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Highlights

• Data-driven analysis maps methods, materials, and applications in LFP research

• Computation bridges experimental gaps via predictive design frameworks

• DFT-based modeling has driven the discovery of lead-free perovskites (LFPs)

• HT screening, ML, and multiscale modeling enable atomic-to-device design

• Modeling has expanded LFP use across PV, catalysis, thermoelectrics, and beyond

• Field is shifting toward autonomous AI-guided, application-driven pipelines

Abstract

Lead-free perovskites (LFPs) are an emergent class of materials with great potential as next-

generation candidates for energy and optoelectronic applications, offering a sustainable and non-

toxic alternative to their lead-based counterparts. Computational studies play a central role in 

accelerating the discovery, design, and optimization of these materials by enabling predictive 

insights into electronic, optical, and device-level behavior. This review presents a comprehensive 

analysis of the computational landscape surrounding lead-free perovskites, combining bibliometric 

mapping, methodological classification, and thematic exploration across material types and 

application domains. A total of 200 peer-reviewed articles published between 2013 and 2025 were 

analyzed, offering a comprehensive picture of how computational tools from density functional 

theory (DFT) to machine learning (ML), and device-level simulation have shaped LFP research. 

The review highlights the dominant role of photovoltaic modeling and the growing diversification 
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of lead-free perovskite research into applications such as thermoelectrics, spintronics, 

photocatalysis, neuromorphic computing, radiation detection, thermal barrier coatings, gas 

sensing, and ferroelectric systems. Density functional theory remains the foundational tool, 

supported by increasingly sophisticated approaches such as high-throughput screening and device-

level simulation. The novelty of this study lies in its data-driven, cross-scale synthesis that links 

computational strategies to targeted properties and application outcomes of lead-free perovskites. 

It outlines strategic initiatives through which theory and simulations have driven the discovery and 

optimization of high-performance, stable LFPs, while identifying emerging trends and future 

directions in the evolving role of computational science in materials innovation.

Keywords: Lead-free perovskites, Computational modeling, Density functional theory, Machine 

Learning, Photovoltaic applications, Application diversification.

1. Introduction

Perovskite materials have become a revolutionary class of semiconductors with 

outstanding optoelectronic qualities that have spurred the development of photovoltaics, light-

emitting devices, and photodetectors1,2. Foremost among these are the lead-halide perovskites, 

whose power conversion efficiency is rising rapidly, and is also processable at a low cost, placing 

them at the forefront of the next wave of solar technologies3. A major hindrance to the large-scale 

deployment of the material is the toxicity of lead, a heavy metal with considerable implications for 

both the environment and human health4,5. The volatile nature of the lead-degradation products 

under operating conditions further compounds long-term stability and regulatory issues6,7.

In response to such limitations, the quest for LFP has gathered speed. Unlike cation 

substitution alone, the synthesis of functional LFP needs a re-evaluation of structural and 
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electronic design strategies. Initial studies have shown that direct substitution for lead tends to lead 

to diminished performance because of adverse band alignments, decreased defect tolerance, and 

lower phase stability8,9. Such challenges are not unique to perovskites, as similar trap-mediated 

limitations have also been observed in semiconductor photocathodes, where surface ligands can 

outcompete productive charge transfer10, and in quantum-dot/metal-oxide systems where 

photodegradation critically alters charge-transfer dynamics and long-term stability11. As a result, 

the field initially faced the challenge of finding materials that could rival the multi-functional 

performance of the lead-based analogues.

The addition of computational material science to the discovery process changed the 

direction of LFP research. The systematic study of the structural, electronic, and thermodynamic 

characteristics of lead-free perovskites was made possible by the first-principles method known as 

density functional theory (DFT)12. For a wide range of compositions, DFT has been widely used 

to investigate bandgaps, formation energies, stability, and defect tolerance8,13. Large-scale 

exploration of vast chemical spaces has been prompted by the theoretical underpinnings created 

by such computations, which are followed by pipelines that integrate machine learning algorithms 

with high-throughput computational screening14,15. High-throughput routines automate the 

calculation of structural and property information for hundreds or thousands of candidate 

compounds, and machine learning algorithms learn from the datasets to make quick predictions of 

such descriptors as bandgap, formation energy, and tolerance factors16,17. The combined 

methodology not only reduces the computational expense of large-scale screening but also 

facilitates tailoring of the perovskite structure for targeted functionalities via inverse design and 

multi-objective optimization. Altogether, the methodologies have been crucial for expanding the 

scope, enhancing the speed, and improving the accuracy of lead-free perovskite studies.
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However, the most extensively researched area continues to be the photovoltaic one, both 

computationally and experimentally. More notably, however, LFPs are making increasingly 

significant strides in a broader technology space that encompasses photocatalysis18, 

thermoelectrics19, neuromorphic computing20, and thermal insulation21. The expanding functional 

domain is directly related to the predictive capability of computational tools. 

To understand how computational approaches have reshaped the discovery and application 

of LFPs, this review conducts a systematic, data-driven analysis of 200 studies published between 

2013 and 2025. The primary objectives are to:

• Map the evolution of computational methods used in LFP research.

• Categorize material subclasses and their associated application domains.

• Identify how specific modeling strategies have enabled progress across different 

technological areas.

Unlike earlier reviews, this work combines bibliometric mapping with thematic and 

methodological classification, offering a holistic analysis that connects computational techniques 

to material development and functional deployment. This integrative perspective provides a new 

framework for understanding the role of simulation in advancing sustainable perovskite 

technologies. To demonstrate this in greater detail, the review is concluded with an in-depth 

analysis of photovoltaic applications, which represent the most methodologically mature and 

computationally optimized area within LFP research.

2. Background

2.1. Structural Diversity and Design Landscape of Lead-Free Perovskites
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The development of LFPs addresses a pivotal challenge in the advancement of 

optoelectronic and energy materials. The goal is to maintain the excellent performance attributes 

of lead perovskites while addressing the related environmental and toxicity issues10,22. Even though 

photovoltaics still dominate research, LFPs are becoming more popular in several new 

applications, including scintillation23, thermoelectrics24, photocatalysis25, and neuromorphic 

computing26. It is enabled by the intrinsic structural versatility of the perovskite architecture as 

well as the chemical diversity of its components27.

At the core of perovskite chemistry is the ABX3 structure with A as a large monovalent or 

divalent cation like Cs+, MA⁺, or FA⁺, B as a small metal cation, and X as usually a halide, an 

oxide, or a chalcogenide. The replacement of Pb2+ at the B-site is not trivial. Isovalent replacement 

with Sn2+ or Ge2+ preserves the ABX3 motif but tends to result in quick oxidation and instability28. 

Heterovalent strategies involve monovalent and trivalent cation pairs such as Ag+ with Bi3+ 29 with 

Sb3+. These combinations give rise to double perovskites with the formula A2B′B″X6 and to 

vacancy-ordered structures such as A2BX6 and A3B2X9
25, 30-31. Various of these materials offer 

improved chemical durability but exhibit distinct band structures and transport properties.

Structural dimensionality further expands the design space. Fully three-dimensional 

frameworks support efficient charge transport but are often sensitive to moisture and oxygen. Low-

dimensional materials, including two-dimensional layered perovskites, one-dimensional chains, 

and zero-dimensional cluster-based frameworks, offer better environmental stability and tunable 

optical behavior, although often with reduced carrier mobility32,33. Structural diversity within LFPs 

enables precise tailoring for targeted applications, including solar energy conversion, light 

emission, and thermal management27.
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Given their broad diversity, LFPs can be classified using multiple overlapping criteria as 

shown in Figure 1. These include anion chemistry (e.g., halide, oxide, chalcogenide), structural 

dimensionality (3D to 0D), B-site configuration (single, double, or vacancy-ordered), and bonding 

character (ionic to covalent). These types are not exclusive. For instance, Cs2AgBiBr6 is a 3D 

double perovskite halide. BaZrS3 is a 3D network chalcogenide with ionic as well as covalent 

bonding characteristics34.

The optimal configuration of LFP involves meticulous consideration of critical parameters 

such as bandgap, thermal stability, ambient stability, low binding energy of the excitation, strong 

defect tolerance, and good carrier mobility35. The enormously vast multidimensional configuration 

space is not efficiently searchable by experiment. Computational means such as the use of machine 

learning algorithms and high-throughput screening are now essential in such cases. They facilitate 

the prediction of stability, electronic properties, and defects in a quick and efficient manner, 

thereby speeding up the identification of candidate LFPs in various fields14,15.
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Figure 1. Classification of lead-free perovskites based on anion chemistry, B-site configuration, 

and structural dimensionality, with representative crystal structures illustrating the diversity of 

LFP subclasses.

2.2. Computational Approaches for Lead-Free Perovskite Design

The search for LFPs is one of the most formidable design tasks in contemporary materials 

science. Compared to their lead-halide counterparts, there are no mature experimental databases, 

established stability protocols, or standardized synthesis procedures33,36 for LFPs. Scientists must 
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optimize electronic, optical, and structural performance across a vast and chemically diverse 

compositional space, much of which remains unexplored13. Computational tools have emerged as 

indispensable means of exploring uncertainty, advancing discovery, and directing experimental 

validation, as indicated in Figure 2. These techniques compensate for the lack of empirical 

evidence while enabling atomistic understanding of the structure–property relationships 

underlying LFP functionality15,37.

Figure 2. Schematic overview of computational approaches used in LFP research.

