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Layered double hydroxides (LDHs) are gaining interest in multifunctional materials due to their uniform
metal ion distribution and ease of anion exchange, contributing to advancements in clinical,
environmental, and food chemistry. In this study, Cu—Mn layered double hydroxides (CuMn-LDHs) were
synthesized using a one-step co-precipitation method. The pristine LDHs cause aggregation and have
limited conductivity. Due to these limitations, reduced graphene oxide (r-GO) was incorporated into
CuMn-LDHs and CuMn-LDHs/r-GO nanocomposites were synthesized. Reduced graphene oxide having
high surface area caused increased dispersion of CuMn-LDHs and prevented agglomeration. The CuMn
LDHs and CuMn-LDHs/r-GO nanocomposites were characterized by using Fourier transform infrared
spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), UV-Vis spectroscopy, scanning electron
microscopy (SEM), and X-ray diffraction (XRD). The CuMn-LDH modified gold electrode (CuMn-LDHs/
AuE) exhibited electrocatalytic behavior achieving a low detection limit (LOD) of 0.006 uM, with a wide
linear range of 50 uM to 6 mM and a sensitivity of 52.28 pA mM~t cm™2. The composite material
showed superior performance as a CuMn-LDH/r-GO modified gold electrode (CuMn-LDHs/r-GO/AuE)
exhibited good electrocatalytic glucose oxidation, achieving a low detection limit (LOD) of 0.96 nM, with
a linear range of 50 uM to 8.6 mM along with a sensitivity of 339.7 pA mM~* cm™2 for glucose and a
very high sensitivity of 9668 pA mM~t cm™2 for nitrophenol (NP). The future potential of these electrode
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1. Introduction

The simultaneous/dual detection of biologically and environ-
mentally significant analytes has gained considerable attention
in recent years, driven by the urgent need for reliable, rapid,
and cost-effective sensing technologies.' > Glucose monitoring
is critical for managing diabetes and other metabolic disorders.
Diabetes is becoming a prevalent, chronic, worldwide health
burden condition that can be lethal. In comparison to other
illnesses, it can lead to problems including blindness, stroke,
cardiovascular disease, and renal failure. Being a chronic
condition, diabetes may be made easier to manage by routinely
checking blood glucose levels.' On the other hand, the organic
aromatic molecule 4-nitrophenol (4-NP), which is freq-
uently present in aquatic habitats, is a dangerous chemical
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effectiveness, and ease of use in a one-step synthesis process.

contaminant and an essential component of dyes, pesticides,
medications, and leather products. Since prolonged exposure
to 4-NP can harm the neurological system and impede the flow
of oxygen to the blood, the World Health Organization (WHO)
have classified it as an extremely hazardous chemical, with an
acceptable limit in drinking water set at 1 pg L™ ". The specific
effects of 4-NP include inflammation, ocular discomfort, and
liver damage. It is imperative to identify and remove 4-NP from
wastewater and agricultural runoff, or convert it into a less
hazardous form.> The dual monitoring of such chemically
distinct analytes demands sensor materials with high sensitiv-
ity, selectivity, and electrochemical versatility.

Numerous techniques, including spectrophotometry, capil-
lary electrophoresis, electrochemical approaches, chromatogra-
phy, fluorescence, and Raman scattering, have been developed
in recent years to detect glucose and nitrophenol. Among them,
the electrochemical method has drawn the most attention due
to its high sensitivity, selectivity and convenience.> Enzyme-
based and non-enzymatic glucose sensors are the two available
sensors. Enzyme-based sensors employ glucose oxidase or
glucose dehydrogenase to catalyze electrochemical processes;
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however, their application is limited by several drawbacks. For
instance, unstable glucose sensors might result from the
enzymes being readily denatured during the immobilization
process. Additionally, the temperature of the surrounding
environment and the chemicals utilized in the detecting system
might affect the sensing effectiveness. Therefore, a lot of effort
has gone into creating non-enzymatic glucose sensors, particu-
larly those that use direct electrocatalysis of glucose on electro-
chemically active materials, which have the benefits of low
detection limits and high sensitivity.

Third-generation biosensors that use nanomaterials as a
non-enzymatic sensing element are being thoroughly studied
in this respect. The sensitivity, quick detection, affordability,
and long-term stability of these non-enzymatic sensors, which
are based on a variety of materials, have made them popular.
Here, two-dimensional (2D) materials play a critical role due to
improved electrical, optical, chemical, and physical character-
istics, making them a distinct class of nanomaterials. Their
hallmark qualities are phase, crystallinity, degree of exfoliation,
stability, and size.® As possible electrode materials for the
production of extremely sensitive sensors, black phosphorus
(BP), graphene and its oxides, transition metal chalcogenides
(TMDCs), metal oxides, and layered double hydroxides (LDHs)
have recently been exploited.”*® A potential class of non-enzymatic
electro-chemical sensor nanomaterials with distinctive two-
dimensional molecular hierarchies and superior electrical char-
acteristics are transition metal layered double hydroxides (TM
LDHs).” Hydrotalcite (HT)-like materials, sometimes referred
to as layered double hydroxides (LDHs), are a class of two-
dimensional (2D) anionic clay minerals having layered char-
acteristics. With a generic formula of [M; _,*"M,**(OH),(A™),/,.]
yH,0, many compositions and architectures of LDHs can be
created by altering the interlayer anion or modifying the metal
components. M** and M** represent the layers of divalent and
trivalent metallic ions, respectively.®® Membranes, supercapa-
citors, drug delivery, electrocatalysis, and electrochemical sen-
sors are just a few of the numerous uses for LDHs. Extensive
research has verified that these materials are unique due to
their large porosities, suitable interlayer gaps, good ion
exchange capacities, and highly adjustable internal and two-
dimensional architectures.

