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Developing sigma-1 receptor (S1R) modulators is considered a valuable therapeutic strategy to counteract

neurodegeneration, cancer progression, and viral infections, including COVID-19. In this context, in

silico tools capable of accurately predicting S1R affinity are highly desirable. Herein, we present a panel of

25 classifiers trained on a curated dataset of high-quality bioactivity data of small molecules, experimentally

tested as potential S1R modulators. All data were extracted from ChEMBL v33, and the models were built

using five different fingerprints and machine-learning algorithms. Remarkably, most of the developed

classifiers demonstrated good predictive performance. The best-performing model, which achieved an

AUC of 0.90, was developed using the support vector machine algorithm with Morgan fingerprints. To

provide additional, user-friendly information for medicinal chemists in the rational design of S1R

modulators, two independent explainable artificial intelligence (XAI) approaches were employed, namely

Shapley Additive exPlanations (SHAP) and Contrastive Explanation. The top-performing model is accessible

through a user-friendly web platform, SIGMAP (https://www.ba.ic.cnr.it/softwareic/sigmap/), specifically

developed for this purpose. With its intuitive interface, robust predictive power, and implemented XAI

approaches, SIGMAP serves as a valuable tool for the rational design of new and more effective S1R

modulators.

1. Introduction

Sigma receptors have intrigued scientists since their discovery
in the 1970s.1 Initially, they were misclassified as subtypes of
opioid receptors, but subsequently they were identified as a
new class of proteins functionally and pharmacologically
classified in two different subtypes, namely the sigma-1
receptor (S1R) and sigma-2 receptor (S2R).2 The two subtypes
are localized in the central nervous system (CNS) and
peripheral tissues and organs including the liver, kidneys and
endocrine glands.3,4 In particular, S1R is predominantly
expressed in endoplasmic reticulum–mitochondria associated

membranes (MAMs) where it functions as a ligand-regulated
chaperone protein modulating Ca2+ fluxes.5 Upon ligand
binding, S1R translocates to modulate a number of proteins
including ion channels and G-protein-coupled receptors.6

With its neuroprotective function, S1R is a target for the
development of therapeutics against neurodegenerative
diseases with drugs in advanced clinical phases for the
treatment of Alzheimer's and Huntington's diseases as well as
amyotrophic lateral sclerosis (ALS).7 In 2020, a study by
Gordon et al.8 mapped the interactions between SARS-CoV-2
and human proteins, revealing that sigma receptor
modulators may play a crucial role in treating COVID-19
infection. Specifically, the coronavirus proteins NSP6 and
Orf9c were found to interact with S1R and S2R, respectively,
suggesting these receptors as promising pharmacological
targets in this context as well. In addition to the above
reported neuroprotective actions, ligands binding to S1R are
active against neuropathic pain and result in anti-proliferative
and cytotoxic effects in a number of neoplastic cells.9 Because
of its widespread importance, S1R is known as a ‘pluripotent
chaperone’ and the discovery of new ligands capable of
binding to S1R with high affinity has been actively pursued in
the last few years. Traditional methods for assessing ligand
affinity towards the receptor are frequently expensive and

RSC Med. Chem., 2025, 16, 835–848 | 835This journal is © The Royal Society of Chemistry 2025

a Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica (DiMePRe-J),

Università degli Studi di Bari Aldo Moro, Piazza Giulio Cesare, 11, Policlinico,

70124, Bari, Italy
b CNR – Institute of Crystallography, Via Amendola 122/o, 70126 Bari, Italy.

E-mail: domenico.alberga@cnr.it, giuseppefelice.mangiatordi@cnr.it
c Department of Computer Science, University of Bari “Aldo Moro”, Via E. Orabona,

4, I-70125 Bari, Italy
d CNR – Institute of Crystallography, Via Vivaldi 43, 81100, Caserta, Italy
e Department of Pharmacy – Pharmaceutical Sciences, University of Bari “Aldo

Moro”, Via E. Orabona, 4, I-70125 Bari, Italy

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/
10.1039/d4md00722k

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
N

ov
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

0/
19

/2
02

5 
1:

26
:0

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/d4md00722k&domain=pdf&date_stamp=2025-02-18
http://orcid.org/0009-0003-2189-1797
http://orcid.org/0000-0001-6430-7392
http://orcid.org/0000-0003-1561-7073
http://orcid.org/0000-0001-5086-2459
http://orcid.org/0000-0002-9475-9602
http://orcid.org/0000-0003-4042-2841
https://www.ba.ic.cnr.it/softwareic/sigmap/
https://doi.org/10.1039/d4md00722k
https://doi.org/10.1039/d4md00722k
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4md00722k
https://pubs.rsc.org/en/journals/journal/MD
https://pubs.rsc.org/en/journals/journal/MD?issueid=MD016002


