
rsc.li/materials-advances

 Materials  
Advances
rsc.li/materials-advances

Volume 01
Number 1
February 2020
Pages 001-200

ISSN 2633-5409

PAPER
XXXXXXX XXXXXXX et al. 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

 Materials  
Advances
Accepted Manuscript

This is an Accepted Manuscript, which has been through the  
Royal Society of Chemistry peer review process and has been accepted 
for publication.

Accepted Manuscripts are published online shortly after acceptance, 
before technical editing, formatting and proof reading. Using this free 
service, authors can make their results available to the community, in 
citable form, before we publish the edited article. We will replace this 
Accepted Manuscript with the edited and formatted Advance Article as 
soon as it is available.

You can find more information about Accepted Manuscripts in the 
Information for Authors.

Please note that technical editing may introduce minor changes to the 
text and/or graphics, which may alter content. The journal’s standard 
Terms & Conditions and the Ethical guidelines still apply. In no event 
shall the Royal Society of Chemistry be held responsible for any errors 
or omissions in this Accepted Manuscript or any consequences arising 
from the use of any information it contains. 

View Article Online
View Journal

This article can be cited before page numbers have been issued, to do this please use:  C. Henkel, A.

Bouillant, J. Snoeijer and U. Thiele, Mater. Adv., 2025, DOI: 10.1039/D5MA00936G.

http://rsc.li/materials-advances
http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp
http://www.rsc.org/help/termsconditions.asp
http://www.rsc.org/publishing/journals/guidelines/
rsc.li/materials-advances
https://doi.org/10.1039/d5ma00936g
https://pubs.rsc.org/en/journals/journal/MA
http://crossmark.crossref.org/dialog/?doi=10.1039/D5MA00936G&domain=pdf&date_stamp=2025-12-08


Journal Name

Condensation on Soft Substrates: A Mesoscopic
Perspective

Christopher Henkel, ∗a Ambre Bouillant, b Jacco H. Snoeijer, c and Uwe Thiele ade f

We consider the condensation and evaporation of a volatile partially wetting liquid on a soft substrate
in contact with a homogeneously saturated gas phase. Recent experiments demonstrated a strong
dependence of nucleation density on the substrate softness. Motivated by these experiments, we
approach the problem considering both macroscale and mesoscale models. On the macroscale,
we employ thermodynamic considerations to determine the critical nuclei energies and the resulting
nucleation probabilities in the limits of rigid and liquid substrates. On the mesoscale, we use a gradient
dynamics model for a drop of volatile liquid on a soft substrate with Kelvin-Voigt viscoelasticity in
Winkler-foundation form. The governing energy functional incorporates elastic and interface energies
as well as bulk liquid energy. We show that nucleation probabilities obtained with the two models
agree for small supersaturation, but display differences when drop nuclei are small. Finally, we use
the mesoscopic model to investigate the condensation and evaporation dynamics of drops in the
intermediate elastic regime and relate the results to the experimental findings.

1 Introduction
When breathing against a cold window pane, one notices how
it becomes opaque. A close look reveals, that this results from
a rather dense random arrangement of numerous tiny drops that
scatter light. Such breath figures form on cool surfaces due to con-
densation of liquid from the adjacent vapor and are extensively
investigated1–5. Depending on the surface properties, the liquid
condenses into droplets or into a uniform film. The spontaneous
local gathering of vapor particles that initiate the formation of
drops of another thermodynamic phase is called nucleation. While
condensation, i.e., the clustering of vapor molecules into liquid
drops, is accessible to observation and study, it is triggered by nu-
cleation, a microscopic process that normaly occurs at scales that
make it challenging to study. Yet nucleation plays a central role
in a wide range of phenomena, from crystallization6, electron
condensation in solids7, tectonic events such as earthquakes8

and volcanic eruptions9, to meteorological processes like cloud
formation, snow, and rainfall10,11, pathological conditions such
as decompression sickness12, and even the formation of black
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holes13. In general, nucleation is important for phase transitions
of first order, which is a subject of great interdisciplinary interest
and practical importance. Since Gibbs achieved the first insights
into the matter14 various theories have been developed. The
widely used classical nucleation theory (CNT)15–18 determines
the energy cost of cluster formation based on purely macroscopic
quantities such as interface and bulk energies. The CNT is ex-
tended, e.g., by the dynamic nucleation theory (DNT) and by
the extended modified liquid drop (EMLD) model that incorpo-
rate translational motion and small fluctuations in the particle
number, respectively18–20. In contrast to these phenomenologi-
cal approaches, kinetic theory calculates the energy of cluster for-
mation by directly considering the molecular interactions on the
microscale thereby avoiding the use of macroscopic quantities.
Considering the particles to be hard shapes molecular dynamics
(MD) and Monte Carlo simulations are often utilized21–24. In
contrast, density functional theory (DFT) describes the system in
terms of a microscale ensemble-averaged density and is used, e.g.,
to consider colloidal crystals25. The direct observation of nuclei
of only a few molecules in size still remains an experimental chal-
lenge18,20.

Here, we consider how a soft substrate influences nucleation
and growth of sessile drops of a partially wetting liquid from
vapor, i.e., condensation onto soft substrates. It is known that
the ability of a substrate to deform under external pressure cru-
cially influences the nucleation density26. This observation is
confirmed by Ref. 27 using MD simulations. There, it was fur-
ther found that also condensation rate and heat transfer efficiency
increase with the softness of the substrate. It also affects the con-
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N2+H2O

Cooling stage

PDMS

Objective

G′ (Pa)

100 µm

(c)

(a)

T ≈ 5○C

T0 ≈ 20○C
(b)

Fig. 1 (a) Schematic of the experimental setup. A gel substrate (red)
is placed inside a controlled-humidity chamber and cooled down to Ts =
5○C using a Peltier element (green). (b) Nucleation density ψ as a
function of substrate softness quantified via the elasto-capillary length
ℓec, based on data from Ref. 31. The experiment used various PDMS
gels – Sylgard 184 with mixing ratios ranging from 10 ∶ 1 to 80 ∶ 1, CY52-
276 (Dow Corning) with ratios of 1.3 ∶ 1 and 1 ∶ 1, and PVS Elite16 (1:1).
Measurements were conducted at two imposed relative humidities: rH =
2.42 (+) and rH = 1.22 (△). Horizontal lines indicate the limiting cases of
a rigid substrate (red; nanometric PDMS brush grafted on a silicon wafer,
see Ref. 32) and a liquid-like substrate (blue; uncrosslinked PDMS). The
color gradient from red to blue indicates the transition between these
two limits. (c) Top-view images of breath figures formed on substrates
with different softness levels, taken at the onset of drop visibility. The
apparent nucleation density decreases with increasing substrate stiffness,
characterized by the shear storage modulus G′.

densation mode, i.e., whether drops or films are formed. Sharma
et al.28 observe that even though the overall condensation of
drops increases with the softness of the substrate, the growth of
individual drops may be reduced by cloaking effects, e.g., by un-
crosslinked PDMS chains leaking from the substrate. Further it
is found that coalescence is significantly delayed as the substrate
softness increases26,29 and it is confirmed by gradient dynamics
models that as well the coarsening mode is affected by the sub-
strate softness30.

Recently, experiments on dew formation presented in Ref. 31
were performed on substrates of different softness. There, flat ho-
mogeneous layers (millimetric thickness) of silicone elastomers
are deposited on a cooling stage in a chamber with controlled hu-
midity (mixture of water vapor and N2) as illustrated in Fig. 1(a).
Condensation is achieved by cooling down the gel while simulta-
neously fixing the chamber humidity and pressure until a phase
transition is induced [see App. A]. The threshold of phase tran-
sition is referred to as saturation. The impact of substrate elas-
ticity on dew formation is investigated by tuning the gel stiffness
through its crosslinking density. The breath figures are recorded
from above using a high resolution magnifying objective. Since
the resolution of the objective is ≈ 1µm the experiment does not
directly record the nucleation process but rather the subsequent
mesosopic dynamics. Fig. 1(c) provides examples of the resulting
breath figures, each taken as soon as drops are visible, for de-
creasing substrate softness (from left to right) quantified by the

shear storage modulus G′. As the latter increases, that is, with
decreasing elasto-capillary length ℓec = γ/G′, the initial number of
drops is found to decrease. Remarkably, once condensation has
started, there are no further nuclei forming in the dry regions be-
tween the already growing drops, which is due to the decrease of
vapor concentration below saturation in the proximity of the sub-
strate as discussed in Refs. 24,31. In Fig. 1(b) the drop density
ψ is displayed as a function of ℓec for two different humidities,
rH = 1.22 (△) and rH = 2.42 (+).* Remarkably, while the drop
density appears to be strongly affected by the substrate softness,
i.e., it increases with ℓec, it is barely affected by changes in the
supersaturation, that is the relative humidity rH at the substrate.
Consider Refs. 24,31 for a more extensive discussion regarding
the later stages of droplet condensation.

