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Insights into structural, luminescence and
temperature-dependent emission characteristics
of Ca2Al2O5:Dy3+ phosphors for advanced lighting
applications†

A. Vidya Saraswathi,a Tejas,a S. Masilla Moses Kennedy,b A. Princy,b M. I. Sayyed,cd

Aljawhara H. Almuqrin,e Vikash Mishraa and Sudha D. Kamath *a

This research synthesized and thoroughly examined novel Ca2Al2O5:Dy3+ phosphors to assess their

potential for solid-state lighting and temperature-sensing applications. X-ray diffraction (XRD) verified

the formation of a cubic phase with Dy3+ ions successfully integrated into the Ca2Al2O5 host lattice.

Photoluminescence (PL) analysis showed distinct blue (483 nm), yellow (575 nm), and weak red

(663 nm) emissions, corresponding to the 4F9/2 - 6H15/2, 4F9/2 - 6H13/2, and 4F9/2 - 6H11/2 transitions

of Dy3+, respectively. The study identified that a 2 mol% concentration of Dy3+ is the ideal doping to

achieve optimal luminescence, and the emission falls in the cool white light region. The optical study

was used to ascertain the optical band gap, and the band gap of the host matrix decreases upon doping

(from 5.01 eV to 4.83 eV) as new defect energy levels appear between the valence band and the

conduction band. Temperature-dependent photoluminescence (TDPL) studies demonstrated excellent

thermal stability, with the phosphors retaining significant luminescence intensity even at elevated

temperatures. These phosphors exhibit appreciable thermal quenching behaviour and possess an

activation energy of 0.20051 eV, underscoring their resilience at high temperatures. These results

highlight the promising optical performance and thermal durability of Ca2Al2O5:Dy3+ phosphors, making

them strong candidates for white LEDs and temperature-sensitive optoelectronic devices.

1. Introduction

Phosphor materials are vital in advancing light-emitting tech-
nologies, acting as a key element in fields such as solid-state
lighting, display systems, and radiation detection. When acti-
vated by different energy sources, including ultraviolet light,
heat, or electrical fields, these substances exhibit lumines-
cence, effectively converting energy into visible light. Their high
quantum efficiency and customizable emission characteristics
make them indispensable in devices like light-emitting diodes

(LEDs), fluorescent lamps, and electroluminescent displays.
With the increasing demand for energy-efficient lighting solu-
tions, developing high-performance phosphors with robust
thermal stability and strong emission intensity has become a
primary focus in materials research.1,2

The properties of a phosphor, including its emission wave-
length, intensity, afterglow, and thermal quenching behaviour, are
influenced by the combination of its host lattice and the dopant
ions. Numerous host-dopant pairings have been developed to
achieve superior emission qualities. For instance, YAG:Ce3+ is
frequently utilized in white LEDs due to its broad yellow emission,
which blends with blue light to create white light.3,4 Other sig-
nificant systems include (Sr,Ca)S:Eu for red emission in fluorescent
lamps,5 Zn2SiO4:Mn for use in flat panel displays,6 and BaMg-
Al10O17:Eu2+ for blue emission in LED displays.7 Long-lasting
phosphors like SrAl2O4:Eu2+,Dy3+ are particularly valued for emer-
gency lighting and glow-in-the-dark uses.8–10 Moreover, phosphors
based on nitrides11–13 and oxynitrides14–16 are noted for their high
quantum efficiency and thermal stability, making them excellent
red emitters in LEDs. Similarly, hosts made of silicate,17–19

borate,20–22 aluminate,23,24 vanadate,25–27 and fluoride28–30 when
doped with rare-earth ions offer a variety of optical properties
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suitable for lasers,31,32 displays,33–35 bioimaging,36,37 and up-
conversion applications.38–40

Among these, aluminate-based phosphors have gained consid-
erable attention due to their excellent chemical stability, long
afterglow, and suitability for high-temperature applications.41,42

There are reports on structural and luminescence properties of
Sr4Al14O25:Eu/Dy,41 electronic structure and high-pressure lumines-
cence studies of Sr4Al14O25:Mn,42 JO analysis of LaAlO3:Tm,43

luminescence of LaAlO3:Eu,44 computational and spectroscopic
study of Eu/Nd doped MAl2O4 (M = Ca, Sr, Ba), radioluminescence
of SrAl2O4:Eu,Sm,Dy,45 emission studies of SrAl2O4:Er,46 Eu/Dy,47,48