836 | RSC Med. Chem., 2025, 16, 835–848 This journal is © The Royal Society of Chemistry 2025

time-consuming, thereby hindering progress in research and
the development of novel treatments. Commonly, radioactive
receptor–ligand binding assays utilizing radioactively labeled
ligands like [3H]-(+)-pentazocine are employed. These assays
are based on the principle of competitive interaction between
the labeled ligand and the analyte for the same receptor
binding site.10 The strength of this technique is its
exceptional sensitivity in detecting receptor–ligand binding,
leveraging the radioactive properties of tritium to detect even
minute quantities of binding. Other advantages are the
specificity of (+)-pentazocine binding to S1R and the
straightforward nature of the assay.10 However, the medium
throughput10 of these assays, along with the large quantities
of radiochemicals required, makes them relatively slow to
perform and raises safety and disposal concerns.11 For this
reason, the scientific community is focusing efforts towards
the development of alternative experimental techniques.
Among these, the use of fluorescent ligands as an alternative
to radioligands looks very promising. Although a few
fluorescent ligands specific for sigma receptors have been
developed, the selectivity for the sigma-1 subtype needs to be
improved for effective use in fluorescence-based techniques
when assessing novel compounds.12–14 Moreover, although
binding assays involving radioactive and fluorescent ligands
are invaluable in studying ligand–receptor interactions when
handling a small number of samples, their limitations hinder
the discovery and development of new ligands based on the
screening of a large number of compounds. For this reason,
innovative approaches to be adopted even before chemical
synthesis could be advantageous. Despite the growing
importance of S1R in recent years and the abundance of
available bioactivity data, machine learning has surprisingly
never been used as a tool for screening and optimizing
potential S1R ligands. Instead, other types of predictive
models can be found in the literature. In 1994, Glennon et al.
identified the first 2D pharmacophore model,15 making
significant progress in rationalizing the development of S1R
ligands and leading the scientific community to the
generation of increasingly sophisticated 2D and 3D ligand-
based pharmacophore models.16–20 These models consistently
emphasize the presence of positive ionizable (PI) groups and
multiple hydrophobic elements. Furthermore, except for the
models developed by Glennon and Langer, they typically
include a polar group.21 Exploiting the refinement in
homology modeling techniques, the first S1R homology
model was published in 2011,22 enabling the identification of
a likely binding site. This advancement facilitated the
implementation of docking-based virtual screening and
binding-affinity determination studies for new potential S1R
ligands. In 2016, the release of the first crystal structure of
human S1R,6 also complexed with multiple compounds,23

provided invaluable insights. This structural information has
been leveraged for docking studies and development of
various 3D structure-based pharmacophore models,13,21,24–26

enhancing binding-affinity prediction in virtual screenings.
However, an explainable intelligent system capable of

supporting chemists in designing new potential ligands for
S1R has never been developed. This work aims to fill this gap
by providing an innovative tool to S1R research. Particularly,
in the present study, 25 machine learning-based models
predicting S1R ligand affinity were developed employing five
classification algorithms: random forest (RF), K-nearest
neighbors (K-NN), gradient boosting (GB), extreme gradient
boosting (XGB) and support vector machine (SVM). These
models were built using five different fingerprints:
AtomPair,27 Morgan,28 MACCS,29 Torsion30 and CSFP31 to
characterize the dataset (SIGMA1-DB), extracted from ChEMBL
version (v) 33 and comprising 2018 compounds split into a
training set (TS) and a validation set (VS). Our goal extends
beyond merely predicting S1R affinity with the most effective
model; we also aim to clarify the rationale behind these
predictions. To this end, we integrated two independent
explainable artificial intelligence (XAI) approaches: Shapley
Additive exPlanations (SHAP)32 and Contrastive Explanation.33

Leveraging a methodology already successfully applied by our
group,34,35 we have incorporated the best-performing model
and the two XAI analyses into a user-friendly web platform
named SIGMAP. This platform stands out by not requiring
any expertise in cheminformatics, making it an invaluable
resource for medicinal chemists seeking early evaluations of
S1R affinity potential. To the best of our knowledge, SIGMAP
is the first freely accessible tool that can efficiently predict the
S1R affinity potential of drug candidates, combining
advanced predictive capabilities with transparent and
interpretable outputs.

2. Materials and methods
2.1 Dataset preparation

A total of 2967 entries, all annotated exclusively with Ki

values, were extracted from the ChEMBL v33 database.36 This
extraction was conducted based on the target ID
(CHEMBL4153) assigned to the S1R protein having guinea
pig (referred to as Cavia porcellus in the ChEMBL database)
as the target organism. This strategy was followed to obtain a
dataset that is as extensive and homogeneous as possible. It
is worth noting that guinea pig S1R is considered a valuable
model for studying human S1R in preclinical research.14,37–41

