

Schneider and Clark described several compounds which have
been designed de novo, albeit sometimes as part of a longer
design process usually involving some level of expert input.209

To ensure the novelty and to be able to better understand the
design process of the AI-generated compounds, Walters and
Murcko have called for transparent reporting of the datasets

Fig. 2 AI influence on docking and MD simulations models and
methods.
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used for training, showing the most similar molecule in the
training set, and evaluating the molecules with the same criteria
as those generated by medicinal chemists.197 Nonetheless, new
AI-generated compounds have already entered clinical trials as
treatments against diverse illnesses including atopic dermatitis,
neurofibromatosis type 2, and others.210

The way in which small molecules are digitally represented
is essential for QSAR studies, and also cheminformatics.
Initially, “traditional”, or “bespoke” descriptors, as called by
McGibbon et al., were the main types of molecular
representations.211 The advent of ML in cheminformatics
means that new representations can now be “learned” from
data. The input representation and the type of ML method used
for embedding the represented molecule determine the type of
encoding needed.212 McGibbon et al. describe three main types
of learned representations. First, convolutional encodings have
a high tolerance for many different inputs, but their main
limitation is the lack of rotation-invariance. Second, graph
encodings represent molecules and their features as a graph,
and can be used by a variety of neural network architectures.
Finally, the string encodings are traditionally used with
transformer architectures.211 An example of a string-based
representation designed specifically for ML-based methods is
SELFIES.213

Molecular descriptors are representations which encode
the physicochemical information of the molecule. They can
be derived from experimental data, such as the solubility or
the octanol/water partition coefficient, or be theoretically
defined. Theoretical descriptors can also vary in the level of
abstraction, ranging from adimensional descriptors such as
molecular weight and heavy atom number, up to four-
dimensional descriptors encoding the interactions with
binding partners.214 Fingerprints are a type of representation
based on encoding descriptors into a vector.215 The
importance of accurate descriptors was highlighted by van
Tilborg et al., who showed that SAR predictors based on
molecular descriptors outperformed deep learning models
based on SMILES or graphs.216 Therefore, the use of learned
descriptors should be carefully considered, for example
Capecchi et al. describe a molecular fingerprint based on
substructures which performs well, without the need of a
ML-based encoding.217 It is important to note that in general
the prediction of bio-activity data (e.g., binding potency for
the target) is a more challenging task than learning
physicochemical properties (e.g., aqueous solubility) or ADME
(absorption, distribution, metabolism, and excretion)
properties. Furthermore, bio-activity data is usually sparser
which is a strong limitation for ML methods.

4.2 AI beyond descriptors

AI also has a role in helping medicinal chemists plan their
synthetic activities. Traditional retrosynthesis prediction
relies heavily in chemical knowledge to set the rules of
reactions. Language models can exploit the analogy between
language and organic chemistry218 to predict synthetic

precursors.219 Apart from predicting the reactions
themselves, it would be valuable to predict their yield. To this
effect, Schwaller et al. built a transformer model to predict
reaction yields based on SMILES representations. They have
achieved this by combining a reaction SMILES encoder with
a reaction regression to predict the yield, and speculate this
could be applied to other regression tasks such as activation
energies.220 In other study, Schwaller et al. tackled the
problem of reaction classification, also using a
transformer.221 Nevertheless, it is important to note that
reaction fingerprinting based on k-nearest neighbors can
achieve comparable accuracy in reaction classification and
yield prediction with much less complexity.222

Other applications of deep learning in drug discovery include
for example drug repurposing. An example comes from Zhang
et al., who used a transformer based on SMILES-protein
sequence pairs to predict commercially available antiviral drugs
which could be used against SARS-CoV-2.223 A similar study was
performed by Beck et al.224 A completely different approach was
taken by Yan et al., who prompted ChatGPT with the task of
proposing approved drugs which could be useful against
Alzheimer's disease. They theorized that the model's ability to
efficiently parse literature could be a reason for the plausibility
of the suggestions it generated.225 These are examples of what
Vincent et al. describe as one category of ML studies in the area
of phenotypic drug discovery. In this case, pharmacology data
from other studies is transferred and used to predict new
scaffolds for a given disease. The other category of studies is
those that use phenotypical data, for example training them
directly on data on cellular perturbations or gene expression
changes.226 Returning to target-based drug discovery, ML can
be a useful help in finding new targets. ML models can be a
useful tool for drug target prediction, meaning instead of
finding a good binder for a specific target, existing molecules
can be screened and their protein target predicted.227 An
example of drug–target interaction prediction is MolTrans,
which based on a transformer classifier, predicts whether a
drug–protein pair will interact.228 A coupling of these
techniques could be applied also in basic research. For example,
given phenotypical data, drug–target interaction prediction
could be used to find the mode of action of a drug.

