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Generative design and molecular mechanics
characterization of silk proteins based on
unfolding behavior†

Wei Lu ab and Markus J. Buehler *abc

Spider silk exhibits exceptional mechanical properties, biocompatibility, and biodegradability, making it a

promising material for bioengineered applications. However, the complexity and diversity of silk proteins,

coupled with limited experimental data, have hindered the rational design of silk-based biomaterials.

Furthermore, the mechanobiology of these proteins and their impact on silk fiber properties remain

underexplored. In this study, we introduce a series of novel silk protein sequences and characterize their

nonlinear unfolding behavior and mechanical properties through molecular dynamics (MD) simulations.

Focusing on major ampullate spidroin (MaSp) silk proteins, we curate a dataset that integrates

experimentally acquired sequences with synthetic sequences generated by SilkomeGPT, a generative

model for silk-inspired proteins. Structural predictions are performed using OmegaFold, from which

high-fidelity regions are extracted and analyzed. Their unfolding responses are assessed via implicit all-

atom MD simulations, enabling characterization of their mechanical behavior. This computationally

efficient framework facilitates the rational design of spider silk proteins by linking atomistic and

sequence features to larger-scale properties. The developed dataset systematically captures structural

uncertainties, while simulations provide atomic-level insights into how protein mechanics contribute to

fiber properties, advancing the mechanobiological understanding of spider silk and supporting diverse

applications in biomaterials design.

1. Introduction

Spider silk represents one of the nature’s most advanced
fibrous materials, offering an exceptional balance of strength,
toughness, elasticity, and functional diversity. As interest grows
in developing bioinspired synthetic alternatives, understanding
the molecular basis of silk’s mechanical behavior and hierarchical

structure has become increasingly important. This study focuses on
advancing computational frameworks that integrate generative
modeling, protein structure prediction, and atomistic simulations
to explore the sequence–structure–property relationships that
underpin the performance of silk proteins. In this section, we
provide an overview of the biological, structural, and functional
complexity of spider silks and highlight key challenges and motiva-
tions that shape this work.

1.1 Background

Spider silk, a protein-based hierarchical material that has
evolved over 300 million years,1,2 is abundantly found in
nature, exhibiting unique combinations of material properties,
offering inspiration for material design.3–5 Scientists are inter-
ested in learning material properties and exploring hierarchical
structural relationships for material optimization to achieve
targeted features such as enhanced mechanical properties,2,6

thermal stabilities,7,8 controlled electrical conductivity,9,10 and
tunable optical properties.11,12 Research on spider silk synth-
esis, material design, and optimization holds great potential for
spider silk applications in industries such as smart materials
and bioinspired technologies. However, several gaps persist
for in-depth investigation on spider silk, including the high
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structural complexity, diversity, and limited data on spider silk
protein sequences and their associated molecular- and fiber-
level mechanical properties. Deepening our knowledge of the
relationships across multiple scales and related mechanisms is
crucial for spider silk-inspired material synthesis and design.
Implementing simulations is therefore an essential method for
collecting mechanical data, and incorporating advanced mod-
eling techniques is critical for spider silk data augmentation,
structure–property relationship identification, and vast design
space exploration for synthetic materials.

The strong silk filament and complex hierarchical architec-
tures of spider silks (Fig. 1(a)) provide them with an exceptional
combination of mechanical properties, including toughness,
strength, and extensibility, while remaining lightweight.

The hierarchical structure spans multiple scales, from nano-
scale hydrogen-bonded chains to semi-amorphous phases
embedded with beta-sheet nanocrystals, progressing to silk
fibrils as nanocomposite networks, to silk fibers with fibrils
as their building blocks, and finally forming a macroscale spider
web structure. Silk material’s stiffness and tensile strength stem
from the presence of crystalline beta-sheets within the nanocom-
posites, while its extensibility and flexibility are enhanced by the
disordered extensible semi-amorphous matrix and hydrogen
bonds.1,3 Additionally, spider silk is biocompatible and biodegrad-
able,13 making it an attractive material for biomedical and envir-
onmentally sustainable designs. Spider silk also exhibits super-
contraction when exposed to high humidity14–16 due to the
transition from the ordered to a disorganized morphology,17

Fig. 1 The hierarchical structure of spider silk and the schematic of the overall workflow. Panel (a): illustration of the hierarchical structure of spider silk,
spanning from nanoscale hydrogen-bonded chains to semi-amorphous phases embedded with beta-sheet nanocrystals, progressing to silk fibrils as
nanocomposite networks, to silk fibers with fibrils as their building blocks, and finally to the macroscale spider web structure (adapted with permission
from ref. 2). Panel (b): the workflow consists of four main stages: (1) silk protein sequence generation, (2) dataset construction for simulation, (3) unfolding
performance characterization via steered molecular dynamics (SMD), and (4) nanomechanical property collection and analysis. The specific procedure
and methods are discussed in the Materials and methods section (Section 4). In step (1), around 2000 silk protein sequences were compiled, comprising
B1000 real sequences curated from the silkome dataset,2,19 as well as B1000 novel sequences generated using the SilkkomeGPT model.2 In step (2), the
collected sequences were folded into 3D structures using OmegaFold,21 with high-fidelity subsections extracted for simulation. The subsections with
shorter lengths and containing the primary secondary components enhance the simulation efficiency while retaining mechanical significance. In step (3),
automated simulations were performed on all 2177 folded structures, including equilibrations to stabilize the proteins and SMD simulates their unfolding
performances. The unfolding behavior was characterized through a force–displacement plot during simulations, and the secondary structural changes
were discussed. The nanomechanical properties were collected from simulations, with underlying mechanical behavior explored relating to different
structural scales of spider silk proteins, as shown in step (4).
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making spider silk a promising material for application in adaptive
material design with tunable mechanical properties. Moreover,
spider silks are highly diverse and multifunctional, with seven
main types that serve various purposes:2 (1) dragline silk: forms
and supports the web structure; (2) flagelliform silk: forms the
spiral fibers; (3) auxiliary spiral silk: stabilizes the web; (4) aggre-
gate silk: serves as a sticky aqueous coating for capture spiral;
(5) pyriform silk: functions in attachments and joints; (6) acini-
form silk: used for prey wrapping and forms inner silk of egg sacs;
and (7) cylindriform (or tubuliform) silk: forms the outer coating of
egg sacs.18–20

Furthermore, each type of silk is primarily composed of
different spidroins, the main protein building blocks of silk
structures.2,19 Studies on spidroins have explored various
aspects,2 including evolution,19 terminal domains22 and repe-
titive motifs,23 and the presence of different modifications.24

Spidroin proteins consist of repetitive regions flanked by the
N-terminal and C-terminal,22,25 with each domain playing
distinct roles that collectively contribute to proteins’ overall
properties. The repetitive regions form the core secondary
structures, governing the silk’s mechanical properties, and
the terminal domains influence spidroin solubility and silk
fiber assembly.22,25 Within spidroin sequences, key amino acid
residues26,27 important for mechanical properties include gly-
cine for forming an amorphous matrix, alanine for creating
beta-sheet conformations, and proline inducing turns in the
protein structure. At larger scales, as silk fibers are composed of
various types of spidroins, each spidroin provides specific
functions: MaSp1 contributes to silk strength, MaSp2 relates
elasticity and supercontraction, and MaSp3 demonstrates
exceptional toughness.2,19 Additionally, spidroins undergo struc-
tural transitions during the silk spinning process.28 In their native
form, spidroins are stored in the liquid form within the glandular
sac, predominantly composed of alpha-helices. As the silk is spun
into solid fibers, the secondary structure shifts to beta-sheets,
driven not only by mechanical stress but also by changes in
environmental factors such as pH, ion composition, and tempera-
ture. These transformations occur within the distal parts of the
duct and are essential for the silk’s final mechanical properties
and hierarchical structure formation.