As a matter of fact, this protein is highly conserved among
mammals, and specifically, a 93% amino acid sequence
identity was observed between the human and guinea pig
S1Rs.42 To ensure the quality of the data, we implemented a
methodology similar to that successfully applied for other
classifiers.34,35,43 The database underwent a meticulous
filtering process to retain only entries that met the following
specific criteria: i) being marked as tested with a “binding”
assay type (‘assay_type’ = ‘B’), which indicates direct binding
of the compound to the molecular target; ii) lacking any
warnings in the ‘data_validity_comment’ field, and iii) not
indicating ‘Not Determined’ in the ‘comment’ field. By
applying these filters, the dataset was refined to 2896
compounds. Furthermore, we assessed the validity of each
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SMILES string using an in-house semiautomated procedure
implemented in the KNIME platform.44 This procedure
specifically enables the exclusion of organometallic and
inorganic compounds and chemicals featuring uncommon
elements and mixtures, the neutralization of salts, and the
removal of stereochemistry information. Subsequently, the
OpenBabel45 node integrated into KNIME facilitated the
conversion of the retrieved SMILES into a standardized
QSAR-ready format. For the sake of standardization, we
converted Ki values from molar concentration (M) to pKi (−log
Ki). Subsequently, duplicate entries were aggregated into
unique records, and the mean and the standard deviation (σ)
of the pKi values were computed. Compounds with σ

exceeding 2 (i.e., 15 instances identified as outliers) were
excluded from the study. In conclusion, by removing 863
duplicate entries, the final curated dataset comprises 2018
chemicals in SMILES format (referred to as SIGMA1-DB) along
with their corresponding experimental pKi mean values.
Aiming at categorizing SIGMA1-DB into chemicals with high
S1R affinity (S(+)) and low or absent S1R affinity (S(−)), we set a
threshold of pKi = 7. This resulted in 1102 positive and 916
negative samples.

2.2 Dataset splitting

With the aim of splitting SIGMA1-DB into a TS and a VS, a
rational approach was employed. Using the RDkit Diversity
Picker node,46 the dataset was split into two classes, S(+) and
S(−). This node automatically generates Morgan fingerprints28

for each SMILES string and then picks 80% of the most
diverse molecules for each class based on the Tanimoto
distance.46 This fingerprint is known to be one of
the best performing in virtual screening procedures.47 In this
way, a TS of 1615 compounds (80% of each class) and a VS
including the remaining 403 compounds were built. Notice
that an equal proportion of S(+) and S(−) compounds was
maintained during the dataset splitting, with 882 S(+) and

733 S(−) in the TS and 220 S(+) and 183 S(−) in the VS. To
illustrate the structural variability of the TS and the VS across
the SIGMA1-DB dataset, a t-distributed stochastic neighbor
embedding (t-SNE) analysis48 was performed based on 9
physicochemical properties of the molecules. These
properties were calculated using the Canvas molecular
descriptor KNIME node and then standardized using the
Normalizer KNIME node (Fig. 1). The score plot of the first
two t-SNE dimensions shows each ligand belonging to the
two different datasets in the resulting 2D chemical space.

2.3 Development and validation

In this study, we employed five classification algorithms
namely RF, K-NN, GB, XGB and SVM using the
following KNIME nodes: tree ensemble learner, tree
ensemble predictor, K-nearest neighbor, gradient boosted
tree learner, gradient boosted tree predictor, XGBoost tree
ensemble learner, XGBoost predictor, LibSVM (3.7) and Weka
predictor (3.7).49–52 To represent each SMILES string in the
dataset, we tested five different types of fingerprints aiming
at identifying the best one for describing the chemicals in
the SIGMA-DB. Specifically, using the RDKit Fingerprint
KNIME node, we computed the following fingerprints for
each chemical: i) ‘Atom pairs’ (1024 bits), based on the
atomic environments and shortest path separations of every
atom pair in the molecule;27 ii) ‘Morgan’ (radius 2–1024 bits),
a circular Extended-Connectivity Fingerprint (ECFP4) based
on the Morgan algorithm;28 iii) ‘MACCS’ (166 bits), a
substructure key-based fingerprint29 and iv) ‘Torsion’ (1024
bits), based on the topological torsion descriptor.30 Moreover,
we computed CSFP fingerprints31 using a python script
reported by Bajorath et al.53 Following this approach, each
chemical substructure was codified by five different binary
representations to indicate the presence (1) or absence (0) of
specific characteristics. As a first step, we identified the
optimal setting (shown in Table S1 in the ESI†) through
hyperparameter tuning performed on a 5-fold cross-
validation (5-CV). Note that, for each algorithm, we
considered the hyperparameters known to be responsible for
the higher impact on the overall performance.54,55 To do that,
we employed a grid search for K-NN where only two
parameters were optimized and a Bayesian optimization for
RF, GB, XGB and SVM to reduce the computational cost.
Finally, after performance evaluation, we selected the best-
performing model.

