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Optimizing the processing parameters of
producing Al-Si alloys using sodium fluosilicate
via artificial neural network
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This study investigates the optimal conditions for producing Al-Si cast alloys by reacting sodium fluoro-
silicate (NazSiFg) with molten aluminium, employing artificial neural network via the Levenberg—Mar-
quardt algorithm (LMA-ANN). The goal is to identify the lowest reaction times that yield the highest
silicon recovery percentages at minimal stirring speeds and reaction temperatures, optimizing processing
parameters and economic outcomes. Characterization techniques such as XRD and LOM confirmed the
presence of a Al, and a uniform fine fibrous eutectic silicon. Differential thermal analysis (DTA) showed
an exothermic peak at approximately 871 °C, indicating a multi-step reaction involving Al and Na,SiFe.
The efficiency of silicon recovery was directly proportional to the stirring speed and temperature within
the reaction time range of 15 to 30 minutes. The cascade-forward back-propagation ANN was trained
to optimize silicon recovery, considering reaction time, temperature, and stirring speed. Analysis revealed
that higher temperatures led to increased silicon recoveries, with significant gains at higher temperatures
for all stirring speeds. The maximum silicon recovery efficiency of 92.14% was obtained with a reaction
time of 25.86 minutes, a temperature of 950 °C, and a stirring speed of 600 rpm. This study highlights
the effectiveness of the ANN-LMA approach in deriving optimal processing conditions for high-
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1. Introduction

Aluminium-silicon (Al-Si) alloys are a significant category of
casting alloys, representing over 80% of all cast aluminium
alloys. These alloys are highly valued for their excellent physical,
mechanical, and tribological properties, including good casting
characteristics, corrosion resistance, fluidity, low specific gravity,
minimal shrinkage, and superior weldability. The corrosion and
erosion resistance of Al-Si alloys further enhance their desir-
ability across various industrial applications.'™ Despite their
widespread use, the needle-shaped silicon present in these alloys
can negatively impact their mechanical and tribological proper-
ties. Therefore, modifying the shape and size of silicon is crucial
to enhance these properties. Strontium (Sr) and sodium (Na) are
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efficiency silicon recovery in Al-Si alloys.

commonly employed to alter the silicon morphology in Al-Si
alloys. Traditional methods of producing Al-Si alloys are expen-
sive and require additional modifiers. Consequently, researchers
are exploring more cost-effective alternatives, such as reducing
the silicon from sodium fluosilicate (Na,SiFs). This study inves-
tigates sodium fluorosilicate, a by-product of superphosphate
fertilizer plants, as a silicon source for Al-Si alloy production.
Na,SiF, offers economic advantages and contains sodium, pro-
viding self-modification properties to the alloy. Various factors,
including temperature, reaction time, stirring speed, and the
amount and size of additive particles, influence the production
of Al-Si alloys.®® Optimizing these variables is essential to
achieve maximum silicon recovery efficiency, minimize additive
material usage, and reducing operational costs. Artificial intelli-
gence (AI) neural network algorithms are increasingly utilized to
optimize complex processes by identifying primary relationships
in data sets and adapting to changing inputs. These algorithms
can predict the properties of materials, analyze the impact of
varying factors, and determine optimal parameters for chemical
and metallurgical reactions.”'® Recent advancements in neural
network methodologies, including multi-layer perceptrons,
recurrent neural networks, radial basis functions, and trainable
cascade-forward back-propagation networks, have proven
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effective in numerous applications."'™* The Levenberg-Mar-
quardt algorithm (LMA) is particularly noted for its robustness
and speed in optimization tasks.'”'® The back-propagation
network is significant and widespread nowadays concerning
the available neural networks due to weaknesses in other avail-
able networks. The network is structured as a layered model,
consisting of input and output layers with at least one hidden
layer. The back-propagation network used in this study was
chosen due to its suitability for handling the complexity of the
problem, including the number of inputs, outputs, hidden
layers, and their respective neurons.”*® The back-propagation
model operates in two main steps. In the first step, each neuron
receives input data and generates corresponding output results.
Neurons are organized within a layer and connected across
different layers. The strength of the connections, or the weight
structure, is initially assigned arbitrary values and later adjusted
during the training process. In the second step, after defining
the system constraints, the model produces output by providing
input data to the network, a process referred to as system testing.
The training process relies on the gradient descent algorithm,
which adjusts the weights iteratively to minimize the overall
system error.”'** This study aims to optimize the processing
parameters for the production of Al-Si alloys using Na,SiFs as a
reducing agent with molten aluminium. Specifically, the
research seeks to maximize the silicon recovery efficiency by
systematically studying the effects of reaction time, temperature,
and stirring speed. This optimization is accomplished using an
artificial neural network model with the Levenberg-Marquardt
algorithm (ANN-LMA), providing a comprehensive understand-
ing of the optimal conditions required for high-efficiency silicon
recovery in Al-Si alloy production. The choice of this model is
particularly significant due to its strong capability in handling
complex, nonlinear relationships between multiple processing
parameters. ANN-LMA is known for its fast convergence and
high accuracy in optimization tasks, making it well-suited for
modeling the intricate dependencies among reaction time,
temperature, and stirring speed. This, in turn, contributes to
enhancing efficiency, reducing material waste, and improving
the overall economic feasibility of the process.

