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GRATEv2: computational tools for real-time
analysis of high-throughput high-resolution TEM
(HRTEM) images of conjugated polymers

Dhruv Gamdha,a Ryan Fair,c Adarsh Krishnamurthy,ab Enrique D. Gomez cd and
Baskar Ganapathysubramanian *ab

Automated analysis of high-resolution transmission electron microscopy (HRTEM) images is increasingly

essential for advancing research in organic electronics, where precise characterization of lamellar, one-

dimensional crystalline domains in conjugated polymers governs device performance. This paper

introduces an open-source computational framework—GRATEv2 (GRaph-based Analysis of TEM, Version

2)—designed for near-real-time analysis of semi-crystalline, polymeric microstructures; its capabilities are

illustrated on poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)]

(PCDTBT), a benchmark material in organic photovoltaics. GRATEv2 employs fast, automated image

processing algorithms, enabling rapid extraction of structural features like d-spacing, orientation, and

crystal shape metrics. Bayesian optimization rapidly identifies the parameters (that are traditionally user-

defined) in the approach, reducing the need for manual parameter tuning and thus enhancing

reproducibility and usability. Additionally, GRATEv2 is compatible with high-performance computing (HPC)

environments, allowing for efficient, large-scale data processing at near real-time speeds. A unique feature

of GRATEv2 is a Wasserstein distance-based stopping criterion, which optimizes data collection by

determining when further sampling no longer adds statistically significant information. This capability

optimizes the amount of time the TEM facility is used while ensuring data adequacy for in-depth analysis.

Open-source and tested on a substantial PCDTBT dataset, this tool offers a powerful, robust, and

accessible solution for high-throughput material characterization in organic electronics.

1 Introduction

Microscopy has long been a cornerstone in materials science,
offering a unique window into the microstructure and enabling
scientists to study properties at various scales, from the millimeter
down to the atomic level.1,2 By visualizing otherwise inaccessible
structures, microscopy provides critical insights into how atomic
and molecular arrangements influence key macroscopic properties
such as mechanical strength, electrical conductivity, and chemical
reactivity.3 This fundamental understanding is essential for
designing advanced materials with tailored properties for applica-
tions in fields such as electronics, energy storage, and catalysis.

High-resolution transmission electron microscopy (HRTEM)
has advanced significantly in recent years, transforming

nanoscale imaging and allowing researchers to capture
atomic-level details of materials.4 HRTEM can now achieve
sub-angstrom spatial resolution, making it possible to directly
observe atomic lattices, defects, and interfaces that govern a
material’s behavior.5 The development of automated data
acquisition systems has further broadened HRTEM’s capabil-
ities, enabling the collection of extensive datasets comprising
hundreds or even thousands of high-resolution images.6 These
technological advances have opened new avenues for studying
complex materials, such as organic semiconductors and con-
jugated polymers, with applications in organic electronics and
photovoltaics.7

While modern HRTEM has enhanced our ability to study
complex materials, it also introduces challenges in data man-
agement and analysis due to the sheer volume and complexity
of the data generated.8 The scale of high-resolution datasets
can quickly overwhelm traditional analysis workflows, which
are often manual and time-consuming. A particularly acute
bottleneck is the creation of annotation masks that serve as
‘‘ground truth’’ for algorithm development: drawing them is
labor-intensive, and the outcome can vary from one expert to
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another. This manual approach is highly dependent on the
expertise and subjective judgment of the experimentalist, mak-
ing it challenging to ensure consistency and reproducibility. In
high-throughput applications where rapid feedback is essen-
tial, such as optimizing synthesis conditions or tracking real-
time structural changes, the limitations of manual analysis
become particularly pronounced.

To address these challenges, automated methods for
HRTEM data analysis have emerged over the past decade. These
methods aim to extract quantitative structural information
from digital micrographs with minimal human intervention,
improving both the efficiency and reliability of analysis.3,9–12 A
motivating example is our prior work, GRATE,13 which served as a
proof-of-concept for using graph-based algorithms to identify
crystalline regions by first thinning fringes into skeletons and
then clustering them based on proximity and orientation.13 How-
ever, this first version was limited by its implementation in
MATLAB, restricting it to offline post-processing, and it relied
on sensitive manual tuning of its parameters, which hindered
reproducibility.13 GRATEv2 significantly advances this foundation
through a complete redesign in Python for HPC compatibility and
several key innovations. The image processing pipeline is refined
with additional preprocessing steps and a more robust thresh-
olding approach, and introduces an explicit step of segmenting
skeletons into uniform ‘‘bones’’ to regularize the graph construc-
tion. Most critically, GRATEv2 replaces the manual tuning process
with automated Bayesian Optimization and adds a novel Wasser-
stein distance-based stopping criterion to guide data collection,
transforming the original concept into a reproducible, high-
throughput framework.

In recent years, there has been a strong push toward devel-
oping in situ, or real-time, automated analysis methods.14–16

In situ analysis allows for data interpretation during experiments,
providing immediate feedback that can guide adjustments in
experimental parameters. This capability is particularly valuable
in dynamic experiments, such as observing structural changes in
response to external stimuli or monitoring materials during
synthesis.17–23 Real-time analysis requires methods that can handle
high-resolution data quickly and accurately, maintaining perfor-
mance under the demanding conditions of live data acquisition.

Various automated analysis philosophies have been explored.
Machine learning tools like the Trainable Weka Segmentation
plugin for Fiji/ImageJ24 offer a powerful, user-friendly approach
for general pixel classification by training a classifier on a small
number of user-provided labels.25 However, such tools typically
rely on a generic set of image filters and are designed for
classifying regions or simple objects like nanoparticles rather
than identifying and connecting the long, thin, and often
discontinuous fringe patterns that constitute a single crystalline
domain in polymers. For such specialized tasks, bespoke rule-
based image processing pipelines are often more effective. A key
challenge, however, is the tuning of their many interacting
parameters. Recently, Bayesian Optimization has been power-
fully applied to automate this tuning process. In a notable
example, Barakati et al.26 engineered a ‘‘physics-based reward
function,’’ which uses physical priors (e.g., expected atom

density) to serve as the objective for the optimization, thereby
avoiding the need for manual annotations.26

GRATEv2 shares the philosophy of Barakati et al.26 of using
Bayesian Optimization to tune a classical pipeline but is novel in
two critical areas: the algorithm being optimized and the nature
of the objective function. First, while the work by Barakati et al.26

focuses on optimizing standard algorithms like Laplacian-of-
Gaussian for atom-finding, GRATEv2 optimizes a novel, graph-
based pipeline specifically designed to segment the unique
lamellar structures of polymer films. Second, we propose a
different approach for the optimization’s objective. Barakati
et al.26 engineer a clever ‘‘physics-based reward’’ that avoids
manual labeling by using physical priors. For the complex and
irregular morphology of polymer crystallites, defining such
simple physical rules is challenging. Instead, GRATEv2 uses a
small set of manually annotated images to compute the
Intersection-over-Union (IoU), providing a direct and robust
way to ensure the final segmentation matches expert perception.

GRATEv2 aims to bridge the gap between offline and real-
time analysis in high-resolution transmission electron micro-
scopy (HRTEM) by providing an automated, image-processing-
based framework with minimal human intervention. Tailored
for high-throughput settings, GRATEv2 combines rapid data
extraction with a robust and user-friendly parameter optimiza-
tion process. By focusing on image processing techniques
augmented with Gaussian process optimization, GRATEv2
minimizes the need for manual parameter selection and tun-
ing, enhancing reproducibility and accessibility for researchers.

A schematic overview of the GRATEv2 computational frame-
work is shown in Fig. 1a. The framework processes raw HRTEM
images of PCDTBT (Fig. 2a), applies preprocessing, and performs
automated image processing with parameters optimized via
Bayesian optimization (Fig. 1b). Traditionally, manual annotation
of crystals in HRTEM images is time-consuming and subjective
(Fig. 2). In our approach, only a dozen manually annotated images
(Fig. 2b) are used as input to a Bayesian optimizer to rapidly
identify material-specific image processing parameters. This mini-
mal requirement significantly reduces the burden on researchers,
facilitating rapid deployment of the algorithm on new datasets.