Another active line of research concerns foundation
models, which are usually large language models which are
pretrained on large amounts of data to be later finetuned for
a specific task.229 These are similar to transfer learning,
which is generally applied in drug discovery.230 An example
of transfer learning was presented by Tysinger et al., where
the authors pretrain a transformer model based on pairs of
bioactive molecules from ChEMBL, and then use it to predict
new molecules using known hits as input.231 Unfortunately,
this paper does not include any perspective, i.e., experimental
validation of the transformer model. A foundation model was
used by Chenthamarakshan et al. to predict new binders
using pretrained molecular and protein representations to
classify molecules as binders or not, while also taking into
account off target effects and synthesizability.232 Chang and
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Ye presented a bidirectional model linking SMILES and
property prediction.233 Finally, a concept that is recently
expanding is that of digital twins, where systems of various
complexities, cells for example, are represented virtually,
enabling in silico experiments to be performed on them. A
dialogue is then set between the digital twin and the
experimental data, such that the twin can be fine tuned with
the experimental data, and the predictions used to inform
further experiments.234

Deep learning and related methods can have a strong
impact in drug discovery, for example in aiding the sampling
of novel chemical space and the virtual screening of these
myriad new compounds, for generating quantum mechanics-
level descriptors of molecular interactions, and to accelerate
virtual screening.201 In a time when target-based drug
discovery has been described as inefficient, ML techniques
could open the door to integrative data modelling which can
yield not only the binding affinity to a single target, but also
a prediction of the phenotypical effect of the screened
molecules.235,236 Challenges remain such as data curation
and availability, or the increasing complexity in the types of
data available. Additionally, molecular generation models
need to be validated to ensure their output is sensible.237

Still, ML methods could accelerate the drug discovery process
not only by finding molecules that bind a target with high
affinity, but also yield the desired effect based on omics data,
phenotypical observation, selectivity prediction, or
pharmacokinetics. Furthermore, test cycles could be reduced
using predicted data, or the synthesis of new compounds
made easier with retrosynthesis prediction tools.238 In the
end, the most important aspect will be to find a balance
between the outputs of the ML models, and the human
creativity of the medicinal chemists and structural
bioinformaticians applying them.239 AI applications in
biology will continue to expand these coming years, in drug
discovery and other areas,240 but although several steps of
the process have profited from data-driven augmentation, for
now, human intervention remains essential.241

5. Is AI really what we need?
5.1 AI imposes a burden on resources

The ML explosion of the past few years has provided potential
improvements in different stages of the drug discovery process,
but it is also accompanied by some concerning trends following
the wide application of AI. An usually forgotten factor when
using ML models, and indeed also when running
simulations,242,243 is the energy consumption involved in the
training and use of the models. Recent reports show that the
“AI boom” of the past years is already threatening the climate
goals of tech companies.244,245 The International Energy Agency
estimates that data centers, cryptocurrencies and AI have
consumed a 2% of the total energy used in 2022. The projected
growth of these sectors until 2026 means their electricity needs
will be equivalent to the energy consumption of Germany.246