Layered double hydroxides (LDHs), based on transition
metals such as copper (Cu) and manganese (Mn), have been
widely explored for electrochemical applications due to their
unique layered structured, redox activity, and ion-exchange
capabilities. Cu-Mn is well recognized as a significant catalyst
due to its availability, low cost, and variety of valence states."*
Cu-Mn LDHs offer multiple oxidation states that facilitate
electron transport processes, making them suitable for redox-
based detection mechanisms. Despite their attractive features,
the poor conductivity of LDHs remains a limitation for direct
application in electrochemical sensing.

To overcome this drawback, conductive carbon-based mate-
rials such as graphene oxide (r-GO) are integrated with LDHs.
r-GO provides a high surface area, excellent electrical conduc-
tivity, and chemical stability, enabling efficient charge transfer
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and improving the overall electrochemical performance of the
composite. The combination of CuMn-LDHs with r-GO can
thus create a synergistic nanocomposite with improved sensi-
tivity and selectivity for dual analyte detection. Considering
these advantages, the present study is focused on the synthesis
and characterization of a novel CuMn-LDHs/r-GO nanocompo-
site and its application in electrochemical sensing of glucose
and nitrophenol. The motivation behind this work lies in
developing a multifunctional, cost-effective sensing platform
capable of addressing both biomedical and environmental
challenges. This study aims to demonstrate the potential of
CuMn-LDHs/r-GO as an efficient dual-functional material for
sensing applications."?

2. Methodology

2.1. Materials and instrumentation

Copper sulphate pentahydrate (CuSO,4-5H,0, Merck, >99.9%),
manganese carbonate tetrahydrate (MnCO;3-4H,0, Sigma-
Aldrich, >99.9%), sodium nitrate (NaNOs, Sigma-Aldrich,
>99.0%), sodium hydroxide (NaOH, Sigma-Aldrich, >99.5%),
ethanol (C,H5;O0H, Sigma-Aldrich, >97.0%), polyvinyl alcohol
(CH,~—CHOH, Sigma-Aldrich, >99.5), graphene oxide (CxOyHy,
Sigma-Aldrich, >99.5), hydrazine (N,H,, Sigma-Aldrich, >99.5),
4-nitrophenol (C¢H;NOj3, Sigma-Aldrich, >99.5), and 0.1 M PBS
solution were purchased and used without further purification.
De-ionized (DI) water was utilized to prepare all the solutions.

A Joel JDX-11 model device was used to produce XRD spectra
using a Cu-Ka (4 = 1.5418 A) source running at 45 kV. An EDX
unit-equipped field-emission scanning electron microscope
(ZEISS Sigma 500VP) was used to acquire the SEM morpholo-
gical pictures and elemental analysis. A PerkinElmer Lambda
900 UV-visible spectrophotometer was used to record the UV-
visible spectra of the colloidal dispersions of the produced
nanomaterials in aqueous solutions. The electrochemical tests
were performed at room temperature using a Gamry 1000
potentiostat.

2.2. Synthesis of pristine CuMn-LDHs

To prepare copper-manganese layered double hydroxides
(CuMn-LDHS), stoichiometric amounts of copper and manganese
salts (specifically carbonates and sulphates) were dissolved in
deionized water to form a clear, homogeneous solution. The
molar ratio of Cu®* to Mn** was precisely controlled in the range
of 1:1 to 1:2, depending on the desired composition of the final
material. Aqueous NaOH solution was then added dropwise
under continuous stirring to initiate co-precipitation, maintaining
the pH at approximately 11.7. This step was crucial to facilitate the
formation of a layered hydroxide structure through the controlled
nucleation and growth of metal hydroxide sheets. The resulting
suspension was aged at room temperature for 24 hours to
promote crystallization and enhance the stacking of the hydroxide
layers, a critical factor in achieving a well-defined LDH structure.
After aging, the precipitates were separated by vacuum filtration
and thoroughly washed with deionized water followed by a 20%

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ethanol solution to remove residual soluble ions and by-products.
The purified solid was then dried at 60-100 °C for 24 hours in an
oven. The final product was obtained as a blackish powder."?