CaAl2O4:Eu/Nd,49 Pr,50 Sm,51 thermoluminescence characteristics of
CaAl2O4:Dy,Sm,Tm,52 trap depth analysis of CaAl2O4:Tb,53 LaMgA-
l11O19:Eu,54 temperature dependent luminescence studies of BaM-
gAl10O17:Ce,Tb,55 luminescence features of BaMgAl10O17:Eu,56–58

Cr,59 BaMgAl10O17:Mn,60 BaMgAl10O17:Eu,Yb,61 BaMgAl10O17:Dy,62

SrMgAl10O17:Eu,Dy,63 SrMgAl10O17:Mn,Eu,64 Ca2Al2O5:Eu,65,66 and
mechanoluminescence studies of SrMgAl10O17:Eu67 phosphors.

After thoroughly reviewing the literature, we selected
Ca2Al2O5 as the host matrix and Dy3+ as the dopant. Ca2Al2O5

phosphors are renowned for their outstanding thermal and
chemical stability, even in high-temperature and challenging
environmental conditions. This characteristic makes them ideal
for applications involving high-power or high-temperature lighting.
The Ca2Al2O5 system can be produced through a cost-effective
solid-state method using readily available raw materials (CaCO3

and Al2O3). In contrast to well-known hosts like SrAl2O4 or YAG,
Ca2Al2O5 has not been extensively studied, especially in Dy3+

doping. To our knowledge, only one prior study has explored
Dy3+ in this host, and it did not provide a comprehensive analysis
of structural, luminescence, and temperature-dependent emission
properties. Since the studies are limited to Ca2Al2O5:Dy, the present
work focuses on the structural, morphological, and luminescence
properties along with in-depth analysis of crystallite size, correla-
tion between dopant concentration and luminescence features.
Furthermore, the temperature-dependent luminescence character-
istics are explored with critical insights into activation energy and
FWHM variation. Thermal stability and activation energy contri-
bute to designing and optimizing tools for elevated temperature
applications such as solid-state lighting and display applications.

2. Experimental details
2.1 Sample synthesis

The Ca2Al2O5:Dy (CAO–Dy) phosphors were prepared by varying
the amount of Dy3+ from 1 mol% to 5 mol%. The precursors
CaCO3, Al2O3, and Dy2O3 were taken in stoichiometric ratios
and mixed well in a mortar for 45 minutes. To ensure homo-
genous mixing, we added ethanol while grinding the sample.
The mixture was calcined at 1300 1C for 8 hours at a heating
rate of 5 1C min�1. The samples were collected after attaining
room temperature for further characterization.

2.2 Characterization techniques

The structural studies are conducted using a Rigaku Miniflex
600 (5th generation) device, which employs K-a radiation

(l = 1.54 Å), voltage maintained at 40 kV and current at 15
mA. A SHIMADZU-IRSpirit ATR-FTIR spectrometer is utilized to
identify functional groups. The morphology of the samples is
analyzed with SEM technique using a Sigma Zeiss instrument.
Diffuse reflectance data is gathered with a PerkinElmer
Lambda 900 spectrophotometer. The emission characteristics
are recorded utilizing a JASCO-FP 8500. The variation in lumi-
nescence properties with temperature is obtained with an
Agilent Cary Eclipse Fluorescence Spectrophotometer.

3. Results and discussion
3.1 X-ray diffraction (XRD) study

The synthesized samples’ phase confirmation and crystal struc-
ture are obtained by XRD analysis. Fig. 1(a) shows the XRD peaks
of CAO–Dy samples, which match the COD code – 1525613
pattern. There is no appreciable peak shift with changing dopant
concentration, and the crystal structure remains unaltered upon
doping. Fig. 1(b) shows the crystal structure of the CAO unit cell.
The Rietveld refinement was performed to ascertain the lattice
parameters, volume, and phase purity (Fig. 1(c)). This analysis
indicated the formation of a cubic lattice with space group I%43d,
crystal parameters a = b = c = 11.9953 Å, and a = b = g = 901, and
the volume is 1725.97 Å3. No impurity peaks were observed in
the XRD pattern. The reliability factors obtained are Rp: 32% and
Rwp: 33%, with structural coordinates and occupation detailed in
Table 1. As depicted in Fig. 2(b), the refinement data shows an
excellent fit with w2 = 2.74.

To explore the dopant’s occupation site, we must focus on
the dopant ion’s ionic radii and the cation being replaced in the
host matrix.68 For each cation and dopant pair for a different
coordination number (CN), the acceptable percentage differ-
ence value (R) is calculated as per the following equation.