The different sources of electricity used in the places where AI

models are trained, the cost (economic and environmental) of
manufacturing the needed devices, and the diverse
infrastructures where they are housed add increased complexity
to the calculation of the environmental impact of AI models.
The electricity and carbon cost of training one iteration of a
model, e.g., GPT-3 (around 1.2 GWh and 588 tons of CO2

equivalents) seems negligible on its own,247 but adds up quickly
when considering the number of training runs needed to obtain
a final version and the current explosion in the number of AI
methods. Thus frameworks for quantifying and regulating the
emissions due to AI (training and inference) are urgently
needed.248 Water is another equally important natural resource
which is put under pressure for training and deploying AI
systems. Water is used in the cooling towers of power plants
generating electricity for AI, but also cooling systems of data
centers themselves, and also during the manufacturing of
computing infrastructure (chips). A recent estimate suggests
that the training of the GPT-3 model requires on the order of
700 000 liters of water.249 Obtaining accurate AI models while
reducing the carbon output can be achieved through careful
selection of the model used and has already been done by
scientists.250 Although individual action on its own is not
enough to stop the detrimental advance of climate change,251

we should as scientists be conscious of the impacts of our
development and use of AI, and push for new paradigms in the
deployment of such systems.252,253 Using a combination of
metrics such as efficiency and interpretability, in addition to
accuracy, could be an answer to have better-designed and
-implemented deep learning models, depending on fewer
parameters, and therefore also reducing their economic and
environmental cost.254

Careful consideration must be taken when choosing to use
an AI solution in drug discovery, and indeed in any case. The
goal of any scientific application should be to solve a problem
in the most efficient way, not necessarily using the most
advanced model (Fig. 3). Simpler models can be deployed for
appropriate tasks, such as fingerprinting and regression for
chemical properties,217 conformer generation,255,256

docking,257,258 molecular descriptors,259 reaction classification
and yield prediction,222 or others. Meanwhile, AI can be

Fig. 3 The decision whether to deploy an AI model must be a careful
consideration of several factors: can the problem be solved with
simpler, e.g., less data-hungry, methods? Is there enough data to train
an AI model? Is explainability necessary for understanding the
problem? Does the problem justify the costs of training and deploying
an AI model?
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reserved to those tasks that merit the cost of deploying it. As
scientists, we should take care to consider the environmental,
social, and ethical costs of AI systems while making this choice.

5.2 The knowledge of AI is becoming concentrated

Another concerning tendency that is manifesting itself, not
only in biology, is the privatization of science. Deep learning
systems, like AlphaFold,65 make use of public datasets such
as the Protein Data Bank for training.260 This data has been
collected over many decades and financed mostly through
public money. Indeed the replacement cost of the PDB has
been estimated at around USD 20 billion.261 Nevertheless,
AlphaFold3,66 the latest iteration of the greatly successful
deep learning protein structure prediction model, has been
published without making its code freely available, angering
scientists.262 This decision even went against the editorial
policy of its journal, which justified itself by claiming
AlphaFold3 was privately funded and the service is still open
and publicly available.263 Only during revision of this
manuscript, i.e., about six months after its initial release, the
code of AlphaFold3 was made public, with strong licensing
restrictions. AlphaFold3 was developed by Alphabet's
subsidiaries DeepMind and Isomorphic Labs, the latter of
which will use it for its rational drug design campaigns.66,264

Indeed, Fernández Pinto argues, this is a common
characteristic of Open Science, where data generation is
financed by the public and shared openly, but the private
actors are not compelled to maintain the same standards
and end profiting from the system.265 Rikap shows how the
assetization of knowledge and data to generate intellectual
monopolies is a common strategy of tech giants.266

Preventing intellectual monopolies could allow diverse
smaller companies access and adopt the AI drug discovery
workflows at a more competitive rate, instead of
concentrating the technology on the tech giants with the
money and IP to deploy them. A more critical standpoint
might even argue that it is valid to oppose to profits being
made from publicly sourced science. From the scientific
point of view, the monopolization and platformization of AI
research makes it more difficult to benchmark and improve
these methods. Therefore, safeguards and regulations must
be implemented to ensure that knowledge generated by AI is
kept open and public, and to prevent that public
infrastructures end being abused and profited from by
private companies.267 A framework moving towards this goal
is needed and work on it is underway, to ensure not only
public and open AI, but also that the society that contributed
to the models can benefit from it.268,269