2.3. Synthesis of CuMn-LDHs/r-GO

CuMn/r-GO was synthesized using a one-pot co-precipitation
technique. Graphene oxide (GO) was ultrasonically dispersed
into a flask that contained 150 mL of NaOH and Na,CO; solution.
Next, 150 mL of distilled water with Cu (SO,), and Mn (CO3), salts
was vigorously stirred. Then a solution of sodium hydroxide was
added to keep the pH of the resulting solution at 10.5. Prior to
being stirred at reflux temperature at 95 °C, the resultant mixture
undergoes heating to 60 °C. After that, hydrazine was gradually
added to the formed slurry. In the synthesis of copper-manganese
layered double hydroxides (CuMn-LDHs) combined with reduced
graphene oxide (rGO), here hydrazine hydrate (N,H,-H,0) is used
as a reducing agent to convert graphene oxide (GO) into rGO by
addition of hydrogen, during the composite formation process.
It removes oxygen-containing functional groups (e.g, hydroxyl,
epoxy, carboxyl) from the GO sheets, thus restoring the sp* carbon
network and converting GO into rGO. Then the resultant slurry
was centrifuged at 12 000 rpm, washed with deionized water and
20% ethanol solution, and dried in an oven for 24 hours at 95 °C
following six hours of refluxing.'*

2.4. Electrochemical measurements

A three electrode set-up was used for the electrochemical
studies, ie., a modified gold electrode (AuE) as a working
electrode with a surface area of 0.098 cm? platinum as a
counter electrode, and Ag/AgCl as a reference electrode. An
optimized potential window of —0.4 to 1.2 V was used to record
cyclic voltammograms. Because the layered double hydroxides
need a high alkaline pH (more than 10) for catalytic oxidation,
the studies were conducted in 0.05 M NaOH. To optimize the
concentration of the sensing material for the working electrode,
many test runs were conducted. As previously indicated, 2 mg
of nanostructure suspension in 2 mL of DI water was the optimal
concentration that produced the best current. When the concen-
tration is increased to 5 mg, the sensing material starts to leak out
of the electrode. Using a Gamry interface 3000, EIS investigations
were conducted in the frequency range of 0-18 K.

2.4.1. Modification of the working electrode for glucose
sensing. Before each measurement, alumina powder (0.05 um)
was used to polish the working electrode, which was then
washed with distilled water for five minutes in an ultrasonic
bath. In order to modify the gold electrode, 5 uL of a suspen-
sion of nanostructures (2 mg/2 mL) in DI water was deposited
using the drop casting technique. Following the modification,
the electrode was dried for 12 hours at 60 °C in an oven

3. Results and discussion
3.1. XRD analysis

XRD was employed to confirm the crystalline structure and
average particle size for CuMn-LDHs and CuMn-LDHs/r GO.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 XRD of Cu=Mn LDHs (a) and Cu-Mn LDHs/r-GO (b).

In Fig. 1, the spectra are shown. To find out the phase composi-
tion of respective samples, a variety of XRD diffraction patterns
were employed. The large peak at 12° in the XRD pattern of CuMn-
LDHs/r-GO is attributed to the (003) crystal planes. Graphene
oxide’s amorphous nature may be understood in relation to its
graphite-like structure, which is made up of stacked graphene
sheets in a few layers. On the other hand, the diffraction peaks
that appeared at 12.70°, 35.9°, 39.1° 48.60°, and 60.20° for the
pure CuMn-LDHs are attributed to the (003), (012), (015), (006),
and (220) crystal planes. The development of LDHs is confirmed
by the (003), (012), and (015) reflections, which match the lattice
planes of hydrotalcite-like layered double hydroxide (LDH)
phases. Since their structures are similar and their diffraction
peaks are near to one another, all of the additional Cu-Mn
diffraction peaks are consistent with the hexagonal phases of
Cu(OH), and Mn(OH),.">'® The crystallite size is obtained from
the well-known Scherrer’s equation (eqn (1)),"”

D = ki/fcos 0 (1)

where k represents the shape factor with a value of 0.9,
A represents the wavelength of the X-ray source with a value
of 1.5406 A, and f is the full width half maximum (FWHM). The
average crystallite size for the Cu-Mn LDHs was 4 nm and the
Cu-Mn LDHs/r-GO was 3 nm. The size of the crystals undergoes
reduction on doping with r-GO, which leads to a large surface
area. These results are consistent with the DRS results pre-
sented in Section 3.4."%"°
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3.2. FTIR analysis

The FTIR spectra of the CuMn-LDHs and CuMn-LDHs/r-GO are
displayed in Fig. 2. The CuMn-LDHs spectra exhibit a broad
peak of -OH stretching vibrations from the H bonded -OH
group at 3300 cm ', while the interlayer water molecules exhibit
bending vibrations at 1632 cm™ . The signal at 1373 cm ™" could
reflect CO;>~ bending. Every peak below 900 cm™" displayed
crystallographic bending and stretching vibrations caused by
metal-oxygen bonding.*® The existence of -C—C from the sp’
hybridized carbon structure of r-GO is shown by an extra peak
at 1520 cm ™' in the case of CuMn-LDHs/r-GO.”" In the case of
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Fig. 2 FTIR spectrum of Cu—-Mn LDHs (a) and Cu-Mn LDHs/r-GO (b).
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CuMn-LDHs/r-GO, the OH group exhibits a peak at a higher
wavenumber due to the OH stretching vibrations at 3700 cm ™.
A 3700 cm™ ' peak corresponds to free OH, not hydrogen-bonded
OH. The interactions between the LDHs and r-GO cause a small
shift in some bands which may be due to drying, reduction, or
structural changes, which lead to the disruption of the H-bond
network, freeing OH groups and shifting the IR peak. The -C—=0
peak at 1700 cm ' is caused by the remaining oxygenated
functional groups on r-GO. FTIR spectra of CuMn-LDHs show
M-O and hydroxyl group vibrations, validating the layered struc-
ture. These FTIR analytical results can show the presence of each
functional group of LDHs, which is evidence of the successful
synthesis of LDHs without other impurity phases.*>**