2.4 Applicability domain

When query chemicals differ significantly from the
compounds used to train a QSAR (quantitative structure–
activity relationship) model, the predictions it provides
cannot be considered reliable. To address this issue and
enhance confidence in the predictions, an applicability
domain (AD) was established for the TS. The AD delineates
the chemical space from which the models are built, thereby
indicating where predictions are considered reliable.56 The

Fig. 1 T-distributed stochastic neighbor embedding (t-SNE) analysis
based on 9 physicochemical properties of the compounds belonging
to the training set (TS), in red, and the validation set (VS), in green.
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similarity between a predicted chemical and the compounds
in the TS is the main criterion for defining the structural
domain of a QSAR model. Specifically, using the domain-
similarity KNIME node, we calculated the Euclidean
distances between the TS compounds and those being
predicted. This approach defines an AD threshold (ADT)
through the following steps: (i) calculating all Euclidean
distances between all possible pairs of TS compounds, based
on representative descriptors (in our case, Morgan
fingerprints); (ii) creating a set of distances that are below
the average distance calculated in step (i); (iii) computing the
mean (d) and standard deviation (σ) of the distances in the
set from step (ii); and (iv) defining the ADT (AD threshold)
using the equation:

ADT = d + Z (1)

where Z is an empirical cutoff value, set to 0.5 by default.57

The AD threshold determined for the TS in this study was
7.52.

2.5 Performance evaluation

We evaluated each classifier using Coopers statistics.
Specifically, sensitivity (SE), specificity (SP), and accuracy
(ACC) were computed as follows:

SE ¼ TP
TPþ FN

(2)

SP ¼ TN
TNþ FP

(3)

ACC ¼ TPþ TN
TPþ TNþ FPþ FN

(4)

where TP (true positives) and TN (true negatives) represent
correctly classified positive and negative samples,
respectively, whereas FP (false positives) and FN (false
negatives) are the misclassified positive and negative
samples. Additionally, we evaluated the model performance
through another quality metric, namely the Matthews
correlation coefficient (MCC). This metric produces a high
score only if the predictions return good results across all
four confusion matrix categories (TP, FN, FN, and FP),
considering both the size of positive elements and the size of
negative elements in the dataset.58 The MCC ranges between
−1 and +1, where +1 indicates perfect classification, 0
indicates a random classification, and −1 is a complete
misclassification.

The formula for the MCC is as follows:

MCC ¼ TP ×TN − FP × FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp (5)

The area under the curve (AUC) was determined using the
ROC curve node59 to assess the capability of the model to
distinguish between S(+) and S(−) samples. This metric,
which ranges from 0 (miss-classifiers) to 1 (ideal-classifiers),

reflects the probability that positive compounds are ranked
higher than decoys based on the prediction confidence values
generated by the KNIME predictor nodes49–52 for each
specific algorithm used. Finally, we computed and
considered the positive (+LR) and the negative likelihood
ratio (−LR). The classification model becomes more
informative as the +LR value increases (or the −LR value
decreases). Particularly, we will focus our attention on the
+LR value which estimates how much the probability of a
compound being S(+) increases relative to its initial
probability, before any classification is performed.

The formulas are:

þLR ¼ SE
1 − SP (6)

−LR ¼ 1 − SE
SP

(7)

2.6 Explainability

Explainable artificial intelligence (XAI) is a branch of AI
focused on developing tools to interpret “black-box” models.
An explanation provides additional context and reasons
behind one or more predictions,60 making models clearer,
more transparent, and trustworthy. In this context, we
implemented two different local post hoc XAI methods for
distinct applications. Firstly, Shapley Additive exPlanations
(SHAP) was used to explain which portions of the molecule
most influence the prediction. SHAP is a feature attribution-
based method that explains black-box predictions by
assigning each input feature a numerical value, called the
Shapley value, indicating its contribution to the prediction.32

Since in this work each molecule in the SIGMA1-DB is
described in each model by one of the selected fingerprints
(i.e., AtomPair, Morgan, Torsion, MACCS, CSFP), the features
correspond to the bits of the fingerprint, where each bit
indicates the presence (1) or absence (0) of specific
characteristics. SHAP quantifies the contribution of each
molecular feature, where more positive (negative)
contributions indicate a stronger influence of the
corresponding bit towards a positive (negative) affinity
prediction. This method offers a complete32 explanation by
distributing the prediction value fractionally across all
features. To calculate Shapley values, we used Shap loop start
and Shap loop end KNIME nodes. However, Shapley values
are descriptive but not actionable as they do not suggest how
to change features to modify the output.61 To address this,
we also implemented Contrastive Explanations, which
provide users with both similar and dissimilar
(counterfactual) examples.61 Similar examples can enhance
the robustness of the classifier by confirming the ability of
the model to remain stable within the chemical prediction
space. Counterfactual examples, on the other hand, make
this analysis actionable by suggesting small structural
changes necessary to alter the prediction.61,62 This analysis
was achieved by generating 10 structural analogs of the input
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using DeLA-DrugSelf,63,64 an in-house generative algorithm
based on recurrent neural networks (RNN). The algorithm
takes a SELFIES65 string as an input and generates a new
molecule applying N mutations to the string (token
substitutions, insertions or deletions) driven by the trained
RNN. We set N = 1 and required a Tanimoto similarity of at
least 0.5 for the generated compounds with respect to the
query. Notice that the token of the SELFIES string chosen for
the mutation is randomly selected.