Several deep learning techniques29 have been applied to the
prediction and generation of spider silk materials at different
scales.30 Compared to traditional models based on predefined
rules or mathematical equations, deep learning models that
automatically learn underlying patterns from data, are more
generalizable and flexible for handling complex and large-scale
datasets. However, they are often computationally more expensive
and less interpretable than traditional models.31 Commonly used
machine learning models include neural networks (NNs) and
graph neural networks (GNNs).32 The GNN is a type of neural
network designed for non-Euclidean data, and aggregates infor-
mation from neighboring nodes and edges through a message-
passing process to capture complex relationships within graph
structures. Examples of applications include the use of NNs for
predicting the mechanical properties of spider web structures,13,33

and modeling the impact of amino acid sequences on spider silk

properties.34 Another commonly introduced models are diffusion
models, which iteratively reconstruct new designs through a
denoising process by reversing the diffusion model35,36 process
that adds Gaussian noise to the input data.

Additionally, transformers,37 with their attention mechan-
isms for capturing intricate relationships within data, are
widely used. There have been works involving the use of both
diffusion and transformer models for synthetic spider web
design, enabling these models to learn complex web structure
relationships.38 Moreover, the generative pre-trained transfor-
mer (GPT),39 developed based on the transformer architecture,
undergoes pre-training on a large general corpus and fine-
tuning on the task-specific dataset, making it highly effective
for natural language processing (NLP) tasks. In recent work,
SilkomeGPT2 was developed to link spider silk protein
sequences to silk fiber properties, enabling both the prediction
and design of spider silk proteins relating silk fiber properties.2

This model was trained using a curated dataset reported in ref.
19. Furthermore, vision-language models (VLMs),40–42 which
combine transformer and convolutional neural networks, can
process both image and text data to perform multimodal tasks.
These models have been utilized to generate innovative design
ideas by incorporating structural features and design principles
from biomaterials. A recent study employed VLMs for structure
design and urban planning, drawing inspiration from spider
webs and leaves.43 Moreover, several applications of deep
learning models for spider web- or silk-inspired designs have
emerged, including sensor manufacturing,44 nanoresonators,45

carbon fiber composites46 with improved thermal and mechan-
ical performance, and protein-based adhesives.47 In addition,
recent developments in physically based data modeling, such
as genetic algorithms, have shown promise for capturing
hierarchical material behavior and enabling analytical insights
into silk phenomena like supercontraction,48,49 offering a
complementary direction to neural network-based approaches.

Apart from deep learning techniques, molecular dynamics
(MD) simulation50–52 represents a crucial computational method
for studying the behavior of atoms and molecules under varying
boundary conditions, based on principles of interatomic inter-
actions. The core idea involves calculating forces between atoms,
applying Newton’s laws of motion, and updating atomic posi-
tions and velocities iteratively through time steps.50 This
approach provides detailed three-dimensional insights into
atomic-level configurations, which are often difficult to obtain
experimentally, especially under specific conditions. In our
study on spider silks, we primarily use the simulation tool
nanoscale molecular dynamics (NAMD),53 which is well-suited
for large-scale biomolecular systems, particularly for nano-
scale protein structures like spidroin proteins. The appro-
priate choice of tools enables us to explore the complex
molecular dynamics of fibrous structures with precision and
efficiency across multiple scales. Previous studies utilizing
MD simulations on spider silks have investigated the effects
of electric fields54 on mechanical properties, the influence of
hydration conditions,55 and comparisons of atomic behaviors
between spider and silkworm silks.56 Coarse-grained (CG)
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models have also been employed for more efficient explora-
tion of the mechanical properties of spider silks.8

Moreover, combining MD simulations with machine learn-
ing (ML) techniques offers a powerful approach for efficiently
exploring material properties and behaviors. This integration
facilitates the design of hierarchical materials like spider silk
by generating and linking data across different scales (e.g.,
molecular-level proteins and macro-level fibers). Relevant
works that combine MD simulations with ML include the
prediction of ultimate tensile strength of silk fibers through
simulations coupled with deep neural networks (DNNs),6 and
ForceGen57 model development for de novo protein design
based on unfolding responses. This integration of MD and ML
opens up new avenues for the design and analysis of complex
materials, allowing for more comprehensive and scalable
investigations.

1.2 Motivation and overview of this work

Understanding the mechanobiology of spider silk proteins and
their influence on fiber properties, alongside their hierarchical
structure, is essential for developing cost-effective synthetic
design methods for large-scale data collection and design space
exploration. Generating novel sequences using the generative
model, SilkomeGPT,2 expands the dataset by covering structural
uncertainties and providing fiber-level mechanical properties,
supporting exploration across multiple scales. The sequence-
dependent folding and unfolding behaviors of spider silk pro-
teins significantly impact the mechanical response of the fiber.
Investigating this relationship provides deeper insights into how
specific protein sequences and structural motifs contribute to
material performance under stress.28 Large-scale data collection
and design space exploration, through advanced simulations,
protein folding studies, and deep learning, can accelerate the
discovery and optimization of novel silk-like materials. Integrat-
ing these tools creates a pathway to explore and understand the
spider silk protein and silk fibers at different scales, without the
high costs of experimental trial and error.2

However, gaps exist in terms of existing spider silk studies
and available data. First, the availability of spider silk protein
data is limited, which hinders thorough analysis. Although the
Silkome19 dataset has been developed experimentally, after
curation, only about 1000 data points related to MaSp fiber-
level mechanisms are usable. Additionally, characterizing the
nanomechanical properties of spider silk proteins covering
structural uncertainties remains a challenge due to the limited
data and computational costs. The complexity, diversity,
and hierarchical nature of spider silk further complicate the
collective understanding of how its mechanical properties are
influenced by structural components (e.g., spidroins) and the
multiscale assembly process. Thus, in this work, we aim to
investigate the non-linear unfolding behavior and characterize
the nanomechanical properties of native aqueous spider silk
proteins (the soluble, pre-spinning form of spidroins stored
in the spider’s glandular lumen). Our approach includes aug-
menting the dataset using SilkomeGPT2 and filtering high-
performing sequences through an iterative recursive approach,

collecting high-fidelity protein sections via OmegaFold,21 and
conducting MD simulations to explore unfolding behavior and
nanomechanical properties on spider silk proteins to enrich
the dataset with physical properties obtained from fundamen-
tal molecular principles.

2. Results and discussion

This section covers the dataset analysis, discussion of simula-
tion performance, changes in secondary structures during the
unfolding process, and the analysis of the characterized nano-
mechanical properties.

2.1 Dataset analysis

Before subsection extraction, a total of 2240 full protein
sequences were collected. This dataset includes 1033 actual
sequences from the silkome dataset2,19 and 1207 novel sequ-
ences generated using SilkomeGPT.2 Detailed methods for data-
set development are described in Section 4.1. For data augmen-
tation, property sets were drawn from the distribution of the
fiber-level mechanical properties of the 1033 existing sequences
(Fig. 2(a1)) and used as inputs to SilkomGPT for generating
novel sequences that are then further characterized to extract
molecular-level properties and behaviors. A filtering process was
applied, resulting in 1207 novel sequences with a selection rate
of 1.67% after an iterative recursive filtering process. As shown
in Fig. 2(a2), the property distribution of the developed dataset
closely resembled that of the native sequences, and the correla-
tion plots show similar structural patterns between the existing
and generated sequences, collectively validating our augmenta-
tion method. To evaluate the effectiveness of our augmentation
strategy, we compared the histogram distributions of eight fiber-
level mechanical properties, including toughness, elastic
modulus (E), strength, strain at break, and their corresponding
standard deviations, between the existing and generated datasets
(Fig. 2(a1) and (a2)). The average Pearson correlation coefficient
across the binned distributions was r = 0.906, with individual
values for each property as follows: [0.8865, 0.9839, 0.7996,
0.9374, 0.7658, 0.9838, 0.9884, and 0.9029]. These values indicate
strong alignment between the two distributions, confirming that
the generated sequences successfully preserve the statistical
characteristics of the original dataset and validating the relia-
bility of the augmentation process.