Further, in Refs. 33–36 it is predicted, that in the regime of
intermediate softness the contact angles of steady drops transit
smoothly between Young’s and Neumann’s laws, which is exper-
imentally confirmed (see Fig. 2)†. This transition in the con-
tact angle is reminiscent of the transition observed in the drop
density ψ when going from rigid to liquid-like substrates [cf.
Fig. 1(b)]. The cross-over between the Young regime and the
Neumann regime can be inferred from Fig. 2 to occur when the
elasto-capillary length becomes comparable to the drop base ra-
dius ℓec ∼ R (cf. Fig. 3). In Fig. 1(b) the transition is found at
ℓec ≈ 10 µm and thus elasticity is expected to play a role when
ℓec ≈ R ≈ 10 µm. This observation is enigmatic for the typical nu-
clei size at the employed humidities is known to be R∗ ≪ 10µm,
i.e., too small to feel the elasticity of the substrate. As the drops
grow larger, due to condensation, they automatically undergo a
size-controlled transition in ℓec/R and elasticity gains impact. The
transition shown in Fig. 2 may occur even before the diffusive
boundary layer has formed.

To investigate the role of elasticity in nucleation, we use a
mesoscopic gradient dynamics model37 similar to the one pre-
sented in Ref. 30, coupling a classic thin-film equation (TFE) for
a simple liquid38,39 to the dynamics of the soft adaptive substrate
employing a Kelvin-Voigt-type dynamics in Winkler-foundation
form. In comparison to Ref. 30, the model is extended to capture
condensation and evaporation applying the one-sided approach
of Refs. 40–43 for evaporating sessile drops. Thereby, the satu-
ration of the vapor phase is considered homogeneous as is the
case in the very early stages of the experiment where the nucle-
ated droplets are below the optical resolution of the equipment
and therefore experimentally inaccessible. The advantage of the
gradient dynamics approach is that it is derived directly from the
governing energy functional, which makes it very versatile and
easily adaptable to many scenarios. A somewhat similar model
has been used in Ref. 43 to study the dynamics of droplet growth
and coalescence due to imposed local influx in dependence of
the substrate softness and viscous damping. Here, the full curva-

* These values correspond to the relative humidity in the proximity of the substrate,
that is at T = 5○C and can be related to the relative humidity at different tempera-
tures, e.g., T0 = 20○C at the chamber roof, using Eq. (43).

† The droplets on which the angles are measured are above micron size and therefore
not nuclei, but rahter what they become after some time of condensation.
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ture formulation37 is used which more exactly describes the static
drop behavior, cf. Ref. 44. The model is utilized to investigate the
increase of nucleation density with increasing softness in an ex-
tended range of supersaturation that goes beyond the range con-
sidered in the experiment In particular, we consider values where
the size of the nuclei becomes comparable to the elasto-capillary
length.

First, in Sec. 2 the macroscopic CNT is used to estimate the nu-
cleation energy barrier in the limiting cases of perfectly rigid and
liquid substrates, considering unstable steady macroscopic drops
to represent the nuclei. In Sec. 3 the mesoscopic gradient dynam-
ics model is used to investigate the critical nucleus in the regime
of intermediate softness. We compare mesoscopic and macro-
scopic results in the liquid and rigid limits. Finally, the influence
of substrate softness on the nucleation energy barrier is investi-
gated in the context of the experimentally observed phenomena.

2 Macroscopic Nuclei
According to CNT the change in energy associated with the cre-
ation of a new phase is given by the difference in Gibbs free
energy G, implying constant temperature T , particle number N
and external pressure p18,45–48. The bulk contribution is given
by the difference ∆µ in chemical potentials, between initial and
final state, to which the interface energies are added. In the
present case of vapor condensing into liquid at a solid substrate,
the change in Gibbs free energy is (see App. B for details)18,46–48

Gmacro = γlvAlv+ γslAsl+ γsv(Asv−A′sv)−ρℓVℓ∆µ , (1)

with γij and Aij respectively being the energies and areas of the
liquid-vapor (lv), substrate-liquid (sl) and substrate-vapor (sv)
interfaces and the difference in chemical potentials per particle

10−2

20

40

60

80

100

120

ℓec/R
10−1 100 101 102

θ
lg
(○ )

Fig. 2 Liquid-gas contact angle θlg relative to the horizontal as a function
of the gel softness ℓec/R. Angles are measured on side-view images of
droplets with radii ranging from R ≈ 10 µm to ≈ 1 mm, i.e. recorded
at later stages, sitting on gels with storage modulus G′ ranging from
100 Pa to 106 Pa. The lightly shaded bands indicate the contact angles
experimentally determined on short PDMS brushes, i.e., in the rigid limit
(red), and on uncross-linked PDMS oligomers, representing the liquid-like
limit (blue) for the same material. Again, the red to blue color gradient
indicates the transition between these two limits.

is

∆µ = µv−µℓ = kBT ln(rH) . (2)

The substrate-vapor interface area of the initial dry substrate state
is A′sv and ρℓ is the particle density of the liquid. The Gibbs free
energy Eq. (1) combines surface energy penalties, which in case
of drop-like structures of size R scale with ∼ R2, with the decrease
in chemical potential per particle when changing from the vapor
to the liquid phase, scaling with the created volume ∼ R3. This
balance results in an energy barrier G∗ that must be overcome to
nucleate and which defines a critical size R∗. Since the nucleation
of droplets on a substrate is a stochastic process driven by random
fluctuations18 the nucleation probability P is estimated using a
Boltzmann factor

P ∼ exp(− G
∗

kBT
) . (3)

The ratio in the exponent relates the energy barrier G∗ to the ther-
mal energy kBT . In the following, we calculate this energy barrier
for a radially symmetric drop (w.r.t. the z-axis) of base radius R
sitting on a deformable substrate, extended in the (x,y)-plane as
shown in Fig. 3. In the limits of a perfectly rigid (ℓec = 0) and
liquid-like (ℓec =∞) substrate, elasticity can be neglected and the
equilibrium drop shape is exclusively governed by the interface
and bulk phase energies, i.e., it adapts spherical-cap shapes.

2.1 Rigid Limit

In the rigid limit the substrate is flat and the liquid-vapor inter-
face of a drop or nucleus takes the shape of a spherical cap with
curvature κlv as shown in Fig. 4(a). While the contact angle θY is
given by the interface energies according to Young’s law

γlv cosθY+ γsl = γsv , (4)

θlg
θsl

θsg θs

d2 r⃗

d2 s⃗sl

d2 s⃗lg

z

r

R

γlg

γsgγsl

Fig. 3 Sketch of a radially symmetric drop of partially wetting liquid
with base radius R. The spherical cap meets the elastic substrate along
a circular three phase contact line. The macroscopic contact angle θ is
governed by the energies γsv, γsl and γlv of the interfaces between the
respective phases. The ratio of a surface element ds and its projection
onto the (x,y)-plane defines the metric factor

√
1+(∇φ)2 of the respec-

tive profile φ(r).
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(a) (b) (c)

θY R
R

R
κlg

θY
θlg

θsl
κlg

κlg

κsl

R≪ ℓecR ≈ ℓecR≫ ℓec

ℓec

RIGID ELASTIC LIQUID-LIKE

Fig. 4 Characteristic drop shapes of partially wetting liquid on substrates of different softness. (a) The substrate is rigid and very resistant against
deformations R≫ ℓec. The drop adopts the shape of a spherical cap with curvature κlv and contact angle θY selected by Young’s law. (b) The substrate
is elastic and soft enough to allow for the formation of wetting ridges at the contact lines R ≈ ℓec but stiff enough to prevent the drop from sinking.
The local angles at the tip of the wetting ridge are given by Neumann’s law and as the softness increases the region rotates inwards such that the
liquid-vapor contact angle and curvature increasingly deviate from those in the rigid case. (c) The substrate is so soft that it is considered liquid-like
and elasticity is negligible R≪ ℓec. The drop resembles a liquid lens described by the intersection of two spherical caps with curvatures κlv and κsl.
The angles at the three-phase contact are still related by Neumann’s laws but the slope of the solid-liquid interface approached zero.

the curvature depends on the volume of the nucleus which is yet
to be determined. In terms of κlv and θY the volume is

V = 8π

3κ3
lv
(2+cosθY)(1−cosθY)2 , (5)

while the interface areas are

Alv =
8π

κ2
lv
(1−cosθY) , Asl =

4π

κ2
lv

sin2
θY . (6)

Since the substrate is perfectly flat, the total area, that is the area
A′sv of the dry reference state, is A′sv = Asv+Asl. With Eqs. (4) - (6)
the energy (1) becomes

Gmacro = γlv
4π

κ2
lv
(2−3cosθY+cos3

θY)

−ρℓ∆µ
8π

3κ3
lv
(2+cosθY)(1−cosθY)2 .