2.7 Molecular docking simulations

Two selected compounds were docked on the X-ray structure
of S1R in complex with PD144418 (PDB code: 5hk1, chain
A).6 The system was prepared using the Protein Preparation
Wizard tool, from the Schrodinger Suite (2024-3),66,67 by
adding missing hydrogen atoms, reconstructing incomplete
side-chain groups, building unresolved loops, assigning
favorable protonation states of ionizable amino acids at
physiological pH and performing a minimization with the
OPLS4 force field.68 Compounds 1 (CHEMBL1917704) and 2
(CHEMBL1783464) were prepared to be docked using the
LigPrep tool,69 which generates all the possible ionization
states and tautomers at a pH value of 7.0 ± 2.0 using the
OPLS4 force field. The LigPrep output was employed for
docking simulations performed by Grid-based ligand docking
with energetics (GLIDE).70–74 We adopted the standard
precision (SP) protocol with all default settings, using a cubic
grid having an edge of 10.0 Å for the inner box and 26.5 Å for
the outer box, and centered on the co-crystallized ligand
position.

3. Results and discussion

With the aim of predicting the affinity profile of S1R ligands,
25 classifiers were developed employing a highly-curated
dataset (SIGMA1-DB) consisting of 2018 compounds with
affinity data (Ki) extracted from the ChEMBL v33 database. To
this end, five different types of fingerprints (AtomPair,
Morgan, MACCS, Torsion and CSFP) were used to
characterize each chemical structure within the database,
and five machine learning (ML) algorithms, namely RF, KNN,
GB, XGB and SVM, were trained and validated using the
KNIME Analytics Platform. More specifically, SIGMA1-DB was
split into a TS and a VS. Firstly, we used the TS to perform
hyperparameter tuning based on a 5-fold cross-validation
(5-CV), and then the models obtained with the best identified
parameters were validated using the VS. For the sake of
clarity, Fig. 2 displays the main steps of the adopted
computational workflow. To further assess the predictivity of
the best-performing model in practical applications, we
employed two external sets (ES1 and ES2). This section will
focus on analyzing the key quality metrics (SE, SP, ACC,
MCC, AUC and +LR) calculated after the hyperparameter
tuning and then for the validation process, aiming to identify
the top-performing classifier. Furthermore, we will discuss
the results of the two explainability methods based on case
studies provided.

3.1 5-fold cross validation procedure

Aiming at performing the hyperparameter tuning of the
considered ML algorithms and simultaneously challenging
their ability to provide predictive classifiers of S1R affinity,
we employed the 5-fold cross-validation (5-CV) approach.

Fig. 2 Flowchart showing the main steps of the developed computational workflow.
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Table 1 reports the quality metrics computed for each model,
trained with the best parameters identified through this
process. It is important to point out that the metrics
for each model are calculated by averaging the results
across five iterations, with different subsets of the TS used
for validation in each iteration. Because of this, we would like
to emphasize that the accuracy ACC, which is the most
comprehensive metric we have presented, shows a standard
deviation value below 0.02 across all 25 models, thus strongly
supporting their stability. Furthermore, all the models return
quality metrics, indicative of good predictive power (Table 1).
This is particularly evident when the returned AUC (in most
cases ≥0.80) and SE (always ≥0.78) values are considered.
Since our objective in this study was to build classifiers for
the early stages of a drug discovery (DD) process – rather
than for toxicological purposes – we prioritized SP in 5-fold
cross validation. Indeed, reducing false positives (i.e.,
molecules predicted to be able to target S1R with high
affinity but later experimentally disproven) is critical to avoid
a wasteful investment of time and money in the DD process.
For this reason, among the different quality metrics herein
considered, we focused our attention on SP and +LR. In
particular, while SE and SP exhibit comparable trends across
the five model subgroups, SP values are consistently lower
than SE values. More specifically, the best performance in
terms of SP is achieved when XGB (0.74 when AP is used as
the fingerprint) and SVM (0.72 when AP, Morgan and Torsion
are employed) are used as algorithms. Furthermore, all
classifiers yield interesting +LR scores, particularly when XGB
(from 2.25 to 3.19) and SVM (from 2.54 to 2.95) are employed.

Based on this early analysis, it appears that the models
generated using the XGB and SVM algorithms best align with
our goal of minimizing false positives. However, to conduct a
more detailed and accurate assessment, it is necessary to
implement validation for all the developed models.