Moreover, the similarity between the new and existing
datasets was further evaluated through secondary structure
composition analysis and data clustering, as shown in Fig. 2(b).
In the first plot of Fig. 2(b), the occurrences of secondary
structures were counted and summed across all 2177 protein
sequences in each dataset. The analysis reveals similar secondary
structure compositions between the new and existing datasets,
with comparable distributions of helices, sheets, coils, turns and
bends. In the second plot of Fig. 2(b), the dimensionality of the
sequence data was reduced using principal component anal-
ysis (PCA), following k-mer frequency encoding to transform
sequences into vectors. The scatter plot visualizes the distribution
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Fig. 2 Spider silk sequence augmentation through SilkomeGPT,2 and comparison of new and existing datasets. A total of 2240 protein sequences were
collected for subsequent protein folding and simulation, comprising 1033 sequences collected from the silkome dataset2,19 and 1207 novel sequences
generated using SilkomeGPT.2 In panel (a1), the distribution of available fiber-level mechanical properties of the 1033 existing MaSp sequences is
analyzed. These properties include toughness, elastic modulus, tensile strength, strain at break, and four corresponding standard deviation measure-
ments, with details discussed in ref. 2. To augment the dataset with synthetic yet reliable protein sequences, we employed a cyclic-consistent generation
model, SilkomeGPT.2 We sampled 1000 random 8-dimensional property sets from the distribution of the existing dataset (panel (a1)). Using these as
inputs, we output 206 838 novel sequences. After filtering, we retained 1207 designs with a generation R2 value of 60% or higher, yielding a collection rate
of 1.67%. As shown in panel (a2), the property distribution of all 2240 collected sequences closely resembles that of the original set. In panel (b), the
similarity between the new and existing datasets is evaluated through secondary structure composition and data clustering. The secondary structure
composition of the new dataset is observed to closely resemble that of the existing dataset. Using principal component analysis (PCA) following k-mer
frequency encoding to transform sequences into vectors, the scatter plot visualizes the distribution of the two datasets in a reduced-dimensional space.
Clusters are highlighted in different colors based on K-means clustering. The plot indicates that the new and existing datasets share similar clustering
features, with a significant degree of overlap, while also preserving some level of diversity and novelty. Further analysis and comparisons of the datasets
are discussed in Section 2.1, while the details of the dataset development process are provided in Section 4.1.
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of the two datasets in the reduced-dimensional space, with
clusters highlighted in different colors based on K-means cluster-
ing. Both the new and existing datasets exhibit distinct clusters
with a significant degree of overlap, suggesting overall similar
clustering features in the reduced space. However, variations
are observed, indicating diversity both within and between the
datasets. Certain clusters are more strongly represented by one
dataset, reflecting regions of unique sequence or motif composi-
tion specific to either natural or generated proteins. These
dataset-specific clusters may correspond to variations in amino
acid motifs, domain architectures, or repeat patterns, which have
been shown in prior studies to influence mechanical outcomes
such as extensibility, b-sheet formation, or supercontraction
behavior19,20,22,48 (e.g., high glycine content promoting flexibility,
and alanine promoting b-sheet crystallinity27,48). The generated
clusters may capture alternative sequence solutions that remain
unexplored in nature but are structurally viable and confirming
the novelty and diversity of the new dataset. Conversely, overlap
in clusters suggests that SilkomeGPT2 successfully replicates key
sequence patterns seen in natural MaSp proteins. To provide a
more quantitative comparison of the clustering similarities
between the two datasets, additional metrics were computed
using the K-means clustering results. The silhouette score differ-
ence of 0.0357 indicates minor disparities in clustering cohesion
and separation between the datasets. The earth Mover’s distance
(EMD) difference of 0.00317 reflects small differences in the
centroids or feature distributions of the clusters, while the
pairwise distance difference of 0.00196 captures slight variations
in overall clustering spread or compactness. Note the differ-
ences within 0.1 are considered indicative of high clustering
similarity.58 These insights suggest that while the new and exist-
ing datasets are globally similar, local clustering differences may
reflect distinct sequence motifs or structural features that could
influence the nanomechanical properties. This highlights the
need for future investigation of these differences through
sequence–structure–property mapping and experimental
validation.

Additionally, novelty and protein type checks were conducted.
For the novel sequences generated using SilkomeGPT, the
proteins were classified as MaSp, and their novelty was con-
firmed, as discussed in ref. 2. We further assessed novelty and
protein type by selecting four random sequences and evaluating
them using the basic local alignment search tool (BLAST).59 Two
main criteria were considered: query cover (QC) for sequence
alignment, and identity percentage (id%) for composition simi-
larity. Sequences with the values below 50–60% were considered
novel.60,61 For each sequence, the ten highest values and the
common value ranges for both QC and id% are summarized in
Table 1, along with a discussion demonstrating the novelty of
these sequences. Additionally, the novel proteins were classified
into MaSp types based on similarities to existing protein
sequences.

Using the augmented dataset, we folded the full sequences
with OmegaFold21 and extracted high-fidelity sections, as the
folding performance is unstable for spider silk protein sequences
(detailed methods in Section 4.2). The extracted sequences were

further refolded to maintain a stable configuration. Fig. 3 illus-
trates the subsection extraction process and compares pLDDT
plots and molecular structures in panels (a) and (b) for three
extraction stages: full sequences, extracted subsequences, and
refolded subsequences. For the three protein examples with
varying lengths and molecular structures, the extracted subsec-
tions show high pLDDT values along their amino acids (high-
lighted in panel (a)). The refolded subsections have similar
prediction performance to the original extracted sections, though
on average the refolded sections show slightly higher pLDDT
values than the extracted ones (76.39 vs. 73.41). As shown in
panel (b), the extracted sections predominantly consist of the
main secondary structures of original proteins, mostly alpha-
helices, which contribute more to the mechanical properties of
spider silk, rather than random coils which are less relevant to
fiber strength. The refolded subsections generally retain the
same molecular structure as the extracted sections, including
the key structural shapes (helices and turns) and secondary
structure composition, though some variations in alignment
and orientation are present. As a result of this extraction process,
a dataset of 2177 subsections was created for simulations. The
average pLDDT value of the dataset significantly improved from
40.48 (full sequence dataset) to 76.39 (folded subsequence
dataset), while the average sequence length decreased from 445
to 125, enhancing the reliability of the protein structures for
simulation and significantly improving computational efficiency.

Furthermore, the detailed secondary structure composition
of the dataset was discussed. As shown in the pie charts in
Fig. 3, the three subsection examples contain a higher propor-
tion of alpha-helices and fewer beta-sheets. The analysis of
secondary structures was conducted using the dictionary of
secondary structure of proteins (DSSP)62 with the following
symbols: H represents the alpha helix structure, G represents
the beta-sheet, T represents the turns, S represents the bend,
and – denotes other structures62 (detailed methods in Section
4.3.3). Additional subsequence examples with beta-sheets are
visualized in Fig. 5. However, an analysis of all 2177 sequences
revealed that only 66 sequences (B3%) contained beta-sheet
strands. Although MaSp proteins from spider dragline silks are
expected to contain more beta-sheets rather than being domi-
nated by alpha-helices, we hypothesize that the protein
sequence data collected and augmented are mostly native
liquid pre-spinning forms of spidroins before being assembled
into solid silk. These liquid forms are primarily composed of
alpha-helices and random coils, which undergo a transition to
beta-sheets during protein assembly in the spinning process.28

Two main reasons explain this observation: (1) the protein
sequence data from the silkome dataset are obtained from
RNA extraction from spider glands, where proteins are mostly
in their liquid state. (2) The assembled form is influenced by
external factors during spinning, such as shear forces, pH, and
ion concentration,28 while current folding tools predict struc-
tures under more typical conditions found in aqueous environ-
ments. While we presume the nanomechanical properties of
aqueous proteins are still relevant to the mechanical properties
of silk fibers, though the relationship is less direct compared to
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assembled proteins. Further factors, including the hierarchical
structure of spider silk and the assembly process, need to be
considered for a more accurate understanding of the relation-
ship between native spider silk proteins and the final silk
fibers. This could be an interesting direction for future
research, especially in designing synthetic proteins and silk
fibers.

2.2 Implicit all-atom modeling for protein unfolding

The analysis of the spider silk protein simulations includes
evaluating unfolding behavior, tracking changes in the second-
ary structure, and assessing the characterized nanomechanical
properties.