2.2.1. Early Methods and First-Principles Advances
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In the early stages of LFP research, computational analysis primarily relied on empirical 

screening based on geometric parameters such as the Goldschmidt tolerance factor and the 

octahedral factor, which offered simple estimations of perovskite formability27,38. However, these 

heuristics performed poorly in low-symmetry or compositionally complex systems. The advent of 

first-principles methods marked a significant breakthrough. The quantum-mechanical framework 

of DFT enabled the analysis of formation energies, band structures, phonon properties, and defect 

energies with improved accuracy13,39. This facilitated the prediction of the main factors governing 

material performance and stability. These methods have been applied to predict the behavior of 

systems such as MASnI3 and Cs2AgBiBr6 enabling property tuning before synthesis10,40.

2.2.2. High-throughput Screening and Machine Learning

As the field progressed, computational approaches expanded from targeted 

characterization to large-scale discovery. High-throughput (HT) screening, enabled by automated 

DFT workflows, allows systematic evaluation of thousands of candidate compositions for 

properties such as band structure, thermodynamic stability, and optical response16,41. Extensive 

DFT-computed datasets from open-access repositories such as the Materials Project, OQMD, and 

AFLOW form the foundation of these efforts.

Recent advances couple HT screening with machine learning to accelerate the 

identification of LFPs, as illustrated in Figure 3. In such pipelines, chemically and structurally 

derived descriptors are extracted from existing datasets and used to train predictive models, 

including gradient boosting methods, support vector regression, and convolutional neural 

networks. These models, validated against high-fidelity DFT data, enable rapid exploration of vast 

chemical spaces, supporting inverse design in which new compositions are proposed to meet 

targeted stability and optoelectronic requirements42,43. Predictions are iteratively refined through 
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DFT validation, and, ultimately, experimental synthesis, transforming computational tools from 

retrospective validation into proactive drivers of discovery. The successful in silico prediction and 

subsequent synthesis of Cs2AgBiBr6 exemplifies the predictive power of this integrated 

approach44. Remaining challenges include limited availability of high-quality datasets for LFPs, 

the difficulty of transferring models to unexplored chemistries, and the absence of standardized 

stability metrics, all of which must be addressed to fully realize the potential of HT–ML discovery 

frameworks45.

Figure 3. Machine learning and high-throughput screening approaches for accelerated discovery 

of lead-free perovskites. (a) generalized ML workflow (b) applications of ML to lead-free 

perovskites (c) data-driven pipeline linking open databases. 

2.2.3. Multiscale Modeling and Modern Developments

Modern computational strategies for LFPs increasingly rely on multiscale modeling, which 

links atomic-level simulations to mesoscale and device-level performance predictions46. 
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Multiscale modeling, as shown in Figure 4 demonstrates how integrated computational approaches 

expand the application scope of lead-free perovskites. At the atomistic scale, first-principles 

methods provide key descriptors such as ionic migration barriers, defect energetics, and stability 

under thermal, and environmental stress. These parameters are then integrated into higher-scale 

simulations, including kinetic Monte Carlo for transport processes, and SCAPS-1D for current–

voltage, and efficiency predictions, creating a quantitative bridge from fundamental material 

properties to device performance metrics47,48. As shown in Figure 5, experimental approaches to 

LFP have progressed from purely empirical methods to advanced techniques that integrate 

multiple scales of investigation.

Figure 4. Multiscale modeling showing how integrated computation advances lead-free 

perovskite applications.

Machine learning further accelerates this process by rapidly screening vast compositional 

spaces, refining stability descriptors, and enabling inverse design. For example, the Proactive 

Searching Progress (PSP) workflow combined multiple tree-based ensemble models with Shapley 

additive explanations to search over 8.2 × 1018 possible lead-free perovskite compositions, down-

selecting a small set of promising candidates that were subsequently validated through first-
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principles calculations and accelerated-aging experiments49. This illustrates how interpretable ML 

can guide high-value simulations, and experiments while significantly reducing search time. Table 

1 embodies key milestones towards LFP-specific computational methodologies, recording how the 

area has developed from early empirical screening towards multiscale, and hybrid, and from non-

autonomous to increasingly autonomous discovery procedures50,51.

Figure 5. Schematic timeline illustrates the evolution of computational approaches in LFP 

research. 

Table 1. Milestones in computational methods for lead-free perovskite research.

Period Key Developments Impact References
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Early 2010s Empirical screening, DFT 

on Sn/Ge halides

Established early design rules and 

bandgap estimates

52,53

Mid 2010s Double perovskites, HT-

DFT

Enabled prediction and synthesis of 

Cs2AgBiBr6

30,54

Late 2010s Inverse design, ML 

integration

Accelerated screening, broadened 

applications

55,56

2020s Multiscale modeling, 

defect physics

Linked atomic-level behavior to 

device performance

57-59

2020s+ Generative AI, active 

learning

Autonomous pipelines for 

multifunctional LFPs

60, 61

2.3. Integrating Computational and Experimental Frameworks

The applicability of computational techniques to real-world devices depends on effective 

integration with experimental workflows. Hierarchical validation across scales ensures that 

parameters derived from atomistic and mesoscale simulations align with device-level 

measurements, while standardized stability indicators normalize results across variations in 

temperature, humidity, and illumination62,63. Closed-loop approaches, where experimental 

feedback informs model retraining, are particularly valuable for LFPs, given the absence of mature 

experimental databases and consistent stability protocols64-66. 

Despite the progress, several gaps remain. Interfacial degradation processes and grain 

boundary physics are incompletely understood and poorly parameterized. Transferable interatomic 

potentials for complex lead-free chemistries are scarce65. Experimental datasets are often 

heterogeneous, lacking consistent metadata or measurement protocols, which undermines 

reproducibility45. Furthermore, each method has strengths and limitations. First-principles 

calculations are unmatched for mechanistic accuracy but are limited to small systems and short 

timescales66. High-throughput DFT extends coverage but still struggles with complex interfaces 
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and finite-temperature effects. Machine learning excels at rapid screening and pattern discovery 

but depends heavily on the quality and diversity of its training data67. Machine learning interatomic 

potentials can model larger systems, such as grain boundaries and amorphous regions, yet require 

extensive, high-fidelity training sets to ensure transferability. Mesoscale models are well-suited 

for studying long-term transport and degradation but cannot capture underlying quantum-level 

mechanisms without reliable parameterization68.

Addressing these limitations will require open, standardized databases that couple 

structural, processing, and performance metrics, benchmark tasks for cross-scale validation, and 

uncertainty-aware modeling that identifies when predictions fall outside the model’s reliable 

domain45. Bridging these gaps will be essential to ensure that computationally designed LFPs are 

not only theoretically promising but also manufacturable, scalable, and stable under real-world 

operating conditions.

2.4. Broader Impact and Emerging Applications

While critical gaps remain, recent advances have firmly established computational tools as 

central to LFP discovery33,69, linking atomic-level insight to device-level performance57. From 

first-principles calculations to high-throughput screening and multiscale modeling, these 

approaches now support applications beyond photovoltaics, including neuromorphic computing26, 

thermal barrier coatings21, and scintillators23. This shift from isolated property prediction to 

targeted, application-driven design highlights the growing maturity and versatility of 

computational strategies in shaping the future of lead-free perovskites.

3. Methodology

3.1. Literature Retrieval and Search Strategy
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To systematically collect relevant publications on computational studies of LFPs, we 

utilized the Publish or Perish (PoP) software70 in conjunction with the Google Scholar search 

engine. This approach offers access to a wide range of peer-reviewed articles, conference papers, 

and institutional repositories, making it suitable for capturing emerging and interdisciplinary 

research. The main reason for choosing Google Scholar compared to Web of Science and Scopus 

is that it has many more citations and covers more literature in new and varied fields, as evidenced 

by the findings of a comparative study71. For computational LFP research, it is vital because 

important achievements are published in many different material science, physics, chemistry, and 

engineering journals, some of which are not included in both Scopus and Web of Science. PoP 

supports complex Boolean queries and facilitates bulk export of results in (.ris) format for 

screening and analysis. Many reference managers use (.ris) files because they are a standard format 

for sharing reference information between databases. It stores the information in the title, author, 

publication year, journal, and abstract that can be used in tools such as Zotero and EndNote to 

filter and edit research papers.

The search was conducted using a structured Boolean search designed to identify studies 

that focused on both lead-free perovskites and computational methods. The following search string 

was used:

"lead-free perovskite", and (DFT OR "first-principles" OR "machine learning" OR 

simulation OR computational)

This formula enabled the identification of papers that specifically applied computational 

techniques to lead-free perovskite frameworks, including first-principles simulations, ML, and 

other modeling methodologies. The search captured more than ten years of computational 

advancements in the field, encompassing publications from 2013 to 2025. 
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3.2. Screening and Selection Criteria

The screening process was conducted in four stages: identification, screening, eligibility 

assessment, and inclusion, following the PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) framework72 illustrated in Figure 6. The overall workflow is 

illustrated in Figure 7. 

Duplicate entries were first removed using Zotero’s built-in duplicate detection tool. Each 

remaining record was then manually reviewed to assess its relevance based on the title and abstract. 

Studies unrelated to the objectives of the review, such as those focusing on lead-based perovskites, 

lacking computational content, or outside the materials domain were excluded.