R ¼ Rh CNð Þ � Rd CNð Þj j
Rh CNð Þ � 100% (1)

where Rh is the host cation radius, CN is the coordination
number, and Rd is the radius of the dopant ion. If R is well
below 30%, the substitution of dopant to the respective cationic
site is confirmed. The calculation for the R-value is given in the
Table 2. From Table 2, R o 30% for Ca2+–Dy3+ combination;
hence we can confirm the occupation of dopant ion in Ca2+

sites.69,70 The crystallite size of CAO–Dy samples is calculated
using the Debye–Scherrer equation and size-strain plot (SSP)
approach. The crystallite size affects the diffraction pattern and
the luminescence features of phosphors. The crystallite size
varies with dopant concentration and is calculated using the
following Debye–Scherrer equation71,72

D ¼ kl
b cos y

(2)

l is the X-ray wavelength (1.54 Å), b is the full-width half
maximum of the XRD peak, and k is a constant taken as 0.9.
The crystallite size variation is also determined using the SSP
method, where the higher angle reflections are given less
weight as they have lower precisions. The Lorentzian function
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and Gaussian functions are used to illustrate the crystallite size
profile and the strain profile, respectively, as per the following
equation,73,74

dhklbhkl cos yð Þ2¼ K

D
dhkl

2bhkl cos y
� �

þ e
2

� �2
(3)

where K is 0.75, which depends on the shape of the particles, e
is the strain, dhkl is the interplanar spacing. By taking the slope
(K/D) of (dhklbhkl cos y)2 vs. (dhkl

2bhkl cos y) graph, the crystallite
size can be calculated (Fig. 2). Table 3 gives the variation in
crystallite size of CAO–Dy phosphors calculated using Debye–
Sherrer and SSP methods.

The average crystallite size of CAO–Dy samples was 18–
23 nm using Scherrer’s method and 66–75 nm range for the
SSP method. This difference might be attributed to the inclu-
sion of strain in the latter method.

3.2 Fourier transform infrared (FTIR) spectroscopy

The vibrational functional groups of phosphor samples are
identified using FTIR spectroscopy. Fig. 3 shows the vibrational
bands in the CAO host matrix and Dy3+ doped CAO. Region 1
(in Fig. 3) displays bands at 745 cm�1 and 806 cm�1, corres-
ponding to Ca–O vibrations.75 The same bands appear in the
Dy3+ doped sample as well. As the dopant occupies Ca2+ sites,
there is no peak shift (shift is within error limit) or band
appearance/disappearance upon Dy3+ doping, confirming the
unaltered structure of the host matrix upon doping. The
regions identified as 2 and 3 (Fig. 3) are assigned to Al–O
vibrations, having bands at 514 and 571 cm�1.76

3.3 Scanning electron microscopy (SEM)

The morphological features of CAO–Dy samples are shown in
the Fig. 4. Highly agglomerated microstructure accompanied by
porous morphology is obtained for the prepared sample.77 The

Fig. 1 (a) XRD pattern of CAO phosphor for varying Dy3+ concentration, and (b) CAO unit cell, (c) Rietveld refinement of CAO–2 Dy sample.
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shape of the particles is irregular, and accurate particle
measurement is impossible.78

3.4 Optical studies

Fig. 5(a) gives the Diffuse reflectance (DR) spectra of CAO–2 Dy
phosphor, the peaks are centred at 490 nm, 792 nm, 880 nm,
1060 nm, 1252 nm, 1380 nm, and 1650 nm attributed to
transitions 6H15/2 - 4F9/2, 6H15/2 - 6F5/2, 6H15/2 - 6F7/2,
6H15/2 - 6H7/2, 6H15/2 - 6F11/2, 6H15/2 - 6H9/2, and 6H15/2 -
6H11/2 respectively. These transitions are further used to

identify the nature of bonding between the dopant ion and
the host matrix ligand. The nephelauxetic ratio (b) and bonding
parameter (d) are given using the following equations79

b ¼ nc
na

(4)

Nc and na are the energies of the Dy3+ transitions in the host
matrix and the aqueous solutions, respectively.80

d ¼
1� bavg
bavg

(5)

where bavg is the average value of b for observed transitions, if
d o 0, the bonding is ionic, and d 4 0 corresponds to covalent
bonding. Table 4 gives the values of b and d for the Dy3+

transitions.
Since the d value is 0.00623, the Dy3+–ligand bond is

covalent for the prepared phosphor samples. A similar covalent

Table 1 Sample notation

Chemical formula Notation

Ca2Al2O5:1 mol% Dy CAO–1 Dy
Ca2Al2O5:2 mol% Dy CAO–2 Dy
Ca2Al2O5:3 mol% Dy CAO–3 Dy
Ca2Al2O5:4 mol% Dy CAO–4 Dy
Ca2Al2O5:5 mol% Dy CAO–5 Dy