GRATEv2 introduces several key innovations to address the
limitations of current HRTEM analysis methods:

1. GRATEv2 offers rapid processing of HRTEM micrographs
that exhibit lamellar, 1-D fringe patterns typical of semi-
crystalline conjugated polymers, delivering results in a few
seconds per image and supporting batch multiprocessing for
large datasets.

2. It brings a graph-based, image-processing pipeline to
organic polymer systems such as PCDTBT, where atomic-
resolution lattice models are neither required nor assumed.

3. Bayesian optimization is employed within GRATEv2 to
automate the tuning of material-specific image processing
parameters, allowing the framework to adapt to different
datasets with minimal expert input (Fig. 1b).

4. The algorithm parameters are constructed as functions of
known d-spacing values, simplifying parameter selection and
making the method more accessible to users without extensive
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image processing expertise. This also ensures that parameter
selection is interpretable and, thus, scientifically justified.

5. GRATEv2 incorporates a data sufficiency criterion based
on the Wasserstein distance to guide data collection efforts.

This criterion provides a quantitative stopping point, indicating
when further TEM data collection no longer yields additional
insights, which is important when access to imaging facilities is
limited and imaging is expensive.

Fig. 1 Schematic overview of the GRATEv2 computational framework. The framework processes raw HRTEM images of PCDTBT, applies preprocessing,
and performs automated image processing with parameters optimized via Bayesian optimization. A data sufficiency criterion based on the Wasserstein
distance assesses whether additional TEM data is needed. The output comprises extracted structural features such as d-spacing, orientation, and crystal
shape metrics. (a) The overall computational framework of GRATEv2, and (b) the detailed Bayesian Optimization (BO) component used for parameter tuning.
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By optimizing data collection, GRATEv2 helps experimental-
ists avoid unnecessary resource expenditure while ensuring
data quality. This combination of fast, automated processing,
real-time adaptability, and efficient data collection positions
GRATEv2 as a powerful tool for materials research, particularly
in the study of organic electronic materials such as conjugated
polymers.27–29

2 GRATEv2 framework and algorithms
2.1 HRTEM sample preparation and measurement method

PCDTBT was synthesized using previously published procedures
for Suzuki polycondensation in a Schlenk reactor flask.30,31 Sigma-
Aldrich supplied all reactants. Polymerization occurred between
9-(9-heptadecanyl)-9H-carbazole-2,7-diboronic acid bis(pinacol)
ester and 4,7-bis(2-bromo-5-thienyl)-2,1,3-benzothiadiazole in
toluene, with equimolar amounts of each monomer. All other
synthesis and purification procedures remained unaltered com-
pared to the cited sources. The synthesis product was character-
ized by H1 nuclear magnetic resonance at 500 MHz.32

5 mg mL�1 solutions of PCDTBT and chlorobenzene (Sigma-
Aldrich) were prepared in a nitrogen glovebox and mixed over-
night on a hotplate at 45 1C. Silicon wafers were sonicated in
acetone for 20 minutes, then isopropanol for 20 minutes. The
wafers then underwent 20 minutes of ultraviolet light ozonation.
A PEDOT:PSS (Clevios P and H. C. Starck) and water solution
were then spin-coated onto the clean substrates at 4000 RPM for
2 minutes. The samples were then brought into the glovebox,
and the heated PCDTBT solution was spin-coated on top of the
PEDOT:PSS layer at 800 RPM for 2 minutes. The sample was then
cut into squares and floated off in the water, and samples were
collected on copper TEM grids. Samples were left to dry over-
night and then annealed inside a nitrogen glovebox.

High-resolution imaging experiments were conducted on
the Titan Krios microscope at the Penn State Materials

Characterization Laboratory. The accelerating voltage was
300 kV, and the detector was a Falcon 3EC direct electron detector
in counted mode. Regions of interest were spaced 2.5 mm apart
and visually inspected on the atlas image for tears and defects
before acquisition. The spot size was set to 5, and autofocus was
done at 300k�magnification before being increased to 470k� for
acquiring a 2.5 second exposure. The microscope produced a
650 nm beam with a dose rate of 50 e Å2 s.

2.2 Quantities of interest

The inputs to the algorithm are (1) the HRTEM image (2) approx
d-spacings of the crystals to detect (3) the resolution of the image
(4) process parameters. The algorithm is designed to detect
crystals in the HRTEM images and extract their features. The
algorithm outputs the segmentation result for each input and a
CSV file containing the feature details such as d-spacing, orien-
tation, and crystal shape metrics. The algorithm is capable of
detecting multiple crystals in a single image, and the output is a
list of detected crystals with their corresponding features.

We report two notions of separation as described in Table 1
and eqn (1) and (2):

Dmetric ¼
dcenter�center
r1 þ r2

(1)

Ddirect = dcenter–center (2)

Here dcenter–center is the Euclidean distance between the cen-
troids of two crystals. Because actual crystal outlines are
irregular, each area Ai (obtained from the a-shape) is first
converted to an equivalent circular radius ri ¼

ffiffiffiffiffiffiffiffiffiffi
Ai=p

p
.

2.3 Image processing algorithm

Fig. 3 illustrates the flowchart of GRATEv2 algorithm along with
the associated process parameters. The process parameters are

Fig. 2 Example input to the optimisation workflow. (a) Raw HRTEM micrograph supplied to the algorithm. (b) The same micrograph overlaid with hand-
drawn crystal contours that serve as ground-truth masks for evaluating candidate parameter sets during Bayesian optimisation.
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indicated in blue boxes, while the intermediate steps corres-
ponding to Fig. 4 are marked with brown numeric annotations.

The algorithm parameters are classified into two categories:
primary parameters and secondary parameters. The primary
parameters are independent values provided by the user based
on the dataset’s imaging conditions and material properties,
specifically the crystal d-spacing value and the image resolu-
tion. These parameters scale the key process parameters,
enabling the algorithm to generalize across different imaging
conditions and crystals of interest. They may vary significantly
between datasets. Secondary parameters correspond to indivi-
dual steps of the algorithm and are set to optimal values; they
may require fine-tuning when changing datasets.

The algorithm is designed with several key objectives in
mind: to generate a clear and concise representation of the
essential information in the image; to enhance data quality by
filtering out noise and irrelevant details; to convert the pro-
cessed image data into a graph structure for advanced analysis;
to use graph algorithms to identify clusters of polymer back-
bones forming crystallites; and to apply Fourier transform
techniques to determine the d-spacing values.

Each step of the algorithm is detailed below, along with its
associated parameters.

1. Initially, blurring is applied to smooth the image and
reduce sharpness, which helps in minimizing noise and pre-
paring the image for subsequent processing. This operation is
performed multiple times, with the number of blurring itera-
tions specified as a parameter. Following blurring, histogram
equalization is employed to increase the image contrast, mak-
ing it sharper and enhancing the distinction between polymer
chains and the background. Improved contrast facilitates more
accurate thresholding in the subsequent step.

2. The next step involves image thresholding using Otsu’s
method to create a binary representation of the image, where
polymer chains appear as black regions and the background as
white. The result of this step is shown in Fig. 4b. After thresh-
olding, morphological closing and opening operations are
performed to remove small black and white spots considered
as noise. The kernel sizes for closing and opening are para-
meters that do not depend on the d-spacing and are set based
on the noise characteristics of the image.

3. Subsequently, we perform skeletonization and branching.
Skeletonization reduces the polymer regions to single-pixel-
wide lines, representing the skeleton of the polymer chains.

Branching breaks the skeleton at junctions where three or more
connections occur, resulting in branched skeletonized repre-
sentations called backbones. The output of this step is depicted
in Fig. 4c.

4. Following skeletonisation, we remove spurious fragments
by discarding any backbone whose pixel length is less than a
length threshold proportional to the lattice d-spacing (in pix-
els). The proportionality constant is supplied by the user as a
tunable parameter. This scale-aware filter suppresses noise
while retaining only those backbones long enough to represent
meaningful crystal fringes.

5. Each surviving backbone is traversed pixel-by-pixel from
one end; after every segment length set proportional to the
d-spacing in pixels—where the proportionality constant is a
user-specified parameter—the backbone is severed by flipping
that pixel from black to white. Because skeletons are one pixel
wide, this procedure divides the polyline into uniform-length
bones. Linking the segment length to d-spacing provides elas-
ticity over the expected range of lattice spacings. The effect of
filtering and segmentation is illustrated in Fig. 4d.