2.2.1 Simulation results and unfolding performance. The
detailed implicit MD simulation procedure and parameters are
described in Section 4.3.1, which includes equilibration to
adjust the protein structure to a stable configuration, followed
by SMD to simulate the pulling of the protein structure with
one end fixed and the other pulled at a constant velocity, as
shown in Fig. 4(a). An automated, streamlined process was
developed to run the simulation for all 2177 proteins.

The simulation results for a sample protein are shown in
Fig. 4(b). The root mean square deviation (RMSD) plot on the
left indicates the stability of the protein configuration during
the equilibration phase. The RMSD values converge, demon-
strating the stability of this sample, and confirming that it is

Table 1 Assessment of novelty and protein type for generated sequences. Among the novel sequences generated by SilkomeGPT, four randomly
selected sample sequences are evaluated for novelty and protein type classification. Using the basic local alignment search tool (BLAST), two main criteria
were assessed: query cover (QC), which indicates the alignment coverage of the sequences, and identity percentage (id%), which measures the similarity
in composition. Sequences with QC and id% values below 50–60% are considered novel.60,61 For each sequence, the ten highest values of both QC and
id% are summarized, along with the common value range. The novelty of these sequences is confirmed based on the analysis. Furthermore, by
comparing the closest matched protein sequences, these sequences are classified into the MaSp protein category

# Protein sequence Length
Highest value
of [QC, id%]

Common range
of [QC, id%] Novelty analysis

1 GYPGQPGYSSSSSAIAISLGFASAAGAAVSG
AGGNVGYGQDSAGAFGQGAFGGYGQGAG
FGGAGGQGGLGGYGQGGSGASSAAAAA
SDGSGGRGGYGQGGQYLEAAAAAAAAAAS
AGSDTSAYAKVLAGGGGGGGGAGGLY
GPQGGYVGISYGPGAGGSGAGNAVSSASG
GYGGSFGTGPGISSPGAAGSRETSGSATSA
GSGTGGQGMIGQNIVSYGPFGPGASSYGQY
GQSGPVVARSGPTGVSGPGIGGYGQGADA
SATYLARGQGGYGGVGSLGAGQGGFGAGG
AGQGSITIVSLGRYSGVSASVSSAASRLSSPA
ASARVSSAVSNLVAYGVSNPKFVSNLASAL
SSSASNPGLSGCEMLVQVLLELIAALVHIL
NSSSISSMGATDKDSSSADYNVYG

404 [24%, 78%] [22%–19%,
65%–55%]

The low QC values (o20%) indicate
novel alignments, despite the
moderate composition similarities
seen in id%

2 GAGGPGGYGPGYQGPSGPGSIAAAAGGAE
GPGGYGPGYQGPSGPGGAAAAAVGAGGP
GGYGPGYQGPSGPGGAAAAAAAAGGSGG
PGVYGPVSQGPSGPGAAAAAAAAVGPGG
QGGYQGPSGSGGAAATAPSGYGSSVAGP
SAYGPVSQAPSGPVSQGPGVYGPSSQGP
GVYGPSSQGPGAAAATVSAAASRLSSPAS
SSRVSSAVSNLVSSGPTSPAALSNVISSM
ASQVTASNPGLSGCDRLVQVLMELLTSV
VVILSSSSIGQVNYGSAGQSAQIVGDSVY
QAFA

288 [98%, 74%] [50%–44%,
72%–69%]

Two existing sequences show high
QC values but exhibit low composition
similarity (id%), suggesting alignment
with significant sequence differences

3 GQGSGEAGQGGYGSGLGGLGGAAAAA
ALGQGTGGAAQFGSVSGQTGGVEGRIQ
AASAARGAGQSGLGGAGAGGAGLYGPG
GAGGLYGPGSVGPSAAGVGGQGGYGSGL
GNGAGIFLEAASRLSSPSSSSRISSAVSTL
INSGGADNVLSSTLSNLVSQVSANQPGL
SGCDVIVQALLELVSALVHILGSSSIGQ
VDYNGASYSAQSIGQAVAQALA

216 [60%, 92%] [44%–43%,
82%–76%]

There is a high similarity in composition,
but the alignment coverage is minimal,
with QC values consistently below 60%,
indicating novelty

4 YGPGSQGPSGPGGAAAAAAAAAAGGPG
GQGPGSQGPSGPGGYGPSSAAAAAAAA
AGGQGGQGPYGPGQQGPGAYGPSGP
GGAAAAAAAAAAGGPGGQGPYGPGQQ
GPGAYGPSGPGGAAAAAAAAAAGGPGG
QGPSGPGQQGPGAYGPSGPGGAAAAAA
AAAAGGPGGQGPYGPSQQGPGSYGPSG
PGSSVSASVSSAASRLSSPAASSRVSSAVS
TLASNGPSNAGVVSSALSSLVSQVSAGQP
GLSGCDVLVQALLELVSALVSILGSASIGQ
VDYSSAGYSAQSLSQAVASILG

297 [79%, 86%] [58%–52%,
79%–75%]

Although reasonable composition
similarities are present, the overall
alignment coverage is distinct, with
QC values below 60%, supporting the
novelty of these sequences
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Fig. 3 Examples of protein folding and subsection extraction. This figure showcases three protein samples with varying sequence lengths and molecular
structures. The pLDDT plots and the visualized secondary structures for the full sequences, extracted subsections, and re-folded subsections are
displayed in panels (a) and (b), respectively. In the last column of the panel (b), pie charts visualize the secondary structures composition of proteins,
where H represents alpha helix structure, G represents beta-sheet, T represents turns, S represents bend, and – denotes other structures.62 The protein
folding was performed using OmegaFold,21 and to extract high-fidelity subsections, the following steps were followed: first, we generated a pLDDT plot
for each protein, along with a corresponding denoising plot for continuous section extraction. Next, subsections were extracted based on the denoising
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suitable for the subsequent SMD. On the right, the force–
displacement plot visualizes the unfolding behavior of the
protein under constant velocity. An overall increasing trend is
observed as the pulling force increases with increased displace-
ment. Notably, a steeper slope is observed near the end of the
stretching phase when the protein is nearly fully unfolded,
suggesting that higher forces are required to stretch the protein
backbone compared to the forces needed to break hydrogen
bonds and uncoil alpha-helices. Several force peaks in the plot
indicate disturbances or variations in force during the unfold-
ing process, likely corresponding to the uncoiling of secondary
structures, sliding of aligned components, or bond rupture.
A smoothed curve is generated in the force–displacement plot,
where the force vector corresponds to the number of amino
acids in the protein, simplifying trend analysis and enabling
comparison with other protein data. Additionally, tensile-related
nanomechanical properties, such as strength and toughness, are
characterized through the force–displacement plot.

In Fig. 4(c), the plots on the left and right show the RMSD
and force–displacement curves, respectively, for all 2177 pro-
teins. The displacements are normalized across all proteins to
account for variations in contour lengths and pulling distances,
making comparison easier. In the RMSD plot, although values
vary across different proteins, all proteins reach stable states
before the SMD phase under the same equilibration setup, with
curves converging within the defined time frame (1600 ps).
In the force–displacement plot, a similar overall trend is
observed across all proteins, despite differences in length and
configuration. Greater pulling forces are required as the dis-
placement increases, with steeper slopes near the point where
the proteins are almost fully unfolded which indicates larger
forces are required for stretching the backbone of monomers
compared to other unfolding regimes. These regimes include
(1) rupture of intermolecular bonds (e.g., hydrogen bonds),
(2) uncoiling of secondary structures (e.g., alpha-helices and
beta-sheets), and (3) unfolding of the monomer backbone. The
force variations among proteins are attributed to differences in
configuration, length, secondary structure composition, and
folding topology. The force vectors and characterized nanome-
chanical properties for all 2177 proteins are summarized in a
CSV file provided in the ESI,† with further analysis detailed in
Section 2.2.3.