2. Materials and methods

2.1. Materials

Na,SiFs used in this study has a purity of 99%; it was supplied
from Al-Gomhoria Company, Egypt for chemicals and is of 99%
purity, comprising approximately 24.8% Na, 60.3% F, and 14.6%
Si by weight. The chemical analysis of the as received Na,SiFs
was performed by X-ray fluorescence spectroscopy(XRF). The
aluminium employed had a purity of approximately 99.7%.
The elemental analysis of aluminium was performed with an
inductively coupled plasma (ICP) model (OES).

2.2. Procedure

The experiments were conducted using a vertical tube mulffle
furnace, Russian model equipped with a multi-speed mechanical
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Fig. 1 The impeller that was used for stirring.

stirrer and a thermocouple to monitor the temperature of the
molten aluminium. Each experiment involved melting 250 grams
of aluminium in a silicon carbide crucible within the furnace.
Upon reaching the preset temperature, 250 grams of Na,SiFg
powder was gradually added to the molten aluminium with
continuous stirring using the mechanical stirrer, Fig. 1. After
the designated reaction period, the crucible was removed from
the furnace, the upper slag layer was skimmed off, and the molten
ingots were poured into cast iron moulds measuring 30 mm in
diameter and 25 mm in depth. Reaction times ranged from 5 to
30 minutes, and temperatures from 800 °C to 1000 °C in 50 °C
increments, with stirring speeds of 200, 400, and 600 rpm.

2.3. Chemical, microstructure, and spectroscopic analysis

The ingots were chemically analyzed to determine the silicon
percentage and recovery efficiency. The theoretical silicon con-
tent in the produced alloy was calculated based on the ratio of
Na,SiF¢ to total aluminium. Silicon recovery efficiency was
calculated using the following equations:

. 355R
[Sl%}TheOI‘ = m (1)

The efficiency of Si recovery, %

Actual, Si%
" (Theoretical, Si%) x 100 )

The microstructure was inspected using scanning electron
microscope (SEM), INSPECT S50, USA model, equipped with
energy dispersive spectroscopy (EDS). Crystallinity and phases
were analyzed using X-ray diffraction (XRD, D5000, Bruker,
Germany) with Ni-filtered, Cu-Kp radiation (4 = 1.5408 A). The
thermal stability and decomposition of Al and Na,SiFs mixtures
were examined using differential temperature analysis (DTA).

2.4. Optimization process using artificial neural network
(ANN)
During the construction of the proposed model, a meeting was
conducted with the person responsible for creating the model.
A detailed explanation was provided of the boundary conditions
used to improve the efficiency of silicon extraction in the
preparation of Al-Si alloys, ensuring that the experimental
and computational models are consistent with realistic condi-
tions. These include for example:

- Temperature boundary conditions: operating range: 800 to
1000 °C (increasing by 50 °C).