3.3. FESEM and EDX analysis

The surface morphologies of the pristine CuMn-LDH and
CuMn-LDH/rGO composites were analyzed through field emis-
sion scanning electron microscopy (FESEM). As depicted in
Fig. 3a, the pristine CuMn-LDH reveals a distinct, sheet-like
layered morphology composed of well-defined nanosheets,
although some degree of nanosheet aggregation is evident.
Similar features are observed in the CuMn-LDH/r-GO compo-
site (Fig. 3c). To mitigate such agglomeration, it is crucial to
develop nanostructures that enable robust and flexible archi-
tectures via self-assembly mechanisms. The CuMn-LDH/r-GO
hybrid composite (Fig. 3c) demonstrates a denser and more
compact morphology with a cloud-like appearance, suggesting
that the LDH nanosheets are effectively embedded within the
reduced graphene oxide (r-GO) matrix. This configuration may
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Fig. 3 Surface morphological studies of the synthesized materials using electron microscopy. (a) SEM micrograph of CuMn-LDH, (b) EDX image of
CuMn-LDH; (c) SEM micrograph of CuMn-LDH/r-GO and (d) EDX image of CuMn-LDH/r-GO.
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reduce the direct exposure of active sites; however, it signifi-
cantly enhances structural stability and electrical conductivity,
which are advantageous for long-term and real-time sensor
applications.

FESEM images further confirm the radial orientation of thin
LDH lamellae distributed across the r-GO scaffolds. This hier-
archical structure, characterized by a large surface area, effec-
tively promotes electrolyte diffusion and enhances the
availability of electrochemically active sites. The successful
incorporation of r-GO within the CuMn-LDH/r-GO composite
is substantiated by energy-dispersive X-ray (EDX) spectroscopy
and elemental mapping. As shown in Fig. 3b, in pristine CuMn-
LDHs, copper (Cu) and manganese (Mn) are present in rela-
tively high amounts, 45.3% and 25.4%, respectively, indicating
a metal-rich layered structure, while oxygen (O) accounts for
22.7%, and carbon (C) remains minimal at 6.0%, consistent
with the inorganic nature of the pristine LDHs. But in the case
of a composite as shown in Fig. 3d, the CuMn-LDHs/r-GO
shows a prominent decrease in both Cu (35.6%) and Mn
(15.5%) content, along with a significant increase in carbon
content to 29.1%, confirming the successful integration of
carbonaceous r-GO sheets within the LDH matrix. The oxygen
content remains relatively stable, though slightly reduced
t0 19.2%.>>%*

3.4. Diffuse reflectance spectroscopy

The electrical band gap refers to the lowest energy which is
required to generate an electron-hole pair in a material (semi-
conductor). Eqn (2) was used to calculate the bandgap of the
synthesized materials. The graph is plotted between [F(R)-Av]"
on the y-axis and photon energy (Av) on the x-axis. The bandgap
is evaluated from the intercept of the extrapolated linear part of
the graph. On the other hand, the exciton potential that
induces vertical interband shifts is the optical band gap.
Information on wavelength and reflectance percentage was
received. We used a Tauc plot to compute the material’s band
gap based on this data.

(v — Eg)" = ahv 2)
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Fig. 4 Tauc plot of Cu—Mn LDHs (a) and Cu—Mn LDHs/r-GO (b).
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where « is the coefficient for absorbance and E, is the allowed
direct bandgap of the semiconductor nanomaterial, Av is the
energy of a photon, £ is Plank’s constant, n is the frequency,
and the photon energy is v = 1240/4.

Fig. 4 displays the Tauc plot of the CuMn-LDHs and CuMn-
LDHs/r-GO. Because of the increased electrical conductivity of
composites, the bandgap difference between the pure CuMn-
LDHs (1.7 eV) and r-GO/CuMn-LDHs nanocomposite (1.6 eV)
affects how well they work in glucose sensing applications.
CuMn-LDHs feature greater energy transitions, which acceler-
ate electron transport. An enhanced intrinsic conductivity is
correlated with a smaller bandgap. This improved the electron
transfer efficiency during glucose oxidation.>* >’

3.5. UV-visible spectroscopy

The UV spectra of CuMn-LDHs and CuMn-LDHs/r-GO are
shown in Fig. 5. Both spectra show maximum wavelength at
375 nm. The UV spectrum of the CuMn-LDHs displays bands
associated with charge transfer, ligand to metal charge transfer
(LMCT) or metal to ligand charge transfer (MLCT). The bands
in the UV region between 200 and 400 nm are exhibited by Cu**
due to charge transfer, which are often seen because of electron
transfer characteristics. On the other hand, the d° configu-
ration of Mn>" shows weak transitions because of its spin-
forbidden nature, although it can show up in the UV region,
usually between 250 and 380 nm.

The LDH matrix effect affects the precise location and
strength of these bands because of the surrounding environ-
ment of the metal ions, including the type of intercalated
anions and the general symmetry of metal sites.?®*° Another
important aspect is that there is an increase in the intensity of
the LDH spectrum after complex formation with r-GO. This
enhancement is evident for complex formation and no shift in
the main peak positions is observed because of the physical
interactions of graphene and the LDHs.