To ensure transparency in decision-making, we annotated each record within Zotero using 

tags and notes to indicate the rationale for inclusion or exclusion (e.g., “review article,” 

“conference paper,” “no computational method”). Entries that specifically addressed photovoltaic 

applications were labeled with a “PV” tag during this process. This allowed for efficient 

identification and deeper analysis of LFP studies focused on photovoltaic performance in later 

sections. The following inclusion criteria were strictly applied:

• The study must focus on lead-free perovskite materials.

• It must involve at least one computational approach, such as DFT, ML, molecular 

dynamics, or high-throughput screening.

• It must be a peer-reviewed primary research article (excluding review papers, 

editorials, preprints, conference papers, book chapters, and books).

• The article must be published in English.
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This rigorous filtering process yielded a final dataset of 200 articles, representing a broad 

and representative sample of computational research in the LFP domain. A smaller subset of 

representative studies was later selected for detailed discussion in a later section of the review. 

These were chosen based on methodological depth, application novelty, and relevance to dominant 

or emerging research themes.

Figure 6. Document screening and selection process based on PRISMA guidelines.

3.3. Metadata Processing and Analytical Framework

Following the screening, the final list of eligible papers was then processed by GROBID 

(GeneRation Of BIbliographic Data). It is an open-source machine learning tool designed to 

extract structured bibliographic metadata from scientific PDFs73. GROBID parsed the documents 
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to extract fields such as article title, authorship, journal name, publication year, and abstract. In 

addition to core bibliographic fields, domain-specific attributes were manually extracted, 

including:

• Material class (e.g., halide, oxide, chalcogenide).

• Computational methods used (e.g., DFT, AIMD, ML).

• Software tools, and solvers (e.g., VASP, SCAPS-1D, Quantum ESPRESSO).

• Targeted applications (e.g., photovoltaics, spintronics, thermoelectrics).

• Investigated properties (e.g., bandgap, stability, mobility).

The resulting dataset was consolidated into a metadata spreadsheet and manually reviewed 

to identify inconsistencies and complete missing entries through full-text verification.

All figures and charts were created using Microsoft Excel, which provided sufficient 

flexibility and control for generating comparative visualizations. The curated metadata enabled 

multi-dimensional analysis to uncover key trends in computational LFP research. We assessed 

publication growth, methodological adoption, tool usage, application diversification, and property-

specific focus. A separate subset of photovoltaic studies was further examined to evaluate 

materials, methods, and tool–property correlations within that domain. Table 2 summarizes the 

metadata elements extracted and their role in the analysis.

Table 2. Summary of metadata elements extracted from selected articles.

Metadata Field Purpose of Extraction Use in Analysis

Title Article identification Manual screening and classification

Journal Name Source credibility and 

disciplinary scope

Publication source distribution

Year of Publication Temporal context Year-wise publication trend analysis
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Application Domain Functional relevance Application diversification and 

domain mapping

LFP Subclass Material categorization 

(halide, oxide, etc.)

Material–application relationship 

analysis

Computational 

Method Used

Identify modeling strategies 

(e.g., DFT, ML, AIMD)

Method usage and evolution trends

Simulation Tool 

Used

Software identification Tool frequency and specialization 

analysis

Properties 

Investigated

Target performance metrics Property-centric trend analysis and 

tool–property correlation

Figure 7. Overview of the methodological pipeline used in this review.

4. Analysis of Computational Trends in Lead-Free Perovskites

In recent years, computational modeling has become a key driver for the development of 

lead-free perovskites, underpinning their theoretical foundations, enabling large-scale material 

screening, and guiding application-oriented design. This section examines the evolution of 
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computational methodologies in LFP research, the factors driving their adoption, and the resulting 

diversification of applications and material classes.

4.1. Growth of Computational Studies on Lead-Free Perovskites

Over the past decade, computational investigations of LFPs have expanded markedly, 

underscoring the growing reliance on theoretical approaches for material discovery and 

performance prediction. Research activity was limited until 2018, followed by moderate growth 

through 2020, and a sharp increase from 2023 onwards. The brief decline in 2021–2022 reflected 

a thematic shift toward broader perovskite systems, and the rapid adoption of data-driven 

methodologies, particularly machine learning74, rather than a genuine reduction in research output.

During this period, many studies addressed stability in lead–halide perovskites75, hybrid 

perovskite architectures76, and tandem device integration77,78. Other notable contributions included 

investigations of energy funneling in hybrid designs32 and the strengthening of interlayers79. While 

relevant to the broader perovskite field, these topics did not always explicitly feature the “lead-

free” focus in bibliometric searches.

From 2023, regulatory pressures on lead content and advances in ML-guided discovery of 

non-toxic alternatives redirected research toward sustainable LFPs, driving a significant rise in 

publications as depicted in Figure 8. This growth has been accompanied by increased 

methodological sophistication, including hybrid functionals, ab initio molecular dynamics, ML-

assisted workflows, and device-level simulations. Collectively, these developments illustrate the 

transition of computational modeling from a supplementary tool to a primary driver of innovation 

in LFP research.
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Figure 8. The annual number of publications of computational LFP research.

Collectively, these developments illustrate the transition of computational modeling from 

a supplementary tool to a primary force driving innovation in LFP research, enabled by 

increasingly powerful and accessible techniques and equipment. This advancement has not only 

accelerated the pace of discovery but has also expanded the scope of computational studies, 

allowing for more complex, realistic, and application-oriented modeling of LFP materials. 

4.2. Expansion of Computational Methods and Tools

The rapid increase in computational research of perovskites without lead is directly related 

to the development and expansion of the available methodologies and tools. These advancements 

have progressively allowed researchers to address a broader range of material challenges with 

increasing accuracy, from electronic structure and stability to thermodynamic behavior and device 

performance.

4.2.1. Density Functional Theory

DFT is one of the most fundamental methods that enabled the progress of LFPs. It was in 

the 1960s when Hohenberg and Kohn80 introduced the basic ideas of DFT, which Kohn and Sham81 
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then expanded to cope with many-electron systems, and their total energy. Following 

improvements in algorithmic and computing technologies, this transformation greatly cut down 

the computing time, and appeared in the 1990s82,83. Even without using experimental results, DFT 

can precisely predict total energy, the structure of the electrons, and where the positive charges are 

located, as explained by Becke84. Due to its resilience and adaptability, it is the preferred approach 

in computational materials science, especially when researching novel materials like LFPs85,86. 

Due to the development of practical tools such as WIEN2k and VASP software, DFT became a 

standard method among scientists. Blaha et al.87 introduced WIEN2k with the FP-LAPW method, 

and this software is renowned for accurately depicting periodic solids. In an alternative tool VASP, 

first developed by Kresse and Furthmüller88, plane-wave basis sets and pseudopotentials are used, 

and the software contains extra options for molecular dynamics and better exchange–correlation 

functions. DFT is important in computational materials science mainly because of these valuable 

tools. By applying simulations, scientists can now carefully forecast which lead-free perovskites 

are stable, what energy states they exhibit, and how they compare in terms of bandgap. This has 

helped to identify and optimize environmentally friendly substitutes for lead-based materials86,89. 

For example, Taylor et al.90 laid the groundwork for further computational investigation by 

investigating the structural and electronic properties of perovskites using semi-local DFT with 

WIEN2k. As shown in Figure 9a, DFT is the most consistently used method across all years. Figure 

9b confirms the significant role of WIEN2k and VASP, which appeared to be the most frequently 

used software in the entire dataset.

4.2.2. Beyond Standard DFT

Although DFT offers a solid basis, its conventional applications have known drawbacks, 

particularly when describing materials with localized d, and f orbitals or strongly correlated 
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electrons91,92. These shortcomings frequently show up as inaccurate magnetic ordering, an 

underestimation of band gaps, or a poor description of charge localization. Corrective techniques 

like DFT+U, which penalize on-site Coulomb interactions with a Hubbard-like correction, and 

hybrid functionals, which incorporate a fraction of exact exchange from Hartree-Fock theory, have 

been developed and widely used to address these shortcomings93. These methods gained attention 

as researchers worked to improve electronic property computations for more precise modeling of 

perovskite semiconductors and related materials. Figure 9a shows that DFT+U is used sparingly 

but consistently, mainly from 2018 to 2020. Its moderate presence indicates that, despite their 

value, these corrections are only used in systems where traditional DFT is insufficient.

The application of ab initio molecular dynamics (AIMD) was another significant 

advancement. By simulating atomic motion at finite temperatures, AIMD makes it possible to 

investigate thermal stability, phase transitions, and defect migration94. Its use in lead-free 

perovskite research has allowed dynamic property predictions beyond the static ground-state 

results of standard DFT89,95. For example, Gupta et al.96 used AIMD to examine phase stability in 

BaZrS3, providing insight into structural resilience under thermal conditions. However, due to its 

computational cost, AIMD remains less commonly used. As shown in Figure 9a, AIMD appears 

infrequently, with activity concentrated in periods where detailed thermal analysis was a primary 

research focus. 
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Figure 9. (a) Year-wise trends in the adoption of computational methods in LFP studies showing 

increasing methodological diversification. (b) frequency of simulation tools used, highlighting 

dominant platforms and emerging specialized tools. The data shown is based on manual 

extraction from 200 peer-reviewed studies included in this review.
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As an interest in specific functional properties increased, additional tools emerged to 

support phonon and thermoelectric calculations97. Phonopy, released in the late 2000s, provides a 

DFT-compatible framework for phonon dispersion analysis, essential for evaluating vibrational 

stability. Haque and Hossain98 used Phonopy to study lattice dynamics and stability in perovskite 

systems, contributing to the growing adoption of vibrational analysis tools. BoltzTraP, developed 

in 2006, enables semi-classical Boltzmann transport calculations using DFT-derived electronic 

structure data. It has been used in thermoelectric modeling to predict electrical conductivity and 

Seebeck coefficients. For example, Sharma et al.99 applied BoltzTraP to assess thermoelectric 

behavior in perovskites, illustrating the increasing alignment between method and material 

functionality. As shown in Figure 9b, BoltzTraP is the second most frequently used tool, indicating 

its strong role in thermoelectric modeling. Phonopy also appears prominently, especially in studies 

conducted after 2018.