6. The future of ML in biology

What are the outstanding issues and next research directions
in protein structure prediction and design? Current ML
methods for protein structure prediction are trained on
secondary data, i.e., data derived usually by fitting from the
raw (primary) data. Networks like AlphaFold are trained on

the protein structures available on the PDB, to obtain a
probabilistic model of protein structure, and generate (a set
of) single structures as output. The prediction of a single
structure has been proposed as the current main limitation
of these methods.84 Nevertheless, the structures employed for
training have also been fitted onto an electronic density
(from X-ray crystallography or CryoEM), which is also
modelled from the collected data. So far, researchers have
used deep learning methods to reconstruct the protein
structure into CryoEM maps,270–272 predict flexibility,273 or to
solve the phase problem in X-ray crystallography for short
peptide sequences.274 Zhong et al. take an interesting
direction, using variational autoencoders that encode
CryoEM images and decode density maps, taking
heterogeneity into account.275 A similar method has been
proposed by Rosenbaum et al.276 The use of ML methods in
CryoEM has expanded a lot and will probably continue to
expand itself in the coming years.

To date, no method for protein structure prediction seems
to be based on anything but static structures. Therefore, a
possible paradigm shift could be to stop training the
networks on the atomic coordinates of a single structure, and
instead try to assign a probability distribution to their
electronic densities, on which the deep neural networks can
then be trained on. A possible difficulty arising from this is
the (nearly impossible) assignment of continuous densities to
the electronic cloud of single atoms, but this could be
modelled based on the (constructed) structures which have
been deposited. Nevertheless, and continuing with the
translation from computational linguistics to biology, this
could be seen as an analogous problem to the recognition of
handwritten cursive text in computer vision.277–279 Indeed,
recent work has been done on generating the “MNIST of
aminoacids” dataset, which could be an initial step towards
assigning the continuous electron density to discrete
residues.280 Using this type of data could be a new way to
tackle the lack of conformational ensembles from AlphaFold
and related models.63 Another possibility is to use raw data
from NMR to augment ML networks. As discussed earlier,
coevolutionary restraints from the MSAs applied in DL-based
structure prediction work analogously to NMR structure
determination using distance restraints. NMR data has been
used to enhance the predictions of AlphaFold and obtain
structures that comply with the experimental restraints,281 or
to assess the AlphaFold predictions.79,282 However, training a
network directly on NMR data has only been attempted for
small molecules.283 Of course, a problem which could arise
comes from the fact that NMR experiments usually yield very
few restraints, which are sometimes redundant. Still, an
interesting avenue of research would be to incorporate
different experimental data into the training of the deep
learning model such that it can use the different structures,
CryoEM electron densities, and NMR restraints to predict
ensembles of structures.

Finally, something we consider as extremely interesting
would be to try to abstract the physical rules of protein folding,
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and indeed biomolecular interaction, from deep learning
models for structure prediction. As discussed above, decades of
research were invested into ab initio protein structure prediction
with moderate success. It has been widely established that
folding follows physical “rules”. At folding conditions, the native
conformation is the thermodynamically most stable state,
located at the bottom of the free energy funnel.284 Is it possible
that the physical models used for protein structure prediction
until now were too simple to capture all the interactions needed
to determine the three-dimensional conformation? An
advantage of AI-based methods is their ability to learn
representations of, or embed, complex data. If AlphaFold has
learnt an energy function for protein structure, as proposed by
some authors,98,99 there should be a way to extract this
information from the model to try to understand the physical
interactions which govern protein structure and folding. While
this claim has been disputed,94,96 it is undeniable that the
model predicts globular proteins with high accuracy. One of the
newer trends in AI research is explainable AI (xAI).285 There is
no exact definition of xAI, but it can be understood as the set of
methodologies which help users understand and believe the
models and predictions from AI.286 It would be interesting to
apply the xAI framework, for example by examining the
attention mechanism in AlphaFold, to try to understand how it
predicts inter-residue interactions. Such an approach would
offer a bridge between the “black box” approach of deep
learning, and physics-based methods. The high-dimensional
abstraction of the AI model could be used to better capture the
interactions that govern protein folding and thus improve ab
initio methods. A pitfall for this would be if AlphaFold has not
learned the energy function of protein structure but rather it
bases its predictions in memorization,96 if the prediction is
actually relating MSAs to structure instead of the sequence,71

and indeed if the MSAs and the coevolutionary information they
encode are not enough to predict different conformations. More
research is needed to understand if AlphaFold and related
methods can actually be interpreted and used to understand
the physics behind protein folding.