- Temperatures exceeding 1000 °C may cause excessive
evaporation of aluminum and undesirable side reactions.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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- Temperatures below 800 °C may slow down significantly
below this temperature, leading to inefficient silicon extraction.

- The presence of molten aluminum in a silicon carbide
(SiC) crucible also ensures the reaction remains at a near-
uniform temperature due to its high thermal conductivity.

- A thermocouple ensures real-time temperature monitoring
to maintain stability within £5 °C of the setpoint.

- Stirring speeds: 200, 400, and 600 rpm. Stirring ensures a
well-mixed system after a short transition period (approxi-
mately 30 seconds).

- Na,SiFs powder is added gradually to the molten alumi-
num to prevent sudden thermal shock and excess gas emission.

- Reaction: Na,SiFs + Al — Si (melt) + AlF; (slag)

- The rest of the effective boundary conditions were
explained to the person who coded the model.

Fig. 2 is a diagram representing a trainable cascade (forward
back-propagation) ANN model designed to predict silicon (Si)
recovery efficiency (%) in an Al-Si alloy production process. The
model consists of input, hidden, and output layers, each playing a
crucial role in data processing and prediction. The input layer
includes three key process parameters affecting silicon recovery;
reaction time, min; temperature of the molten aluminum, (°C);
and stirring speed (rpm). These independent variables are used by
the model to predict silicon recovery efficiency. The hidden layer
contains neurons that process the inputs using weighted connec-
tions and activation functions. It identifies complex relationships
between reaction time, temperature, and stirring speed to predict
silicon recovery. The network is trained using an optimization
algorithm to adjust the weights and improve prediction accuracy
as indicated in eqn (3) and (4). The single output node represents
the predicted silicon recovery efficiency (%), which is the depen-
dent variable. The ANN model uses trained weights to compute
this output based on the given inputs.

1

[ (nety) = Tro (3)

flnet) = neg; (@)

Optimizing the processing parameters using the Levenberg-
Marquardt algorithm: the optimized reaction conditions to
maximize the Si recovery efficiency were probed employing

t, min P Sirecovery, %
T, °C

pm

Input Layers HiddenLayer Output Layers

Fig. 2 The ANN to predict the Si recovery efficiency.
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Fig. 3 The proposed ANN via the Levenberg—Marquardt algorithm to
estimate the optimum reaction time corresponding to the maximum Si
recovery efficiency.

the objective function formulated in eqn (5). Eqn (5) depends
on the function produced by modeling the % Si recovery efficiency
using the trainable cascade-forward back-propagation network.
The Levenberg-Marquardt algorithm (LMA) provides a solution to
this problem employing the nonlinear least squares minimization
calculation scheme, which implies that it aims to provide an
intuitive explanation for this algorithm.’

J = min[1 — f(T.N.t)] (5)

Fig. 3 represents the cascade-forward back-propagation used
to predict the optimum reaction time and silicon recovery
efficiency in an Al-Si alloy production process. The network
consists of input, hidden, and output layers, each playing a key
role in processing data. The input layer consists of two key
process parameters: temperature of the molten aluminum and
stirring speed (rpm). These inputs are the independent vari-
ables that influence the outcome of the process. The hidden
layer consists of neurons that process the inputs using
weighted connections and activation functions. The model is
trained using an algorithm (e.g., Levenberg-Marquardt algo-
rithm, LMA) to adjust these weights for accurate predictions.
The network generates two outputs: optimum reaction time
(min), the best duration for maximizing silicon recovery and
optimum silicon recovery efficiency (%), the predicted recovery
percentage under the given conditions. These outputs help
optimize the alloy production process by identifying the best
temperature and stirring speed for maximum efficiency. The
importance of this model is that it predicts optimal process
parameters without excessive experiments, reduces cost and
time in silicon recovery studies and improves efficiency in Al-Si
alloy production by finding the best conditions.