4.2.3. Machine Learning and Multiscale Modeling

With the introduction of machine learning into the computational materials space, the field 

has recently moved toward data-driven approaches. Once trained on appropriate datasets, machine 

learning models can quickly predict material properties by recognizing intricate patterns in high-

dimensional chemical and structural spaces34,42. This has proven particularly useful for designing 

LFPs, enabling the screening of candidates with desired optoelectronic or structural characteristics, 

thus accelerating discovery.

For example, Zou et al.100 demonstrated efficiency gains with hybrid workflows, 

performing high-throughput screening of perovskite compositions using a DFT+ML pipeline. 

Figure 9a shows a sharp increase in ML and DFT+ML applications after 2023. Libraries such as 

XGBoost and TPOT facilitate model training, feature selection, and optimization, while the 
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inclusion of SHAP in recent studies reflects the growing interest in interpretability and explainable 

AI.

Multiscale integration is evident in the growing use of SCAPS-1D for photovoltaic device 

modeling101. Researchers use SCAPS-1D to relate device-level performance metrics, such as 

efficiency and current–voltage behavior, to materials-level characteristics like band alignment and 

defect density. Shoab et al.102, and Ravidas et al.103 combined SCAPS-1D with DFT to model lead-

free perovskite solar cells, bridging the gap between atomistic simulations and real-world devices. 

Figure 9a also shows the emergence of SCAPS-1D after 2023, particularly in studies integrating 

materials modeling with solar cell simulation.

Other specialized tools appear less frequently, focusing on niche applications such as lattice 

dynamics or classical force-field simulations. While they add diversity, their lower adoption 

suggests a narrower scope or competition from more established platforms.

These developments illustrate how the expansion of computational methods and tools has 

shaped the research landscape. The timeline reflected in Figure 9a shows not just growth, but 

diversification, moving from single-method studies to integrated, property-targeted workflows. 

While DFT remains the central framework, its combination with machine learning, transport 

analysis, and device simulation has enabled more comprehensive and application-driven 

exploration of lead-free perovskites. 

4.3. Computationally Driven Diversification of LFP Applications

With the increasing methodological depth and tool accessibility discussed in the previous 

section, an important question naturally emerges regarding the purpose of these computational 

approaches. Our analysis shows that the expansion of computational capabilities has directly 
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enabled the exploration of LFP across a broad and growing range of application domains. As 

illustrated in Figure 10, computational studies on LFPs were initially concentrated in the 

photovoltaic domain. Beginning around 2019, however, the field experienced a steady thematic 

expansion. More recent years have witnessed a significant increase in studies targeting 

photocatalysis, thermoelectrics, spintronics, neuromorphic computing, scintillators, and thermal 

barrier coatings. This trend reflects the adaptability of LFP chemistries and the increasing ability 

of computational models to evaluate application-specific performance metrics.

4.3.1. Photocatalysis

Photocatalysis emerged as one of the earliest non-photovoltaic applications explored for 

lead free perovskites. Studies in this area typically employ hybrid DFT methods to assess band 

edge positions, redox alignment, and light absorption properties. For instance, Rehman et al.25 

screened Dion–Jacobson perovskites like RbCa2Ta3O10 with the HSE06 functional, and they 

obtained favorable activity for water splitting under the sun. Xiao et al.104 also achieved visible-

light-induced oxidative photocatalysis via halide lead-free perovskites with the appropriate 

bandgaps and electronic structure for the formation of reactive oxygen species.

4.3.2. Energy Devices

Energy devices have very recently emerged as one of the fastest-growing domains for 

LFPs, as reflected by the sharp rise in publications in 2024–2025 (Figure 10). Computational 

studies in this space depend extensively on the use of applications like BoltzTraP and Phonopy to 

analyze the Seebeck coefficients, electrical conductivity, and thermal conductivity of the lattice. 

Sharma et al.99 obtained a ZT of ~1.06 in doped CsZnBr3, whereas Haque and Hossain98 indicated 

the same promise in Cs2InAgCl6, demonstrating the capability of halide LFPs compared to 

conventional thermoelectric materials.
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4.3.3. Spintronics

Spintronics has emerged as a promising but relatively less explored application of lead-

free perovskites, with a steady increase in computational studies in recent years (Figure 10). 

Techniques such as DFT+U and AIMD are frequently applied to evaluate magnetic ordering, band 

structure, and spin-polarized states. Quraishi et al.105 reported that TlTiBr3 exhibits half-metallic 

behavior with strong spin polarization, highlighting the potential of halide LFPs in next-generation 

spintronic devices. 

4.3.4. Neuromorphic Computing

Neuromorphic computing applications of LFPs have also gained much attention, 

particularly in the context of resistive switching and ion migration, as reflected in the growing 

publication trend (Figure 10a). Computational tools such as the nudged elastic band method are 

employed to probe migration barriers, while AIMD simulations help uncover dynamic switching 

mechanisms. Zhang Zizi et al.106 for example, showed that CsAg2I3 possesses low migration 

barriers for  Ag+, and I- ions , enabling analog resistive switching characteristics desirable for 

neuromorphic devices.

4.3.5. Radiation Detection and Thermal Applications

Radiation detection and thermal applications, such as thermal barrier coatings, have seen 

growing attention in recent years. Computational analyses often employ phonon dispersion and 

elastic constant calculations, as well as AIMD, for the analysis of thermal robustness and 

vibrational stability. Rahman et al.107 identified Ba3SbI3, a material with low thermal conductivity, 

for its potential application as a thermal barrier coating, while BaMnO3 also demonstrated 

promising thermal properties. In contrast,CaMnO3 was noted for superior high-temperature 
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resilience owing to its higher melting point and Debye temperature108. These findings highlight 

the versatility of LFPs for thermal protection applications.

Figure 10. Thematic evolution of LFP applications in computational studies

An overview of these diversified application domains is presented in Figure 11, which 

illustrates the expanding reach of LFPs across energy, optoelectronic, neuromorphic, and 

radiation-sensitive technologies. This diversification has been driven by the integration of 

computational tools with property-specific evaluation strategies, enabling rapid screening and 

targeted optimization across a broad spectrum of use cases.
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Figure 11. Overview of major application domains explored using computational modeling of 
LFPs.

4.4. Cross-Domain Property Trends

Beyond application-specific studies, it is equally important to consider the broader trends 

in material properties that underpin multiple domains. Figure12 represents the frequency of studied 

properties across all LFP applications. Bandgap and optical absorption dominate, reflecting their 

central role in energy conversion processes and their necessity for screening materials for 

photovoltaic, photocatalytic, and related optoelectronic applications. Dielectric properties, 

Seebeck coefficients, and phonon-related descriptors are also prevalent, aligning with the demands 

of optoelectronic, thermoelectric, and thermal barrier coating applications. 

At the same time, less frequently investigated properties such as defect tolerance, exciton 

binding energy, and spectroscopic limited maximum efficiency, highlight a shift toward more 

targeted, application-specific modeling approaches. These descriptors are often critical for 
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advanced device optimization but require greater computational sophistication. For instance, 

Vicent-Luna et al.110 employed the GFN1-xTB method to efficiently compute electronic band 

structures and density of states in halide perovskites, offering a low-cost alternative to DFT for 

large-scale computational screening.

Figure 12. Frequency of properties investigated across computational LFP studies.

4.5. Mapping Applications to Material Classes

While property trends highlight common computational descriptors across applications, 

another important perspective comes from examining how specific material subclasses of LFPs 

are linked to targeted functionalities. A clear stratification emerges across halide, oxide, double 

perovskite, and vacancy-ordered systems, reflecting the way intrinsic chemistry and structural 

motifs shape device relevance. This mapping underscores that advances in computational 

methodology are not only broadening the scope of applications but also deepening the material–

function relationship. As highlighted earlier, LFPs can be classified along multiple overlapping 
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dimensions, including anion chemistry, dimensionality, bonding character, and B-site 

configuration (Figure 1). The present analysis, Figure 13 (a and b), emphasizes B-site classification 

showing how different subclasses are preferentially studied for distinct device paradigms.
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Figure 13. (a) Frequency distribution of major application domains across LFP material classes 

based on B-site configuration. (b) sunburst chart illustrating functional mapping from material 

classes to application domains, highlighting multifunctionality, and cross-domain relevance.

4.5.1. Double Perovskites 

Double perovskites are the focus of extensive computational research as shown in Figure 

13a, particularly in diverse applications such as photovoltaics, optoelectronics, photocatalysis, and 

spintronics. Their chemical flexibility allows for precise tuning of bandgap, stability, and magnetic 

behavior. For instance, Cs2AgBiBr6 has been widely studied for PV and photodetector applications 

due to its indirect bandgap and robust environmental stability111,112. In spintronic contexts, TlTiBr3 

and Sr2SnMnO6 have shown potential due to their spin-polarized electronic structures and 

ferromagnetic behavior105,113.