(7)

With (2+cosθY)(1−cosθY)2 = 2−3cosθY+cos3
θY we then find

Gmacro = π(2+cosθY)(1−cosθY)2
⎛
⎝

4γlv

κ2
lv
− 8ρ∆µ

3κ3
lv

⎞
⎠

= πg(θY)(γlvR2 sinθY−
1
3

R3
ρℓ∆µ) ,

(8)

where the base radius R = 2sinθY/κlv has been introduced and the
function

g(θ) = (2+cosθ)(1−cosθ)2/sin3
θ , (9)

is a geometric prefactor that monotonically increases with θ .
Therefore, the energy barrier increases with increasing hydropho-
bicity of the substrate, i.e. with increasing contact angle θY.

The critical nucleus has to satisfy ∂RGmacro = 0 and its resulting
base radius is

R∗ = 2γlv sinθY

ρℓ∆µ
. (10)

In consequence, at fixed ∆µ a nucleated drop of base radius R<R∗
will shrink (evaporate) leaving behind the dry state, whereas
a nucleus of base radius R > R∗ will grow (condense) without

bound. The corresponding energy barrier is

G∗macro = Gmacro(R∗) = 4πγ
3
lv

3(ρℓ∆µ)2 g(θY)sin3
θY

= π

3
γlvR∗2g(θY)sinθY .

(11)

With rH ≈ 2.41, γlv = 70 × 10−3 Jm−2, ρℓ = 3.34 × 1028 m−3 and
θY = 70○ the critical nucleus has a size of R∗ ≈ 1.166 nm with
an associated energy barrier G∗macro/kBT ≈ 30. Note, that the θY-
dependent factor of G∗macro in Eq. (11) increases monotonically
from g(θY)sin(θY)3 = 0 in the complete wetting case (θY = 0○) to
g(θY)sin(θY)3 = 4 in the non-wetting case (θY = 180○). In other
words, low contact angles will drastically reduce the nucleation
barrier.

2.2 Liquid-like Limit

In the liquid-like case, i.e., for ℓec →∞, the substrate is deformed
under the influence of the Laplace pressure caused by the curved
liquid-vapor interface until it is balanced by the Laplace pressure
of the substrate-liquid interface. This results in the shape of a
liquid lens as shown in Fig. 4(c) characterized by constant curva-
tures of both interfaces. While the drop sinks into the substrate
the liquid-vapor and substrate-liquid interfaces form angles θlv

and θsl w.r.t. the horizontal, respectively. The angles are again
governed by the interface energies according to the components
of Neumann’s law:

horizontal: γlv cosθlv+ γsl cosθsl = γsv , (12)

vertical: γlv sinθlv = γsl sinθsl . (13)

Note, that the substrate beyond the drop is considered to remain
perfectly horizontal. Similar to Eq. (5) the lens volume can be
expressed in terms of the curvatures and Neumann angles

V = 8π

3κ3
lv
(2+cosθlv)(1−cosθlv)2 +

8π

3κ3
sl
(2+cosθsl)(1−cosθsl)2 .

(14)
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The balance of Laplace pressures results in a fixed ratio of cur-
vatures given by the inverse ratio of the corresponding interface
energies

− κsl
κlv
= γlv

γsl
= sinθsl

sinθlv
, (15)

with the second equal sign resulting from Eq. (13). Note, that
the curvature of a profile is considered negative if it is convex,
as is the case for the substrate-liquid interface beneath the drop,
and positive if it is concave, like the liquid-vapor interface (cf.
Fig. 4). In consequence, the difference in the Gibbs free energy
(1) becomes

Gmacro = π[g(θlv)+g(θsl)](γlvR2 sinθlv−
1
3

R3
ρℓ∆µ) , (16)

where g(θlv)+g(θsl) = 3V/(πR3). The critical radius and energy
are then

R∗ = 2γlv sinθlv
ρℓ∆µ

and (17)

G∗macro =
4πγ

3
lv

3(ρℓ∆µ)2 [g(θlv)+g(θsl)]sin3
θlv

= πγlvR∗2

3
[g(θlv)+g(θsl)]sinθlv ,

(18)

respectively. Note, that the form of the expression for the crit-
ical radius R∗ is identical in the rigid and liquid-like limit [cf.
Eqs. (10) and (17)] and that the energy for the case of a rigid
substrate [Eq. (8)] is recovered from Eq. (16) in the limit θlv = θY

and g(θsl) = 0. Further, the ratio G∗rigid/G∗liquid ≥ 1 and depends
only on the interface energies but not on supersaturation, i.e.,
not on R∗ and ∆µ. For example, if the interface energies are
γlv = 70×10−3 N/m, γsl = 48×10−3 N/m and γsv = 72×10−3 N/m the
nucleation barrier differs by a factor G∗rigid/G∗liquid = 2.28 between
the rigid and liquid-like case.

θlg

θslθs

d2 r⃗

d2 s⃗sl

d2 s⃗lg

z

r

R
ξ

h

γlg

γsl
f (h) ≠ 0

θsg

h−

Fig. 5 Sketch of a mesoscopic radially symmetric drop of partially wetting
liquid on a liquid-like substrate. The local liquid layer thickness and the
substrate-liquid interface are described by scalar functions h(r) and ξ(r),
respectively. Both resemble spherical caps centered at r = 0 and transit
into the precursor layer of height h− (see the zoom) along a circular three
phase contact region at r =R. The macroscopic base radius R is estimated
by the position of maximal curvature of the liquid-vapor interface and
the solid-gas interface energy is modeled by the wetting energy f (h).

−0.4
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h2 a/
A

h−
h+

(a)

f (h)− ph

0.5 1.0 1.5 2.0 2.5 3.0
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0.0

0.2

Π
(h

)
h3 a/

A h−
h+

(b) Π(h)+ p

0.0 0.2

p/Cθ

0.5

1.0

1.5

2.0

2.5

3.0

h/
h a

h−

h+

(c)

Fig. 6 Dimensionless (a) wetting energy f and (b) Derjaguin (disjoining)
pressure Π as functions of the film thickness h with Cθ = 1. Since Π=−∂h f
the zeros of the Π correspond to the extrema of f and reflect steady film
states. At saturation, i.e. p = 0 (thin lines), the functions allow for
only one stable steady film state h− ()). For p > 0, e.g., p = 0.1 (thick
lines). a second unstable film state h+ (▾) exists. (c) With increasing
p the two states approach each other and annihilate in a saddle-node
bifurcation (◆). The sign of Π+ p determines whether the film grows
due to condensation or shrinks by evaporation (gray shaded), as indicated
by the arrows for p = 0.1.

3 Mesoscopic Model
In contrast to the rigid and liquid-like limit, in the intermediate
elastic regime the substrate profile is not analytically known. We
denote the corresponding radially symmetric height profiles by
χ(r) for the liquid-vapor interface and ξ(r) for the substrate pro-
file. The liquid layer thickness profile is then h(r) = χ(r)− ξ(r)
(see Fig. 5). So far, only steady macroscopic drops have been
considered. We now formulate a fully dynamic mesoscopic model
that is applicable in the intermediate elastic regime as well as in
the rigid and liquid-like limits. To do so, we include the meso-
scopic wetting energy f (h) that governs the effective interaction
of the solid-liquid and liquid-vapor interface. It is assumed to re-
sult from long-range Van der Waals interactions and short-range
repulsive interactions

f (h) = A
2h2 [

2
5
(ha

h
)

3
−1] . (19)

The minimum of f (h) at h = ha [cf. thin lines in Fig. 6(a)] ensures
that a macroscopically dry substrate is always covered by an ultra-
thin adsorption layer of height ha, the energy of which has to be
taken into account. The precise thickness h− of this layer depends
on supersaturation and equals ha only for ∆µ = 0 as will be fur-
ther discussed in Sec. 3.1. In consequence, in the mesoscopic
description, the macroscopic substrate-vapor interface energy is
represented by the sum of the energies of the adsorption layer,
substrate-liquid interface and liquid-vapor interface.