3. Results and discussion

3.1. Characterization of the produced alloys

The XRD pattern of the Al-Si alloys fabricated by reducing
Na,SiF¢ using molten aluminium was as in Fig. 4. It shows that
two phases of o Al and an Alj »;Sip.47 intermetallic compound

Mater. Adv,, 2025, 6, 4705-4713 | 4707
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Fig. 4 XRD pattern of the produced Al-Si alloy produced by Na,SiFg.

are identified. Calculating the elemental ratios of aluminium
and silicon in the Al; »,Siy 4, compound shows that it contains
about 87.3% Al and 12.7% Si, which is too close to the eutectic
composition.
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Fig. 5 represents a SEM with an EDS mapping technique for
the produced Al-Si alloys containing 7.6% Si. Image (a) shows
the microstructure of the alloy sample indicating an o Al-kidney
shape (white areas) surrounded by uniform fine fibrous eutectic
Si (dark gray portions). It shows the contrast between the two
main phases in the alloy: aluminum and silicon. Image (b) -
lower left in red color, SEM mapping shows the distribution of
the aluminum atoms (Al-K) in the image. Aluminum is con-
centrated in the areas that form the main matrix of the alloy.
The red color indicates the locations with a high percentage of
aluminum.

Image (c) (green). A map of the distribution of the silicon
element (Si-KA) in the sample. Note that silicon is concentrated
in the dark regions in image (a), which are the silicon-rich
regions. This structure is typical of Al-Si alloys, where silicon
appears as neddle like clusters within the matrix. The image
highlights the eutectic structure, which consists of an alumi-
num matrix with silicon particles distributed within it. The
distribution of aluminum and silicon in the images shows the
interaction between them during the solidification process,

Map data 561
MAG: 429 x HV:20.0 kV WD: 10.8 mm

Fig. 5 SEM mapping micrographs of the produced Al-Si alloy containing 7.5% Si. (a) Microstructure of the alloy sample. (b) SEM mapping shows

aluminum atoms (Al-K). (c) Distribution of the silicon element (Si-KA).
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where silicon crystallizes in the areas between the primary
aluminum phase. The modification in the silicon phase is
due to Na,SiF¢ found in the reaction bath. Sodium (Na) from
Na,SiF¢ acts as a modifier, altering the morphology of the
eutectic Si from acicular (needle-like) to fine fibrous.”*>*

3.2. The parameters affecting the production of Al-Si using
Na,SiF,

The effect of the different factors on silicon recovery efficiency
of the produced Al-Si alloys from reduction of sodium fluosi-
licate (Na,SiFs), like time, temperature and stirring speeds.
Table 1 reflects the experimental work for finding the
relationship between silicon recovery efficiency and reaction
time (5 to 30 min) at temperatures ranging from 800 °C to
1000 °C, with different stirring speeds (200, 400, and 600 rpm).
3.2.1. Effect of reaction time on silicon recovery at differ-
ent temperatures. Silicon recovery increases with reaction time
at all temperatures, indicating that increasing the reaction time
enhances silicon recovery. The silicon recovery stages can be
divided by time as follows: initial stage (3-10 minutes): silicon
recovery is low due to the onset of reaction and the formation of
silicon-rich phases. Growth stage (10-23 minutes): recovery
increases significantly, especially at higher temperatures,
where reaction rates are faster. Peak stage (23-28 minutes):
maximum recovery efficiency is achieved at each temperature.
Regression stage (after 28 minutes): a slight decrease occurs
due to oxidation or loss of material. Optimal conditions for
silicon recovery: the efficiency peaks in the range of 23-28 min,
followed by a slight decrease with increasing time, which may
be due to: silicon oxidation with prolonged exposure.** Material
loss due to prolonged high temperature. Saturation of the
system, where increasing time does not contribute to improv-
ing efficiency. High temperatures (950-1000 °C) result in the

Table 1 Experimental data indicating the effect of the processing para-
meters; reaction time, temperatures, and different stirring speeds on the
silicon recovery efficiency