6. For each bone, we perform ellipse construction by fitting
an ellipse to its pixel locations using the scikitimage library.33

This provides the major and minor axes of the bone, which are
used for further analysis. Ellipses are preferred because they
help filter out non-linear bones (curved structures not part of
crystalline regions) and facilitate the creation of a graph
representation where each ellipse serves as a node.

7. To identify the crystalline regions, we apply ellipse aspect
ratio filtering. Crystalline regions are composed of linear poly-
mer backbones, so we filter out curved bones by setting a
threshold on the ellipse aspect ratio (major axis length divided
by minor axis length). Bones with aspect ratios above this
threshold are retained for further analysis. This step’s output
is shown in Fig. 4e.

8. A graph is then constructed where each ellipse represents
a node. An edge is created between two nodes if the distance
between their centers is less than the adjacency distance
parameter (proportional to the d-spacing) and the angle
between their major axes is less than the adjacency angle
parameter (also proportional to the d-spacing). The graph is
stored as an adjacency matrix.

9. Connected-component clustering. A depth-first search
(DFS) identifies all connected components (CCs). CCs with
fewer than a threshold number of nodes are treated as noise

Table 1 Description of various distances and radii used in the algorithm. The metric distance Dmetric is a dimensionless, size-normalised measure of
separation between crystals, while the direct distance Ddirect is the raw centroid–centroid spacing. The equivalent radii r1 and r2 are derived from the a-
shape areas of the crystals. These definitions are crucial for understanding the spatial relationships between crystalline domains in HRTEM images

Symbol Description

Dmetric Metric distance—a dimensionless, size-normalised measure of separation.
� Dmetric E 1: distance comparable to the combined crystal sizes.
� Dmetric 4 1: crystals farther apart than their sizes suggest (free space between them).
� Dmetric o 1: crystals closer together (or partly overlapping) relative to their sizes.

Ddirect Direct distance (nm) —the raw centroid–centroid spacing.
dcenter–center Straight-line centroid distance (nm).
r1, r2 Equivalent radii (nm)—

ffiffiffiffiffiffiffiffiffiffi
Ai=p

p
with Ai the a-shape area of crystal i.
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and discarded; the rest are considered candidate crystals
(Fig. 4f).

10. Boundary extraction and overlay. For each retained CC
we collect the end-points of the major axes of its ellipses,
yielding a point cloud that captures the crystals footprint. We
compute both a convex hull (scipy.spatial.ConvexHull) and an
a-shape (alphashape) from this cloud, then overlay them on the
original micrograph to visualise the detection (Fig. 4g).

11. Per-crystal metric extraction. From each crystal boundary
we record area, centroid, major/minor axis lengths and orienta-
tion. A line indicating the principal lattice direction is also
drawn on the micrograph; these metrics feed the statistical
analysis described in Section 3.

Finally, we perform d-spacing evaluation for each detected
crystal region. The largest possible square region within the
crystal is selected, and a Fast Fourier Transform (FFT) is
performed to transform the spatial domain into the frequency
domain. Band-pass filtering is applied to remove frequencies
outside the range of interest. The location of the peak frequency
above a set threshold is used to calculate the exact d-spacing
value and the orientation of the crystal pattern. The frequency

threshold is a parameter. The evaluation of d-spacing using FFT
is illustrated in Fig. 5. The algorithm outputs include visualiza-
tions such as convex hulls and alpha shapes of detected crystal
regions overlaid on the original image, as well as quantitative
data like area, centroid, major and minor axis lengths, orienta-
tion, and d-spacing values for each crystal. All features are saved
in CSV files for further analysis. These outputs provide valuable
insights into the material’s microstructure and can aid in
understanding material properties more effectively.

The algorithm is implemented in Python, utilizing the scikit-
image library for image processing and SciPy for computational
functions. A configuration file is used to input all relevant
parameters, dataset paths, and result paths. The code is tested
on Ubuntu Linux-based local systems and HPC servers. It
supports batch processing and multiprocessing, allowing for
efficient analysis of large datasets. Results are stored in a well-
organized directory structure, with options to save intermediate
outputs for debugging purposes. Comprehensive documenta-
tion is provided, detailing code usage and parameter settings. A
summary of the primary and secondary parameters used in the
algorithm is provided in Appendix A. These parameters are

Fig. 3 Algorithm flowchart with parameters. Blue boxes are the process parameters and brown boxes are the intermediate steps shown in Fig. 4.
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optimized for detecting crystals in the HRTEM dataset of
PCDTBT organic photovoltaic materials.

2.4 Bayesian optimization

Optimizing hyperparameters in image processing algorithms is
crucial for enhancing performance, especially in complex tasks
like automated detection of crystalline domains in HRTEM
images. Traditional methods of parameter tuning, such as grid
search or manual adjustment, can be inefficient and may not
guarantee optimal results due to the high dimensionality and

computational expense. To address this challenge, we inte-
grated Bayesian optimization into our framework, GRATEv2,
to systematically and efficiently identify the optimal set of
parameters.

Bayesian optimization is a sequential design strategy for
global optimization of black-box functions that are expensive to
evaluate especially due to large hyperparameter space.34 It
builds a probabilistic model of the objective function and uses
it to select the most promising hyperparameters to evaluate
next, balancing exploration and exploitation.

Fig. 4 Intermediate and final outputs of the pipeline (see the flowchart in Fig. 3). (a) Input: initial morphology. (b) Step 1—Otsu thresholding (corresponds
to orange callout 1 in Fig. 3). (c) Step 2—skeletonization and branching (callout 2). (d) Step 3—filtering short backbones and division into uniform bones
(callout 3). (e) Step 4—aspect-ratio filtering of ellipses (callout 4). (f) Step 5—clustering of adjacent bones (callout 5). (g) Output: detected crystal region
with boundary/principal-direction overlay.
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2.4.1 Mathematical formulation. Let x 2 X � Rd denote a
vector of d hyperparameters, and let f :X ! R be the objective
function that maps hyperparameters to a scalar performance
metric we wish to minimise. In GRATEv2 the objective is the
negative mean Intersection-over-Union (IoU) between predicted
and ground-truth crystal masks; equivalently we maximise IoU:

x� ¼ argmin
x2X

f ðxÞ; f ðxÞ ¼ � 1

N

XN
i¼1

IoU PiðxÞ;Gið Þ: (3)

For a single image the IoU (also known as the Jaccard index) is
defined as:

IoUðP;GÞ ¼ jP \ GjjP [ Gj; (4)

where P is the set of pixels predicted as crystalline and G is the
corresponding ground-truth set. Fig. 6 gives a visual illustration.
An IoU of 1.0 means perfect overlap; 0.0 denotes no overlap.

2.4.2 Gaussian process surrogate model. Bayesian optimi-
zation relies on a surrogate model to approximate the objective
function. We use a Gaussian process (GP) prior35 over functions
to model f (x). A GP is defined by its mean function m(x) and
covariance function k(x, x0):

f ðxÞ � GP mðxÞ; k x; x0ð Þð Þ: (5)

We assume a zero mean function m(x) = 0 without loss of
generality, and select a suitable covariance function, such as
the squared exponential (radial basis function) kernel:

k x; x0ð Þ ¼ sf2 exp �
1

2
x; x0ð ÞTL�1 x; x0ð Þ

� �
; (6)

where sf
2 is the signal variance and L is a diagonal matrix of

length-scale parameters ci
2, controlling the smoothness of the

function along each dimension.
2.4.3 Posterior distribution. Given a set of n observed data

pointsDn ¼ xi; yið Þf gni¼1; where yi ¼ f xið Þ þ Ei and Ei � N 0; sn2
� �

is Gaussian observation noise, the GP posterior predictive dis-
tribution at a new point x* is given by:

mn x�ð Þ ¼ kT� ðKþ sn2IÞ�1y; (7)

sn2 x�ð Þ ¼ k x�; x�ð Þ � kT� ðKþ sn2IÞ�1k�; (8)

where k* = [k(x1, x*),. . .,k(xn, x*)]
T, K is the n � n covariance matrix

with [K]ij = k(xi, xj), and y = [y1,. . .,yn]T.
2.4.4 Acquisition function. An acquisition function

a x;Dnð Þ guides the selection of the next evaluation point by
quantifying the utility of sampling at x. We use the expected
improvement (EI) acquisition function,36 defined as:

aEIðxÞ ¼ E max 0; fmin � f ðxÞð Þ½ �; (9)

where fmin is the minimum observed value of the objective
function. Under the GP posterior, the EI can be computed
analytically:

aEIðxÞ ¼ fmin � mnðxÞð ÞF fmin � mnðxÞ
snðxÞ

� �

þ snðxÞf
fmin � mnðxÞ

snðxÞ

� �
; (10)

where mn(x) and sn(x) are the posterior mean and standard
deviation from eqn (7) and (8), F(	) is the standard normal
cumulative distribution function, and f(	) is the standard
normal probability density function.