Fig. 2 (a)–(e) Crystallite analysis using the SSP method for CAO–Dy samples.
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nature of dopant-ligand covalent band is reported in previous
studies.81–83

The optical energy band gap of pure and optimized CAO–2
Dy samples is calculated using Tauc plot, using the following
equation,84,85

F Rð Þ � E½ �
1
n¼ K E � Eg

� �
(6)

F Rð Þ ¼ 1� Rð Þ2

2R
(7)

where F(R) is the Kubelka Munk function, Eg is the energy band
gap of the material, E is the energy of incident radiation, and R
is the sample’s reflectance. The value of n differs based on the
type of bandgap observed. For direct band gap, n = 0.5 and for

indirect bandgap, n = 2. For the synthesized CAO and CAO–2 Dy
samples, the best fit is observed for n = 0.5, and the x-intercept
of (F(R)hn)2 vs. photon energy plot gives the energy gap
(Fig. 5(b)). The band gap of pure CAO is 5.01 eV; upon doping,
the band gap decreases to 4.83 eV. This bandgap reduction is
attributed to forming defect states between the forbidden gap
by adding Dy3+ ions. Such a decreasing trend in the energy gap
is observed and reported in the literature.86–88

3.5 Photoluminescence (PL) analysis

The luminescence properties of Dy-doped CAO phosphors are
crucial for understanding their potential applications in solid-
state lighting. The excitation spectrum of Dy-doped CAO sam-
ples is recorded for a fixed emission wavelength of 575 nm
(given in Fig. 6(a)). There are excitation peaks observed at
295 nm, 325 nm, 351 nm, 387 nm, 426 nm, 454 nm, and
465 nm corresponding to the transitions 6H15/2 -

4D7/2, 6H15/2 -
6P3/2, 6H15/2 - 6P7/2, 6H15/2 - 4M21/2, 6H15/2 - 4G11/2, 6H15/2 -
4I15/2 and 6H15/2 - 4F9/2 respectively.89,90 The 351 nm peak
corresponding to 6H15/2 - 6P7/2 is the excitation wavelength to
record the emission spectra (Fig. 6(b)). Dy3+ characteristic emis-
sion peaks are obtained at 483 nm (4F9/2 -

6H15/2), 575 nm (4F9/2

- 6H13/2), and 663 nm (4F9/2 - 6H11/2).91 The emission intensity
shows an increasing trend with Dy3+ concentration up to 2 mol%,
beyond which the PL intensity reduces (Fig. 6(c)). The reason for
the variation in PL intensity is correlated with dopant concen-
tration, which is called concentration quenching. The quenching
in PL intensity can be explained using cross-relaxation (CR) paths
between neighbouring Dy3+ ions. Fig. 7 illustrates the energy level
diagram and the potential cross-relaxation pathways for the Dy3+

ions.92 In this context, we identify three distinct energy transfer
(ET) channels between identical Dy3+ ions within the CAO host,
designated CR1, CR2, and CR3. The ET channels result in non-
radiative energy transfer; hence, the emission intensity decreases.
The ET transitions are given below.93,94

CR1: 4F9/2 - 6F9/2 + 6H7/2 E 6H15/2 - 6F5/2

CR2: 4F9/2 - 6F11/2 + 6H9/2 E 6H15/2 - 6F3/2

Table 2 R values for different cation-dopant combinations

Ca2+–Dy3+ pair

CN of Ca2+ Rh (CN) CN of Dy3+ Rd (CN) R (%)

6 1 6 0.912 8.8
6 1 8 1.027 2.7
8 1.12 6 0.912 18.57
8 1.12 8 1.027 20.30

Al3+–Dy3+ pair

CN of Al3+ Rh (CN) CN of Dy3+ Rd (CN) R (%)

6 0.535 6 0.912 70.40
6 0.535 8 1.027 91.90

Table 3 Crystallite size variation using Scherrer’s formula and SSP
approach

Sample
name 2y (degrees)

FWHM
(degrees)

Scherrer’s
method D (nm)

SSP method
D (nm)

CAO–1 Dy 33.415 0.4124 20.10 75.30
CAO–2 Dy 33.2474 0.4477 18.50 68.20
CAO–3 Dy 33.2023 0.3594 23.05 66.72
CAO–4 Dy 33.2158 0.3692 22.44 66.85
CAO–5 Dy 33.1194 0.3928 21.10 68.50

Fig. 3 FTIR spectra of CAO host and CAO–2 Dy samples. Fig. 4 Surface morphology of CAO–2 Dy phosphor.