4.5.2. Halide Perovskites

Halide LFPs represent another major subclass with broad application coverage across 

photovoltaics, LEDs, thermoelectrics, and optoelectronics (Figure 13a). Their appeal lies in highly 

tunable optoelectronic properties combined with low-temperature processability. Tin and Cu-

based halides have been widely studied for photovoltaics, benefiting from tuneable optoelectronic 

properties and low-temperature synthesis, while neuromorphic functionalities have also been 

demonstrated. CsAg2I3 shows neuromorphic functionality via double-ion diffusion and low-

threshold conduction, and compatibility for photonic applications26. Moreover, hybrid DFT 

calculations at the B3LYP/6-311++G(d,p) level confirmed the ability of halide LFPs to drive 

visible-light oxidative photocatalysis through singlet oxygen and superoxide formation104, further 

extending their multifunctional potential. 

4.5.3. Oxide Perovskites
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Oxide LFPs are most prominently represented in “other” applications such as thermal 

barrier coatings and catalysis. Their suitability arises from strong phonon scattering, high melting 

points, and robust chemical stability, which enable performance under extreme conditions. For 

example, BaMnO3 demonstrates strong UV absorption and intrinsically low thermal conductivity, 

making it attractive for turbine environments108. Similarly, Ba3SbI3 combines dynamic stability, 

UV responsiveness, and low thermal conductivity, reinforcing its potential for high-temperature 

coating applications107.

4.5.4. Other Material Classes

Beyond halide and oxide systems, several additional subclasses of LFPs are beginning to 

expand their presence across diverse applications, though at a smaller scale as shown in Figure 

13a. Hybrid organic–inorganic perovskites have found use primarily in LEDs and solar cells, with 

CH3C(NH2)2SnI3 identified through machine learning screening as a promising candidate owing 

to its 1.87 eV bandgap and low defect density114. Chalcogenide perovskites represent another 

emerging direction, exemplified by Ba2BiNbS6, which has been proposed as a stable lead-free PV 

absorber with near-zero decomposition energy115. Vacancy-ordered systems also show growing 

potential, as demonstrated by Ba2SnBr4, investigated as a scintillator with tunable 

radioluminescence properties109. These examples demonstrate how diverse chemical classes of 

LFPs are being computationally tailored to specialized device contexts. 

4.6. Structure–Function Mapping

A key outcome of computational expansion is the ability to directly link material subclasses 

with targeted application domains. The mapping in Figure 13b demonstrates how computational 

screening aligns material class with application needs, leveraging LFP chemistry versatility. It 

confirms oxides are being investigated for high-temperature and mechanical applications, even 

though double perovskites and halides are still essential to photovoltaics and optoelectronics. The 
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compatibility of LFP chemistries and the effectiveness of computational screening in focusing 

research are both demonstrated by the alignment of material class and application need.

This section demonstrates how modeling and simulations have taken center stage in the 

study of LFPs, offering crucial insights into their stability, structure, and potential for real-world 

use. Starting from early studies using density functional theory90,116, the field has grown to include 

more advanced techniques such as ab initio molecular dynamics96, hybrid functionals25, transport 

modeling99, and machine learning approaches100. These resources have aided researchers in 

investigating a wider range of applications in addition to understanding the fundamental 

characteristics of materials. The initial emphasis on photovoltaic devices has since paved the way 

to a more comprehensive investigation of lead-free perovskites in a variety of functional areas. 

Because of their compositional flexibility and ease of simulation, double perovskites and halides 

are the most common. However, the discovery of other promising types may be limited by this 

intense focus on well-known materials. Subclasses that are less prevalent, including vacancy-

ordered perovskites and chalcogenides109,115, are still not studied as much, often because of limited 

data or higher computational cost. Most simulations are based on ideal conditions, defect-

free structures, and do not accurately represent real-world circumstances, such as temperature 

effects or device interfaces. This is another significant drawback. While some studies have 

addressed these issues using more realistic simulations96,106, they remain relatively few. Overall, 

the progress in computational tools has made it possible to screen materials faster and design them 

more precisely. However, future work should aim to include a wider variety of material classes, 

simulate more realistic conditions, and work more closely with experimental validation. This will 

help ensure that computational research continues to guide the discovery of safer, more efficient 

lead-free perovskites for next-generation technologies. 
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5. Lead-Free Perovskites for Photovoltaic Applications

5.1. Growth and Drivers of Photovoltaic-Focused LFP Research

Among all the emerging application domains, photovoltaics stands out as the most 

extensively explored and methodologically mature area within the computational study of LFPs. 

This maturity is marked not only by the volume of published work (156 studies on the photovoltaic 

potential of LFP) but also by the completeness of the computational pipelines employed. As 

computational methods have advanced, photovoltaic-focused studies have transitioned from 

simple bandgap predictions to comprehensive workflows that integrate materials modeling, 

property analysis, and full-stack device simulation. As illustrated in Figure 14, the number of 

computational studies on LFPs for photovoltaic applications has grown steadily over the past 

decade, with a significant surge beginning in 2023. The surge in 2023 can be attributed to advances 

in machine learning, regulatory pressure to replace toxic lead, and the emergence of high-

performing lead-free candidates. Cai et al.117 screened ~12 million compounds using a physics-

informed ML model, identifying 17 stable materials with >20% predicted efficiency. Hu and 

Zhang118 combined DFT, and ML to discover new 2D lead-free perovskites with optimized band 

gaps and thermodynamic stability. These innovations, alongside initiatives like the EU-funded 

SUNREY project, significantly accelerated computational efforts in this field. This rise reflects 

both the urgency of finding stable and non-toxic alternatives to Pb-based perovskites and the 

increasing confidence in computational techniques to deliver reliable pre-screening and device-

level predictions. 
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Figure 14. Photovoltaic-focused analysis of computational LFP studies illustrating 

growth in PV-relevant publications over time

5.2. Material Classes and Their Photovoltaic Potential

The distribution of material classes in photovoltaic-focused studies shown in Figure 15 

highlights the dominance of double perovskites (43%) and halides (23%), reflecting their 

versatility and suitability for solar energy conversion. Oxides account for a smaller but still 

substantial fraction (19%), while organic/inorganic, chalcogenide, and vacancy-ordered systems 

remain comparatively underexplored. This stratification underscores how computational pipelines 

are increasingly directed toward classes that balance tunable optoelectronic properties with 

chemical stability.
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Figure 15. Material class distribution in photovoltaic studies

Double perovskites stand out not only for their prevalence but also for their performance 

in critical photovoltaic descriptors, including optimal band gaps, defect tolerance, and stability. 

Cs2AgBiBr6 exemplifies this class, combining low toxicity and ambient durability with a tunable 

indirect bandgap. Ji et al.119 demonstrated that its bandgap could be reduced from 1.98 eV to 1.72 

eV through temperature-controlled synthesis, attributing the shift to Ag–Bi disorder confirmed by 

DFT. Saifee et al.120 further advanced this by reporting a ~1.6 eV bandgap with strong 

environmental resilience, emphasizing the material’s viability for device integration.

Halide perovskites, meanwhile, continue to attract attention for their superior optical 

properties and compatibility with thin-film fabrication. Riaz et al.121 showed that CsEuBr3 meets 

key benchmarks for solar absorbers, with a suitable 1.2 eV bandgap and strong light absorption 

capacity, making it a strong candidate for efficient solar energy harvesting.

Although smaller in share, oxides and other subclasses contribute to diversifying the 

materials landscape. Their presence indicates an emerging interest in expanding beyond the well-
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established double and halide systems, suggesting future opportunities for discovery once 

computational and experimental pipelines mature further.

5.3. Key Performance-Related Properties Targeted in Modeling

A distinguishing feature of photovoltaic research in LFPs is the strong emphasis on 

performance-relevant properties. As shown in Figure 16a, bandgap calculations remain central, 

followed by extensive focus on fill factor, optical absorption, dielectric properties, and device-

relevant metrics such as open-circuit voltage and power conversion efficiency. The emphasis on 

bandgap highlights its crucial role in determining the suitability of a material for photovoltaics, 

with numerous studies identifying compounds in the 1.3–1.5 eV range as optimal, in line with the 

Shockley–Queisser limit. To cite an example, Jain et al.119 performed a high-throughput analysis 

regarding optimum bandgaps, and Shoab et al.102 and Rahman et al.107 evaluated the fixed-bandgap 

perovskites MASnI3 and Ba3SbI3, respectively, which incidentally both lie in the optimum spectral 

response.
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Figure 16. (a) Frequency of properties targeted in PV modeling (b) Ideal property count across 

material classes

The focus on fill factor and open-circuit voltage is a growing trend towards prediction 

rather than material screening alone. For instance, predictions of theoretical FF, Voc, and PCE for 

various RbSnX3 absorber layers were made by Ravidas et al.103 using DFT with the help of 

SCAPS-1D simulations, evidencing the transition towards device-aware modeling protocols in 
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lead-free perovskites. Optical absorption is a routine metric in halide perovskite studies because 

of their large extinction coefficients, and visible-light band alignment, aspects used in high-

throughput screening studies such as Xiao et al.104.