2.4.5 Optimization loop. As shown in Fig. 7, the Bayesian
optimization algorithm proceeds iteratively through initialization,
surrogate model updates, and acquisition function optimization.

The Bayesian optimization algorithm begins with the initi-
alization step, where the objective function is evaluated at an
initial set of hyperparameters xif gn0i¼1; often chosen via a space-
filling design like Latin hypercube sampling. Next, a Gaussian
Process (GP) surrogate model is fitted to the observed data Dn;

capturing our current understanding of the objective function.
Using this surrogate model, the algorithm maximizes the
acquisition function to find the next promising set of hyper-
parameters:

xnþ1 ¼ argmax
x2X

a x;Dnð Þ: (11)

Fig. 5 Evaluation of d-spacing for the crystal using the fast Fourier transform.

Fig. 6 Illustration of Intersection-over-Union (IoU). Blue represents the
predicted crystalline mask P, yellow the ground-truth mask G, and green
their intersection P \ G. The IoU is the ratio of the green area to the total
area covered by either mask jP [ Gj.
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The objective function is then evaluated at xn+1 to obtain yn+1,
and the data is augmented:

Dnþ1 ¼ Dn [ xnþ1; ynþ1ð Þf g: (12)

The algorithm checks if the convergence criterion is met (e.g.,
maximum iterations reached or negligible improvement
observed). If not, the process loops back to updating the
surrogate model with the new data, as depicted in Fig. 7. This
iterative process continues until convergence, resulting in the
optimal set of hyperparameters.

2.4.6 Parameter space. We optimized 13 hyperparameters
of the image processing algorithm, each within specified
bounds informed by prior knowledge as shown in Table 2.
The ranges were chosen to cover a wide search space while
ensuring that the parameters were physically meaningful and
relevant to the task of detecting crystalline regions in HRTEM
images.

2.4.7 Objective function evaluation. Fig. 8 shows example
inputs for the Bayesian optimization training. We used a total
of 13 annotated HRTEM images for training. The ground truth
annotations are created using VGG annotator tool.37 For each
set of hyperparameters x, the objective function f (x) was eval-
uated as follows:

1. Run the image processing algorithm with parameters x on
the annotated HRTEM images.

2. Generate binary masks of the detected crystalline regions.
3. Compute the IoU between the detected masks and the

ground truth masks:

IoUðxÞ ¼ jDetected \Ground Truthj
jDetected [Ground Truthj; (13)

where |	| denotes the cardinality (number of pixels in this
context).

4. Set the objective function value as f (x) = �IoU(x).
2.4.8 Training-set selection and annotation effort.

GRATEv2 is tuned per dataset; a single global parameter file
is unlikely to generalise across different polymer systems or
imaging conditions for three reasons:

1. Scale dependence. Several thresholds (e.g. backbone
length, bone length, adjacency distance) are expressed as multi-
ples of the lattice d-spacing and therefore change when the
spacing or pixel size differs from one experiment to another.

2. Contrast variation. Grey-level statistics vary with beam
current, detector settings and sample preparation, affecting
Otsu thresholding and morphological noise removal.

3. Morphology differences. Polymer batches can exhibit
distinct degrees of lamellar overlap, curvature and fringe den-
sity, all of which influence optimal parameter values.

From 653 HRTEM micrographs we hand-selected 13 images
(E2%) that together span the extremes of contrast, crystal size,
overlap and orientation visible in the full batch. Each image
was annotated with the VGG Image Annotator;37 annotating
one image takes about 5 minutes, so the entire training set
required B1 hour of manual effort.

We recommend the following protocol as a practical guide
for selecting a training set and annotating images for GRATEv2:

1. Randomly draw 10–15 images, then replace or add a few
so that the set covers the darkest, brightest, most densely
fringed and sparsest cases in the batch.

2. Annotate only this subset; run Bayesian optimisation once.
3. Apply the resulting parameter file to the remainder of the

dataset.
Linking parameter selection to just 13 annotated images

therefore keeps manual effort to about one hour while enabling
automated analysis of the entire dataset.

2.4.9 Algorithm execution. Our implementation of the
Gaussian Process-based Bayesian optimization algorithm for hyper-
parameter tuning is based on the scikit-optimize library.38 The
library provides a user-friendly interface through the gp_minimize
function for Bayesian optimization and supports various acquisi-
tion functions, surrogate models, and optimization strategies.

We used the gp_minimize function with the following key
parameters:

Fig. 7 Flowchart of the Bayesian optimization loop. The process itera-
tively updates the surrogate model and selects new hyperparameters to
evaluate until convergence criteria are met.

Table 2 Hyperparameters and their ranges used in Bayesian optimization

Hyperparameter Range Type

blur_iteration [5, 20] Integer
Blur_kernel_propCons [0.1, 0.5] Real
closing_k_size [1, 20] Integer
opening_k_size [1, 20] Integer
pixThresh_propCons [0.0, 1.0] Real
ellipse_len_propCons [0.5, 5.0] Real
ellipse_aspect_ratio [2.0, 7.0] Real
thresh_dist_propCons [1.0, 5.0] Real
thresh_theta [5.0, 15.0] Real
cluster_size [1, 10] Integer
dspace_bandpass [0.1, 0.5] Real
powSpec_peak_thresh [1.0, 1.5] Real
thresh_area_factor [1.0, 5.0] Real
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� Acquisition function: expected improvement (EI).
� Number of calls: 200 total evaluations of the objective

function.
� Initial points: 10 random initial evaluations to seed the

GP model.
� Random state: seeded for reproducibility.

2.5 Evaluation of data sufficiency

Determining the optimal amount of data to collect is crucial for
experimentalists. Collecting too little data can compromise the
reliability of results, while collecting excessive data may not yield
additional insights and can waste valuable resources. Establishing a
reliable stopping criterion for data collection ensures that resources
are utilized efficiently without sacrificing statistical significance.

An effective data sufficiency metric should possess certain
desirable features:

1. Sensitivity to distribution changes: it should accurately
reflect changes in the underlying data distribution as more data
is collected.

2. Scale interpretability: the metric should provide a quanti-
tative measure that is interpretable and can be related to
practical thresholds for decision-making.

3. Applicability to empirical distributions: it should be suitable
for comparing empirical distributions derived from finite samples.

4. Metric properties: the measure should satisfy the proper-
ties of a mathematical metric, such as non-negativity, identity
of indiscernibles, symmetry, and triangle inequality, to ensure
consistent and meaningful comparisons.

In this study, we introduce a stopping criterion based on the
Wasserstein distance to assess data sufficiency. The Wasser-
stein distance, also known as the Earth Mover’s Distance,
quantifies the difference between two probability distributions

Fig. 8 Bayesian optimization training input i.e. input images, ground truth annotations, and ground truth masks. Each row represents a different sample
from the dataset. 13 manually annotated images are used for training in this work.
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by measuring the minimum ‘‘cost’’ of transforming one dis-
tribution into the other. It is particularly well-suited for our
purposes because it satisfies all the desired features of a data
sufficiency metric listed above.