2.2.2 Analysis of molecular structure changes of proteins.
Using MDAnalysis64,65 and DSSP62 (detailed methods in Section

4.3.2), we tracked the changes in secondary structures during
the protein unfolding. Three protein examples with varying
sequence lengths and molecular structures were selected for
analysis, as shown in the three panels of Fig. 5. Specifically,
from top to bottom rows, the three proteins have lengths of 407,
278, and 79. The first protein in Fig. 5(a) consists primarily of
alpha-helices and beta-sheets, along with some turns and
random coils. The second protein Fig. 5(b) contains no alpha-
helices and is composed primarily of beta-sheets. In contrast,
the third protein in Fig. 5(c) contains mainly alpha-helices, with
a minimal beta-sheet content. In each panel, the plots in the
three columns display: (1) the protein’s molecular structure,
(2) the secondary structure profile, which illustrates the evolu-
tion of each residue’s secondary structure components over
time, and (3) a line plot indicating the changes in three
main structural components (coil, alpha-helix, and beta-
sheet). Complete animations of the unfolding behavior are
provided in the ESI.†

Besides, the structural changes during the unfolding pro-
cess vary among the proteins. The first protein (Fig. 5(a)) has
alpha-helices and beta-sheets progressively replaced by coils
during the pulling process, with the alpha-helices disappearing
earlier than the beta-sheets, likely due to the differing struc-
tural integrity of these components. Near the end of unfolding,
some coil regions transition back into beta-sheet structures,
potentially due to the realignment of amino acids, protein–
solvent interactions, or the re-establishment of hydrogen
bonds. The second protein (Fig. 5(b)) shows a well-aligned beta-
sheet transition into disordered coil structures during unfolding.
Interestingly, there is an intermediate phase where random coils
transition into alpha-helices, possibly due to the alignment of the
protein backbone under force or the intrinsic sequence propensity
of certain amino acids. The molecular structure of the third
protein (Fig. 5(c)) becomes increasingly disordered as alpha-
helices transition into coil regions during unfolding, with minimal
beta-sheet formation. A plateau is observed during the helix-to-coil
transition, which could indicate structural stabilization or the
concurrent unfolding of other components.

In summary, we observed various structural transitions
during the simulation, reflecting the dynamic behavior of
different proteins under mechanical stress. These transitions
between secondary structure elements, such as the conversion
of helices to coils, may be influenced by protein stability and
structural uncertainties. Although alpha-helix to beta-sheet

curve using two criteria: (1) sections with a denoised value of 50 or higher, as determined by dataset characteristics, and (2) a minimum section length of
10 amino acids to ensure protein fidelity and structural integrity. Once the subsection ranges (start and end amino acid indices) were defined, the
corresponding sequences were extracted, and the PDB files were modified accordingly. Finally, folding was reperformed on all extracted subsections to
adjust the protein structure. It is important to note that more than one subsection, or none, could be extracted from a single sequence, resulting in a total
of 2177 high-fidelity subsections for protein simulation (detailed subsection extraction methods are discussed in Section 4.2). As shown in panel (a), the
three subsections examples with varying protein lengths and molecular structures demonstrate reasonable folding performance. The refolded
subsections exhibit similar prediction accuracy compared to the extracted sections, with slightly higher average pLDDT values (76.39 vs. 73.41). As
shown in panel (b), the extracted sections consist of the main secondary structures found in the original full proteins, which govern the mechanical
performance of the protein. The refolded subsections generally retain the same molecular structures, including key structural features and overall
secondary structure composition, though variations in orientation and alignment are present. After subsection extraction, the average pLDDT score
significantly increased from 40.48 to 76.39, while the average sequence length decreased from 445 to 125, improving both the reliability of the protein
structures for simulation and computational efficiency. A detailed analysis of the developed protein dataset is provided in Section 2.1.
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transitions28 were not prominent in these monomer unfolding
simulations (as such transitions typically require chain inter-
actions and external factors like tensile stress, pH, or ion
changes), this work provides a framework for future studies
to investigate more sophisticated phenomena.

2.2.3 Analysis of the nanomechanical properties of proteins.
Two molecular-level mechanical properties of spider silk proteins
are characterized in this work: strength, which represents the
resistance of a protein structure during unfolding, and toughness,
which represents the total energy a protein can absorb during the

Fig. 4 Molecular dynamics simulations of 2177 silk protein structures. Implicit atomistic MD simulations were performed using NAMD53 for all 2177
spider silk proteins to study their unfolding behavior, which included both equilibration and SMD, as visualized in panel (a). During equilibration, the
protein configurations were adjusted to stable states, as indicated by the RMSD plots. The RMSD plot of the sample protein in panel (b) (left) shows the
protein reaching a stable configuration as the RMSD value converges. Panel (c) (left) displays the RMSD curves converging for all 2177 proteins though
with varying RMSD values, showing that all proteins are stabilized before SMD. Following equilibration, SMD simulations were conducted. Force–
displacement plots were generated to visualize the unfolding behavior. The force–displacement plot for a sample protein is shown in panel (b) (right),
with a smoothed curve provided for easier comparison and force vector characterization. The combined force–displacement curves for all 2177
simulations are displayed in panel (c) (right). For easier comparison, the displacement is normalized across all proteins. Overall, larger pulling forces are
required as displacement increases, with steeper slopes near the point where the proteins are nearly fully unfolded, particularly when the monomer
backbone is being stretched. Specific regimes are observed during the unfolding process, including (1) rupture of intermolecular bonds, (2) uncoiling of
secondary structures, and (3) unfolding of the monomer backbone. Further simulation details are provided in Section 4.3, with detailed discussion in
Section 2.2.1, and VMD63 was used for visualization.
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simulation. Detailed property characterization processes are pro-
vided in Section 4.3.3. Calculated properties for all 2177 protein
subsections are summarized in the ESI.† As shown in Fig. 6(a), the
characterized strength of spider silk proteins is normally distrib-
uted, with a slight right skew. This indicates that the majority of
the values are concentrated between 450 and 600 pN, with fewer
data points observed at both lower and higher strength values,
and some proteins exhibit relatively extreme strength values.
In contrast, the toughness distribution shows a multimodal
pattern, suggesting more variation and data uncertainty compared
to strength. Toughness, being a more global material property,

exhibits greater variability than strength, which is considered a
more localized property. The distribution of toughness is more
uneven, with a concentration of values at the lower end and a few
instances of very high toughness values. In Fig. 6(b), protein length
shows a strong influence on toughness with a high correlation
coefficient (R = 0.93), while its impact on strength is not obvious
(R = 0.51). Additionally, strength and toughness show very little
correlation, with toughness exhibiting greater variability at higher
strength values.

To explore the relationship between the molecular-level
protein properties and the mechanical behavior of silk fibers,