Silicon recovery efficiency

Time, min Stirring speed, rpm 800 °C 850 °C 900 °C 950 °C 1000 °C

5 48.27 51.79 56.09 63.14 64.74
10 51.35 58.01 61.86 65.38 67.95
15 200 53.40 61.73 64.87 67.63 71.79
20 57.12 66.99 72.82 73.14 76.28
25 60.58 71.47 76.41 78.01 80.77
30 58.33 67.31 73.08 73.72 77.56
5 57.82 61.41 65.38 67.31 67.63
10 60.90 66.99 70.51 72.44 73.85
15 400 63.46 71.47 75.32 76.73 77.37
20 67.31 75.96 81.79 82.56 84.10
25 70.19 80.45 86.22 87.50 88.46
30 67.95 76.28 82.69 89.23 85.26
5 67.95 70.96 76.28 78.53 80.77
10 70.26 75.96 79.49 80.13 81.22
15 600 71.35 80.06 82.12 82.76 83.40
20 76.03 84.10 86.54 87.69 88.40
25 79.74 87.50 89.17 89.36 89.62
30 76.28 84.29 87.18 87.82 89.10

© 2025 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Paper

highest silicon recovery efficiency at all times.>> At 1000 °C, the
highest silicon recovery efficiency is achieved, indicating that
high temperatures promote silicon incorporation into the alloy.
Optimal temperature: between 950 °C and 1000 °C. Optimal
reaction time: between 23-28 minutes. The results indicate that
950 °C may provide a balance between cost and performance,
whereas 1000 °C may increase energy consumption without a
significant increase in efficiency.

3.2.2. Effect of stirring speed on silicon recovery efficiency.
Table 1 also shows the effect of stirring speed on silicon
recovery efficiency at speeds of 200, 400, and 600 rpm. The
analysis of the effect of stirring according to speed (200 rpm).
The initial increase in recovery is slow. A low speed leads to
insufficient mixing, which limits the interaction of aluminium
with silicon. Silicon particles settle or cluster, reducing their
ability to dissolve into aluminum. Also, at low stirring speeds,
silicon particles settle or cluster, reducing their ability to
dissolve into aluminum.?®?” At 400 rpm stirring speed, a
moderate improvement is shown compared to 200 rpm. At this
speed, mixing is more efficient, which improves heat and mass
transfer. At 600 rpm stirring speed, the highest recovery effi-
ciency is achieved due to maximum mixing. Improved diffusion
and reaction rates due to increased contact between silicon and
aluminium. However, very high speeds can lead to excessive
turbulence, which can cause material losses and excessive
oxidation. The main role of stirring speed is that stirring speed
improves the kinetic reaction by enhancing the mixing of
materials.?® Increasing the stirring speed improves the distri-
bution of silicon within the aluminium, which improves the
overall efficiency. Efficiency improves with increasing speed, but
after 600 rpm there may be no significant additional benefits.
The relationship between recovery efficiency and stirring speed:
at the same reaction time and temperature, the silicon recovery
efficiency is directly proportional to the stirring speed between
200 and 600 rpm. The optimal balance must be taken into
account to avoid excessive energy consumption and material
loss. The optimal conditions for silicon recovery are tempera-
ture: between 950 °C and 1000 °C. Reaction time: 23-28 min.
Stirring speed: 400-600 rpm. The results show that there is a
trade-off between energy consumption and efficiency, with
950 °C potentially more cost-effective than 1000 °C.>® The three
parameters (time, temperature, stirring) have an integrated
effect on the silicon recovery efficiency, highlighting the need
for dynamic process optimization. An artificial neural network
(ANN) using the Levenberg-Marquardt algorithm will subse-
quently be applied to determine the optimal levels of process
variables and ensure maximum silicon recovery.