2.5.1 Mathematical definition of the Wasserstein distance.
Let P and Q be two probability distributions on the real line
with cumulative distribution functions (CDFs) FP(x) and FQ(x),
respectively. The p-th order Wasserstein distance Wp(P, Q)
between P and Q is defined as:

WpðP;QÞ ¼
ð1
�1

F�1P ðuÞ � F�1Q ðuÞ
��� ���pdu� �1=p

(14)

where FP
�1(u) and FQ

�1(u) are the quantile functions (inverse
CDFs) of P and Q, and p Z 1. For p = 1, the first-order
Wasserstein distance simplifies to:

W1ðP;QÞ ¼
ð1
0

FP
�1ðuÞ � FQ

�1ðuÞ
�� ��du (15)

Alternatively, for discrete empirical distributions derived from
finite samples, the first-order Wasserstein distance between
two sets of observations {xi}

n
i=1 and {yj}

m
j=1 can be computed by

sorting the observations and calculating the average absolute
difference between the sorted values:

W1 Pn;Qmð Þ ¼ 1

N

XN
k¼1

xðkÞ � yðkÞ
�� �� (16)

where N = min(n, m), and x(k), y(k) are the ordered statistics
(sorted data).

The Wasserstein distance’s ability to capture differences
between distributions, even when they have overlapping sup-
port, makes it ideal for assessing the convergence of empirical
data distributions as more data is collected. By monitoring the
Wasserstein distance between successive data samples, we can
determine when the distributions have converged, indicating
that the data collection process has reached a point of dimin-
ishing returns.

3 Results

We first provide brief details of the material and process used
to collect the HRTEM data for completeness. To prepare TEM
samples, 5 mg mL�1 solutions of PCDTBT were dissolved in
chlorobenzene within a nitrogen glovebox at 45 1C for at least
12 hours. Silicon wafers were cleaned by sonication for 20 minutes
in acetone, followed by 20 minutes in isopropanol, and subse-
quently subjected to UV-ozonation for 20 minutes. Poly(3,4-
ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS)
films were cast onto silicon substrates by spin coating at 4000
rpm for 2 minutes in air to serve as a sacrificial layer, facilitating
film floating. Substrates were then transferred to a nitrogen
glovebox, where PCDTBT films were spin-cast at 800 rpm for
2 minutes. For TEM sample preparation, the coated substrates
were removed from the glovebox, floated in deionized water, and
carefully transferred onto copper TEM grids. These samples were
left under ambient conditions to dry overnight and then annealed

in the nitrogen glovebox at 190 1C for 2 hours. High-resolution
TEM (HRTEM) imaging was performed at the Penn State Materi-
als Characterization Lab using the FEI Titan Krios microscope
operating at 300 kV, equipped with the K2 direct electron detector
and a cryo-stage. A dose rate of 20 e Å2 s was used for a 2.5 s
exposure. An automated acquisition process was set to autofocus
before each capture at 300k� magnification, with a randomly
assigned defocus value between 0 and �3 mm. Images were
acquired at 470k� magnification with a 2.5 mm step size between
exposed regions, resulting in a total of 637 images for subsequent
analysis.

Using GRATEv2, we detected crystals within each of the
HRTEM images. For each identified crystal, the following
features were extracted (see Section 3.2): center-of-mass coor-
dinates, orientation angle relative to the image axis, d-spacing,
and crystal lengths along both the major and minor axes.
Through this process, GRATEv2 identified a total of 4350
ordered domains from the HRTEM images. In Section 3.3, we
present the timing performance of GRATEv2, along with the
time distribution among different components of the analysis
process. In Section 3.4, we evaluate the data sufficiency—that
is, how many images are sufficient to achieve statistical con-
vergence in the extracted features.

3.1 Advantages of Bayesian parameter optimization

To evaluate the benefit of adding Bayesian optimisation (BO) to
GRATEv2, we compare exactly the same rule-based pipeline
under two hyper-parameter sets: (i) manually selected after
extended trial-and-error, and (ii) automatically selected by BO.
Performance is measured with the pixel-wise Intersection-over-
Union (IoU) against expert masks on six representative HRTEM
images. Absolute IoU values vary with crystal morphology and
noise, so we emphasise the relative gain and supply visual
examples so that readers can see what IoU C 0.43 and IoU C
0.58 actually look like.

3.1.1 Quantitative comparison of IoU scores. Table 3 pre-
sents the IoU scores for each image using both the manually
selected parameters and the Bayesian-optimized parameters.
Additionally, the table includes the differences in IoU scores
between the two parameter sets for each image. The average
and standard deviation of IoU score across the six images is
also calculated for both cases.

The average IoU score using the Bayesian-optimized para-
meters is 0.5784, representing an improvement of approxi-
mately 32.3% over the average IoU of 0.4371 obtained with
the manually selected parameters. This significant increase
demonstrates the effectiveness of Bayesian optimization in
enhancing the algorithm’s performance in detecting and seg-
menting crystalline regions in HRTEM images. The computed
t-value corresponding to t-statistic is 7.074, which exceeds the
critical t-value of 2.571, indicating strong statistical justifica-
tion for improvement.

3.1.2 Visual comparison of detection results. Numbers
alone can be abstract. Fig. 9 and Appendix C pairs each IoU
with its mask so the reader can judge what a pixel-wise IoU of
0.43 (manual) versus 0.58 (BO) means in practice. Visual
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comparisons illustrate that the algorithm using Bayesian-
optimized parameters generally provides a more accurate and
comprehensive detection of crystalline regions than the manu-
ally tuned approach. The Bayesian-optimized parameters tend
to align the detected crystal boundaries more consistently with
the annotated features. In particular, the algorithm with
Bayesian-optimized parameters appears to capture finer details
and produce clearer delineation of crystal boundaries, suggest-
ing a closer correspondence to the expert annotations than that
achieved under manual parameter tuning.

Table 3 IoU scores over validation dataset for manual and Bayesian-
optimized parameters with differences

Image
filename

Manual selected
parameters IoU

Bayesian
parameters IoU

IoU difference,
di

1.tif 0.5296 0.6911 +0.1615
2.tif 0.3274 0.5156 +0.1882
3.tif 0.3178 0.4934 +0.1756
4.tif 0.5285 0.5864 +0.0579
5.tif 0.3906 0.5400 +0.1494
6.tif 0.5288 0.6438 +0.1150

Average IoU 0.4371 0.5784 +0.1413

Fig. 9 Comparison of ground truth, manually selected parameter detection, and Bayesian-optimized parameter detection across three different images.
Each column represents a distinct detection method, illustrating how Bayesian optimization enhances segmentation accuracy by more closely matching
the ground truth annotations compared to manual parameter tuning. The Bayesian optimization process was conducted over 200 iterations, achieving a
minimum loss value of �0.7319 at the 151st evaluation.
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3.1.3 Convergence of the Bayesian optimization process.
Fig. 10 depicts the convergence of the Bayesian optimization
process. The objective function, defined as the negative mean
IoU, decreases over successive iterations, indicating that the
optimization algorithm effectively identifies hyperparameters
that enhance the segmentation performance. The convergence
plot demonstrates that significant improvements are achieved
within the first 51 iterations, after which the objective function
gradually approaches a plateau.

3.1.4 Analysis of optimized parameters. Appendix A com-
pares the values of the manually selected parameters with those
obtained through Bayesian optimization.

Several notable differences are observed between the
parameter sets:
� Morphological operations: the Bayesian-optimized para-

meters for closing_k_size and opening_k_size are significantly
smaller than the manual values (2 vs. 15 and 17, respectively).
This suggests that less aggressive morphological operations

preserve finer details in the images, contributing to improved
segmentation accuracy.
� Edge detection and filtering: parameters like ellipse_len_-

propCons and dspace_bandpass are adjusted to better capture
the characteristics of the crystalline structures. The increase in
ellipse_len_propCons from 1.5 to 4.03 indicates a preference
for detecting longer ellipses, aligning with the elongated shapes
of crystals.
� Thresholding parameters: the pixThresh_propCons is

slightly higher in the Bayesian-optimized parameters, which
may help in differentiating crystals from the background noise
more effectively.

3.1.5 Advantages of Bayesian optimization. The integration
of Bayesian optimization into our image processing framework
offers several advantages:

1. Enhanced performance: the Bayesian-optimized para-
meters significantly improve the mean IoU score by approxi-
mately 32.3%, indicating superior segmentation performance.

2. Automated tuning: Bayesian optimization automates the
hyperparameter tuning process, reducing the need for manual
intervention and deep image-processing expertise, thereby sav-
ing time and resources. This is especially important when the
number of hyperparameters (here, 13) makes manual explora-
tion rather tedious.

3. Efficient exploration: the optimization process efficiently
explores the hyperparameter space, converging to optimal
values in fewer evaluations compared to exhaustive search
methods. This is evident from the convergence plot in Fig. 10.