Demanding consistency between the meso- and macroscopic
descriptions at ∆µ = 0 leads to the condition49

γsv = γlv+ γsl+ f (ha) . (20)

Then, together with Young’s law (4), the Hamaker constant A
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corresponds to

A = 10
3

h2
aγlv(1−cosθY) . (21)

Further, the energy associated with the elastic deformation of
the substrate is now taken into account. Employing the Winkler-
foundation model50 it is given by

Fel =
1

2S ∫ ξ
2(r) 2πr dr , (22)

with S being an effective softness, i.e., the inverse of the elastic
stiffness. This formulation effectively describes the substrate as a
continuous spring and follows from the fundamental solution for
a finite-thickness layer with linear elasticity exposed to a localized
force at the free surface. For a detailed discussion cf. Ref. 30.

The complete energy functional combines Eqs. (1) and (22),
thereby expressing the interface areas and volumes in terms of h
and ξ and the substrate-vapor interface energy γsv in terms of the
wetting potential f [Eq. (20) and Eq. (19)]. The energy Gmeso of
a substrate with liquid coverage (drop or thick film) relative to
the reference state of a macroscopically dry flat substrate is given
by

Gmeso = Gwet
meso − Gdry

meso , (23)

with

Gwet
meso =2π∫

L

0
[γlv

√
1+(∂rh+∂rξ)2

+[γsl+ f (h)]
√

1+(∂rξ)2−ρℓ∆µh+ ξ
2

2S
]rdr ,

(24)

Gdry
meso = πL2 [γlv+ γsl+ f (h−)−ρℓ∆µh−] , (25)

where the domain has been restricted to a circular area of radius
L≫ R. The dry substrate state is characterized by h = h−(∆µ).
Note, that the constant ρ∆µ can either be seen as an imposed
chemical potential (relative humidity) or as a Lagrange multiplier
for volume conservation

ρℓ∆µ∫
L

0
(h−h0)2πr dr = ρℓ∆µ∆V = 0 , (26)

with h0 being an arbitrary mean liquid layer thickness that is to
be conserved.

The energy is extremized by calculating its variations w.r.t. the
variables h and ξ yielding

δGmeso

δh
= − γlvκ(h+ξ)−Π(h)

√
1+(∂rξ)2−ρℓ∆µ (27)

δGmeso

δξ
= − γlvκ(h+ξ)−(1

r
+∂r)

⎛
⎝
[γsl+ f (h)]∂r(h+ξ)√

1+(∂rh+∂rξ)2
⎞
⎠
+ 1

S
ξ

(28)

with the local curvature κ(ϕ) = ( 1
r +∂r)( ∂rϕ√

1+(∂rϕ)2
) of a field

ϕ and the Derjaguin (disjoining) pressure Π(h) = −∂h f (h) (cf.

Fig. 6).‡ Note, that for h≫ ha one has Π→ 0 and Eq. (27) depends
only on χ = h+ξ , indicating that (at uniform supersaturation) the
liquid-vapor interface of a steady drop always forms a spherical
cap of curvature κlv = −ρℓ∆µ/γlv, entirely independent of elastic-
ity. In consequence, at fixed contact angles also the volume of a
steady drop is directly determined by the supersaturation.

To capture the time evolution we employ a gradient dynamic
approach30,37,51, i.e., we use the kinetic equations

∂h
∂ t
= ∇⋅[Q(h)∇δGmeso

δh
]−M

δGmeso

δh
, (29)

∂ξ

∂ t
= − 1

ζ

δGmeso

δξ
. (30)

The dynamics of the liquid layer thickness h corresponds to a
thin-film equation with mobility Q(h) = h3

3η
and dynamic viscos-

ity η
52 which is extended by a non-conserved term that incor-

porates phase transition-limited mass exchange between liquid
and vapor37,42,53 driven by the variation δG/δh with the transfer
mobility M. For a discussion of other evaporation models see Ref.
54. The dynamics of the substrate corresponds to the Kelvin-Voigt
model and describes an exponential relaxation in time scaled by
the effective substrate viscosity ζ

30. To reduce the number of
parameters, the equations are non-dimensionalized using charac-
teristic length and time scales

t = T t̃ , r = har̃ , ξ = haξ̃ , h = hah̃ . (31)

with T = 3ηha/γlv. After dropping the tildes one obtains

∂th = −(
1
r
+∂r)(h3

∂r [κ(h+ξ)+Cθ Π(h)
√

1+(∂rξ)2])

+m[κ(h+ξ)+Cθ Π(h)
√

1+(∂rξ)2+ p]
(32)

∂tξ =
1
τ

⎡⎢⎢⎢⎢⎣
κ(h+ξ)+(1

r
+∂r)

⎛
⎝
[σ +Cθ f (h)]∂rξ√

1+(∂rξ)2
⎞
⎠
− ξ

s

⎤⎥⎥⎥⎥⎦
(33)

with the dimensionless parameters

Cθ =
A

γlvh2
a
= 10

3
(1−cosθY) , p = ha

ρℓ∆µ

γlv
= ρℓh

3
a log(rH) = haκ

∗
lv ,

τ = ζ ha

γlvT
= ζ

3η
, m = 3η

ha
M , σ = γsl

γlv
, s = γlvS

h2
a

. (34)

Here, κ
∗
lv = 2sinθlv/R∗ is the predicted curvature of the liquid-

vapor interface of the macroscopic critical nucleus [Eq. (17)].
From here on, p refers to the (dimensionless) supersaturation,
defined above. The thickness of the adsorption layer is chosen
as the thermal capillary length ha =

√
kBT/γlv, which is used in

molecular kinetic theory (MKT) of wetting and capillary wave
theory (CWT)55–57. It scales the thermal fluctuation of the liquid-
vapor interface and in that sense the diffusivity of the latter. From
an energetic perspective it defines the scale at which the thermal

‡ Thereby, κ(h+ξ) corresponds to the curvature κlv and κ(ξ) to κsl.
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energy competes with the energy penalty associated with an in-
creased interfacial area due to the interface tension γlvh2

a = kBT .
Hence, in the following all energies are expressed in terms of the
thermal energy kBT . With O(γ) ∼ 10−2 N/m and O(T) ∼ 102 K it
follows that O(ha) ∼ 10−9 m. The elastocapillary length used in
Fig. 4 is related to the softness s by30

s = ( ℓec

ha
)

2
. (35)

The shape of a steady drop sitting on an elastic substrate and the
profile of the latter are usually characterized by the ratio of elas-
tocapillary length to drop size, e.g., ℓec/R or ℓec/ 3

√
V [cf. Fig. 4].§

3.1 Steady Film States

Before turning to the critical nuclei, we consider the case of a
steady liquid layer of uniform thickness h(r) = h0 on an undis-
turbed flat substrate ξ(r) = 0. Then, the Laplace pressures vanish
and the dimensionless total pressures [Eqs. (27) and (28)] reduce
to

δGmeso

δh
= −Cθ Π(h0)− p ,

δGmeso

δξ
= 0 . (36)

In Fig. 6 (b) the total pressure δGmeso
δh [Eq. (36)] is shown as a

function of uniform liquid layer thickness for p = 0.1. Fig. 6 (a)
displays the associated energy f (h)− ph. The respective thin lines
give the case p = 0. According to Eq. (36) a steady film state
may only exist if the supersaturation is balanced by the Derjaguin
pressure, leading to

−Π(h0) =
p

Cθ

, i.e., h± = [Cθ

2p
(1±
√

1−4
p

Cθ

)]
1
3

. (37)

Hence, two different steady film states may exist depending on
the value of p, controlled by the relative humidity rH. The ad-
sorption layer height h− represents the dry substrate state and
corresponds to a minimum in the energy f (h)− ph, i.e., it is lin-
early stable [cf. Fig. 6 (c)]. Note, that, as h− changes with p,
the value of f (h−) changes as well resulting in turn in an in-
creased substrate-vapor interface energy, according to the con-
sistency condition (20).

From Eq. (37) it is found, that in the limit p→ 0 the liquid layer
thickness either diverges to h+→∞ or becomes h− = 1, i.e., h− = ha

in dimensional terms. From there, the two flat film states asymp-
totically follow h− ≈ 1+ p/3Cθ and h+ ≈ (Cθ /p)1/3. Increasing the
supersaturation to p > 0 the pressure is correspondingly shifted
while the energy is tilted by the linear term −ph. This results in a
second zero crossing of the pressure, i.e., an additional maximum
of the energy, associated with h+. The latter is hence unstable
and represents a threshold similar to a nucleus but for uniform
film states, that is, every uniform film of thickness h > h+ grows

§ It should be kept in mind, that at constant supersaturation p the volume V∗ and thus
also the radius R∗ of the critical nucleus are unknown functions of the softness s. In
consequence, the ratios ℓec/R∗ and ℓec/ 3√V∗ can not be assumed to be ∼√s in such
a scenario.

by condensation while for h < h+ it shrinks by evaporation until
the dry state h− is reached. As p increases further, h− and h+ ap-
proach each other until they finally meet and vanish in a saddle-
node bifurcation at pc =−Πmin =Cθ /4 where h± = 3

√
2 [Eq. (37)] as

shown in Fig. 6 (c). For p > −Πmin the Derjaguin pressure cannot
compete with the supersaturation any more and nothing prevents
the vapor from condensing into the liquid film.