5.4. Linking Material Classes to Ideal Photovoltaic Properties

This focus on performance is further reinforced when material class is mapped to the 

number of ideal photovoltaic properties each exhibits (Figure 16b). Double perovskites exhibit the 

highest count, particularly in optimal band gaps, defect tolerance, and stability. Cs2AgBiBr6 

exemplifies this class with low toxicity, ambient durability, and a tuneable indirect bandgap. Ji et 

al.112 reduced its bandgap from 1.98 eV to 1.72 eV via temperature-controlled synthesis, attributing 

the shift to Ag–Bi disorder confirmed by DFT. Saifee et al.120 further reported a ~1.6 eV bandgap 

and strong environmental resilience. Halide systems such as CsEuBr3, with proven capability to 

meet key optical and electronic property benchmarks, including a suitable 1.2 eV band gap and 

strong light absorption, show significant promise for solar energy harvesting121.

5.5. Computational Toolchain for Photovoltaic LFP Studies

The methodological maturity of photovoltaic-focused LFP research is underpinned by a 

well-established computational toolchain ecosystem. As shown in Figure 17, WIEN2k remains 

dominant for bandgap calculations, benefiting from the TB-mBJ potential’s improved accuracy 

over conventional DFT methods. Optical absorption is also frequently studied using WIEN2k, and 

SCAPS-1D, the latter playing a central role in linking atomistic properties with macroscopic 

device metrics such as current–voltage behavior and maximum power output. VASP is heavily 

utilized for formation energy, defect tolerance, and effective mass analysis, leveraging its robust 

plane-wave basis and extensive pseudopotential database. Phonon calculations are vital for 

assessing thermal stability, and phonon modes are typically carried out using Phonopy and 

Quantum ESPRESSO. Spectroscopic limited maximum efficiency (SLME), a lesser-known but 
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increasingly used performance factor for photovoltaics, was applied in their studies with an 

application explicitly oriented towards intrinsic light principles115.

Figure 17. Mapping of computational tools to properties studied in photovoltaic applications.

5.6. Towards End-to-End Computational Workflows

Advances in modeling and simulation now allow researchers to construct complete 

computational narratives of material behavior, from stability and optical response to device-level 

performance. Researchers are no longer constrained from asking questions about whether a 

material might be stable or might be optically active. Instead, researchers are constructing end-to-

end narratives of material performance. These workflows not only identify stability and 

functionality but also reveal limitations and provide guidance for design enhancement through 

compositional optimization and process refinement. Photovoltaics thus serves as a model domain, 

where theory-driven screening, multiscale modeling, and integrated toolchains converge to 

accelerate the development of lead-free perovskite materials with improved efficiency, durability, 

and scalability.
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6. Emerging Patterns and Future Directions

6.1. Transition to Application-Oriented Research

The area of computational lead-free perovskites is transitioning from the early discovery 

phase to application-driven development. As illustrated throughout this review, the advances in 

computational tools and techniques have not only expedited the screening of materials but also 

facilitated targeted investigation of LFPs across various applications, including spintronics, 

photovoltaics, photocatalysis, and thermal barriers. The field of computational LFP is steadily 

advancing from exploratory material discovery toward application-driven, methodologically 

sophisticated research. As shown in Table 3 and discussed throughout Section 4, this evolution is 

marked by tighter integration between computational strategies, material subclasses, and 

functional objectives.

This development reflects the rapid growth of computational studies in recent years, 

enabled by a proliferation of accessible electronic structure codes, transport models, and machine 

learning (ML) toolkits (Section 4). Halide and double perovskites remain the most intensively 

studied subclasses, driven by their structural tunability and strong optoelectronic performance. 

Photovoltaics, in particular, continues to dominate the application landscape, with numerous 

studies combining DFT, Boltzmann transport theory, and SCAPS-1D device simulations to model 

absorber properties, carrier dynamics, and power conversion efficiency, as discussed in Section 5. 

Examples include the simulation of 29.41% PCE for Rb2AlAgI6
122, and 33.84% for Cs2TiBr6-

based solar cells123, which underscore the growing predictive capability of computational design 

frameworks.

6.2. Recurring Research Methodologies Across Domains

An important observation emerging from Table 3 is the recurrence of research teams 

applying consistent methods across diverse applications. For example, Nazir et al.124-126 have 
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systematically employed DFT and BoltzTraP to investigate double perovskites across 

photovoltaic, thermoelectric, and optoelectronic domains. Similarly, Zhang Zizi et al.106, Zhang 

Zhaosheng et al.114, and Zhang L. et al.18 have used machine learning–augmented DFT workflows 

to explore photovoltaic and photocatalytic functionalities. Reza et al.123,127 have applied device 

simulations to halide perovskites across different architectures, indicating growing methodological 

continuity across material systems. 

Simultaneously, photovoltaics is being modeled using a wide variety of LFP chemistries, 

not just halide perovskites127-129, but also double perovskites106,120,130, oxide perovskites131, 

chalcogenide perovskites132, and hybrid organic–inorganic perovskites133,134. This trend, detailed 

in Section 4, demonstrates the material adaptability of the perovskite framework to support diverse 

optoelectronic applications.

In parallel, certain material classes are being deployed across multiple functional domains, 

further reinforcing their versatility. Double perovskites serve in photovoltaics, 

thermoelectrics135,136, stability screening100,137, spintronics90, photocatalysis138, and CO2 

catalysis139. Oxide perovskites are similarly used in photovoltaics131, thermoelectrics140, 

spintronics141, gas sensing142, and ferroelectricity116. These cross-functional deployments highlight 

the increasingly modular and transferable nature of LFP computational workflows.

Diverse approaches are becoming more similar due to recent advancements in research 

methodology. While SCAPS-1D has emerged as a key tool for modeling photovoltaic 

devices120,129, WIEN2k + BoltzTraP has become a standard toolkit for modeling thermoelectric, 

and optical transport. At the same time, property prediction is accelerated, structural descriptors 

are interpreted, and device configurations are optimized with machine learning tools such as 

CatBoost, XGBoost, LightGBM, and symbolic regression. Surrogate models like the orthorhombic 

Page 46 of 69Materials Advances

M
at

er
ia

ls
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/2

9/
20

25
 2

:2
8:

23
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5MA00681C

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ma00681c


structure predictor143, and custom frameworks like ECSG100 are examples of attempts to boost 

computational efficiency without sacrificing physical interpretability.

Defect tolerance and structural stability modeling, which are crucial for long-term device 

performance, are another new area of interest, as established earlier in Section 5. Defect formation 

energy, and passivation behavior are directly incorporated into material screening in studies like 

Zhang Zhaosheng et al. 114 and Yun et al.128. Similarly, interpretable, generalizable descriptors of 

thermodynamic stability are constructed using ML frameworks such as those by Shi et al.133 and 

symbolic regression137.

6.3. Advanced Design Strategies for Property Optimization

Strain engineering106, dimensional control128, and site mixing134 are recurring design 

approaches observed in materials and applications. They are increasingly applied to modify 

bandgaps, enhance carrier mobility, or mitigate defect states. To maximize performance across 

composition and device architecture, these tactics are frequently combined with high-throughput 

simulation and descriptor-based machine learning models100,133, as explained in Table 3 and 

Section 5.

Computational lead-free perovskite research is maturing into a highly targeted, application-

focused field, driven by methodological convergence, machine learning integration, and cross-

functional material versatility. Trends such as stability modeling, defect tolerance assessment, and 

advanced design strategies are ensuring that performance gains are paired with durability, while 

scalable, high-throughput workflows are accelerating the path from theoretical prediction to real-

world deployment across different application areas.
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Table 3. Representative computational studies of lead-free perovskites.

LFP Type Application Studied Method Used Computational Tool Used Key Concept References
Double 
perovskite

Stability prediction and 
materials discovery

ML + DFT Electron Configuration 
models with Stacked 
Generalization (ECSG) 
ensemble, including Electron 
Configuration Convolutional 
Neural Network (ECCNN) + 
VASP

Developed a custom ensemble ML 
framework (ECSG) incorporating 
electron configuration to enhance 
stability prediction and discover new 
wide-bandgap materials with high data 
efficiency.

100

Double 
perovskite

CO₂ splitting, and 
industrial decarbonization

MD + 
Thermodynamic 
Modeling + 
Experimental

LAMMPS + COMSOL 
Multiphysics

Demonstrated Ba2Ca0.66Nb0.34FeO6−δ
(BCNF) as an efficient CO₂-splitting 
catalyst enabling closed-loop carbon 
recirculation in steelmaking, operating 
at 700–800 °C with significant emission 
reduction, and industrial scalability.

139

Double 
perovskite

Photovoltaics ML + DFT + 
Device 
Simulation

Random Forest, Gradient 
Enhanced Regression, 
Support Vector Machine 
Regression, Ridge 
Regression, Extreme Gradient 
Boosting + CASTEP + 
SCAPS-1D

Developed a machine learning-guided 
design framework to identify 
Cs2AgSbCl6 as a strain-tolerant double 
perovskite light absorber. Demonstrated 
that micro-strain tuning enables 
mechanical flexibility, thermal stability, 
and preserves optoelectronic 
performance, achieving 21.38% 
simulated photovoltaic efficiency.

106

Hybrid 
organic–
inorganic 
perovskite

Photovoltaics ML + DFT XGBoost, LightGBM, 
CatBoost, Random Forest, 
CustomCNN, VGG16, 
Xception, EfficientNetV2B0, 
GCSConv, GCNConv, 
GATConv + VASP

Developed an ML-assisted high-
throughput framework using advanced 
structural descriptors and 11 algorithms 
to screen hybrid perovskites. Identified 
CH3C(NH2)2SnI3 as a lead-free 
candidate with strong defect tolerance 
and high potential photovoltaic 
performance.