4. Robustness: the optimized parameters produce robust
results across various images, as evidenced by consistent
improvements in IoU scores.

3.2 Structural feature extraction of crystals from HRTEM images

Using the parameter set listed in Appendix A, we applied
GRATEv2 to detect and analyze crystalline domains within the
HRTEM images of PCDTBT. The segmentation results for two
images are presented in Fig. 11, where the identified crystals

Fig. 10 Convergence of the Bayesian optimization process over 200
Iterations, illustrating the reduction in the loss function (negative IoU) as
optimization progresses. The y-axis represents the minimum loss value
achieved up to that evaluation. The minimum loss value of �0.7319 was
attained at the 151st evaluation.

Fig. 11 (a) and (b) Are 1.tif and 2.tif images respectively corresponding to Tables 4 and 5 (a) and (b) shows the original image (left) and the segmentation
output (right) from our algorithm for HRTEM of PCDTBT. The detected crystals have a d-spacing of 1.9 nm. The image on the left is the input to the
algorithm, and on the right is the output of the algorithm. Each detected crystal in the output shows (1) the convex hull boundary around the crystal, (2)
the shaded region representing a more exact crystal region, and (3) a straight line at the centroid of the convex hull, which shows the orientation of the
crystal patterns.
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are highlighted. Each detected crystal is surrounded by a
convex hull boundary, with a shaded region representing a
more precise delineation of the crystallite. A line at the crystal
centroid indicates its orientation. The extracted properties for
these detected crystals are summarized in Table 4, including
their centroid coordinates, area, orientation angle, d-spacing,
major and minor axis lengths, and axis angle. Additionally, the
correlation measurements between pairs of crystals are pro-
vided in Table 5, featuring metrics such as metric distance,
direct distance, and relative angle.

The detection of these crystalline domains allows for a
comprehensive analysis of the microstructural features of
PCDTBT. The d-spacing values shown in Fig. 12b range from
approximately 1.1 nm to 2.9 nm, which are consistent with the
expected lattice spacings associated with PCDTBT’s crystalline
structures.39 Variations in d-spacing among the detected crys-
tals may be attributed to differences in crystallite orientation,
strain within the material, or inherent structural disorder due
to the semi-crystalline nature of PCDTBT.

The areas of the detected crystals vary significantly as shown
in Fig. 12a, with values ranging from approximately 14.89 nm2

to 2307.18 nm2. Larger crystal areas may correlate with
improved charge transport properties, as larger crystalline
domains can facilitate more efficient charge carrier mobility
along the polymer chains.27 The aspect ratios, derived from the
major and minor axis lengths, provide insights into the shapes
of the crystals. Higher aspect ratios indicate elongated, rod-like
crystals, while lower aspect ratios suggest more equiaxed or
spherical shapes. The diversity in crystal shapes and sizes can
impact the overall morphology and performance of the polymer
in electronic applications.

Fig. 12 also presents additional statistical analyses of indivi-
dual crystal properties across the dataset, including histograms of
crystal areas, d-spacings, orientation angles, and shape descrip-
tors like aspect ratio. These plots allow us to identify prevalent
features and distributions within the material. For example, the

histogram of d-spacings may show a peak around a specific value,
indicating a dominant crystalline phase or preferred stacking
distance within the polymer chains.

The comprehensive analysis provided by GRATEv2 enables
us to establish quantitative relationships between microstruc-
tural features and potential material performance. By system-
atically characterizing the size, shape, orientation, and spatial
distribution of crystalline domains, we can correlate these
features with electronic properties measured in devices. This
level of detailed microstructural understanding is essential for
guiding the design and processing of conjugated polymers to
achieve optimal performance in organic electronic applications.

For a more extensive and detailed exploration of this
PCDTBT dataset, including insights into intercrystalline correla-
tions and preferred crystallographic alignments, readers are
referred to the work of our collaborators in ref. 40. Their study
leverages automated HRTEM and the GRATEv2 image proces-
sing outputs to unravel how neighboring crystals preferentially
align along certain lattice directions, likely reflecting underlying
liquid crystalline order within the polymer. By combining the
analysis presented here with their comprehensive assessment of
orientation correlations and lattice parameters, one obtains a
richer and more complete understanding of the polymers nano-
scale structure and its implications for organic electronics.

3.3 Timing statistics

The algorithm was executed on a computer equipped with a 96-core
AMD EPYC 9654 CPU@3.7 GHz running Linux OS. The total time
for processing a single high-resolution transmission electron micro-
scopy (HRTEM) image with 1.9 nm d-spacing crystals is approxi-
mately 6.52 seconds when utilizing a single core. The timing
consumption by various parts of the algorithm is presented in
Fig. 13 The most time-consuming steps are skeletonization (approxi-
mately 4.66 seconds), followed by breaking branches and the
preprocessing steps (blurring, histogram equalization, and thresh-
olding). Utilizing all 96 cores, we processed an entire dataset of 637
images in 284 seconds (approximately 4 minutes and 44 seconds),
reducing the per-image processing time to just 0.44 seconds. This
significant improvement demonstrates the scalability and efficiency
of our algorithm when parallelized across multiple cores.

The performance enhancements of our algorithm are attrib-
uted to the use of optimized libraries and functions that
efficiently handle computationally intensive tasks. Specifically,
we employed:

1. The skeletonize function from skimage.morphology41 for
efficient skeletonization.

Table 4 Features of the detected crystals shown in Fig. 11

Name Centroid (px, px) Area (nm2) Angle (deg) d-Spacing (nm) MajorAxis (nm) MinorAxis (nm) AxisAngle (deg)

1.tif (1748, 670) 589.7 �164.7 2.1 21.1 10.2 23.8
(785, 1992) 293.9 �55.9 2.0 14.8 9.9 �65.5

2.tif (534, 497) 177.9 �137.9 1.9 12.5 5.3 53.0
(1607, 402) 84.3 �136.0 0.8 7.9 4.3 35.4
(3345, 546) 71.7 �148.8 1.7 14.4 4.8 39.6
(2050, 1975) 125.4 �146.0 2.2 16.0 4.2 34.1
(1922, 3396) 263.8 �141.4 2.0 14.2 8.0 46.9

Table 5 Crystal correlation measurements for Fig. 11

Name Metric distance (1) Direct distance (nm) Relative angle (deg)

1.tif 0.89 20.84 71.24
2.tif 2.91 35.81 10.95

1.95 26.97 8.13
2.45 40.94 3.5
2.21 24.57 2.81
2.91 40.58 7.45
1.17 18.18 4.64

Paper Materials Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/7

/2
02

6 
10

:1
9:

16
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00409h


6834 |  Mater. Adv., 2025, 6, 6820–6842 © 2025 The Author(s). Published by the Royal Society of Chemistry

2. OpenCV42 functions equalizeHist and threshold (cv2.e-
qualizeHist, cv2.threshold) for fast histogram equalization and
image thresholding.

3. Morphological operations such as closing and opening
using cv2.morphologyEx from OpenCV.

4. The skeleton_to_csgraph function from the skan43 library
for converting skeleton images to graph representations.

5. The label function from skimage.measure41 for rapid
image segmentation.

6. Sparse graph structures and connected component
analysis using csr_matrix and connected_components from
scipy.sparse.csgraph44 for efficient graph construction and
evaluation.

7. Fast Fourier transforms and other numerical operations
using NumPy functions such as np.fft.45

8. The alphashape library to create shrink-wraps around
point clouds.

By utilizing these optimized libraries, we minimized com-
putational overhead and maximized the efficiency of each
processing step. The skeletonization step, although still the

most time-consuming, benefits significantly from the optimized
implementation in skimage.41 Similarly, the use of sparse
matrices and efficient graph algorithms from scipy.sparse.cs-
graph44 greatly accelerates the analysis of the skeleton’s
connectivity.

Our analysis of the timing statistics reveals that the skele-
tonization step accounts for approximately 71% of the total
processing time for a single image when executed on a single
core. This indicates that skeletonization is a major computa-
tional bottleneck in the algorithm. However, due to the parallel
nature of image processing tasks, distributing the workload
across multiple cores significantly mitigates this bottleneck. By
processing images concurrently, we effectively utilize the avail-
able computational resources, resulting in a substantial
reduction in total processing time.