3.2 Critical Nuclei

3.2.1 Numerical Approach and Parameters

The mesoscopic model is now utilized to explore the critical nu-
clei in the regime of intermediate elasticity by numerically solv-
ing Eqs. (32) and (33). To this end, the open source C++ library
OOMPH-LIB is used to perform parameter continuation and time
simulations. As discussed before, the critical nucleus is associated
with a maximum of the Gibbs free energy G. Thus, in the meso-
scopic model one has to solve δGmeso

δh = δGmeso
δξ
= 0. To do so numeri-

cally, by using a Newton solver, a proper starting state is required,
which has to closely resemble the final solution. While in the rigid
and liquid-like limit the macroscopic spherical cap profiles might
be sufficiently suited, this is usually not the case in the interme-
diate elastic regime 0 < s <∞. Further the critical nucleus cannot
be found using time simulations as it is associated with a maxi-
mum of the Gibbs free energy and thus unstable. Therefore, we
make use of a trick; Instead of an isothermal-isobaric ensemble,
a canonical ensemble is considered. The drop state then corre-
sponds to a minimum of the Helmholtz free energy and can thus
be approached using time simulations. Thereby, the supersatu-
ration is used as a Lagrange multiplier and adapts freely during
the simulation to enforce conservation of an imposed volume V0.
The found stable steady drop corresponds to a critical nucleus in
the isothermal-isobaric ensemble if the supersaturation is set to
p = δF

δh .

From this given critical nucleus, a continuation routine may be
used to obtain the critical nucleus at a specific value of p. Such
continuation techniques rely on the concept that small changes in
a parameter, e.g., p, cause only small changes to a steady state
in turn. Hence, if a steady state is known for a given parameter
value p0, it is assumed to be well suited as initial condition to find
the steady state at p = p0+∆p if ∆p is sufficiently small. This way,
a steady state can be followed in parameter space58–60.

For all results the parameters are fixed to the values

γlv = 70×10−3 N/m , γsl = 48×10−3 N/m , γsv = 72×10−3 N/m

ρ = 3.34×1028 m−3 , kBT = 3.8×10−21 kgm2 s−2 , rH = 1.055
(38)

if not stated otherwise. The adsorption layer thickness is ha =√
kBT/γlv = 2.33× 10−10 m. The corresponding values of the di-

mensionless parameters are p ≈ 0.0226, Cθ ≈ 2.2 and σ ≈ 0.6857.
Note, that in this setting a steady drop on a rigid substrate ex-
hibits θY = 70○ and R∗/ha ≈ 83.
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3.2.2 Consistency in the Rigid and Liquid Limit

To validate our numerical results, first, the mesoscopic pendant
of the macroscopic radius-dependent energy Gmacro(R) [Eq. (16)]
is calculated for comparison. In the mesoscopic picture, the base
radius R of a steady drop, i.e., a critical nucleus, is not known
a priori. However, the macroscopic calculations in the rigid and
liquid-like cases provide reasonable estimates also for the elas-
tic regime, since R is assumed to transit monotonically between
these two limits. Since there is no sharp three phase contact line
in the mesoscopic description, the base radius is instead defined
by the position R of maximal curvature of the liquid-vapor in-
terface, i.e., κ(h+ ξ)∣r=R = max[κ(h+ ξ)] (cf. Fig. 5), which is
equivalent to Π(h)∣r=R =min[Π(h)]. It is thus encoded in the pro-
files h and ξ such that Gmeso[h,ξ ] can be seen as Gmeso(R). Note,
that the adsorption layer height h− specifies a lower bound for
the liquid layer thickness h, which in turn imposes a restriction to
the minimal critical nucleus size min(R∗) ∼ h−, in contrast to the
macroscopic picture where no such limit exists. This restriction
in turn sets a critical supersaturation pc, since R∗ ∼ p−1, beyond
which no steady nucleus states are possible anymore. The energy
Gmeso(R) can be calculated in two different ways:

1. QUASI-STATIC RELAXATION: In the first method, we consider
the dynamics of a drop state as given by Eqs. (32) and (33)
using a very small transfer mobility m such that all hydrody-
namic relaxation processes due to capillarity and wettability
(the conserved part of the dynamics) take place much faster
than the exchange of mass between the phases. Starting
from the critical nucleus state, the liquid height profile h is
disturbed using white noise with a small positive or negative
mean to nudge condensation or evaporation, respectively.
While the drop then slowly shrinks or grows, the base radius
and energy are calculated. Due to the very slow mass trans-
fer, the drop is considered quasi-static during the process,

0 20 40 60 80 100 120 140

R/ha

−1.0

−0.5

0.0

0.5

1.0

G/k
B

T

×104

QUASI STATIC CONTINUATION

rigid
elastic
liquid-like

rigid
liquid-like
macro. analytic

Fig. 7 Comparison of the macroscopic energy Gmacro and mesoscopic
energy Gmeso as functions of the base radius R. The macroscopic energies
are obtained analytically and plotted as dashed lines for the liquid-like
(blue) and rigid (red) limit respectively. The mesoscopic energies are
calculated using quasi-static time simulations (1st method, solid lines)
and continuation (2nd method, + symbols). The critical radii and the
energetic maxima are indicated by the ▾ symbols. The mesoscopic model
is also used to capture the regime of intermediate elasticity, here the
quasi-static method is used for s = 103 (dark purple curve).

which allows for Gmeso(R) to be faithfully recovered.

2. CONTINUATION: In the second method, continuation is used
to trace the critical nucleus state over a range of p. As the
size of the critical nucleus is R∗(p) ∼ p−1, a continuation in p
effectively corresponds to a continuation in R∗. Inserting the
p values from the continuation into Eqs. (24) and (25) along
with the corresponding profiles h∗(r; p) and ξ

∗(r; p) gives
the nucleation energy barrier as a function of supersatura-
tion or base radius Gmeso[h∗(r; p),ξ∗(r, p); p] → G∗meso(p)⇔
G∗meso(R). However, right now we are not looking for the
energy barrier G∗meso(R) but for Gmeso(R), the two of which
differ only by the value of p used in the calculation, at oth-
erwise fixed parameters. Basically we ask: How does the
energy of the critical nucleus characterized by h∗ and ξ

∗
look like, if we evaluate it at another value of p than the one
at which it is a steady state? From Eqs. (24) and (25) it is
seen, that the difference in Gmeso[h,ξ ; p] caused by a change
∆p is given by

Gmeso[h,ξ ; p]−Gmeso[h,ξ ; p+∆p] =2π∫ ∆p(h−h−) rdr.

(39)

Hence, the energy barriers G∗meso[h∗(r; p),ξ∗(r; p); p] obtain
for a set of values p during the continuation can be mapped
to an arbitrary value p̃ to obtain

Gmeso[h∗(r; p),ξ∗(r; p); p̃] = G∗meso[h∗(r; p),ξ∗(r; p); p]

+2π∫ (p− p̃)(h−h−) rdr .

(40)

Fig. 7 shows Gmeso as a function of drop radius in the liquid limit
(blue), the rigid limit (red) and for an intermediate elastic case
(purple). Both described methods are compared to the macro-
scopic result. While the mesoscopic values obtained by contin-
uation (+ symbols) agree very well with the ones obtained by
the quasi-static approach (solid lines), both are slightly smaller
than the macroscopic analytical predictions (black dashed). This
results from the differences between the macroscopic and meso-
scopic nucleus profiles in the contact line region.¶ More impor-
tantly, the positions of the energy maxima, i.e., the critical radii
R∗ (marked by▾), are correctly recovered. The overall agreement
between macroscopic and mesoscopic model is quite satisfactory,
allowing us to use the latter for exploring the critical nucleus char-
acteristics in the elastic regime. The purple line in Fig. 7 shows
the energy as obtained by the first method for an exemplary inter-
mediate softness s = 103 and lies between the rigid and liquid-like
limits, as expected.