114

Oxide 
perovskite

Photocatalytic Water 
Splitting

ML + DFT TPOT + VASP Used TPOT automated ML to screen 
5329 ABO3 perovskite oxides for 
photocatalytic band edge properties. 
Achieved 42% error reduction via 
ensemble learning. Identified 57 
candidate materials for water splitting, 
validated with VASP.

18

Halide 
perovskite

Neuromorphic computing DFT + 
Simulation + 
Experimental

VASP + Custom ANN Developed a lead-free halide perovskite 
analogue (CsAg2I3)
memristor with HI-induced interstitial 
doping to enable dual-ion migration, 
and analog resistive switching, 
achieving stable synaptic plasticity, and 
93% image recognition accuracy for 
neuromorphic computing applications.

26

Mixed 
perovskites 
(oxide 
perovskites, 
oxynitride 
perovskites, 
Ruddlesden–
Popper 
perovskites)

Photovoltaics ML CatBoost, Gradient Boosting Developed an ML-based framework 
using Matminer features and Materials 
Project data to predict bandgap 
properties of diverse perovskites for 
photovoltaic applications. Gradient 
Boosting achieved the highest AUC 
(0.864) with stability considered. SHAP 
and LIME revealed key structural and 
compositional factors.

144

Oxide 
perovskite

Thermal barrier coatings 
(TBCs)

AIMD + ML 
Potentials + 
Classical MD + 
PIMD + 
HNEMD

VASP + MLIP + LAMMPS + 
GPUMD

Developed a multi-method 
computational framework integrating 
AIMD, machine-learned interatomic 
potentials, and classical/quantum 
molecular dynamics to identify 14 
oxide perovskite-based candidates with 
low thermal conductivity, and stable 
high-temperature performance for use 
as next-generation thermal barrier 
coatings.

21
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Halide 
perovskite

Photovoltaics DFT + 
Experimental

VASP Developed a dimensional engineering 
strategy to grow controlled 1D and 2D 
LDPs on 3D perovskites. Demonstrated 
improved charge transport and record 
stability under ISOS-L-3 testing. 
Achieved 24.19% PCE (cell) and 
22.05% PCE (module) with excellent 
long-term stability.

128

Chalcogenide 
perovskite

Photovoltaics DFT + Device 
Simulation

Quantum ESPRESSO + 
SCAPS-1D

Predicted the photovoltaic potential of 
lead-free chalcogenide perovskite 
analogue Na3SbSe4 using DFT and 
SCAPS-1D simulation, revealing a 
direct band gap, strong visible-range 
absorption, and device-level efficiency 
up to 28%, guiding the design of eco-
friendly solar materials.

132

Halide 
perovskite

Band gap prediction and 
high-throughput modeling

DFT + 
Surrogate 
Modeling

VASP + SPuDS + PySPuDS 
+ pymatgen

Developed an orthorhombic surrogate 
model (OSM) that replicates 
polymorphous network band gaps of 
ABX₃ halide perovskites with <0.1 eV 
error, enabling 10× faster high-
throughput DFT screening for 
optoelectronic applications.

143

Vacancy-
ordered 
double 
perovskite 

Stability prediction and 
materials design

DFT + ML VASP + Symbolic Regression 
(custom algorithm)

Developed a symbolic regression–
based explicit stability descriptor for 
A₂BX₆ vacancy-ordered double 
perovskites, achieving ~90% accuracy 
in predicting decomposition energies, 
and enabling rapid, interpretable 
screening of stable, lead-free 
candidates.

137

Ruddlesden–
Popper 
perovskite

Neuromorphic computing DFTB + 
Experimental

Amsterdam Modeling Suite 
2021

Engineered microstructure in lead-free 
2D perovskite (PEA2SnI4) memristors 
to modulate Ag filament dynamics, 
enabling tuneable resistive switching, 
and synaptic behavior for neuromorphic 
applications through combined 
experimental–theoretical analysis.

20

Vacancy-
ordered 
double 
perovskite 

Optoelectronics and gas 
sensing

DFT + 
Experimental

not specified Developed mid-IR emitting Cs2AgIn1-

xTmxCl6-ZBLAY
Perovskite glass with 3.46 μm emission 
matched to HCl absorption for gas 
sensing; demonstrated excellent 
thermal and photostability.

145

Hybrid 
organic–
inorganic 
perovskite

Optoelectronics DFT + 
Experimental

VASP Developed an organic–inorganic hybrid 
strategy using MA⁺ and FA⁺ to induce 
lattice distortion, enhancing PLQY of 
nondoped DPNCs up to 15.4% by 
brightening the self-trapped exciton 
state.

146

Double 
perovskite

Optoelectronics, 
Thermoelectrics

DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP Investigated electronic, optical, and 
thermoelectric properties of A2AuSbZ6
compounds; demonstrated structural 
stability, high ZT values, and visible-
light transparency, highlighting their 
potential for green energy applications. 

135

Halide 
perovskite

Photovoltaics ML + DFT + 
Device 
Simulation

CASTEP+ SCAPS-1D + 
Ridge

Combined DFT and SCAPS-1D 
simulations with Ridge regression ML 
to model and optimize Ca3AsI3 solar 
cell performance; predicted 25.16% 
PCE, and identified defect density as 
critical.

147

Vacancy-
ordered 
double 
perovskite 

Thermoelectrics DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP Explored structural, optoelectronic, and 
thermoelectric properties using DFT 
and BTE-based BoltzTraP; identified 
low κ, high ZT, and visible-range 
bandgaps.

19

Halide 
perovskite

Photovoltaics DFT QuantumATK Systematic benchmarking of XC 
functionals, and DFT parameters (PPs, 

148
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k-points, DMC) to optimize bandgap 
predictions with MGGA, showing low 
deviation at reduced cost.

Double 
perovskite

Optoelectronics, 
Thermoelectrics

DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP First-principles study revealed 
Sr2YBiO6 as an indirect bandgap 
semiconductor (2.15 eV) with 
promising optical absorption, and 
thermoelectric performance (ZT up to 
0.7 at 1200K).

136

Halide 
perovskite

Photovoltaics Device 
simulation + 
ML

SCAPS-1D + Python ML 
libraries

Developed and validated a machine 
learning model (RF) trained on 101,250 
simulated solar cell configurations to 
predict and optimize PCE in 
compositionally engineered halide-
based tin perovskites; top PCEs ranged 
from 5.34% to 11.69%.

129

Halide 
perovskite

Photovoltaics ML CatBoost, SHAP, Optuna Developed ML models to predict 
bandgap, VBM, and CBM for 551 
absorber compositions; CatBoost 
achieved RMSE of 0.054eV for 
bandgap; validated on 13 unseen 
compounds, and analyzed feature 
impact using SHAP.

149

Halide 
perovskite

Optoelectronics DFT + 
Experimental

VASP Benign mid-gap halide vacancy states 
in 2D-bismuth-based halide perovskite 
microcrystals for enhanced broadband 
photodetectors

150

Hybrid 
organic–
inorganic 
perovskite

Photovoltaics DFT + ML Gaussian16 + gplearn (GP-
SR), SISSO, SHAP

An interpretable ML model discovers 
two universal descriptors (Φ₁, Φ₂) for 
accurate PCE prediction. Φ₂ 
outperforms Eg in predictive power; 
high-throughput screening enabled.

133

Halide 
perovskite

Thermoelectrics, 
Spintronics, 
Optoelectronics

DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP Doping CsZnBr3 with C or N induces 
ferromagnetism and spin-filter 
behavior, enhancing thermoelectric (ZT 
up to 1.06 at 1200 K) and UV-range 
optoelectronic performance.

99

Oxide 
perovskite

Gas sensing ML Word2Vec + CGCNN + 
Transfer Learning

Developed a deep learning framework 
combining NLP and CGCNN to predict 
high-performing gas-sensing TMPOs; 
validated with selective 3H-2B 
detection (LOD: 25 ppb).

142

Oxide 
perovskite

Thermoelectrics, 
Photovoltaics

DFT + 
Boltzmann 
Transport 
Theory

DFT + BoltzTraP Ni substitution narrows bandgap, 
enhances optical absorption, and ZT 
(0.90–0.99)

140

Oxide 
perovskite

Photovoltaics DFT + Device 
Simulation

Quantum ESPRESSO + 
OghmaNano

Developed a combined DFT and 
OghmaNano device modeling approach 
to evaluate lead-free Sm2NiMnO6 for 
PSCs, achieving tuneable bandgap, 
high photoconductivity, and up to 9% 
theoretical PCE.

131

Double 
perovskite

Photovoltaics Device 
simulation + 
ML

SCAPS-1D + Python (ML) Combined SCAPS-1D simulation and 
ML prediction to optimize 
Cs2AgBiBr6-based PSCs with GQD 
HTL, achieving 15.33% PCE and 
96.03% ML prediction accuracy.

120

Double 
perovskite

Photovoltaics Device 
simulation

SCAPS-1D Simulated ITO/C60/Rb2AlAgI6/CBTS 
PSC achieving 29.41% PCE; 
investigated effects of thickness, 
temperature, defects, and resistances on 
performance.