Fig. 5 Analysis of secondary structure during the unfolding simulation. Using DSSP62 combined with MDAnalysis64,65 (detailed methods in Section 4.3.2),
we explored changes in the secondary structures during protein unfolding. Three different protein examples, with various sequence lengths (407, 278,
and 79) and molecular structures, are selected for analysis, as shown in three rows (a)–(c) from top to bottom. In each panel, the first column displays the
molecular structure of the protein. The second column is the secondary structure profile which shows the evolution of secondary structure of each
residue over time, while the third column presents the changes in the three main secondary structure components (random coil, alpha-helix, and beta-
sheet), with secondary structures present in different colors (cyan for bends, red for bridges, orange for turns, purple for pi helices, green for 3–10 helices,
yellow for beta-sheets, dark blue for alpha-helices, and grey for coils). In the third column, a line plot indicates the changes in three main structural
components (random coil in blue, alpha-helix in yellow, and beta-sheet in green). A corresponding video visualization of these changes is provided in the
ESI.† We observed various transitions in secondary structures during the simulation of different proteins, reflecting their dynamic behavior under
mechanical stress. These transitions between secondary structure elements may be influenced by factors such as protein stability and structural
uncertainty. Although alpha-helix to beta-sheet transitions28 were not prominent in these monomer unfolding simulations—likely due to the absence of
additional factors like protein–protein interactions and external conditions—this work establishes a framework for future studies to explore more
complex phenomena. Detailed analysis is provided in Section 2.2.2.
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Fig. 6 Analysis of nanomechanical properties collected from simulations. The molecular-level mechanical properties of spider silk proteins are
characterized as follows: (1) strength (pN), representing the resistance of a protein structure during unfolding, and (2) toughness (pN Å), representing the
total energy a protein can absorb during the simulation. Detailed property calculations are provided in Section 4.3.3. Panel (a): the distribution of
molecular strength and toughness for all 2177 proteins. Panel (b): correlations among these properties, including plots showing the correlation between
sequence length and strength/toughness, the correlation between strength and toughness, and a heat map quantitively indicates the correlations among
three properties. Panel (c): the analysis of strength and toughness, scaling from nanomechanical to fiber properties. In panel (c), the first two figures
illustrate the distributions, correlations, and clustering for strength and toughness, respectively, with each figure including distribution plots for both
molecular- and fiber-level properties, as well as scatter and contour plots for the correlation and clustering of properties across different scales. In these
plots, ‘‘strength’’ and ‘‘toughness’’ represent the nanomechanical properties characterized from simulations, while ‘‘pre_strength’’ and ‘‘pre_toughness’’
correspond to the predicted fiber properties from SilkomeGPT. The violin plots are displayed in the third column in panel (c), which shows the distribution
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we analyze the correlation between the molecular-level proper-
ties derived from MD simulations and the predicted fiber-level
properties using SilkomeGPT (methods discussed in Section
4.3.3). Fig. 6(c) visualizes the analysis of strength and tough-
ness, scaling from the nanomechanical to fiber-level properties.
The two plots depict the distributions, correlations, and clustering
for strength and toughness, respectively. From the scatter plots,
little correlation is observed between the protein-level and pre-
dicted fiber-level properties for both strength and toughness. The
data points are widely dispersed, and for a given protein property,
especially toughness, there is a broad range of predicted fiber
values. The contour plots show clustering around mid-range
values for both protein and fiber strength and toughness, though
the toughness data display a broader spread. This suggests a weak
direct correlation across scales, indicating that the hierarchical
structure, fiber assembly, and structural factors may play a more
significant role in determining final fiber toughness than nano-
mechanical toughness. Moreover, the histograms reveal moder-
ately right-skewed distributions, with normalized fiber strength
showing a broader distribution than protein strength, indicating
greater variability in the fiber-level properties. This greater varia-
bility in the fiber properties suggests that factors beyond nano-
mechanical toughness, such as fiber structure, alignment, and
molecular interactions, may significantly influence fiber strength
and toughness. In the third column of Fig. 6(c), violin plots show
the distribution of fiber properties across quartiles of nanomecha-
nical strength and toughness values. For strength, the fiber proper-
ties become more consistent and predictable as nanomechanical
strength increases. This suggests that stronger proteins are more
likely to produce fibers with high and uniform strength. In the
lower strength quartiles, the variability is greater, indicating
that fiber strength is more influenced by external factors such
as fiber alignment and assembly processes. Despite the varia-
bility, the similar bell-shaped patterns across the strength
quartiles suggest a consistent and predictable relationship
between the nanomechanical strength and fiber-level strength.
Fibers made from stronger proteins are generally more uniform
and reliable in their mechanical performance. In contrast,
toughness shows higher variability, especially in the lower
quartiles, which suggests greater difficulty in predicting fiber
toughness based solely on protein toughness. The sparse data
in the fourth toughness quartile further highlight the complex-
ity of toughness as a mechanical property.

The scaling relationships between the secondary struc-
tural properties and mechanical properties of spider silk
proteins and fibers are analyzed in detail and illustrated in
Fig. 6(d). In addition to the nanomechanical and fiber-level
mechanical properties previously discussed, several second-
ary structure-related properties were calculated for all 2177
protein sequences. These properties include solvent-
accessible surface area (SASA), the number of main second-
ary structures such as coils, helices, and sheets in their
original protein forms before simulation, and the number
of secondary structure transitions across the protein
sequences. The analysis reveals positive linear correlations
between the key structural and mechanical properties, as
quantitatively expressed in the functions labeled in Fig. 6(d).
From the three figures shown in Fig. 6(d), respectively, first, a
strong positive correlation is observed between SASA and the
number of coils, with a correlation coefficient of 0.729. This
relationship arises because coil regions, being more flexible
and unstructured, lack compact packing, which increases the
surface area exposed to solvents. Second, a corre-
lation coefficient of 0.766 highlights the strong relationship
between the number of secondary structure transitions and
molecular-level toughness. Proteins with a greater number of
transitions exhibit higher structural adaptability, enabling
more effective stress distribution, energy dissipation, and
resistance to breaking, which collectively result in increased
toughness. Finally, a positive correlation between the fiber
strength and toughness, with a correlation coefficient of
0.628, underscores the hierarchical nature of spider silk
fibers. This relationship is attributed to the molecular
features of the fibers that enhance energy absorption and
stress resistance. Unlike mechanical performance at the
molecular level, the applied load on the fiber is distributed
across multiple protein chains, and the collective behavior of
these different molecular structures further contributes to
their exceptional strength and energy absorption. These
findings demonstrate the intricate interplay between the
secondary structural properties and mechanical perfor-
mance, highlighting the complex mechanisms that enable
spider silk’s remarkable material properties.

In summary, strength follows a normal distribution, while
toughness shows greater uncertainty. Toughness has a strong
positive correlation with protein length, whereas the

of fiber properties across quartiles of nanomechanical strength and toughness values. Panel (d): the scaling relationships between secondary structural
properties and different scale mechanical properties, with corresponding figures showing correlation coefficients and scaling functions. Notable positive
linear correlations include those between solvent-accessible surface area (SASA) and the number of coils, the number of secondary structure transitions
and molecular-level toughness, and fiber strength and toughness. A comprehensive analysis of nanomechanical properties, their correlation with fiber-
level mechanical properties, and the scaling relationships between protein properties is presented in Section 2.2.3. In summary, strength follows a normal
distribution, while toughness exhibits a more uneven, multimodal distribution, indicating higher property uncertainty. Toughness also shows a positive
correlation with protein length. When examining the correlation between molecular-level and fiber-level mechanical properties, both strength and
toughness exhibit limited correlation and high variability across scales, with toughness displaying greater variability and uncertainty than strength. This
highlights the complexity of scaling nanomechanical properties to fiber-level mechanical properties and emphasizes that fiber assembly factors play a
significant role in determining fiber-level properties, especially for toughness. Furthermore, correlations between secondary structural properties and
mechanical properties reveal the intricate interplay between structure and performance, emphasizing the complex mechanisms underlying spider silk’s
exceptional material properties.
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correlation between the strength and length is less apparent.
Strength and toughness exhibit little correlation. Regarding the
relationship between the molecular-level and fiber-level proper-
ties, both strength and toughness show weak correlation and
high variability across scales, with toughness displaying more
uncertainty, underscoring the complexity of scaling the nano-
mechanical properties to fiber-level mechanical behavior, espe-
cially for toughness.

3. Conclusions

We developed a cost-effective framework to explore and opti-
mize the design of spider silk proteins for the nanomechanical
properties related to their unfolding behavior. We first created
a dataset that accounts for protein uncertainties, consisting of
2177 high-fidelity spider silk protein subsections from both
natural and augmented novel sequences. Using this dataset, we
systematically simulated protein unfolding through consistent
MD simulations. We then characterized, collected, and ana-
lyzed the nanomechanical properties of these proteins.