Furthermore, the efficient handling of large data structures,
such as sparse matrices in graph construction and connected
component analysis, contributes to the algorithm’s scalability.
The use of optimized libraries ensures that even computation-
ally intensive tasks are executed as efficiently as possible. This

Fig. 12 Individual crystal analysis. The properties of the individually detected crystals are plotted: (a) crystal area, (b) FFT evaluated d-spacing, (c) angle
difference between crystal’s pattern and its major axis, (d) crystal aspect ratio, and (e) crystal axis lengths. (a)–(d) Are histograms with kernel density
estimate, and (e) is a scatter plot from analysis of the entire dataset.
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Fig. 13 Time taken by each step in the algorithm for the analysis of 1.9 nm d-spacing crystals in a single image using a single core. The total processing
time is approximately 6.52 seconds.

Fig. 14 Data sufficiency for the crystal-area feature. (a–d) Empirical area distributions (histogram + KDE) at cumulative sampling levels of 20% (168
crystals), 40% (336), 60% (504), and 100% (837). (e) Average Wasserstein distance between successive cumulative batches of crystal areas versus crystal
count; curves indicate batch sizes: 84 (blue), 42 (red), 21 (green), and 10 (orange). Lower values indicate distributional convergence.
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optimization is crucial when dealing with large datasets, as it
enables rapid analysis without compromising accuracy or
resolution.

The combination of algorithmic efficiency, optimized library
functions, and effective parallelization allows our method to
achieve high performance in processing and analyzing large
volumes of HRTEM images. This capability is essential for
applications requiring rapid data analysis and real-time feed-
back in materials science and related fields.

Preparing ground-truth masks for 13 representative images
required about 5 minutes per image (E1 h total hands-on
time). Bayesian optimisation of the 13-dimensional parameter
space then ran unattended for 200 iterations, taking E90 min
on a single HPC node, after which the resulting parameter file
was applied to the remaining 640 images. In practical terms,
one hour of annotation replaced the \60 h of manual trial-and-
error previously needed to tune the parameters manually. The
Bayesian optimisation process was able to quickly identify the
optimal parameter set that maximized the segmentation per-
formance across the training dataset, demonstrating the effec-
tiveness of this approach in reducing expert effort while
maintaining high accuracy.

3.4 Data sufficiency analysis of PCDTBT crystals in HRTEM
images

In our analysis of data sufficiency, we examine how the dis-
tribution of crystal areas reaches an asymptotic distribution as
we incorporate more HRTEM images of PCDTBT. The complete
dataset consists of 837 crystals from around 600 images. To
evaluate how quickly the underlying distribution of crystal
areas converges, we incrementally add data in fixed-size
batches and compute the first-order Wasserstein distance W1

between distributions formed by consecutive increments.
Specifically, we consider four different batch sizes at which

images (rather, crystals) are added to the dataset: 10, 21, 42,
and 84 crystals. For each batch size scenario, we start from 0
crystals and progressively add data in increments equal to the
batch size until we reach the full dataset size (of 837 crystals).
After each increment, we compute the Wasserstein distance
between the new distribution (including i � batchSize crystals)
and the previous distribution (with (i � 1) � batchSize crystals).
To obtain a more stable and reliable statistic, we repeat this
evaluation 10 times at each increment, each time randomly
sampling the (i � 1) batches from i batches of crystals and then
average the resulting distances.

As shown in Fig. 14 the histograms become smoother and
more stable as the dataset grows, demonstrating that the
distribution of crystal areas converges toward a steady form.
Meanwhile, Fig. 14e shows how the averaged Wasserstein
distance between consecutive increments decreases with addi-
tional data. Each curve represents a different batch size,
revealing that the scale of incremental changes to the distribu-
tion depends on how many crystals are added at once.

Larger batch sizes (e.g., 84 crystals) introduce more data at
each increment, leading to more pronounced changes in the
distribution per step. Once enough large increments have been
included, the distribution may show a sudden, relatively large
drop in Wasserstein distance, then rapidly converge. In con-
trast, smaller batch sizes (e.g., 10 crystals) add data more
gradually, producing smoother and more frequent updates.
Each small increment makes a subtler change to the distribu-
tion, resulting in a more gradual and fine-grained trajectory
toward convergence.

Because each batch size scenario scales the increments
differently, the threshold for deciding when to stop data
collection should also be scaled accordingly. For larger batch
sizes, even a modest Wasserstein distance value (e.g., around 4
units for the 84-crystal batch) might indicate sufficient conver-
gence, since one large increment can naturally shift the dis-
tribution more. For smaller batch sizes, where each increment
is gentler (e.g., around 1.5 units difference for the 10-crystal
batch), a lower threshold might be more appropriate, reflecting
the finer control and resolution over the distributions shape.
To illustrate this, Table 6 shows the Wasserstein distance
between the full dataset and a dataset that is one batch smaller,
for each considered batch size scenario. These values provide
concrete examples of how batch size influences the scale of
change in the distribution.

With this information, an experimentalist might set a higher
threshold for larger batch sizes (e.g., around 4 units for an
84-crystal batch) and a lower threshold for smaller batch sizes
(e.g., closer to 1.5 units for a 10-crystal batch). This ensures that
the threshold for deciding when to cease data collection
remains proportionate to the scale of changes induced by each
incremental addition of data.

In practical terms, experimentalists can use insights from
Fig. 14e and Table 6 to tailor their data collection strategy. By
selecting an appropriate batch size and a corresponding Wasser-
stein distance threshold, they can decide when further data
provides diminishing returns. If quick feedback and high reso-
lution of distribution changes are desired, a smaller batch size
and a lower threshold can be chosen. If time or resources are
limited, larger batch sizes and a slightly higher threshold may be
more suitable. In either case, once the averaged Wasserstein
distance consistently falls below the chosen threshold, the
experimentalist can confidently cease data collection, knowing
the distribution is sufficiently representative. This approach
transforms data sufficiency from a guesswork exercise into a
clear, data-driven criterion that guides experimental resource
allocation and ensures that the resulting dataset meets the
necessary statistical rigor. An experimentalist might:

Table 6 Wasserstein distance computed on the crystal-area distribution:
full dataset versus the distribution obtained after removing a single batch
of images, evaluated for several batch sizes

Batch size Wasserstein distance (full vs. one batch less)

84 4.12
42 2.83
21 2.08
10 1.51
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� Begin data collection in batches: they determine a batch
size (e.g., 10 crystals per batch) and start collecting HRTEM
images in increments of that batch size.
� Periodic assessment: after each new batch of data, they

compute the Wasserstein distance between the current and
previous distributions of crystal areas. This computation can be
done after every increment, providing immediate feedback on
the impact of newly acquired data.
� Decision point: if, after a certain number of increments,

the averaged Wasserstein distance consistently falls below the
established threshold (e.g., 1.5 units), the experimentalist has
quantitative evidence that adding more data is unlikely to yield
new insights into the crystal area distribution.
� Stopping data collection: with this statistical criterion, the

experimentalist can confidently stop collecting further HRTEM
images, reallocating their time and resources. This prevents
unnecessary prolonged imaging campaigns.

4 Conclusions

In this work, we have developed and presented GRATEv2, an
open-source computational framework for the automated analy-
sis of high-resolution transmission electron microscopy
(HRTEM) images, specifically focusing on complex microstruc-
tures in conjugated polymers like PCDTBT. By leveraging fast,
automated image processing algorithms augmented with Gaus-
sian process optimization, GRATEv2 significantly reduces the
need for manual selection of parameters and tuning, enhancing
both reproducibility and user accessibility. The integration of a
Wasserstein distance-based stopping criterion within GRATEv2
provides a quantitative method for optimizing data collection,
ensuring efficient use of transmission electron microscopy
(TEM) resources without compromising data quality.

GRATEv2’s compatibility with HPC environments allows for
efficient, large-scale data processing at near real-time speeds,
making it suitable for high-throughput applications in materi-
als science. By successfully applying GRATEv2 to a substantial
PCDTBT dataset, we demonstrated its efficacy in rapidly extract-
ing critical structural features such as d-spacing, orientation,

and shape metrics. This capability is particularly valuable for
advancing research in organic electronics, where precise nanoscale
characterization is essential for optimizing material properties.