3.2 Validation

To identify the best-performing model, all 25 developed
classifiers were subjected to internal validation using the VS
obtained from the SIGMA1-DB split, as detailed in the
Materials and methods section, and comprising 403
compounds. As a first step, all compounds underwent the AD
filter. Interestingly, none were excluded, confirming that the
VS can be reasonably considered representative of the TS due
to the rational split performed. As shown in Fig. 3A, this
validation confirmed the trend already observed in the 5-CV
procedure, with all models achieving high SE and AUC
values, with the latter exceeding 0.95 in some cases. It is
worth noting, for example, the high AUC values obtained by
the GB algorithm (0.96) when using both AP and Torsion
fingerprints. Moreover, as returned by the 5-CV approach,
significant differences can also be found between SE and SP
values, with the former being consistently higher than the
latter (Fig. 3B). Specifically, except for models developed
using CSFP fingerprints, SE values consistently exceeded
0.90. Less uniformity in the performance of the considered
algorithms is instead observed when considering SP values,
ranging from 0.57 (model obtained using the Morgan
fingerprint and the RF algorithm) to 0.86 (model obtained

Table 1 Performances in 5-fold cross-validation (5-CV) of the developed models. For each model, the following statistics are reported: sensitivity (SE),
specificity (SP), accuracy (ACC), Matthews correlation coefficient (MCC), area under the ROC (AUC), negative likelihood ratio (−LR) and positive likelihood
ratio (+LR)

SE SP ACC AUC MCC −LR +LR

AtomPair RF 0.91 0.64 0.79 0.86 0.58 0.14 2.55
K-NN 0.88 0.65 0.78 0.83 0.55 0.18 2.54
GB 0.87 0.70 0.79 0.87 0.58 0.19 2.87
XGB 0.84 0.74 0.79 0.85 0.58 0.22 3.19
SVM 0.83 0.72 0.78 0.76 0.56 0.23 2.95

Morgan RF 0.87 0.64 0.77 0.83 0.53 0.20 2.41
K-NN 0.86 0.64 0.76 0.82 0.51 0.23 2.38
GB 0.85 0.70 0.78 0.85 0.56 0.23 2.75
XGB 0.85 0.70 0.78 0.85 0.56 0.21 2.86
SVM 0.80 0.72 0.76 0.76 0.52 0.28 2.84

Torsion RF 0.91 0.60 0.76 0.83 0.53 0.16 2.21
K-NN 0.87 0.63 0.76 0.82 0.51 0.21 2.32
GB 0.84 0.69 0.77 0.84 0.54 0.23 2.69
XGB 0.82 0.70 0.77 0.83 0.53 0.25 2.72
SVM 0.79 0.72 0.76 0.75 0.51 0.30 2.79

MACCS RF 0.89 0.62 0.77 0.83 0.54 0.18 2.32
K-NN 0.86 0.64 0.76 0.80 0.51 0.23 2.39
GB 0.82 0.69 0.76 0.83 0.51 0.27 2.64
XGB 0.85 0.70 0.78 0.84 0.56 0.22 2.84
SVM 0.78 0.69 0.74 0.74 0.48 0.31 2.55

CSFP RF 0.85 0.63 0.75 0.80 0.50 0.24 2.31
K-NN 0.84 0.62 0.74 0.79 0.48 0.25 2.22
GB 0.85 0.66 0.76 0.82 0.52 0.23 2.46
XGB 0.82 0.64 0.73 0.78 0.46 0.29 2.25
SVM 0.79 0.69 0.74 0.74 0.48 0.30 2.54
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using the same fingerprint but with SVM as the algorithm).
More generally, regardless of the fingerprints considered,
SVM consistently yields the highest SP values (between 0.81
and 0.86). Data analysis further indicates that the
performance of various fingerprints is roughly similar, except
for CSFP which generally performs less well. This holds true
whether observing SP or SE values. Remarkably, the SVM-
based classifiers return also the highest MCC values (ranging
from 0.72 to 0.81), irrespective of the considered fingerprint
thus suggesting that this algorithm better performs among
the five considered. To select the top-performing model, we
compared the performance of all SVM-based classifiers.
Fig. 3C reports a radar plot itemizing the computed quality
metrics for these models. The SVM-based model developed
using the Morgan fingerprint outperformed the others,
achieving satisfactory values for sensitivity (SE = 0.94),
specificity (SP = 0.86), accuracy (ACC = 0.90), area under the
curve (AUC = 0.90), Matthews correlation coefficient (MCC =
0.81), and positive likelihood ratio (+LR = 6.85). For these
reasons, it was chosen as the best-performing model.

Finally, to further evaluate the robustness of the top-
performing model, we conducted an additional validation
using two external datasets (ESs), one consisting of 46 (ES1)
and the other consisting of 39 (ES2) compounds. Following
the protocol already established for dataset preparation, we
extracted all entries classified under the target ID
(CHEMBL4153) associated with S1R and annotated
exclusively with Ki measures from the ChEMBL v34 database

to conduct a temporal validation of the best-performing
model. Using the same semi-automated procedure described
in the ‘Dataset preparation’ section, after duplicates and
compounds already in the SIGMA1-DB were removed, we were
left with a set of 52 compounds. As detailed in the
‘Applicability domain’ section, a filter was applied to the set
leading to the exclusion of 6 compounds. The process
resulted in the ES1 dataset consisting of 46 compounds,
comprising 35 S(+) and 11 S(−).