Materials Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
1/

20
26

 5
:4

7:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00391a


© 2025 The Author(s). Published by the Royal Society of Chemistry Mater. Adv., 2025, 6, 5506–5522 |  5511

CR3: 4F9/2 - 6F3/2 E 6H15/2 - 6F11/2 + 6H9/2

In addition to the cross-relaxation mechanism, the ET can be
associated with the multipolar or exchange interactions among
Dy3+ ions. The mode of ET is determined by estimating the
critical radius Rc using the below equation,

Rc ¼ 2
3V

4pXcN

� �1=3

(8)

where the unit cell volume, V = 1725.97 Å3, optimum concen-
tration; Xc = 0.02, and N = 2. The value of Rc = 43.517 Å. As the
critical distance exceeds 5 Å, indicating that concentration

quenching results from multipolar interaction. Several multi-
polar interactions exist, including dipole–dipole, dipole–quad-
rupole, and quadrupole–quadrupole. Dexter’s theory95 can be
employed to determine the specific multipolar interaction in
CAO–Dy phosphors (eqn (9)).

log
I

x
¼ c� y

3
log x (9)

The relationship between log I/x and log x exhibit a slope of �(y/3),
where y serves as an indicator of the multipolar interaction type
(Fig. 8(a)). Specifically, y values of 6, 8, and 10 correspond to dipole–
dipole, dipole–quadrupole, and quadrupole–quadrupole reactions.
An analysis of the graph depicting log(I/x) against log(x) reveals a
slope of �1.73537. Given that y E 5.20 approximates 6, the data
suggests that dipole–dipole interactions predominantly govern the
energy transfer mechanism.96,97 The reduction in PL intensity
could be related to substituting the Dy3+ ion into the Ca2+ site.
The charge imbalance leads to the formation of defects. The
probable defects introduced to maintain charge neutrality are
oxygen vacancies (Vo) and cationic vacancies (VCa). These defects
act as electron traps, reducing the emission intensity.98,99

The intense yellow emission (4F9/2 - 6H13/2) due to electric
dipole is more intense than the magnetic dipole transition
corresponding to the blue emission (4F9/2 - 6H15/2). Thus, we
can specify that the Dy3+ ions do not occupy inversion symme-
try sites as the hyper-sensitive electric dipole transition is
dominant (Fig. 8(b)). The magnetic dipole transition will be
predominant if the dopant ions occupy inversion symmetry
sites.100 The Y/B ratios for CAO–Dy samples are 2.15, 2.24, 2.32,
2.37, and 2.32 for 1, 2, 3, 4, and 5 mol% of dopant concen-
tration (Fig. 8(c)). As the (Y/B) 4 1, the emission appears to be
yellowish-white light rather than pure white light.101,102

3.6 Photometric analysis

The tristimulus values determine the colour coordinates of the
prepared phosphor sample (refer to eqn (S1)–(S6), ESI†),103

In the Fig. 9, the colour coordinates fall in the yellowish-white
region, and the colour purity is estimated using the below formula104

Colour purity CPð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xs � x0ð Þ2þ ys � y0ð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xd � x0ð Þ2þ yd � y0ð Þ2

q (10)

The coordinates (x0, y0), (xs, ys), and (xd, yd) represent the epicentre of
convergence (0.332, 0.186), coordinates of the phosphor sample, and
coordinates of the dominant emission, respectively. The correlated
colour temperature is determined using McCamy’s formula105

CCT = �449n3 + 3525n2 � 6823n + 5520.33 (11)

where n is the slope of the inverse line, n = (x � x0)/(y � y0).
The colour rendering index (CRI) measures how accurately a

light source displays colours by comparing it to an ideal or
natural lighting benchmark. The quality of light source is
evaluated depending on the range of CRI value. The CRI range
is 68–72, corresponding to a good light source with high
accuracy in colour appearance.

Fig. 5 (a) DR spectrum of CAO–2 Dy phosphor, (b) optical band gap of
pure and doped CAO samples.