Key results and findings based on the dataset analysis,
simulation performance, and the nanomechanical properties
characterized from MD simulations covering structural uncer-
tainties are summarized below:
� Dataset development: the SilkomeGPT model was

employed to generate an expanded dataset of spider silk
protein sequences, aiming to capture a broader range of
structural variabilities for in-depth analysis. The generated
sequences were rigorously validated through novelty assess-
ment, molecular structure composition comparisons, and
clustering comparison with existing data. After subsection
extraction, the average pLDDT value of the dataset improved
significantly, from 40.48 to 76.39, which enhanced the relia-
bility of the protein structure for simulation, and the average
sequence length decreased from 445 to 125 which improved
computational efficiency.
� Simulation observations: as shown in Fig. 4, all 2177

proteins reached stable configurations through equilibration
before being subjected to SMD. The force–displacement plots
visualize the unfolding behavior of the proteins under con-
stant velocity, showing that the pulling force generally
increases with displacement. This behavior follows specific
or mixed regimes: (1) rupture of intermolecular bonds (e.g.,
hydrogen bonds), (2) uncoiling of secondary structures (e.g.,
alpha-helices and beta-sheets), and (3) unfolding of the
monomer backbone. A steeper slope is typically observed
near the completion of unfolding, as the protein’s backbone
is stretched. Force variations likely correspond to secondary
structure uncoiling, sliding of aligned components, or bond
ruptures.
� Secondary structure transitions: various secondary struc-

ture transitions were observed during the simulations, reflect-
ing the dynamic behavior of proteins under mechanical stress.
These transitions may be influenced by protein variability and
structural uncertainties. While alpha-helix to beta-sheet

transitions were not prominent in these monomer unfolding
simulations, which indicates the importance of the assembly
process, the framework established here provides a basis to
further investigate more realistic phenomena.
� Nanomechanical property uncertainties: uncertainties

were observed in the nanomechanical properties, particularly for
strength and toughness. Toughness shows a positive correlation
with protein length, while little correlation was observed between
strength and toughness, and strength and length. When correlat-
ing the molecular-level properties with fiber-level mechanical
properties, both strength and toughness exhibited limited corre-
lation and high variability across scales. This highlights the
complexity of scaling the nanomechanical properties to the fiber
level and underscores the significant influence of protein uncer-
tainty and the macroscopic assembly process on the fiber-level
mechanical properties.

We acknowledge several assumptions and constraints in
this work. First, the proteins in the dataset are considered
primarily in their native aqueous (soluble) form rather than in
assembled solid form, referring to the pre-spinning state in
which spidroins are stored in the glandular lumen of spiders.
In this phase, the proteins remain dissolved in water and
predominantly exhibit alpha-helical and coiled-coil structures,
as opposed to the b-sheet-rich conformations found in
assembled solid silk fibers. Additionally, only the unfolding
performance of monomers, rather than the hierarchical com-
posite structure, was considered when analyzing the relation-
ship between the molecular-level and fiber-level mechanical
properties. Furthermore, during the dataset development, it
was assumed that the extracted sections with high folding
fidelity govern the mechanical and structural behavior of
protein structures, which might not fully capture the complex-
ity of the entire protein assembly. To gain a more accurate
understanding of the contribution of spider silk proteins to silk
fibers, the hierarchical structure of spider silk and the assembly
process must be considered. This is an important direction for
future research, particularly when designing synthetic proteins
and silk fibers.

Still, this work has several potential impacts and implemen-
tations. We developed a fundamental framework that connects
native/aqueous spidroin protein structures to silk fibers
through folding, MD simulations, and deep learning techni-
ques. This approach provides a foundation for future insights
into the mechanobiology and nanomechanical behavior of
unassembled protein structures, facilitating the design of more
realistic synthetic silk fibers. Moreover, our approach contri-
butes to understanding how native protein structures can be
translated into solid fibers through the spinning process. The
developed approach supports the design of synthetic liquid-
form proteins based on their mechanical behavior through
cost-effective methods and is also useful for applications such
as drug delivery, bioadhesives, and other biotechnological
innovations. Additionally, the framework can be applied to
analyze other protein-based materials, such as collagen,
enzymes, and keratin, thus addressing various design needs
across multiple fields. We believe similar generative methods
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enriched with MD modeling can serve as a general strategy in
this field.

In future work, further exploration is needed to investigate
the contribution of assembled spider silk proteins to the
mechanical properties of silk fibers, particularly by incorporat-
ing the factors involved in the spinning process. Research
should also focus on how hierarchical features influence the
relationship between the nanomechanical properties and the
fiber-level mechanical properties, as well as understanding the
fundamental building blocks of spider silk and their contribu-
tion to overall fiber behavior using simulation techniques.
Additionally, with collected nanomechanical data, generative
models could be developed or fine-tuned to link spider silk
protein sequences with molecular-level properties, supporting
data augmentation and expanded design space exploration.

4. Materials and methods

In this section, we discuss the datasets and methodologies used
in this work, including the collection and augmentation of the
silk protein sequences, protein folding and subsection extraction,
molecular dynamics simulations which comprise both equili-
bration and steered molecular dynamics (SMD), and nanomecha-
nical property characterization and analysis procedures.

4.1 Dataset development

A total of 2240 protein sequences were collected, comprising
1033 sequences curated from the silkome dataset1 as discussed
in ref. 2 and 1207 novel sequences generated using
SilkomeGPT.2 These sequences were subsequently used for
protein folding to obtain 3D structures for simulations. The
1033 existing sequences are all from major ampullate spidroin
(MaSp), the key protein component of spider dragline silk,
which exhibits exceptional mechanical performance and pro-
vides the main structural support for the web.19 Due to the
limited availability of silk protein data, we employed a cyclic-
consistent generation model to augment the dataset with
synthetic yet reliable protein sequences.

Before generating synthetic sequences using SilkomeGPT,
we analyzed the distribution of the related fiber-level
mechanical properties of the 1033 existing sequences. These
properties include toughness, elastic modulus, tensile
strength, strain at break, and four corresponding standard
deviation measurements (as shown in Fig. 2(a1)). From this
analysis, we drew 1000 random samples of 8-dimensional
property sets from the property distribution of the existing
dataset. Using these 1000 property sets as input to the
SilkomeGPT model and through automated job submissions
for systematic silk design, we produced 206 838 sequences
before filtering.

To enhance the reliability of the augmented dataset,
we applied an iterative recursive filtering process inspired
by the approach in ref. 66, designed as an agentic model that
identifies self-consistent sequences, those for which pre-
dicted mechanical properties closely match the input target

values used during generative design. These predictions were
derived from trained regression models, and consistency was
quantified using the generation R2 value. At each iteration,
the model adapted filtering thresholds based on high-
performing sequences to better align with biologically plau-
sible outcomes. Sequences with an R2 value of 60% or higher
were retained, a threshold selected through empirical
refinement to balance fidelity and novelty. This process
yielded 1207 novel sequences from 206 838 initial candidates
(1.67% yield rate), each meeting the R2 criterion. The full
filtering pipeline included: (1) conditioning sequence
generation on 8-dimensional mechanical property sets; (2)
evaluating predicted-to-target property agreement; (3)
excluding low-R2 sequences; and (4) consideration of struc-
ture similarity and simulation feasibility. As a result, the
filtered dataset, as shown in Fig. 2(a2), closely matches the
distribution of the 1033 original protein sequences. This led
to a final dataset of 2240 MaSp sequences, comprising 1033
original and 1207 novel sequences, optimized for subsequent
protein folding and simulation tasks. The similarity between the
new and existing datasets was further evaluated using secondary
structure composition analysis and clustering comparisons with
PCA, a dimensionality reduction technique (details in Section 2.1
and Fig. 2(b)).

The novelty and reliability of the generated designs are
checked through the basic local alignment search tool (BLAST).
Two main assessed criteria include (1) query cover, which indi-
cates the alignment coverage of the sequences, and (2) identity
percentage, which measures the similarity in composition.
Sequences with either QC and id% values below 50–60% are
considered novel.60,61 A summary of the novelty check, along
with sample sequence discussions and protein types classified
under the MaSp category, is provided in Table 1.

4.2 Protein folding and subsection extraction

To obtain 3D molecular structures for simulation based on
protein sequences, we utilized OmegaFold21 for rapid
sequence-to-structure prediction. OmegaFold21 was chosen
because it delivers comparable prediction performance to
AlphaFold267,68 and RoseTTAFold69 for high-resolution pro-
tein structures while requiring significantly less computa-
tional cost. Unlike other advanced prediction models for
protein folding, OmegaFold does not reply on multiple
sequence alignments (MSAs) and evolutionary information,
making it suitable for large-scale systematic folding
tasks. Furthermore, an automated process was developed
for high-throughput input script generation and job submis-
sion, significantly improving computational efficiency. In
addition to the predicted protein structures in the Protein
Data Bank (PDB) format, predicted local distance difference
test (pLDDT) scores were generated to assess folding
performance.