7. Conclusions

We have reviewed the recent progresses of ML tools and their
influence on protein structure prediction and computer-
aided drug design. A long journey from the determination of
the first crystal structure of a protein (myoglobin, more than
60 years ago) has culminated into half of the 2024 Nobel
prize in chemistry which was awarded to the main developers
of the deep learning programs for protein structure
prediction. It is evident that these ML tools have predictive
ability mainly because they are trained on the more than
200 000 experimentally determined structures of proteins. In
turn, such a rich data set of protein structures exists because
of impressive progress in the (mainly bacterial) production of
pure proteins and the hard work of many research groups
most of which are affiliated with not-for-profit institutions.
The interplay and synergism between physics and AI are

expected to grow in the near future. The data-driven methods
for modeling protein structures based on sequence homology
have evolved into very powerful deep learning platforms. At
the same time, the knowledge-based docking functions are
being enhanced by using ML methods. Even force fields are
being improved thanks to the large availability of data which
can be exploited by ML models. The rich intersection
between scientific disciplines such as the integration of
language models into biology, or the physical inspiration of
AI,287 are opening new ways to tackle the shortcomings of
current ML models. This exchange needs to be promoted to
obtain better systems for protein structure prediction,
docking of small molecules, or generation of ensembles.
These advances did not happen from one day to the other,
and it is important to recognize all the scientific progresses
which enabled these technologies to be implemented and
which are often forgotten.

Another important factor to consider is the cost of ML
from the point of view of the natural resources needed to
train and deploy it. This consideration should be central to
decide whether it is justifiable to use an ML system in
research, or if there are simpler (physics-based) solutions that
can yield comparable and more explainable results with less
energy consumption.

We should also be aware of the tendency for ML models to
become services which scientists can use but have no full
control over. This is exemplified by the most recent AlphaFold3.
The emergence of “Science as a Service” already is hindering
our understanding of the working of AlphaFold3 and other deep
learning models. Therefore we should fight for control and
access to these ML models which would not exist without the
decades of work of generations of scientists supported mainly
by public funding. As an example, during the past decade the
research group of the senior author of this review has released
in the PDB database more than 300 high-resolution crystal
structures of proteins of pharmacological interest in complex
with small molecule–ligands. Interestingly, most of these 300+
ligands were identified by high-throughput docking and force
field-based binding energy evaluation.110,288–290 Hence, we can
state that physics-based docking, at least in the Caflisch group,
and more generally protein X-ray crystallography have
contributed substantially to the data used for training
AlphaFold3. Thus, we should be prepared to discuss and set the
rules of the game for open access to ML tools trained on open
access data.291

Several challenges lie ahead on the road. Successful
prediction of single protein structures is possible efficiently
and routinely, but the generation of conformational
ensembles requires additional effort. The most-widely used
methods for protein structure prediction, and AI models in
general, often lack explainability, making it difficult to
understand their workings. For hit identification, physics
based methods have been used in (high-throughput) docking
programs for long, but their scoring functions can be further
improved for reducing the number of false positives and thus
increase the hit rates. Concerning hit to lead optimization, it
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has been noted that ML tools, e.g., generative modeling, are
useful for interpolating within a known chemical series but are
not able to extrapolate to new chemical matter.197,292,293 The
latter seems possible (at least for some chemical series and
protein targets) by MD free energy-calculations which have
improved substantially in accuracy thanks to continuous
optimization of force fields (during the past decade particularly
for small molecules) and faster hardware. Physics-based models
use analytical energy functions (force fields) which achieve high
accuracy, speed, and extensive coverage of chemical space by
employing a fraction of the parameteres used by ML models.294

In conclusion, ML methods have evolved by taking advantage of
decades of previous research in computational and structural
biology. Now it is up to us to promote the physics-AI dialogue to
successfully combine ML tools and physics-based methods for
designing new drugs.
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