3.6. Thermogravimetric analysis

TGA was used to analyze the thermal stability of CuMn-LDH/
rGO. The TGA curve of CuMn-LDHs/r-GO in Fig. 6 revealed that

-
o

Tauc plot

(<] (=]

F(R)hv)2 (eVem-1)2
=N

EQ =.1.62

2.0
Energy (eV)

1.6

1.2 24 2.8

Mater. Adv., 2025, 6, 7395-7408 | 7399


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ma00492f

Open Access Article. Published on 21 August 2025. Downloaded on 1/18/2026 4:48:17 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

CuMn-LDHs/r-GO
CuMn-LDHs

S 0.54

8

§ Amax= 375nm

©

e

[

o

(7]

Ke)

©

0.0

360 400 440
Wavelength (nm)

Fig. 5 UV spectra of Cu—Mn LDHs and Cu—-Mn LDHs/r-GO.

280 320

100

—— CuMn-LDH/r-GO|

80 1

[=2]
o
1

D
o
1

% Weight loss

20 1

400 600 800
Temperature (°C)
Fig. 6 TGA curve of CuMn-LDHs/r-GO.

0 " 200

a small mass loss occurs due to evaporation of physically
adsorbed water molecules present on both CuMn LDHs and
r-GO surfaces (140 °C). The subsequent weight losses related to
dehydroxylation - the removal of hydroxyl groups as water
molecules and oxygen containing functionalities (200-400 °C).
The anion present in the LDH structure undergoes decomposi-
tion leading to a distinct mass loss step. Above 400 °C, r-GO
undergoes oxidative decomposition, leading to minor mass
loss. This step is a characteristic of carbonaceous materials
and forms mixed metal oxides.** The CuMn-LDH/r-GO compo-
site shows a 4-5% weight loss between 400 and 800 °C due to -
GO decomposition, with the total weight loss reaching 40-45%
by 800 °C. The gradual loss around 600 °C is linked to the
removal of adsorbed water and oxygenated groups, while the
presence of r-GO enhances the material’s thermal stability.*°

3.7. Electrochemical sensing analysis

CuMn-LDH and CuMn-LDH/r-GO electroactivity is examined
with scan rate. Fig. 7 illustrates how scan rate affects the elec-
trochemical response of the CuMn-LDH and CuMn-LDH/r-GO
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nanostructures. Voltammograms were recorded in 0.05 M
NaOH after the working electrode was fabricated using the
optimized concentration. The anodic (Ip,) and cathodic (I,)
peak currents both increase linearly as the scan rate increases from
100 to 1000 mV s~ ', as seen in Fig. 7, suggesting a diffusion-
controlled mechanism.”* The peak potential also moves toward
more positive values as the scan rate increases. The process
occurring at the working electrode is quasi-reversible as the anodic
to cathodic peak current ratio (Iu/I) is less than one.*?

The CuMn-LDH, and CuMn-LDH/r-GO cyclic voltammetry
(CV) curves are shown in Fig. 7a and b, respectively. In an
alkaline electrolyte without glucose, a large cathodic peak is
observed for CuMn-LDHs between —0.2 and —0.4 V. This is
indicative of the reduction of the Cu(u) and Mn(u) centers in the
positively charged lamella. The reduction peaks of Cu(u) and
Mn(u) ions combine because their redox potentials are near to
one another. The reduction reaction of the Cu and Mn core may
be identified by the single wide reduction peak observed during
the reverse scan at —0.2 to —0.4 V.

The electrode surface response was a diffusion-controlled
process, as demonstrated by the graph in Fig. 7c and d that plots
peak current (I,) against the square root of the scan rate (v?). The
anodic peak current’s linear equation was I, (A), with a regression
coefficient (R*) of 0.9989. The linear plot of a perfectly diffusion-
controlled process contains zero intercept; but in this case, double-
layer charging in the CuMn-LDH instance upsets this notion.*?
The Randles-Sevcik equation is utilized to find out the diffusion
coefficient of a particular analyte (glucose) (eqn (3)).

I, = (2.69 x 10°)n*?ACD"*v"" (3)

where A is the electrode’s active surface area (0.98 cm?), C is the
glucose concentration (1 x 10~ mol ecm ™), D is the diffusion
coefficient (em® s™'), v is the scan rate (V s™'), I, is the peak
current, and n is the number of electrons in the half-reaction
for the redox pair, here n = 1.>**® The diffusion coefficient of
the electrons was calculated to be 7.2 x 107" cm® s™' in the
case of CuMn-LDHs, but in the case of the CuMn-LDHs/r-GO
composite, the value of diffusion coefficient increases to 3.4 x
107° em?® s7' using the slope of the linear regression. The
increase in the value of D leads to improved mass transport of
electroactive species toward the surface of the electrode, result-
ing in stronger current response and high sensitivity.**?”