Table 4 Bonding parameter calculation for CAO–2 Dy

Sl. number Transition from 6H15/2 to nc (cm�1) na (cm�1) b

1 4F9/2 20 963 21 100 0.9935
2 6F5/2 12 323 12 400 0.9938
3 6F7/2 10 926 11 000 0.9932
4 6H7/2 9014 9100 0.9905
5 6F11/2 7667 7700 0.9957
6 6H9/2 7637 7692 0.9928
7 6H11/2 5835 5850 0.9974
bavg 0.9938
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Table 5 gives the colour coordinates, colour purity, and CRI
and CCT values of CAO–Dy phosphors. Table 6 compares
emission wavelength, Colour coordinates, CCT, CP, and CRI
values of other phosphors and the present work. The synthe-
sized CAO–Dy phosphors emit cool white light (CCT 4 4000 K)
with good CRI value; hence, they have potential cool/neutral
light generation applications.

3.7 Lifetime analysis

Monitoring the excitation wavelength at 351 nm and the emis-
sion wavelength at 575 nm allowed the determination of the
luminescence lifetime of the Ca2Al2O5:xDy3+ [x = 1, 2, 3, 4,
and 5 mol%] phosphors. Fig. 10(a) displays the decay profile,
which displays the intensity as a function of decay lifetime.
A single exponential decay function fit was used to further
examine the experimental data, and equation was represented
as follows,116,117

I tð Þ ¼ Ae�
t
t þ I0 (12)

Here t is the component of the decay lifetimes, A is the fitting

parameter and I0 the initial fluorescence intensity. The single
exponential fit is done and shown in Fig. 10(b).

The prepared Ca2Al2O5:xDy3+ [x = 1, 2, 3, 4, and 5 mol%]
phosphor samples had calculated average lifetimes of
0.8722 ms, 0.9925 ms, 0.9276 ms, 0.8928 ms, and 0.8827 ms
respectively. The average lifetime increases for 2 mol% and
gradually decreases as the doping concentration rises, indicat-
ing that the energy transfer activities between Dy3+ ions. Auzel’s
hypothetical model118,119 was used to assess this trend, and
Fig. 10(c) shows the fitted profile.

tc ¼
t0

1þ c

c0

� �
e�N=3

(13)

In this relation, tc is the lifetime at doping concentration c, c0 is
the critical concentration, and N is the number of phonons
generated. 1.073 ms is the intrinsic radiative lifetime (t0). The
following formula may be used to determine the non-radiative
relaxation rate (knr) given the radiative lifespan (t0) and the

Fig. 6 (a) Excitation spectrum of CAO–2 Dy phosphor, (b) emission spectra of CAO samples for different dopant concentrations, and (c) variation in PL
intensity as a function of Dy3+ concentration.
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empirically obtained average lifetime (tavg).120

1

tc
¼ 1

t0
þ knr (14)

One important metric for evaluating the optical performance of
rare earth doped phosphors is quantum efficiency. It may be
quantitatively stated in terms of radiative and non-radiative
transition rates, as well as the excited-state lifespan, and is
defined as the ratio of emitted to absorbed light intensity. The
efficiency of energy conversion in luminous materials is

determined by this metric, which offers a direct measurement
of quantum efficiency. The quantum efficiency can be
expressed numerically as,121

Z ¼ Iem

Iab
¼ kR

kR þ knR
¼ tc

t0
(15)

The calculated average lifetime, nonradiative relaxation rate,
and quantum efficiency are listed in Table 7.

Fig. 7 Energy level diagram of Dy3+ ion showing radiative transitions and
cross-relaxation paths.

Fig. 8 (a) log(I/x) versus log(x) plot for CAO–Dy samples, (b) relative intensity comparison of blue and yellow emission, and (c) Y/B ratio of CAO–Dy
phosphors.

Fig. 9 Chromaticity diagram of CAO–Dy samples.
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3.8 Temperature dependent photoluminescence (TDPL)

Furthermore, the TDPL properties of the optimized CAO–2 Dy
were extensively examined to evaluate its thermal stability
and emission behaviour at elevated temperatures. The TDPL
spectra have the characteristic emission peaks of Dy3+ recorded
from 303 K to 483 K. A gradual reduction in photoluminescence
intensity was observed as the temperature increased (Fig. 11(a)).
Thermal quenching is mainly attributed to the increased

Table 5 CIE coordinates and CCT values of CAO–Dy phosphors

Sample code CIE coordinates (xs, ys) Colour purity (%) CRI CCT (K)

CAO–1 Dy (0.3666, 0.3858) 54 71 4445
CAO–2 Dy (0.3737, 0.3934) 57 69 4291
CAO–3 Dy (0.3763, 0.3972) 57 68 4244
CAO–4 Dy (0.3666, 0.3855) 54 69 4443
CAO–5 Dy (0.3441, 0.3545) 42 72 5047

Table 6 Comparison of CIE coordinates, colour purity, CRI and CCT values of the optimized phosphor with previously reported works

Phosphor Emission wavelength (nm) CIE coordinates (xs, ys) Colour purity (%) CRI CCT (K) Ref.