To construct the ES2 dataset, 39 compounds were
extracted from two studies by Dichiara et al.75 and
Szczepańska et al.76 and then underwent the same
preprocessing steps as ES1, including the application of the
‘Applicability Domain’ filter. Notably, all 39 compounds (33
S(+) and 6 S(−)) fell within the applicability domain. The
model successfully predicted 34 out of 46 compounds for ES1
and 27 out of 39 for ES2, further demonstrating its real-world
applicability.

3.3 Explainability analysis

To enhance the clarity, transparency, and interpretability of
the selected model, we implemented a local post-hoc XAI
method known as SHAP. This analysis provides insights into
the reasons behind predictions, specifically how each bit of
the fingerprint contributes to the output. Given that the most
effective model was trained using molecules described by
Morgan fingerprints, we can leverage this analysis to

Fig. 3 Performances in validation: A) quality metrics computed for all the developed models; B) histograms displaying the computed SP and SV
values for all the classifiers; C) radar plot comparing the performance of the models developed using SVM as the algorithm. RF: random forest;
K-NN: K-nearest neighbors; GB: gradient boosting; XGB: extreme gradient boosting; SVM: support vector machine; SE: sensitivity; SP: specificity;
ACC: accuracy; AUC: area under the ROC; MCC: Matthews correlation coefficient; −LR: negative likelihood ratio; +LR: positive likelihood ratio.
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elucidate how each substructure of a molecule (each
represented by one or more bits) affects the prediction. Fig. 4
displays the results of the SHAP analysis and of the protein
docking for the two molecules from the VS which are
correctly predicted by the model. Notice that substructures
predicted to positively (negatively) influence ligand affinity
are highlighted in blue (red). For instance, it is possible to
note that in compound 1 (CHEMBL1917704), which is
experimentally known to be a potent S1R binder,77 the
piperidine moiety is highlighted in blue, likely due to the
presence of the nitrogen atom. This observation aligns with
existing pharmacophoric models, which consistently identify
the presence of positive ionizable groups (i.e., a basic amino
group of piperidine) as crucial for ligand–receptor interaction
with S1R.21 The importance of this structural feature is also
evident in the representation of compound 2
(CHEMBL1783464), displaying low affinity towards the S1R
receptor.78 Despite most substructures being highlighted in
red, in line with the negative prediction, the amino group
remains blue, indicating that the model accurately recognizes
the importance of this group for ligand interaction with S1R.

To further validate the results of the SHAP analysis, we
proceeded to dock compounds 1 and 2 into the S1R binding
pocket. The difference in affinity between the two ligands is
reflected by their computed docking score: compound 1,

which is a potent S1R binder, returns a score of −9.140 kcal
mol−1, while compound 2 returns a score of −7.301 kcal
mol−1. The importance of the protonated amino group of
both molecules, which is highlighted by the SHAP analysis as
a key feature promoting binding, is corroborated by the
docking results. For both compounds, this group forms a
strong salt bridge reinforced by a hydrogen bond with E172.
Furthermore, the protonated moiety engages in a cation–π
interaction with F107. The atoms of compound 2 predicted to
be unfavorable for binding by the SHAP analysis correspond
to steric clashes in the docking pose, specifically with
residues T181 and A185. The alignment between the SHAP
values and docking results strengthens the reliability of our
explainability analysis, as both approaches consistently
identify the key interactions influencing binding affinity.

By implementing a second explainability analysis known
as Contrastive Explanation, we can further test the
robustness and stability of the predictions. This analysis
involves generating analogues of the input compound as a
first step; then these analogs are subjected to prediction by
the classifier, producing similar (same prediction) and
dissimilar (counterfactual) examples.61 For instance, Table 2
illustrates all the analogs generated for compounds 1 and 2
(shown in Fig. 4) along with the corresponding model
prediction. The results demonstrate consistent behavior: all

Fig. 4 SHAP analysis and docking simulations performed on two compounds belonging to the VS: CHEMBL1917704 (A), experimentally proved to
be a high-affinity S1R binder and CHEMBL1783464 (B), experimentally proved to be a low-affinity S1R binder. The left panel depicts the
substructures predicted to positively (negatively) influence ligand affinity. The docking poses and the relevant ligand–protein interaction are shown
in the right panel.
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the compounds generated from compound 1 (S(+)) are
predicted positively by the model, while those generated from
compound 2 (S(−)) are predicted negatively, each with high
prediction probabilities. These results strengthen the

robustness of the classifier, indicating that the model
remains stable in its predictions even when small structural
modifications are made to the input molecule. Noteworthily,
the Contrastive Explanation can also lead to the generation

Table 2 Contrastive Explanation-based analysis performed on two compounds belonging to the VS: CHEMBL1917704 (1), experimentally proved to be
a high-affinity S1R binder and CHEMBL1783464 (2) experimentally proved to be a low-affinity S1R binder

Analogues Prediction High affinity probability Analogues Prediction High affinity probability

1 S(+)

S(+) 0.74 S(+) 0.87

S(+) 0.73 S(+) 0.68

S(+) 0.92 S(+) 0.77

S(+) 0.77 S(+) 0.59

S(+) 0.74 S(+) 0.81

2 S(−)
S(−) 0.17 S(−) 0.09

S(−) 0.04 S(−) 0.04

S(−) 0.04 S(−) 0.12

S(−) 0.16 S(−) 0.08

S(−) 0.13 S(−) 0.08
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of counterfactuals, making this analysis also a valuable tool
for identifying the structural changes necessary to modify the
predictions and therefore, obtain valuable clues for design.