122

Halide 
perovskite

Photovoltaics DFT WIEN2k Identified CsEuBr3 as a stable, ductile, 
high-absorption material with a 1.2 eV 
bandgap and low loss function, 
confirming its suitability for 
photovoltaic applications.

121

Halide 
perovskite

Photovoltaics Device 
simulation

SCAPS-1D Simulated three hybrid PSCs with 
IGZO ETL, and different HTLs (Cu2O, 

127
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CuO, SnSe). Device I (IGZO/Cu2O) 
achieved 33.84% PCE, 1.13 V Voc, 
34.54 mA/cm² Jsc, and 86.78% FF. 
Optimization of defects, thickness, 
recombination, and resistance showed 
strong potential for eco-friendly solar 
cells.

Halide 
perovskite

Photovoltaics Device 
simulation

SCAPS-1D Optimized Cs2TiBr6-based solar cells 
with ZnSe ETL and V2O5 HTL 
achieved 31.02% PCE. Simulation 
revealed the critical influence of 
absorber/transport layer thickness, 
defect density, and temperature. Device 
I (Al/FTO/ZnSe/Cs2TiBr6/V2O5/Os) 
outperformed others in efficiency and 
FF.

123

Double 
perovskite

Photovoltaics Device 
simulation

SCAPS-1D Optimized Rb2LiGaI6-based PSC using 
WS₂ as ETL, and CuI as HTL. 
Achieved PCE of 28.71% with Voc = 
0.856 V, Jsc = 41.24 mA/cm², and FF 
= 81.24%. Performance boost attributed 
to high lattice stability and tuneable 
band structure of Rb2LiGaI6.

130

Double 
perovskite

Photovoltaics DFT CASTEP Assessed structural, electronic, optical, 
and mechanical properties of 
K2CuSbBr6. Found an indirect bandgap 
of 0.32 eV, strong absorption in the 
visible-NIR range, good ductility, and 
anisotropy.

151

Oxide 
perovskite

Spintronics DFT + U Quantum ESPRESSO Investigated a (010)-oriented 
CaNbO3/Ca2VMoO6 heterostructure; 
found spin reorientation at the interface 
leading to antiferromagnetic coupling, 
and metallic behavior due to Mo t2g 
states.

141

Double 
perovskite

Photovoltaics DFT + 
Boltzmann 
Transport 
Theory

Quantum ESPRESSO + 
BoltzTraP

Cation mixing (K/Cs) in Rb2SnBr6 
tunes bandgap and mechanical 
flexibility, enhances thermoelectric 
performance (ZT up to 0.77), and 
enables application in optoelectronics 
and solar cells.

152

Double 
perovskite

Photocatalysis DFT + AIMD + 
ML 

VASP, XGBoost, SISSO, 
ThermoPW

Developed a multistep ML framework 
and GW descriptor to predict 
quasiparticle band gaps with >90% 
accuracy; screened 94 lead-free 
candidates

138

Double 
perovskite

Photovoltaic, 
Thermoelectric

DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP Bandgap tuned from 1.5 to 0.9 eV via 
halide substitution; K2InBiI6 shows 
enhanced thermoelectric performance; 
strong visible-range absorption 
supports solar cell use

24

Double 
perovskite

Thermoelectrics, 
Optoelectronics

DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP Employed advanced DFT workflows to 
predict stable wide-bandgap 
fluoroperovskites (Eg ≈ 2.98 eV) with 
strong UV-visible absorption, and high 
thermoelectric ZT (~0.99) at 300 K

124

Double 
perovskite

Photovoltaics DFT + 
Boltzmann 
Transport 
Theory

WIEN2k + BoltzTraP Predicted stable halide double 
perovskites with high PF, and ZT (~1), 
strong UV–visible absorption, and 
ductile nature, highlighting Ga2PtI6 as a 
dual-function material for 
optoelectronic, and thermoelectric 
applications

125

Double 
perovskite

Optoelectronics, 
Spintronics

DFT WIEN2k Investigated Sr2XWO6 (X=Co, Zn); 
revealed spin-dependent bandgaps and 
half-metallicity in Sr2CoWO6, and 
strong UV-visible absorption, 
identifying it as a promising material 

126
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for optoelectronic and spintronic 
applications

Double 
perovskite

Optoelectronics, 
Thermoelectrics, 
Photovoltaics

DFT WIEN2k Assessed lead-free K2AuSbX6 (X = Cl, 
Br, I) as stable cubic perovskites with 
tuneable band gaps, and optical 
response; K2AuSbI6 suited for visible-
range photovoltaics, K2AuSbBr6 for 
thermoelectrics due to high Seebeck 
coefficient, and power factor

153

Oxide 
perovskite

Optoelectronics, 
Spintronics

DFT + Birch–
Murnaghan 
EOS, Elastic 
Tensor (IRelast)

WIEN2k + IRelast Identified BeSiO₃ as a non-magnetic 
wide-gap semiconductor (Eg ≈ 2.64–
2.71 eV), and PdSiO₃ as a spin-
polarized half-metal with strong UV 
sensitivity, supporting spintronic and 
UV-optoelectronic applications

154

Oxide 
perovskite

Ferroelectric/Piezoelectric DFT, DFPT CASTEP Sn displacement drives spontaneous 
polarization, making SnTiO3 a stable 
lead-free ferroelectric candidate

116

Double 
perovskite

spintronics DFT (GGA+U 
with SOC)

WIEN2K Strong Os–O hybridization suppresses 
the magnetic moment and stabilizes 
high-T antiferromagnetism

90

Halide 
perovskite

Photovoltaic, 
Optoelectronics

ML + DFT VASP Over 480 halide LFPs screened; 10 new 
stable compounds found with visible-
range bandgaps for optoelectronic use

119

Double 
perovskite

Photovoltaics ML GPR-NN, XGBoost, LGBM GPR-NN predicts bandgap and 
formation energy with higher accuracy 
and feature interpretability

155

Halide 
perovskite

Photovoltaics DFT + Device 
Simulation

WIEN2K, SCAPS-1D RbSnBr3 and RbSnCl3 show ideal 
bandgaps and high simulated PCEs as 
Pb-free absorber layers

103

Hybrid 
organic–
inorganic 
perovskite

Photovoltaics DFT (HSE06, 
PBE) + MD + 
Optical 
Simulation

VASP, PWmat, COMSOL A-, B-, and X-site mixing yields stable 
Pb-free HOIPs with direct bandgaps 
and >90% absorption across 300–1200 
nm

134

7. Challenges and Future Outlook

As computational studies of LFPs have matured, several challenges and opportunities for 

future progress have become clear. Underrepresented material families such as chalcogenide, 

oxynitride, and Cu-based perovskites are rarely modeled despite strong potential e.g., Na3SbSe4
132. 

Dynamic effects including ion migration, phonon scattering, and interface degradation are also 

insufficiently addressed in most current frameworks (Section 5). In addition, experimental 

validation of computational predictions remains limited, underscoring the need for tighter 

integration between theory and synthesis.

To close these gaps, and guide the next phase of research, several priorities are clear:

• Broaden chemical screening to include less-explored LFP chemistries with promising 

optoelectronic, and thermoelectric behavior.
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• Adopt multiscale simulation approaches that connect electronic, atomistic, and device-

level processes.

• Develop explainable and physically grounded ML models to support generalization across 

material classes.

• And strengthen computational–experimental feedback loops for iterative design and 

validation.

Taken together, the trends captured in Table 3 and analysed in Sections 4 and 5 reflect a 

field converging toward modular, interpretable, and application-aware computational materials 

design. As methods and models continue to evolve, the path forward lies in expanding 

compositional diversity, incorporating greater physical realism, and translating computational 

advances into experimental impact, ultimately driving sustainable, high-performance lead-free 

perovskite technologies.

8. Conclusion

This review has mapped the computational landscape of lead-free perovskite research 

across more than a decade (2013-2025) of methodological evolution and application 

diversification. Through bibliometric and thematic analyses, we have shown that computational 

studies have not only accelerated the discovery of promising LFP materials but have also reshaped 

the structure of inquiry from elemental screening to device-level optimization. Beginning with 

density functional theory as a foundational tool, the field has embraced a broader ecosystem of 

methods including hybrid functionals, ab initio molecular dynamics, machine learning, and device 

simulation frameworks. 

These advancements have enabled a shift from isolated property prediction to integrating 

multiscale modeling approaches. Simultaneously, the application space has expanded beyond 
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photovoltaics into areas such as spintronics, neuromorphic computing, photocatalysis, and 

thermoelectrics, each supported by tailored computational strategies. Our analysis highlights that 

this progress is rooted in the intrinsic versatility of LFP materials and the growing sophistication 

of computational workflows. The tight coupling between material class, targeted properties, and 

chosen computational tools reflects a maturing discipline capable of addressing complex 

technological requirements with increasing precision. 

As the field moves forward, the convergence of data-centric modeling, high-throughput 

computation, and application-specific simulation is expected to accelerate LFP innovation further. 

The following steps should continue to advance the development of explainable machine learning 

models and modular simulation frameworks that unify electronic, structural, and device-level 

modeling. While promising efforts are already emerging in this space, further studies are needed 

to standardize these approaches, broaden their applicability across LFP chemistries, and validate 

them against experimental benchmarks. Such efforts will be essential to enhance interpretability, 

reproducibility, and the real-world translation of computational insights. By serving as a 

comprehensive synthesis of these developments, this review aims to provide both a reference point 

and a roadmap for future work in computational materials design for sustainable, lead-free 

technologies.
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