3.2.3 Influence of Supersaturation and Elasticity

Key to the investigation of the nucleation probability are the crit-
ical nuclei, i.e., the steady states corresponding to the maxima

¶ This difference is constant and does not depend on drop size. It therefore becomes
less important as the drop size and the associated energies increase.
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in Fig. 7. The corresponding results obtained from the continu-
ation in supersaturation p as explained in Sec. 3.2.2, are shown
in Fig. 8(a), giving the volume as a function of p on a log-log
scale. The two flat film states h− and h+ discussed in Sec. 3.1 are
given as black solid and dashed lines, respectively. The volumes
are given by V± = πh±L2. The volumes of the critical nuclei are
shown for the rigid (red) and liquid (blue) limit. Thereby, the
macroscopically obtained results (thin lines) [Eq. (5) and (14)]
are compared to the mesoscopically obtained ones (thick lines).
The volumes are obtained by integration of the numerically de-
termined thickness profiles, V = ∫

L
0 2πhr dr. The volumes of all

states, except for h−, increase with decreasing supersaturation p.
In the low p limit, i.e., at large volumes, the macroscopic and
mesoscopic critical nucleus states well agree and show the pre-
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Fig. 8 Volume of the mesoscopic flat uniform steady film states (black)
and of the critical nuclei in the rigid (red) and liquid-like (blue) limit
as a function of the supersaturation p. (a) The total volume of the
steady states, which in the mesoscopic picture includes the adsorption
layer and therefor depends on system size. For small p the mesoscopic
(thick lines) and macroscopic (thin lines) results agree and recover the
scaling law V ∼ p−3. For larger p, the mesoscopic nuclei deviate form
the macroscopic ones. All branches of mesoscopic states end at or near
the saddle-node bifurcation of the film states (◆ symbol). (b) The inset
gives the effective condensed volume, namely the volume above h−, as a
function of p in the range close to the bifurcation shaded gray in (a). The
numerical domain was restricted to circular region of radius L = 500ha.
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Fig. 9 Nucleation energy barrier G∗ as a function of supersaturation p.
The presented data are the same as in Fig. 8.

Fig. 10 Shape of a mesoscopic critical nucleus on an elastic substrate
for p ≈ pc =Cθ /4. The profiles h and ξ exhibit only slight modulations ofO(ha) and barely resemble spherical caps.

dicted scaling V ∼ p−3. As the nucleus size decreases (increasing
p), the mesoscopic results deviate from the macroscopic predic-
tions (see Sec. 3.2), approach Vdry = πh−L2, and eventually end in
a pitchfork bifurcation, very close to the saddle-node bifurcation
of the uniform states (◆ symbol). Note further, that the volumes
of the mesoscopic states all depend on the system size L, since
the adsorption layer, which is present in the macroscopically dry
areas, contributes with a volume per unit area ha. Therefore, we
also provide in the inset Fig. 8(b) the effective condensed volume
V∗eff =V∗−πh−L2 for the mesoscopic states, i.e., the volume above
the adsorption layer. This measure is independent of system size.

Fig. 8(b) shows an better agreement of mesoscopic and macro-
scopic results that is maintained up to higher supersaturation.
Only as pc = Cθ /4 is approached a clear deviation is visible.
Linear stability analysis for an infinite domain size shows, that
the bifurcation point where the branch of mesoscopic critical
nuclei emerges coincides with the saddle-node bifurcation. For
a finite domain, however, the bifurcation is shifted a bit along
the h+ branch. Most remarkably, this bifurcation is then found
at different positions (marked by *) in the rigid and liquid-like
limit. Again, the disagreement of macroscopic and mesoscopic
model for p→Cθ /4 is assumably caused by the different nucleus
shapes due to the diffuse contact region present in the latter,
which gains impact as the nucleus size decreases.

In the same way, the nucleation barrier can be calculated
from the mesoscopic profiles using Eqs. (24) and (25) and
compared to the macroscopic prediction Eq. (18). In Fig. 9 the
energy barrier is shown as a function of supersaturation (using
the same line styles as in Fig. 8). Again, both levels of description
agree well in the small p limit, recovering the predicted power
law G∗meso ∼ p−2. The barrier increases with decreasing supersatu-
ration in agreement with Sec. 3.2. Beyond that, the mesoscopic
model estimates the energy barrier for p→ pc to be up to several
orders of magnitude smaller than the macroscopic value. This
indicates, that the CNT, i.e., the employed macroscopic model,
strongly underestimates the nucleation probability close to the
critical point. In Fig. 10 a mesoscopic critical nucleus on a
soft substrate is shown for p ≈ pc. At pc = Cθ /4 the mesoscopic
nucleation energy barrier even vanishes, such that the vapor
condenses uncontrollably into the liquid phase for p > pc. The
dimensionless critical supersaturation pc =Cθ /4 translates to the
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Fig. 11 Threshold energy as a function of substrate softness at fixed
supersaturation p = 0.1. The energy barrier decreases with increasing
softness, resulting in a strongly increased nucleation probability. Note,
that the transition takes place at about ℓec ∼ R∗.

critical relative humidity

rc
H = exp(5

6
γsl+ γlv− γsv

ργlvh3
a
) = exp(5

6

√
γlv

kBT
γlv+ γsl− γsv

ρkBT
) , (41)

which for the values given in Eq. (38) is rc
H ≈ 3.6553.

Finally, the mesoscopic model is used to investigate the influ-
ence of elasticity on the nucleation probability. Once again, con-
tinuation is employed, however, this time we explore the sub-
strate softness ℓec/R∗ at fixed supersaturation p. The resulting
energy barrier is displayed in Fig. 11. With the transition from
the rigid to the liquid-like limit, i.e. with increasing softness,
the energy barrier decreases by a factor greater than 2. This de-
crease in the energy barrier is amplified through the Boltzmann
exponent [Eq. (3)], and may therefore strongly affect the nucle-
ation probability and, consequently, the observed droplet density,
(qualitatively) explaining recent observations in 31. Note that
the transition occurs approximately when R∗ ∼ ℓec.

4 Conclusion
Recent experiments showed that the nucleation density of dew is
strongly affected by the softness of the elastic substrate controlled
by the crosslinking ratio of a gel. The nucleation probability can
be predicted as a Boltzmann factor and is therefore governed by
the energy barrier G∗ given by the critical nucleus. This barrier
in Gibbs free energy has been calculated in the macroscopic pic-
ture in both, the rigid and the liquid-like limit. For the given
interface energies the nucleation energy in the liquid-like limit
is about half the one in the rigid limit. To further explore the
regime of intermediate elasticity, a mesoscopic gradient dynamics
model has been employed to determine the energy as a function
of supersaturation p and softness ℓec/R∗. The macroscopic and
mesoscopic models were found to agree in the limit of rigid and
liquid substrates, as long as the critical nucleus is of sufficiently
large volume, i.e., when a relatively small supersaturation is con-
sidered. Both models predict a decrease in the energy barrier
with increasing supersaturation, indicating an overall increased
nucleation density at higher supersaturation. At large supersat-

uration, the macroscopic model considerably overestimates the
energy barrier by several orders of magnitude as compared to
the mesoscopic theory, resulting in an underestimated nucleation
probability. This deviation is caused by the difference in nucleus
shape; while mesoscopic nuclei exhibit diffuse contact regions
that increasingly influence their shape as R∗ → h−, the shape of
macroscopic nuclei is (in the rigid and the liquid-like limit) in-
variant under changes in size, which is most likely not justified as
microscopic scales are approached. Next, the change of the en-
ergy barrier with increasing substrate softness at fixed supersat-
uration has been investigated using the mesoscopic model. The
decrease in the energy barrier has been shown to coincide with
the transition of contact angles from Young (rigid) to Neumann
(liquid-like) at ℓec ∼ R∗. However, in the experiments the increase
in drop number occurred in the range 10−7m < ℓec < 10−3m and
since the critical nuclei are considered to be of nanometer size, it
is still unclear why nucleation depends on the substrate softness
at all. Beyond that, the critical nucleus volume is found to de-
crease with the substrate softness, allowing for the formation of
more nuclei if the vapor access is limited, e.g., by slow transport
in the gas phase.

Finally, the nucleation energy barriers, even those predicted by
the mesoscopic model, are about two orders of magnitude too
large to satisfactorily explain the experimentally observed nucle-
ation densities, even though the tendency with changing softness
fits qualitatively. To appreciate the implications of such large en-
ergy barriers, we consider the resulting nucleation probabilities
in the rigid and liquid-like regimes, for which the difference in
energy barriers is about 50%. Using the Boltzmann factor to esti-
mate the nucleation probability would for p = 0.1 yield

prigid

pliq.
∼ exp

⎛
⎝
G∗liq.
kBT
−
G∗rigid

kBT
⎞
⎠
< 10−60 . (42)

A similar argument can be applied to the comparison of the en-
ergy barrier at different p, resulting in huge differences in the
nucleation probability and indicating a strong dependence of the
nucleation rate on the supersaturation, which could not be ob-
served in the experiments. That being said, it was found that the
mesoscopic nucleation energy barrier drastically decreases as pc

is approached and reaches O(1) at about p ≈ 1
2 which translates

to rH ≈ 3.2657 or r0
H = 1.2184. The behavior at large p depends

strongly on the nucleus shape and, in turn, on the functional form
of the wetting potential f (h) - many different forms are discussed
in the literature38–42,49,52–54,58. Further, the range of attractive
microscopic interactions is determined by the rate at which f con-
verges to zero as h increases. Increasing this range increases the
width of the contact region, which in turn causes the energy bar-
rier to fall off quicker as pc is approached.