Ba2TeP2O9:Dy3+ 573 (0.3981, 0.4333) 55.3 — 3926 106
CaZn2(PO4)2:Dy3+ 572 (0.3251, 0.3482) — 80 5815 107
Y2CaB10O19:Dy3+ 577 (0.3188, 0.3233) 16.2 77 6209 108
Y2O3:Dy3+ 575 (0.2650, 0.3880) — 33 8199 109
GdSr2AlO5:Dy3+ 582 (0.3396, 0.3851) 17.6 — 5272 110
NaSrPO4:Dy3+ 576 (0.2700, 0.3000) — — 10150 111
CaLiLa (PO4)2:Dy3+ 573 (0.2750, 0.3006) — — — 112
SrLu(PO4)3:Dy3+ 575 (0.3740, 0.4070) — — — 113
K3ZnB5O10:Dy3+ 575 (0.2560, 0.2580) — — — 114
Y2MoO6:Dy3+ 575 (0.3391, 0.3458) 91 — 5218 115
Ca2Al2O5:Dy3+ 575 (0.3737, 0.3934) 57 69 4291 This work

Fig. 10 (a) Fluorescence decay lifetime spectra for different concentration of Dy3+ in Ca2Al2O5 phosphors. (b) Single exponential fit for the 2 mol% Dy3+.
(c) Auzel’s fitting curve showing variation of fluorescence lifetime with Dy3+ concentrations.
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formation of defect states at higher temperatures, facilitating
non-radiative relaxation routes. As a result, non-radiative
recombination processes become more dominant than radia-
tive ones, reducing emission intensity.122 Fig. 11(b) illustrates
the variation in normalized emission intensity at wavelengths
of 483 nm, 575 nm, and 663 nm as a function of temperature.
The normalized intensities exhibit a consistent decline, indi-
cative of the quenching trend observed in the TDPL spectra,
thereby confirming the temperature sensitivity of the lumines-
cence process.

Notably, the emission peaks at 483 nm and 576 nm exhibit
almost identical quenching behaviour, suggesting that thermal
disturbances similarly affect these transitions and may originate
from closely related energy levels within the Dy3+ ion.123,124

Fig. 11(c) illustrates how the full width at half maximum
(FWHM) of the same emission bands varies with temperature.
As the temperature increases, the FWHM values for the 483 nm
and 575 nm emissions increase, whereas the 663 nm emission

experiences a narrowing of FWHM. The spectral broadening is
correlated with the increased phonon interactions at higher
temperatures. There are reported models explaining the spectral
broadening and enhanced phonon interactions in rare earth-
doped materials.125 The dependence of FWHM on temperature
is described using the following equation,

G ¼ hu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln 2ð ÞS coth

hu
2kT

� �s
(16)

Table 7 Decay time, non radiative relaxation rate and quantum efficiency
of prepared Ca2Al2O5:xDy3+ [x = 1, 2, 3, 4, and 5 mol%] phosphors

Dy3+ concentration (mol%) tc (ms) knr (s�1) Z (%)

1 0.87224 214.507 81.28
2 0.99253 75.55977 92.50
3 0.9276 146.0844 86.44
4 0.89284 188.0551 83.20
5 0.88279 200.8058 82.27

Fig. 11 (a) TDPL spectra of CAO–2 Dy sample, (b) normalized intensity variation, (c) FWHM variation for different emissions, and (d) activation energy
graph of CAO–2 Dy phosphor.

Fig. 12 The linear fit of FWHM2 as a function of 2kT for 575 nm peak.
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G represents the full width at half maximum that varies with
temperature, S is the Huang–Rhys parameter, k is the Boltzmann
constant, hu is the effective phonon energy, and T signifies the
temperature. The extent of thermal quenching varies from one
material to another. The thermal quenching is described as an
effect of electron–phonon interaction. It depends on the phonon
energy (hu) and S. If the phonon energy and S are larger, the
stronger the electron–phonon interaction results in increased
non-radiative relaxations. The thermal stability is associated
with these values, and we simplify eqn (16) by expanding

coth
hu
2kT

� �
as

e
hu
2kT þ e

�hu
2kT

e
hu
2kT � e

�hu
2kT

and further simplified, and eqn (16)

is squared,

G2 ¼ 5:57� S � huð Þ2 1þ 2

e
hu
kT � 1

 !
(17)

Approximating
hu
kT
� 10�3 and e

hu
kT � 1

� �
� hu

kT
.