3.7.1. Estimation of sensitivity, LOD, and linear range of
the biosensor. An electrochemical investigation was conducted
to detect glucose at a scan rate of 100 mV s~ '. No oxidation
current was observed in the absence of glucose.*® However, as
the glucose concentration increased from 50 pM to 4.4 mM, the
anodic current (oxidation current) responded more strongly.
Fig. 8a depicts the oxidation current at various glucose
concentrations. Linear regression of this curve is shown in
Fig. 8c, and from the slope of this plot the sensitivity was
calculated. For CuMn-LDHs, the obtained sensitivity value was
52 pA mM ™' em 2. Using eqn (4),

LOD = 30/s (4)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Cyclic voltammogram of (a) CuMn-LDHs, (b) CuMn-LDHs/r-GO modified AUE recorded in 0.05 M NaOH at varied scan rates (100-1000 mV s™3),
(c) and (d) the linear regression curves for (c) CuMn-LDHs and (d) CuMn-LDHs/r-GO modified AuE as a plot between the square root of scan rate and

anodic peak current.

the limit of detection was found to be 0.006 uM, where s is
the slope value derived from the calibrated plot and ¢ is the
standard deviation derived from blank signals.***° It was
evident from the literature, as shown in Table 1, that the
LDH nanocomposite provides superior sensitivity even at lower
glucose concentrations depicting that the material was more
sensitive. Similarly, cyclic voltammetry was used to electroche-
mically analyze CuMn-LDH/r-GO, for glucose sensing (Fig. 8b).

All the parameters were identical, and current oxidation was
simultaneously investigated at various glucose concentrations.
Fig. 8b illustrates the behavior of the anodic current at different
glucose concentrations. The CuMn-LDH/r-GO nanocomposite’s
sensitivity from linear regression (Fig. 8d) was found to display
the CuMn-LDH/r-GO nanocomposite’s sensitivity and limit of
detection in relation to other reported nanocomposites.

3.7.2. Mechanism of electro-oxidation at the electrode
surface. The synergistic impact produced by combining CuMn
LDHs/1-GO is demonstrated by the enhanced sensitivity of
CuMn-LDHs/r-GO/AuE. Considering the pure MnO, com-
ponent lacked electrocatalytic activity, it had an effect on the

© 2025 The Author(s). Published by the Royal Society of Chemistry

interfacial electron transport pathway. When glucose was intro-
duced, the anodic peak current increased as predicted, and as
the amount of glucose increased, the peak intensity also
increased. When glucose is added, the anodic peak current
increases significantly but the cathodic peak current barely
changes. The conversion of glucose to gluconolactone, which
is subsequently hydrolyzed into gluconic acid, is electrocata-
lyzed by the CuMn-LDHs/r-GO electrode. Reduced graphene
oxide improves the conductivity and electron transfer kinetics.
It acts as a conductive substrate that disperses the CuMn-LDH
nanoparticles and increases the surface area for catalytic appli-
cations. When glucose is added, it undergoes oxidation at the
CuMn-LDHs. The electron was released during the oxidation of
glucose through the r-GO network generating a current, which
is directly proportional to the amount of glucose. The following
reaction can be used to characterize the possible oxidation
process of glucose on the LDH surface. With the exception of
the greater redox current, the electrochemical behavior of CuMn-
LDHs/r-GO is almost the same as that of a pure CuMn-LDH
sample, both with and without glucose.”’ ™ The mechanism

Mater. Adv,, 2025, 6, 7395-7408 | 7401
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Table 1 Comparative analysis of various types of LDH in terms of catalytic behavior from the literature

Linear range

Limit of detection

S.no Electrode materials (umol L™ '-mmol L") (umol L) Sensitivity (|MA m M~" ecm™?)  Ref.
1 Au/LDH-CNTs-G 1-0.35 0.5 189 44
2 NiFe LDH nanosheets 1-5.7 0.2 — 45
3 Graphene QDs/CoNiAl-LDH nanocomposites 10-14.0 6 48.717 46
4 PAN/PAni/graphene 10-1.97 2.10 29.11 47
5 At low conc. 50-0.9 0.141 2.30
CuMn LDHs (glucose) Current work
6 At high conc. 50-6 0.006 52.28
CuMn LDHs (glucose) 0.9-5 1196.29 0.0557 Current work
CuMn LDHs (NP)
7 CuMn LDHs/r-GO 50-8.6 0.000962 339.7
CuMn LDHs/r-GO (NP) 0.9-75 28.53 9668 Current work

of electron transfer by glucose to metallic LDH is as follows
(ean (5)-(8));

LDH-Cu(u) + OH™ LDH(OH )-Cu(m) + e~ (5)
LDH-Mn(ii) + OH LDH(OH )}-Mn(m)+e~  (6)

LDH(OH )-Cu(m) + glucose LDH(OH ™ )-Cu(u) + gluconolactone

(7)

7402 | Mater. Adv, 2025, 6, 7395-7408

LDH(OH " )-Mn(m) + glucose LDH(OH ~)-Mn(u) + gluconolactone

8

3.7.3. Electrochemical impedance spectroscopy (EIS) studies.
Electrochemical impedance spectroscopy (EIS) was used to exam-
ine the characteristics of the electrochemical interface on the
modified electrodes. These impedance graphs were simulated

© 2025 The Author(s). Published by the Royal Society of Chemistry
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using the constant phase element (CPE), Randles circuit, which
contains the Warburg element (W), charge transfer resistance
(Ret), and electrolyte resistance (Rg) shown in Fig. 10. The study
found that quicker electron transit between the modified
electrodes and electrolytes was linked to lower R, values. The
Nyquist plots of the bare AuE, CuMn-LDHs, and CuMn-LDHs/
r-GO are displayed in Fig. 9.