All of this points towards the incompleteness of the procedure
to estimate the nucleation probability using only the Boltzmann
factor. As discussed in Ref. 31 the relation between the observed
drops and the nucleation rate is much more intricate than that.
On the one hand, the classical nucleation theory is a strongly ap-
proximated description that considers macroscopic concepts like
interface energies. The validity of the latter is at least question-
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able in the context of microscopic nuclei of only a few particles
in size, which renders the entire CNT obsolete. Even though the
mesoscopic model accounts for the influence of microscopic in-
teractions in terms of the wetting potential, the use of a more ad-
vanced model, e.g., the dynamic nucleation theory (DNT) or the
extended modified liquid drop (EMLD) model or both, might de-
liver more satisfying results. On the other hand, the experimental
capabilities of capturing the nucleation process are strongly con-
fined with regard to spatial as well as temporal resolution, both
of which are of importance. In consequence, it cannot be ruled
out that other physical processes are interfering. In particular,
the halted nucleation of new drops in the dry regions of the ini-
tial breath figure is caused by the formation of a saturated diffu-
sive boundary layer close to the substrate24,31, which requires to
spatially resolve the vapor density. A suspected cause that might
enhance this effect is the cloaking of drops by liquids leaking from
the substrate. This would alter the droplet shape and interface en-
ergy and therefore explain the discrepancy between experiments
and theory. In addition to that, the coarsening of drops was found
to be suppressed on softer substrates both experimentally26 and
theoretically30 resulting in an increased drop density in turn. Fi-
nally, even though contaminants and impurities were ruled out
as an additional source of nucleation in the experiments, there
might still be microscopic heterogeneities present at the substrate
surface, e.g., due to the molecular structure of the polymer net-
work, which affect the nucleation rate. The impact of such effects
is largely unknown and may be subject of future investigation.

A Temperature-Induced Condensation
The threshold of phase transition, i.e., saturation, can be pre-
dicted by the Clausius-Clapeyron relation. This relation is, how-
ever, often corrected to match experiments. For instance, the
Rankine law introduces empirical constants to capture the tem-
perature dependence of latent heat, while the Arden-Buck law
further accounts for water vapor non-idealities over a wide tem-
perature range61. We adopt the latter semi-empirical law, which
is widely used in meteorology and engineering for its accuracy
and practicality

psat(T) = aexp[(b− T
c
)( T

d+T
)] , (43)

with T in ○C and p in kPa and the empirical constants a ≈
0.61121 kPa, b ≈ 18.678, c ≈ 234.5 ○C and d ≈ 257.14 ○C which
are valid for T > 0 ○C. For example, fixing the chamber humid-
ity to r0

H = 0.9 at the roof and cooling the gel from 20○C to 5○C,
the relative humidity in the immediate vicinity of the substrate is
rH ≈ 2.41.

B Classical Nucleation Theory
The transition of a particle from an initial phase to another one
may occur spontaneously only if that process is associated with
a decrease in free energy. This condition must be met also in
the context of nucleation in order for a new phase to sponta-
neously emerge and grow. The formation of the latter, however,
is always accompanied by the creation of an interface (with the
surrounding initial phase), which represents an energy penalty.

Assuming the new cluster to adapt a shape that minimizes the
surface to volume ratio (provided the material is able to do that)
the energy penalty is minimized as well. Since this ratio usually
decreases further with increasing volume, the decrease in free
energy per particle entering the new phase eventually predomi-
nates the penalty associated with the interface created in the same
course. The minimal structure at which that happens corresponds
to an energetic maximum and is referred to as a nucleus. It is these
nuclei that initiate the formation of a new phase, once the associ-
ated energy barrier is overcome. In other words, the nucleus cor-
responds to a steady yet unstable threshold state, meaning that
every smaller structure decays and every larger structure grows.
The exact form of the governing energy and thus the character-
istics of the nucleus crucially depend on the considered scenario.
Two general cases are distinguished:

Homogeneous Nucleation

A homogeneous initial phase, consisting of only one particle type,
is considered. Due to thermal fluctuations these particles occa-
sionally form small clusters of a new phase, that eventually start
growing spontaneously if they exceed a critical size or particle
number. In other words, these clusters of the same particle type
may serve as nuclei. The energy penalty is exclusively governed
by the interface energy between the initial and new phase and a
lower bound may be estimated by assuming the nucleus to take a
spherical shape.

Heterogeneous Nucleation

The initial state is assumed heterogeneous in a sense that
particles of different type may be present in some form ranging
from microscopic impurities up to macroscopic structures (e.g.
a solid substrate). If the interaction of the nucleating particle
type with another type (expressed in terms of interface energies)
is stronger than the interaction with its own type, nucleation is
energetically favored wherever that other type is present. An
example are the considered breath figures, where water vapor
condenses to the liquid state at the surface of a cooled substrate.
The energy penalty is then given by the interplay of interface
energies between all the various phases.

The bulk energy gain associated with the nucleation is given by
the difference in Gibbs free energy, and thus by the difference
in chemical potentials, between initial and final state18,45–48,
implying constant temperature T , particle number N and external
pressure p.|| In the following we consider a small region in the
immediate vicinity of the substrate such that the temperature
in the gas phase is approximately constant and equal to the

|| In view of the experiments in Ref. 31 the assumption of conserved particle number
seems rather unjustified since the system has access to an infinite particle reservoir.
In fact, it would be more convenient to consider fixed volume V and chemical poten-
tial µ instead. In other words, the system represents a realisation of a grand canon-
ical ensemble and is driven by minimization of the corresponding grand canonical
potential Ω (or Landau potential). It was shown, though, that the difference in
grand potential associated with nucleus formation can be interpreted as a change
in Gibbs free energy and is related to the change in Helmholtz free energy 20,45,62,63

(see App. B.1).
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temperature of the substrate. The chemical potentials µℓ, µv of
the liquid and vapor phase can be quantified either by employing
a real gas theory, e.g. by considering a Van der Waals gas, and
performing a standard Maxwell construction or by assuming
the vapor to behave like an ideal gas and fixing the chemical
potential and particle density in the liquid. Following the latter
route, the vapor obeys the corresponding equation of state
pV = NkBT and its chemical potential is

µv = kBT ln(Λ3 N
V
) , (44)

with Boltzmann constant kB and the thermal wavelength Λ, i.e.
the de Broglie wave length at thermal energy. Note, that the
chemical potential is a function of temperature and pressure
µ(T, p) via the equation of state. Consequently, chemical poten-
tial and pressure are not independent variables in an isothermal
process. At equilibrium in an isothermal situation, the change in
chemical potential associated with a change in pressure is deter-
mined by the Gibbs-Duhem relation

Ndµ = V dp . (45)

Including the ideal gas law and after integrating we find for the
vapor

µv(pv)−µv(p′v) = kBT ln( pv

p′v ) , (46)

with p′v being an arbitrary reference pressure. Assuming constant
particle density in the liquid ρℓ = Nℓ/Vℓ Eq. (45) becomes

µℓ(pℓ)−µℓ(p′ℓ) = Vℓ

Nℓ
(pℓ− p′ℓ) . (47)

Then, the liquid pressure and chemical potential are directly re-
lated via the constant particle density. The difference in chemical
potentials between liquid and vapor phase results to

∆µ = µℓ(pℓ)−µv(pv) =
Vℓ

Nℓ
(pℓ− p′ℓ)−kBT ln( pv

p′v )+µℓ(p′ℓ)−µv(p′v) .
(48)

Demanding phase coexistence at a specific saturation pressure
psat

v , i.e. µℓ(psat
v ) = µv(psat

v ), the reference pressures have to be
set to p′ℓ = p′v = psat

v , leading to

∆µ = Vℓ

Nℓ
(pℓ− psat

v )−kBT ln(rH) , (49)

with the relative humidity rH = pv/psat
v . Fixing the chemical po-

tential, and hence also the pressure, of the liquid to those of the
vapor at saturation, i.e. µℓ = µv(psat

v ) and pℓ = psat
v , only the log-

arithmic term remains. If the gas phase is considered an ideal
mixture of K species (e.g. water vapor in N2) its total pressure
p is the sum of all partial pressures pi according to Dalton’s law
p =∑K

i pi. The Gibbs-Duhem relation then writes

V∑
i

dpi = ∑
i

Nidµi . (50)