Eqn (17) is simplified into eqn (18),

G2 ¼ 5:57� S � huð Þ2 1þ 1

hu
2kT

0
B@

1
CA (18)

Linearizing the above equation by taking y = a + bx, G2 or
FWHM2 is taken along y-axis, kT along x-axis, b = 5.57 � S � hu,
is the slope, and a = 5.57 � S � (hu)2 is the intercept. Thus, the
phonon energy and the S values are obtained by plotting the
FWHM2 vs. kT graph (Fig. 12). The phonon energy is 0.07022 eV,
and S = 0.06517 for the 575 nm peak. On comparing the
obtained values with the literature available, we can confirm
that synthesized CAO–2 Dy samples show excellent thermal
stability due to weaker electron–phonon interaction (lower
value of S and hu).126,127

The activation energy must be calculated using the Arrhe-
nius equation to explore the thermal quenching properties.128

I ¼ I0

1þ Ce
�DE
kT

(19)

The initial intensity is denoted as I0 at the starting temperature,
while I represent the intensity at temperature T. Here, C stands
for a constant, DE signifies the activation energy, and k is the
Boltzmann constant. On linearizing the equation,

ln
I0

I
� 1

� �
¼ �DE

kT
þ lnC (20)

The slope of ln
I0

I
� 1

� �
versus

1

kT
graph (Fig. 11(d)) gives DE =

0.20051 eV.
Table 8 compares the reported systems with CAO–2 Dy

phosphors regarding their thermal stability and activation
energy. The data indicate that the CAO–2 Dy phosphor demon-
strates superior thermal stability and activation energy, render-
ing it a promising candidate for optoelectronic applications.

4. Conclusions

This work effectively synthesized Ca2Al2O5 phosphors doped with
Dy3+ through the conventional solid-state reaction technique. XRD
analysis confirmed the formation of a pure phase, with no
significant shifts in peak positions observed upon Dy3+ doping,
indicating that the host lattice retained its structural integrity
across all doping levels. SEM analysis of the surface morphology
revealed agglomerated particle formations, characteristic of high-
temperature solid-state synthesis processes. Optical characteriza-
tion via DRS identified distinct Dy3+ absorption peaks and a
reduction in the optical band gap upon introducing the dopant
into the host matrix, underscoring the impact of Dy3+ incorpora-
tion. PL spectra exhibited the characteristic emission peaks of
Dy3+ ions, corresponding to the 4F9/2 -

6H15/2 (blue) and 4F9/2 -
6H13/2 (yellow), and 4F9/2 - 6H11/2 (red) transitions. 2 mol% Dy3+

doping yielded the highest emission intensity, with chromaticity
coordinates within the cool white light region, rendering it
suitable for lighting applications. TDPL studies demonstrated
significant thermal stability, with the phosphor maintaining
substantial luminescence at elevated temperatures. The calcu-
lated activation energy was determined to be 0.200 eV, high-
lighting the lower probability for non-radiative losses. In
conclusion, the exceptional optical properties, robust thermal
stability, and emission in the visible white-light spectrum position
make Dy3+-doped Ca2Al2O5 is identified as a promising phosphor
candidate for applications in solid-state lighting and other optoe-
lectronic devices.
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Table 8 Comparison of optimized phosphor’s thermal stability and acti-
vation energies with previously reported phosphors

Phosphor
Temperature
range (K)

Thermal
stability
(%)

Activation
energy (eV) Ref.

CaLiLa(PO4)2:Dy3+ 303–553 65 0.250 112
SrLu(PO4)3:Dy3+ 298–473 68 0.214 113
K3ZnB5O10:Dy3+ 303–483 82 0.520 114
K3Y(PO4)2:Dy3+ 303–483 75 0.370 129
LiCaBO3:Dy3+ 100–480 — 0.420 130
Li3Ba2Gd3(WO4)8:Dy3+ 298–523 62 0.352 131
Na2Y2TeB2O10:Dy3+ 300–475 75 0.230 132
NaGdTiO4:Dy3+ 298–633 — 0.200 133
Y2CaB10O19:Dy3+ 303–663 84 — 134
Ca3LuAl3B4O15:Dy3+ 300–500 85 — 135
Ca2Al2O5:Dy3+ 303–483 68 0.200 Present work
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