The diameter of the observed semicircle in the EIS curves
represents the charge transfer resistance (R as a result of the
faradaic processes. In this case, CuMn-LDHs/r-GO shows a
smaller semicircle meaning that it has the least charge transfer
resistance (R.), which indicates high electrochemical conduc-
tivity. The curve crossing on the real axis in the high-frequency
zone indicates the internal resistance (R;) of the electrochemi-
cal system.”® In the case of CuMn-LDHs/r-GO, it has the lowest
solution resistance improving ion transport at the electrode-
electrolyte interface, which improves significantly the electro-
chemical performance of the sensor. The CPE values showed that
the nanocomposite’s porosity and roughness were increased. Fast
adsorption onto the electrode surface and enhanced ion transport
into the electrolyte are depicted by the vertical line.

We also calculated the electrical conductivity (o) measure-
ments of the Au bare electrode, CuMn-LDHs, and a CuMn-
LDHs/1-GO nanocomposite. Conductivity was evaluated by first
measuring the solution resistance (Ru) using electrochemical

View Article Online
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Fig. 10 Circuit diagram of EIS of the modified electrode of CuMn-LDHs
and the CuMn-LDHs/r-GO electrode.

impedance spectroscopy and then applying the standard equa-
tion (eqn (9)) for conductivity:

o =L/(R x A) 9)
where L is the length between electrodes (1 cm), R is the
measured resistance (Ru), and A is the cross-sectional area of
the electrode (0.98 cm?).* The bare electrode exhibited the
highest resistance value of 933 Q, resulting in a very low
conductivity of 1.53 x 10™* S em ™', indicating poor charge
transport. Upon modification with Cu-Mn LDHs, the resistance
dropped significantly to 199 Q, increasing the conductivity to
717 x 107* S em™" given in Table 2, which demonstrates
improved electron transfer due to the layered structure of the
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Fig. 9 Nyquist plot of LDH modified AuE in 0.05 M NaOH (a) and Bode plots of bare AuE (b), CuMn-LDHs (c) and CuMn-LDHs/r-GO (d).
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Table 2 Comparative analysis of conductivity (¢) measurement of LDH
pristine and composite materials

Circuit element  Bare Au Cu-Mn LDHs  Cu-Mn LDHs/r-GO
Ru (Q) 933 199 130.7
c(Sem™) 153 x 10°* 717 x 10° 0.01

LDHs that facilitate ionic diffusion. Further improvement was
observed with the addition of reduced graphene oxide (r-GO) to
form the CuMn-LDHs/r-GO composite. This composite showed
the lowest resistance value of 130.7 Q and the highest con-
ductivity of 0.01 S em™*, highlighting the superior conductive
nature of r-GO. The incorporation of r-GO provides an inter-
connected conductive network, accelerating electron mobility
and significantly boosting the electrochemical performance of
the material. This increasing trend in conductivity from bare to
Cu-Mn LDHs and then to CuMn-LDHs/r-GO confirms the
synergistic effect of the LDH matrix and r-GO. It is important
to note that the conductivity values of these prepared materials
have not been reported previously in the literature, which
underlines the novelty and potential of the synthesized nano-
composite for applications requiring efficient charge transport
mostly in electrochemical devices.
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In the case of the Bode plot, at low frequencies, the system
showed capacitive behavior because charges accumulate at the
interface, leading to high impedance as the current mainly
charges the capacitor. At high frequencies, resistive behavior
dominates since there is not enough time for charge storage,
allowing current to flow more freely and resulting in lower
impedance.’® As in the case of the Bode plot of CuMn-LDHs
displayed in Fig. 9c, the phase shift of —65° indicates that the
total impedance at low frequencies is a mixture of resistive and
capacitive components rather than being entirely capacitive
because phase shift ¢ equal to 90° is for perfect capacitive
behavior. The phase shift in the case of CuMn-LDHs/r-GO
shown in Fig. 9d is quite small at low frequencies but grows
to —80° at high frequencies indicating a dominating rise in
capacitive behavior.>*

3.7.5. Electrochemical behavior of CuMn-LDHs and CuMn-
LDHs/r-GO towards 4-NP sensing. The electrochemical perfor-
mance of the modified electrodes was assessed using cyclic
voltammetry (CV) in the presence of 4-nitrophenol (4-NP) in
0.1 M phosphate-buffered saline (PBS) acting as an electrolyte,
with scan rates ranging from 100 to 500 mV s~ " over a potential
window of —1.1 to 0.1 V. The reductive peak currents increased
progressively with increasing scan rate, indicating enhanced
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08 07 )
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(a) and (b): CuMn-LDHs (a) and CuMn-LDHs/r-GO (b) responses against different concentrations of nitrophenol (c) and (d): SEM (c) calibration

plot of cathodic maximum current vs. the concentration of glucose in the case of CuMn-LDHs (d) and CuMn-LDHs/r-GO.
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electrochemical activity. Notably, the gold electrode (AuE) mod-
ified with CuMn-layered double hydroxides (CuMn-LDHs)
exhibited significant improvements in redox peak currents as
the 4-NP concentration increased from 0.9 uM to 5 uM as
shown in Fig. 11a and b. In contrast, the CuMn-LDHs/r-GO
composite showed a broader linear detection range, from
0.9 uM to 75 pM, reflecting improved sensitivity. This enhance-
ment is attributed to the increased adsorption capacity for 4-NP
and more efficient electron transfer at the electrode interface.
Furthermore, the integration of CuMn-LDHs with reduced
graphene oxide (r-GO) substantially boosted the electrode’s
detection capabilities, achieving a maximum current response
of 9668 pA cm ™2 with a sharp, well-defined redox peak calcu-
lated from the regression curves as shown in Fig. 11c and d.