3.3. Prediction of the Si recovery efficiency using an artificial
neural network model

The silicon (Si) recovery efficiency is modeled as a response-
dependent function of the processing parameters for Al-Si
alloys produced via Na,SiFs reduction, utilizing a trainable
cascade-forward back-propagation network, as illustrated in
Fig. 2. The model was trained to minimize errors by incorpor-
ating reaction time, temperature, and stirring speed as key

Mater. Adv., 2025, 6, 4705-4713 | 4709
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Table 2 The input matrix of the processing parameters, the actual Si recovery efficiency, and the predicted one using the constructed ANN

Si recov. eff.%

800 °C 850 °C 900 °C 950 °C 1000 °C

Time (min.) Stirring (rpm) Actual Predict Actual Predict Actual Predict Actual Predict Actual Predict
5 67.95 66.56 70.96 71.02 76.28 74.85 78.53 77.72 80.77 79.32
10 70.26 70.86 75.96 75.68 79.49 79.08 80.13 80.86 81.22 80.91
15 600 71.35 73.13 80.06 78.82 82.12 82.40 82.76 83.87 83.40 83.26
20 76.03 77.24 84.10 83.64 86.54 87.41 87.69 88.69 88.40 87.69
25 79.74 80.27 87.50 86.95 89.17 90.78 89.36 91.99 89.62 90.85
30 76.28 76.83 84.29 83.80 87.18 88.02 87.82 89.70 89.10 89.06
MSE (%) 1.258 0.395 1.056 2.311 0.702

inputs. The training phase is critical to the model’s success.
Among the commonly used training techniques, back-
propagation and quick propagation methods are the most
prominent. The input matrix of processing parameters, the
actual Si recovery efficiency, and the predicted values derived
from the constructed ANN model are presented in Table 2.
Fig. 6 presents the relationship between temperature (°C)
and silicon (Si) recovery efficiency (%) for different stirring
speeds (200, 400, and 600 rpm). The curves display both
predicted and actual values, allowing the evaluation of the
model’s accuracy. From this figure, the Si recovery efficiency
increases as temperature increase across all stirring speeds,
and this trend is expected since higher temperatures enhance
the reaction kinetics between Na,SiFg and molten aluminum,
leading to better silicon recovery. Also, higher rpm values (600,
400) result in higher Si recovery efficiency compared to lower
rpm (200). Faster stirring improves mass transfer, ensuring
better mixing of Na,SiFs in the molten aluminum, leading to
more effective silicon extraction. The predicted values closely
follow the actual data, validating the accuracy of the artificial
neural network (ANN) model. It can be concluded that higher
temperatures (closer to 1000 °C) and faster stirring (600 rpm)
result in the best silicon recovery efficiency. The ANN model
effectively predicts the experimental results with minimal
errors. The statistic mean square error (MSE) is used to evaluate
and validate the performance of the ANN as it computes the
difference between the measured data and the expected data

85

65

3

Si Recovery Efficiency (%)
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~&— Actual (RPM=200)
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Fig. 6 The correlation between the measured data and the expected data
obtained from the ANN model.

4710 | Mater. Adv., 2025, 6, 4705-4713

from the ANN model."*> The MSEs for 600 rpm stirring speed
are 1.258, 0.395, 1.056, 2.311, and 0.702 for 800, 850, 900, 950,
and 1000 °C, respectively, signifying the excellent performance
of the developed ANN model, Fig. 2. The use of the ANN-LMA
model provided a predictive framework that was closely aligned
with the actual experimental outcomes, demonstrating its
reliability and effectiveness.

3.4. Deriving the optimum reaction time yielding the
maximum Si recovery efficiency

The developed ANN-LMA algorithm, discussed above and
shown in Fig. 3, is used to mine the optimum compromised
processing parameters, yielding the maximum recovery effi-
ciency of Si for the Al-Si alloys produced by Na,SiFs. The
cascade-forward back-propagation ANN is trained to maximize
the Si recovery and the corresponding processing parameters
are generated using the Levenberg-Marquardt algorithm.