4. SIGMAP: a freely accessible web
platform

In this work we present SIGMAP, a freely accessible web
platform that hosts our top-performing classifier, based on
the SVM algorithm and Morgan fingerprints. The platform is
designed to facilitate virtual screening and allows users to
submit their query molecules in two main ways: either by
drawing the 2D structure of their molecule using the
integrated JSME canvas applet79 or by directly inputting the
SMILES string of the molecule into the designed text field.
For batch processing, users can upload a text file containing
a list of SMILES strings by accessing the “Massive” section.
Once the input is submitted, SIGMAP generates predictions

regarding the affinity of each compound toward the S1R
receptor. The prediction results are displayed as “YES” if the
classifier predicts high S1R affinity and “NO” if no affinity is
predicted. In cases of high affinity, a prediction confidence,
estimated by the KNIME predictor node, is also provided.
Additionally, the platform provides information on the
reliability of the predictions, based on the AD of the model.
When the query molecule is unique, SIGMAP also provides
the user with the results of both SHAP and Contrastive
Explanation-based analyses. Fig. 5 illustrates an example of
such an output. The top left section displays affinity
prediction results along with prediction confidence and
reliability. The top right section, labeled “Shapley Additive
exPlanations (SHAP) analysis”, presents the SHAP analysis
output, highlighting the molecule in blue and red to indicate
whether specific substructures positively or negatively affect
the affinity prediction toward S1R, respectively. Additionally,
in the bottom left section, identified with the “Contrastive

Fig. 5 Example of the output page returned by the SIGMAP web platform.
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Explanation” label, the user can explore the SMILES strings
of the generated molecules, each accompanied by affinity
predictions toward S1R, as well as their prediction confidence
and reliability. By clicking on a SMILES button, the
corresponding molecule is displayed in the “Generated
analogue” section in the bottom right section. Users can also
download the generated output as a text file. Noteworthily, a
link to download the output is sent directly to the user's
registered email address. The web platform also features a
“History” page, which keeps a detailed log of all user
executions. This page preserves both the input SMILES files
and their corresponding output, ensuring that users can
easily access past results.

5. Conclusions

In recent decades, machine learning approaches have
revolutionized medicinal chemistry, offering fast and reliable
tools that significantly enhance and support the development
of biologically active compounds. Despite the crucial
importance of S1R in various areas of pharmacological
research, there was a lack of explainable intelligent systems
to assist chemists in designing new ligands with potential
affinity for this receptor. To bridge this gap, we developed
several machine learning models able to predict S1R ligand
affinity. These models utilized five classification algorithms
(RF, K-NN, GB, XGB, and SVM) and five different molecular
fingerprints (AtomPair, Morgan, MACCS, Torsion, and CSFP)
for characterizing a dataset (SIGMA1-DB) comprising 2018
rigorously curated compounds extracted from ChEMBL v33.
Through a comprehensive validation procedure, the SVM
algorithm emerged as the top performer, achieving ACC and
AUC values of 0.90 when using Morgan as the fingerprint. To
enhance the interpretability of the classifier's predictions, we
implemented two independent XAI approaches: SHAP and
Contrastive Explanation. Notably, by employing Contrastive
Explanation analysis, we can generate analogs predicted to
outperform the starting query, thereby providing valuable
insights for designing new and more potent S1R ligands. The
top-performing model and the XAI analyses are available
through a user-friendly web platform called SIGMAP,
developed by our research team. To the best of our
knowledge, SIGMAP (https://www.ba.ic.cnr.it/softwareic/
sigmap/) is the first freely accessible tool that integrates high
predictive accuracy with transparent and interpretable
insights, specifically designed to predict the S1R affinity of
drug candidates.

Data availability

The following data are made available in the ESI:†
- Table reporting the parameters optimized for each

trained model based on the hyperparameter tuning
performed on a 5-CV.

- TS_SIGMA1-DB excel file containing the 1615 SMILES
strings (and the corresponding experimental values) of the

chemicals belonging to the SIGMA-DB dataset and used as a
training set.

- VS_SIGMA1-DB excel file containing the 403 SMILES
strings (and the corresponding experimental values) of the
chemicals belonging to the SIGMA-DB dataset and used as
validation.

- ES1 excel file containing the 46 SMILES strings (and the
corresponding experimental values) of the chemicals used as
an external set.

- ES2 excel file containing the 39 SMILES strings (and the
corresponding experimental values) of the chemicals used as
an external set.

SIGMAP is freely available in a GitHub repository (https://
github.com/alberdom88/SIGMAP).
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