The enhanced electrochemical performance is attributed to
the synergistic interaction between the CuMn-LDHs and r-GO,
which improves both electrical conductivity and material dis-
persibility. This synergy results in a more efficient electron
transfer process, thereby enhancing the detection of 4-nitro-
phenol (4-NP). The results indicate that the optimal incorpora-
tion of the LDH composite with r-GO significantly boosts
electrochemical activity, making the CuMn-LDH/r-GO compo-
site a highly effective platform for 4-NP sensing. A linear
relationship (R*> = 0.995) between current density and the
square root of the scan rate shown in Fig. 12a, observed at a
potential of —0.8 V, confirms that the electron transfer process
is diffusion-controlled. Additionally, the abundant active sites
in the CuMn-LDH/r-GO material contribute to facilitating elec-
tron transfer, further enhancing the electrochemical detection
of 4-NP.

To evaluate electrochemical performance, analyzing the sur-
face properties of the modified electrode is crucial. Electroche-
mical impedance spectroscopy (EIS), performed in 0.1 M PBS,
was used to study the electrode-electrolyte interface, with
Nyquist plots as shown in Fig. 12b interpreted using Randles
equivalent circuit (including components like Warburg
impedance, double-layer capacitance, solution resistance, and
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<
=
=
21154
=]
o
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Fig. 12

Z(Q)
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charge-transfer resistance, R.;). The Nyquist plots showed that
the bare gold electrode (AuE) had the largest semicircular arc,
indicating a high R, and poor charge transfer capability.
In contrast, modification with CuMn-LDHs/r-GO significantly
reduced the arc diameter, reflecting a lower R, and improved
electron transfer. This reduction suggests enhanced conductiv-
ity, efficient ion transport, and better electrochemical respon-
siveness due to the synergistic properties of the composite
material."***%

4. Conclusions

Significant developments in electrocatalytic applications are
revealed by the synthesis and characterization of CuMn-LDHs
and CuMn-LDHs/r-GO. The structural, optical, morphological,
and electrochemical characteristics of these synthesized
CuMn-LDHs and its composites CuMn-LDHs/r-GO were evalu-
ated using different techniques such as FTIR, DRS, SEM-EDX,
XRD, cyclic voltammetry (CV), and electrochemical impedance
spectroscopy (EIS). Successful integration of r-GO into the
CuMn-LDH backbone was confirmed by FTIR analysis, which
showed efficient chemical interaction. DRS showed that the
band gap of the composites was less than that of pure CuMn-
LDHs, suggesting improved optical properties that could be
useful in applications that require charge transfer or light
absorption. XRD analysis confirms the successful formation
of the CuMn-LDHs/r-GO composite and highlights the struc-
tural modifications induced by the r-GO support. SEM-EDX
demonstrates that CuMn-LDHs are composed of rough-
surfaced, irregular particles that are meant to aggregate, but
when r-GO is added, they exhibit a somewhat uniform spherical
shape. CuMn-LDHs/r-GO has a greater specific surface area than
pure LDHs, suggesting improved electrochemical performance.
A successful composite synthesis was shown by the stoichiometric
ratios of the precursor in the EDX mapping micrograph. The
cyclic voltammetry (CV) of the composites revealed a decrease in
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300004 ¢ Bare AuE R
CuMn-LDHs .
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o ]
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(a) The linear regression curve for CuMn-LDHs/r-GO as a plot between the square root of scan rate and cathodic peak current and (b) Nyquist

plots of 0.1 M PBS (black), bare AuE (red), CuMn-LDHs (green), and CuMn-LDHs/r-GO (blue).
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overpotential and an increase in current responsiveness. This
behavior points to increased electrochemical performance, better
electron transfer, and improved redox activity. The improved
charge transfer efficiency is further supported by the decreased
band gap of the composites. By showing that the composites had
higher conductivity and lower resistance, EIS analysis added
further understanding. These findings suggest that the addi-
tion of r-GO increases the mobility of the charge carriers,
rendering the substance more conductive and appropriate for
real-world uses in electronic devices, sensors, and storage.
CuMn-LDHs based on transition metals provide exceptional
catalytic performance due to their distinct structure, large
surface area, and adjustable characteristics. These materials
show higher stability, better conductivity, and more active sites
when combined with r-GO, all of which are essential for
increasing catalytic efficiency. The CuMn-LDH composite
shows great promise for the development of inexpensive,
portable, and extremely sensitive glucose monitoring devices
due to its potential for use in non-enzymatic glucose sensors.
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