Fig. 7a—c clarifies the effects of processing parameters (i.e.,
reaction time, temperature, and stirrer speeds) on Si recovery
efficiency estimated from ANN-LMA. Fig. 7a shows the effect of
temperature on the Si recovery efficiency with reaction time and
at a stirring speed of 200 rpm. It clarifies that the higher the
temperature, higher silicon recoveries are achieved at lower
periods. Any slight change in reaction time corresponds to a
significant increase in the percentage of silicon recovery in the
alloy at higher temperatures. With the temperature going up
from 800 to 1000 °C, the silicon recovery efficiency increased
from 61.23 to 81.04, from 71.04 to 86.41, and from 80.31 to
91.49% for stirring speeds 200, 400, and 600 rpm, respectively.
Meanwhile, the optimum reaction time changes from 25.83 to
26.22, from 25.64 to 26.03, and 25.68 to 25.84 minutes for
stirring speeds of 200, 400, and 600 rpm, respectively, with the
temperature increase from 800 to 1000 °C considered insignif-
icant. Increasing the stirring speed decreases the reaction time
required to achieve maximum Si recovery efficiency as at 200,
400, and 600 rpm and a temperature of 950 °C, the silicon
recovery efficiencies were 80.05, 86.28, and 92.14%, at times of
26.15, 26, and 25.86, respectively. So, the processing parameter
combination that yields maximum efficiency of Si recovery
(92.14%) was a reaction time of 25.86 minutes, a temperature
of 950 °C, and a stirring speed of 600 rpm.

It can be concluded that the data analysis using an artificial
neural network (ANN-LMA) model shows that achieving the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Prediction of the minimum reaction time and the corresponding
optimal value of Si recovery efficiency % at different temperatures at
stirring speed: (a) 200 rpm, (b) 400 rpm and (c) 600 rpm.

highest silicon recovery efficiency depends mainly on tempera-
ture, reaction time, and stirring speed. The results indicate that

© 2025 The Author(s). Published by the Royal Society of Chemistry
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when the temperature increases from 800 to 1000 °C, the
silicon recovery rate increases significantly across all stirring
speeds. However, the greatest effect is achieved at higher
stirring speeds, as this helps reduce the reaction time required
to reach the maximum efficiency.

Based on these results, it can be said that improving the
efficiency of silicon recovery requires a balance between tem-
perature, stirring speed, and reaction time, where the optimum
conditions (950 °C, 25.86 min, 600 rpm) provide the maximum
recovery rate of silicon while minimizing losses and undesir-
able reactions.”® The findings support the ANN-LMA model as a
reliable tool for optimizing Al-Si alloy production. Overall, the
study effectively addresses its research objectives while identi-
fying areas for refinement, offering a strong foundation for
further advancements in silicon recovery optimization.

4. Conclusions

The current study successfully applied the cascade-forward back-
propagation ANN integrated with the Levenberg-Marquardt
algorithm (LMA) to analyze the results of the experiments
conducted on producing Al-Si alloys using Na,SiFs at different
process variables. The process variables selected are reaction
time, temperature, and stirring speeds, with silicone recovery as
the response optimization parameter. Numerous concluding
remarks are drawn and summarized in the following bullets.

(1) The efficiency of Si recovery increases with reaction time
across all temperatures, showing a clear peak stage between 23
and 28 minutes.

(2) High temperatures (950 °C to 1000 °C) consistently result
in better silicon recovery. 1000 °C yields the highest recovery,
but 950 °C provides a balance between cost and performance,
making it a potentially more cost-effective option.

(3) At a high stirring speed, at 600 rpm, the maximum
recovery efficiency is achieved, indicating that optimal mixing
improves the diffusion and reaction rates between silicon and
aluminum. However, excessive stirring speeds may lead to
turbulence, resulting in material losses and oxidation.

(4) The ANN model with the Levenberg-Marquardt algorithm
(LMA) effectively predicts the silicon recovery efficiency, with low
mean squared error (MSE) values, indicating good accuracy.

(5) The optimum processing parameters to yield maximum
efficiency of Si recovery (92.14%) employing the artificial neural
network (ANN) utilizing the Levenberg-Marquardt algorithm
(LMA-ANN) approach are a reaction time of 25.86 minutes,
temperature of 950 °C, and a stirring speed of 600 rpm.

(6) This study demonstrates the potential of using Na,SiF; in
producing high-efficiency Al-Si alloys and highlights the effec-
tiveness of ANN in optimizing metallurgical processes.

(7) Future work could focus on further refining the process
parameters and exploring the scalability of this method for
industrial applications.
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