Allowing only one component, e.g. i = v, to condense into a
liquid phase coexistence requires µℓ(psat) = µv(psat

v ) where now
psat = psat

v +∑K
i≠v pi is the total pressure of the mixture at satura-

tion of component v. In consequence, the reference pressures
in Eq. (48) have to be chosen differently, namely p′ℓ = psat and
p′v = psat

v , yielding

∆µ = µℓ(pℓ)−µv(pv) =
Vℓ

Nℓ
(pℓ− psat)−kBT ln( pv

psat
v
) . (51)

According to classical thermodynamics the Gibbs free energy is
given by G =F+ pV with Helmholtz free energy F =∑K

i µiNi− piVi,
the externally imposed total gas pressure p and the total volume
V . The Gibbs free energies of the coexisting liquid and gas phase
(including vapor) state G and the pure gas state G′ are given by

G(T,N, p) = F(T,N,V)+ pV

= µℓNℓ− pℓVℓ+
K
∑

i
(µiNi− piVi)+ pV ,

(52)

and

G′(T,N, p) = F ′(T,N,V ′)+ pV ′ = K
∑

i
(µ ′i N′i − p′iV ′i )+ pV ′ . (53)

The energy difference then becomes

∆G = G −G′ ⟨1⟩= [µℓNℓ− pℓVℓ+
K
∑

i
(µiNi− piVi)+ pV]

−[
K
∑

i
(µ ′i N′i − p′iV ′i )+ pV ′]

⟨1⟩= µℓNℓ−(pℓ− p)Vℓ+
K
∑

i
(µiNi−µ

′
i N′i )

(54)

⟨2⟩= µℓNℓ−(pℓ− p)Vℓ+µvNv−µ
′
vN′v+

K
∑
i≠v
(µi−µ

′
i )Ni

⟨3⟩= (µℓ−µv)Nℓ−(pℓ− p)Vℓ+
K
∑

i
(µi−µ

′
i )Ni

⟨4⟩= −(psat− p)Vℓ−NℓkBT ln( pv

psat
v
) ≈ −NℓkBT ln( pv

psat
v
)

For clarification the separate steps are explained: At ⟨1⟩ the vol-
ume of the coexistence state is divided into a liquid and a gas part
V =Vℓ +Vg. Further, all components of the gas mixture share the
same volume Vi =Vg =V −Vℓ and V ′i =V ′, such that the respective
partial pressure terms cancel with Eq. (50). At ⟨2⟩ the particle
conservation in the gas phase Ni = N′i is used for all components
of the mixture i ≠ v. At ⟨3⟩ the global particle conservation of
species v is used, i.e. N′v = Nℓ +Nv. At ⟨4⟩ Eq. (50) is used again
to eliminate the sum since dp = 0. Note, that not only the total
pressure p but also the partial pressures p′i = pi are held constant
in the considered system. Hence, since chemical potential and
pressure are not independent in an isotherm µ

′
i = µi. The differ-

ence in chemical potentials is expressed using Eq. (51) and finally
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the pressure difference commonly neglected46,47. Finally, the en-
ergy gap is exclusively governed by the difference in chemical
potentials. For rH > 1, i.e. pv > psat

v , the difference in the Gibbs
free energy is always negative such that a transition of particles
from vapor to condensed state is always favorable. As mentioned
above, this condition, referred to as supersaturation, is a prereq-
uisite for spontaneous nucleation to occur and the new phase to
grow. Finally, the change in Gibbs free energy associated with the
creation of a liquid cluster of arbitrary shape from its own vapor
in contact with a substrate is found by adding the interface energy
penalties18,46–48

∆G = γlvAlv+ γslAsl+ γsv(Asv−A′sv)−ρℓkBT ln(rH)Vℓ , (55)

with γij and Aij respectively being the energy and area of the
liquid-vapor (lv), substrate-liquid (sl) and substrate-vapor (sv) in-
terfaces and the prime referring to the pure gas state. This equa-
tion is the starting point for the modeling approach and reviewed
in Eq. (1).

B.1 Equality of Gibbs free energy and Landau Potential Bar-
rier

The difference in Landau potential (grand canonical potential)
between the state of coexisting liquid and gas phase (including
vapor) Ω and the pure gas state Ω′ is given by

∆Ω = Ω−Ω′

⟨1⟩= [F −µvNℓ−
K
∑

i
µiNi] − [F ′−

K
∑

i
µ
′
i N′i ]

⟨2⟩= [µℓNℓ− pℓVℓ+
K
∑

i
(µiNi− piVi)−µvNℓ−

K
∑

i
µiNi]

−[
K
∑

i
(µ ′i N′i − p′iV ′i )−

K
∑

i
µ
′
i N′i ]

⟨3⟩= (µℓ−µv)Nℓ−(pℓ− p)Vℓ+
K
∑

i
(p′i − pi)V

(56)

⟨4⟩= −(psat− p)Vℓ−ρℓkBT ln( pv

psat
v
)Vℓ ≈ −ρℓkBT ln( pv

psat
v
)Vℓ .

To clarify, the separate steps are explained: At ⟨1⟩ the Landau
potentials of the final and initial state are expressed in terms
of the Helmholtz free energy as Ω = F − µN. Thereby, the last
term refers to the Gibbs free energy of a pure gas state with
same total particle numbers and at the same fixed chemical
potentials µi. At ⟨2⟩ the Helmholtz free energies are expressed
like F = ∑K

i µiNi − piVi. At ⟨3⟩ the fixed volume V = V ′ and the
shared gas volume V ′i =V ′ and Vi =V −Vℓ is used. At ⟨4⟩ Eq. (50)
is used to eliminate the sum since dp = 0. The difference in
chemical potentials is expressed using Eq. (49) and the pressure
difference is neglected, as is common practice46,47. This result is
the same as Eq. (54), hence ∆Ω = ∆G in this case.

V ′(a) (c)

(b)

∆G = ∆ΩN N′ Ω′
G′

V

G, Ω

N
V

par
tic

le

diff
usio

n
contraction

Fig. 12 Visualization of a nucleation process from two different per-
spectives. (a) consider a fixed particle number N of vapor particles in
an initial volume V ′. As the condensation of vapor into the liquid state
takes place the pressure p is held constant and the volume occupied by
the particles reduces to V . The energy difference is given by the change
in Gibbs free energy ∆G = G−G′. (c) consider a fixed volume V including
an initial number of vapor particles N′. As the condensation of vapor into
the liquid state takes place the chemical potential µ is held constant and
particles diffuse into the area until N is reached. The energy difference is
given by the change in grand potential ∆Ω =Ω−Ω′. If the final state (c),
i.e., N and V , is the same in both scenarios, the change in Gibbs energy
equals the change in grand potential ∆G = ∆Ω under certain assumptions
as discussed in the main text.

B.2 Binary Mixture of Water vapor in N2

In the case of a binary mixture, e.g. water vapor in N2 as used
in the experiments, the change in Gibbs free energy can directly
be calculated using the chemical potential of an ideal gas (44).
The Gibbs free energy of a binary mixture coexisting with a liquid
state is

G = F + pV = [µℓNℓ− pℓVℓ+µvNv− pvVv+µN2 NN2 − pN2VN2]+ pV

= (µℓ−µv)Nℓ−(pℓ− pv− pa)Vℓ+µvNH2O+µN2 NN2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶G′

(57)

with p = pv+ pN2 being the constant imposed pressure and V =Vℓ+
Vg being the total volume with Vg =Vv =VN2 . Further, conserved
total particle number N =NH2O+NN2 as well as conserved particle
numbers of the two species NN2 and NH2O = Nℓ +Nv are assumed.
Enforcing equilibrium at pv = psat

v leads to

dG
dNℓ

= µℓ−µv(psat
v )−(pℓ− psat

v − pN2)/ρℓ
!= 0

→ µℓ = µv(psat
v )+(pℓ−(psat

v + pN2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

psat

))/ρℓ ,
(58)
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with the liquid particle density ρℓ = Nℓ/Vℓ. Inserting into Eq. (57)
and using Eq. (44) yields

G =−ρℓkBT ln( pv

psat
v
)Vℓ−(psat− p

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶≈0

)Vℓ+µvNH2O+µN2 NN2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶G′

→ ∆G = G −G′ =−ρℓkBT ln( ρv

ρsat
)Vℓ (59)

Similarly, using the Landau potential

Ω = F −µN = [µℓNℓ− pℓVℓ+µvNv− pvVv+µN2 NN2 − pN2VN2]

−[µN2 NN2 +µv(Nv+Nℓ)] (60)

= (µℓ−µv)ρℓVℓ−(pℓ− pv− pN2)Vℓ−(pv+ pN2)V
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ω′
.

Obviously ∆Ω = ∆G.
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