Overall, GRATEv2 addresses key limitations of existing
HRTEM analysis methods by providing a fast, adaptable, and
user-friendly tool that enhances the efficiency and reliability of
microstructural characterization. By making GRATEv2 open-
source, we aim to facilitate its adoption and further development
by the research community. Future work could involve extending
GRATEv2 to other material systems and incorporating additional
analytical capabilities, thereby broadening its applicability and
impact in the field of materials characterization.

Code availability

The software developed for this paper is available at https://
github.com/baskargroup/GRATEv2.
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Appendices
A Optimum parameters

The Bayesian optimization based optimum parameters and
manually selected parameters of GRATEv2 for our dataset are
given in Table 7.

B T-Statistic for data sufficiency

To evaluate the statistical significance of the improvement, we
performed a paired t-test on the IoU scores from the two sets of

Table 7 Comparison of manually selected and Bayesian optimized parameters

Parameter Description Manually selected value Bayesian optimized value

dspace_nm d-Spacing in nm 1.9 1.9
pix_2_nm Pixels per nm 78.5 78.5
blur_iteration Blurring iterations 15 20
Blur_kernel_propCons Kernel size blurringa 0.15 0.12
closing_k_size Kernel size closing 15 2
opening_k_size Kernel size opening 17 2
pixThresh_propCons Threshold pixel lengtha 0.63 0.74
ellipse_len_propCons Uniform breaking lengtha 1.50 4.03
ellipse_aspect_ratio Threshold ellipse aspect ratio 5.00 4.38
thresh_dist_propCons Adjacency distancea 2.00 1.36
thresh_theta Adjacency angle (degrees) 10.00 13.96
cluster_size Threshold cluster size 7 9
dspace_bandpass Band pass filter size 0.20 0.44
powSpec_peak_thresh Power spectrum threshold 1.15 1.00
thresh_area_factor Area threshold factor 4.00 2.79

a Proportionality constant to d-spacing.dspace_nm and pix_2_nm are user inputs and not optimized.
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parameters. The null hypothesis (H0) is that there is no differ-
ence in the mean IoU scores between the manual and Bayesian-
optimized parameters. Let di be the difference in IoU scores for
each image, defined as di = IoUBayesian,i � IoUManual,i.

�d ¼ 1

n

Xn
i¼1

di ¼ 0:1413 (17)

sd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

Xn
i¼1

di � �d
� �2s

¼ 0:0489 (18)

The t-statistic is computed as:

t ¼
�d

sd=
ffiffiffi
n
p ¼ 0:1413

0:0489
� ffiffiffi

6
p ¼ 0:1413

0:01997
¼ 7:074: (19)

with n � 1 = 5 degrees of freedom, the critical t-value at a
significance level of a = 0.05 (two-tailed) is approximately 2.571.
Since t = 7.074 4 2.571, we reject the null hypothesis and
conclude that the improvement in IoU scores using Bayesian
optimization is statistically significant.

C Additional validation results

Fig. 15.

D Comparison with sliding-window FFT Benchmark

To contextualize the performance of GRATEv2, we implemented
and tested a classical frequency-domain benchmark based on a
sliding-window Fast Fourier Transform (SW-FFT) workflow, as is
common for texture-based segmentation. This analysis reveals the

Fig. 15 Additional comparison of ground truth, manually selected parameters, and Bayesian-optimized parameters across different images.
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limitations of such methods for our specific application and high-
lights the advantages of GRATEv2’s graph-based spatial approach.

SW-FFT methodology. The SW-FFT algorithm was designed
to identify crystalline regions based on their characteristic
periodic fringes. The key steps are:

1. A square window of a fixed window_size slides across the
image with a given stride.

2. For each window, a 2D-FFT is computed to generate a
power spectrum.

3. A score is assigned to the window based on the maximum
power spectral density within an annular (ring-shaped) fre-
quency mask. This mask is defined by the expected d-spacing
range of the material.

4. These scores are assembled into a 2D ‘‘crystallinity map,’’
which acts as a heatmap for crystalline likelihood.

5. This map is thresholded to produce a final binary seg-
mentation mask of the detected crystalline domains.

The Python code for this implementation is provided
in the github repository https://github.com/baskargroup/
GRATEv2.

Comparative results. We applied the SW-FFT method to our
PCDTBT HRTEM dataset. Despite extensive parameter tuning
(e.g., window_size, stride, d_spacing_range), the method failed
to produce meaningful segmentation of the crystalline
domains. The results are summarized in Fig. 16.

The primary findings are:

Fig. 16 Visual comparison of segmentation results across multiple images. Column 1: Ground Truth HRTEM images. Column 2: Bayesian-optimized
GRATEv2 performing well in segmenting crystalline domains, capturing their morphology and boundaries. Column 3: The crystallinity map from the
SW-FFT method is noisy and lacks clear distinction. Column 4: The final segmentation from the SW-FFT method failing to capture the true crystal shapes,
resulting in a poor mask that does not correspond to the actual crystalline domains. The SW-FFT results were generated using parameters:
window_size = 640, stride = 16, and a wide d_spacing_range of (0.7, 3.7) nm and threshold_quantile = 0.90.
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� Computational cost: the SW-FFT analysis on a single
4096 � 4096 pixel image took approximately 12 min 17 s on
average. In contrast, GRATEv2 processed the same image in
6.52 seconds on average, making it over 100 times faster. The
high cost of the FFT method is due to the need to compute
thousands of FFTs on large, overlapping windows.
� Segmentation quality: as visually demonstrated in Fig. 16,

the SW-FFT method’s qualitative performance is poor, failing to
produce a meaningful or reliable segmentation mask. A direct
comparison with the ground truth reveals several distinct and
critical failure modes:

– Fragmentation and poor localization: the method strug-
gles with spatial localization. Instead of identifying large,
continuous crystals as single entities, it often detects them as
a series of smaller, fragmented pieces concentrated in high-
contrast areas. In contrast, GRATEv2 correctly captures the
entire domain in one piece (Row 1). The SW-FFT method also
completely ignored the large crystal in the top left of the image
in Row 1, which is very well visible with the naked eye and
precisely captured by GRATEv2.

– Noisy mapping and false detections: the generated crystal-
linity map (Column 3) is heavily diffused and noisy. This results
in an unreliable segmentation that both completely misses
major crystalline domains (false negatives) and incorrectly
identifies numerous spurious regions where no crystals exist
(false positives), as is evident in Rows 2 and 3.

– Poor correlation with ground truth: there is a fundamental
disconnect between the high-score regions in the crystallinity
map and the actual crystal locations. The algorithm often
detects only a small, low-score portion of a true crystal while
assigning the highest score to an entirely different, amorphous
area. This poor correlation, combined with noise, leads to a
fundamentally incorrect segmentation (Row 4).

This poor performance is not a matter of parameter choice
but is a direct result of the method’s core algorithmic flaw—the
‘‘Window Size Dilemma’’.

– Need for a large window: to detect a periodic pattern via
FFT, the analysis window must be large enough to contain
multiple repetitions of the pattern. For our data, with a d-
spacing of E165 pixels, a window_size of at least 400–600 pixels
is required. A smaller window sees only a fraction of a fringe,
failing to register a periodic signal.

– Need for a small window: accurate segmentation requires
high spatial precision to delineate the irregular boundaries of
crystals. However, the SW-FFT method has a spatial resolution
limited by its window_size. Using a large window (e.g., 640 �
640) results in extremely poor localization, merging distinct
nearby crystals and blurring boundaries with amorphous
regions.

This required trade-off between pattern detection and spa-
tial accuracy means no single window_size can produce a
satisfactory result. The issue is therefore an algorithmic flaw,
not a matter of parameter tuning. While GRATEv2 benefits
from Bayesian Optimization to navigate its complex 13-
dimensional parameter space, the SW-FFT method’s failure is
due to these fundamental algorithmic limitations.

In contrast, GRATEv2’s spatial-domain, graph-based approach
is explicitly designed to overcome these challenges. By first
identifying individual fringe-like skeletons and then evaluating
their connectivity, it can robustly segment complex and irregularly
shaped crystalline domains. This comparison therefore validates
that classical frequency-domain methods are ill-suited for this
class of material analysis, reinforcing the value and necessity of
the specialized GRATEv2 framework.
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