We then extracted subsections with high fidelity from the
full sequences, to enhance the reliability of the protein
structure input for simulations, as well as reduce the simula-
tion cost with shorter protein length, since the current
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folding prediction for spider silk proteins is unstable and
there are performance fluctuations along the sequence, and
processing B2000 full-length sequences could be computa-
tionally intensive. Furthermore, the extraction of high-
fidelity subsections not only improves the accuracy of folded
structures but also retains the nanomechanical and struc-
tural significance, as these subsections contain the main
secondary structure components that govern the mechanical
behavior of dragline silks (as shown in Fig. 3(b), and dis-
cussed in Section 2.1). To extract subsections, we first gen-
erated pLDDT plots for each folded protein and drew a
corresponding denoising plot using the scipy.signal package
in Python.

We find that the denoising step is essential to reduce
noise in the original plot, providing a clearer visualization of
the overall pattern, facilitating the selection of continuous
sequence sections with high pLDDT values, and minimizing
interruptions caused by random fluctuations. The extraction
of subsections was based on two criteria: (1) a denoised
pLDDT value of 50 or higher, with the value determined
based on dataset characteristics, and (2) a section length of
at least 10 amino acids to ensure the fidelity and integrity of
the subsections. Note that more than one subsection, or
none at all, could be extracted from a single sequence. Once
the subsection ranges (start and end indices of amino acids)
were defined, we extracted the sequences and modified the
corresponding PDB files. In total, 2177 high-fidelity subsec-
tions were collected for protein simulation. Detailed analysis
and novelty checks are discussed in Section 2.1. Finally, after
subsection extraction, additional folding simulations were
performed on the extracted sequences to adjust for any
structural changes.

As a result of the extraction process, the average pLDDT
value improved significantly from 40.48 to 76.39, while the
average sequence length decreased from 445 to 125. The
refined dataset includes both FASTA files containing the
sequences and PDB files representing the 3D protein struc-
tures. The PDB structures of all 2177 subsections were used
for MD simulations in this study. Examples of protein folding
and subsection extraction for three sequences with varying
lengths and structural diversity are shown in Fig. 3. Fig. 3(a)
and (b) illustrate the pLDDT plots and the corresponding
visualized folded structures for full sequences, extracted
subsections, and re-folded subsections.

4.3 Molecular dynamics simulations

4.3.1 Implicit molecular dynamics modeling. Atomistic
molecular dynamics simulations were performed for all 2177
spider silk proteins to study their behavior at the atomic level.
Both equilibration and SMD simulations were conducted using
NAMD,53 with the CHARMM force field applied to model
interactions between atoms in the protein structures. Visualiza-
tion of secondary structure and configuration changes during
the simulations was done using visual molecular dynamics
(VMD).63 The simulations used the generalized Born implicit
solvent (GBIS) model, allowing for significant computational

savings while maintaining reasonable accuracy, which is appro-
priate for high-throughput simulations of relatively large sys-
tems (the average protein sequence length in the dataset is 125,
as detailed in Section 4.1). In addition, a streamlined workflow
was designed to improve the efficiency of high-throughput
folding simulations, automating job script generation, submis-
sion, and result collection.

Equilibration was performed to adjust the protein config-
urations to a stable state, verified by convergence of the RMSD
values. For the dataset, each protein underwent equilibration
for 8 � 105 steps at 2 fs per step under controlled temperature
and pressure conditions, following an initial minimization
phase of 1 � 104 steps for temperature initialization and
relaxation. Uniform equilibration steps were chosen for ease
of manipulation, and all proteins were confirmed to reach
stable states (see Fig. 4(b) for an example RMSD plot, and
Fig. 4(c) for RMSD curves of all 2177 proteins).

SMD simulations were conducted following equilibration,
to pull the protein structure at a constant velocity at one end
while keeping the other end fixed (visualized on the left in
Fig. 4(a)). A force constant of 1.0 kcal mol�1 Å�2 was used,
appropriate for biological systems, and a pulling velocity of
0.1 Å ps�1 was selected for a balance between the simulation
stability and computational cost. While the pulling velocity
of 0.1 Å ps�1 is significantly higher than physiological rates
(typically 1 nm s�1 to 1 mm s�1), this choice reflects a
practical balance between observing unfolding events and
maintaining simulation feasibility. Such higher pulling velo-
cities are widely adopted in SMD studies and allow for
qualitative comparison of mechanical responses across
sequences.70,71 Forces were recorded every 0.2 ps until the
full contour length of each protein was reached, assuming an
average amino acid length of 3.6 Å.72 The contour length for
each protein was calculated as 3.6 Å multiplied by the
number of amino acids. Force–displacement plots were gen-
erated to visualize unfolding behavior and to quantitatively
assess the nanomechanical properties (an example is shown
in Fig. 4(b), with plots for all proteins in Fig. 4(c)). To
facilitate comparison, the displacements were normalized
across all proteins, and a smoothed force–displacement
curve was plotted, with averaged force values calculated over
sections corresponding to the number of amino acids in each
protein.

Further analysis of secondary structure changes during
unfolding is discussed in Section 4.3.2, while detailed methodo-
logies for nanomechanical property characterization and force
vector collection are provided in Section 4.3.3.

4.3.2 Protein’s secondary structure analysis. To systemati-
cally and quantitatively analyze the secondary structure of
proteins, we used the DSSP,62 accessed via a Python package
Bio.PDB.DSSP. This method assigns secondary structures to
the amino acids in a protein based on its PDB file, consider-
ing both the three-dimensional structure and functional
aspects of the protein. The primary DSSP symbols for sec-
ondary structures are as follows: H represents alpha helices,
G represents beta sheets, T represents turns, S represents
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bends, and ‘‘–’’ denotes other structures.62 Using DSSP in
combination with the visualization tool VMD and

MDAnalysis,64,65 a Python library for analyzing simulation
trajectories, we tracked changes in the secondary structure
during the unfolding of spider silk proteins.

In Fig. 5, three protein examples shown in three rows with
different sequence lengths and molecular structures, display
varying secondary structure changes during the unfolding
process. In each row, the first column displays the molecular
structure of the protein, the second column provides the profile
of secondary structure evolution over time, and the third
column shows the changes in three main secondary structure
components (coil, alpha-helix, and beta-sheet). Video visualiza-
tions of the simulation process are available in the ESI.†

4.3.3 Nanomechanical property characterization. A smoothed
curve is generated from the force–displacement plot for each
protein (as shown in Fig. 4(b)). The force vector is then
resampled from the smoothed curve, and adjusted to match
the length of the protein sequence, to quantitatively charac-
terize the unfolding behavior of each protein. Additionally,
two molecular-level mechanical properties of the silk protein
are characterized based on the simulation output, including
strength and toughness. Strength represents the resistance of a
protein structure during unfolding, while toughness refers to
the total energy a protein can absorb during the simulation.
In this work, strength is defined as the maximum force
observed during unfolding (measured in pN), and toughness
is calculated as the total area under the force–displacement
curve (with units of pN Å, equivalent to 10�22 J). The specific
equations used for calculating strength and toughness are as
follows:

s ¼ max
d

F (1)

T ¼
ðL
0

Fdl; where L ¼ 3:6N (2)

where s represents the strength (pN), T represents the tough-
ness (pN Å = 10�22 J), d is the pulling distance (Å), F is the
pulling force (pN), L is the contour length of the unfolded
protein (Å), and N is the sequence length (number of amino
acids).

Additionally, we explored the correlation between the nano-
mechanical properties of the silk proteins and the mechanical
properties of spider silk fibers by analyzing the relationship
between the molecular-level properties collected from MD
simulations and the predicted fiber-level properties using Silk-
omeGPT. The overall steps include:

Step (1): inputting all 2177 subsection sequences into Silk-
omeGPT to estimate fiber-level properties, and collecting

the property outputs, through the following two functions,
respectively:

Step (2): unnormalizing the outputs using the appropriate
scaling parameters from ref. 2,

Step (3): extracting the fiber-level strength and toughness
values, saved in CSV files (provided in the ESI†).

The force vector and nanomechanical properties are sum-
marized in CSV files, along with detailed sequence information,
provided in the ESI.† A comprehensive analysis of the nano-
mechanical properties, their correlation with fiber-level mechan-
ical properties, and the scaling relationships with secondary
structural properties of spider silk proteins are discussed in
Section 2.2.3 and visualized in Fig. 6.
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