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Label-Free Imaging Flow Cytometry with Rare Cell Classification 
using Motion-Sensitive-Triggered Interferometry
Eden Dotan,a Dana Yagoda-Aharoni, a Eli Shapirab and Natan T. Shaked a,*

We present a label-free imaging flow cytometry system that integrates a microfluidic chip imaged by a motion-sensitive 
(event-based) camera and an interferometric phase microscopy module using a simple frame-based camera. The event 
camera captures activity from the flowing cells corresponding to thousands of frames per second and triggers the 
significantly slower interferometric camera when a rare cell, requiring more sensitive analysis, is detected via a single raw-
interferogram analysis, significantly reducing data volume. The raw interferometric data serves as an input to a deep neural 
network for rare-cell classification. We demonstrate the use of this system to detect and grade rare cancer cells in blood, 
where the event camera is used to rapidly classify between the common white blood cells and the rare cancer cells, and the 
interferometric camera is used to grade the cancer cell type (primary/metastatic), as a human model for detecting and 
grading circulating tumor cells in liquid biopsies. This hybrid approach enables efficient data acquisition, rapid processing, 
and high sensitivity, significantly reducing computational load and is expected to find various applications in detecting and 
processing rare cells in imaging flow cytometry. 

Introduction
In recent years, motion-sensitive (event-based) sensors have 
emerged as bio-inspired imaging devices, mimicking the 
asynchronous and change-sensitive nature of the human retina. 
Unlike frame-based cameras that capture entire scenes at a 
fixed rate, event-based cameras independently record pixel 
level changes in brightness with high temporal resolution on the 
order of sub-microseconds and low latency1,2. These sensors 
detect an event when a significant change in light intensity 
occurs. This event contains the pixel address, the timestamp of 
the change of brightness, and the polarity, which indicates an 
increase or decrease in brightness1,3. In addition to high 
temporal resolution, event-based cameras generally acquire a 
highly sparse data stream compared to the dense pixel data 
produced by frame-based cameras1-4, significantly lowering the 
data load at any given time interval1,3. This leads to more 
efficient processing, as algorithms can be designed to operate 
directly on the asynchronous stream of events4. Typically, such 
algorithms rely on event aggregation or filtering within local 
spatial and temporal neighbourhoods, which is considerably 
less computationally demanding than processing full image 
matrices3. This sparse imaging nature of event data translates 
directly into reduced computational resource requirements. For 
these reasons, event cameras are well suited for detecting fast 
events, including moving objects.

Flow cytometry is a high-throughput technique capable of 
analysing up to hundreds of thousands of biological cells per 
second as they pass through laser beams. It can provide  

information on cell size and internal complexity using forward 
and side light scatter, respectively5. While conventional flow 
cytometry lacks imaging capabilities, imaging flow cytometry 
combines high-throughput analysis with cellular imaging during 
flow, thus allowing morphological and functional profiling of 
single cells6–8. Event cameras are well suited for imaging flow 
cytometry since they generate events only when a cell passes 
through the sensor’s field of view3,4.  

To achieve molecular specificity and reliable identification in 
flow cytometry, fluorescence based labelling with antibodies is 
typically required9. This approach is widely used across 
immunology, cancer biology, and infectious disease research10–

15, but relies on the presence of distinct surface markers. 
Challenges arise when target cells lack unique antigens or share 
markers with other cell types. Moreover, attaching labels to the 
cell membrane may alter cell behaviour or compromise 
measurement integrity16. 

Label-free imaging methods overcome these limitations by 
leveraging intrinsic optical properties of cells. One such 
parameter, the refractive index, reflects intracellular 
composition, including the cell dry mass and concentration. 
Interferometric phase microscopy (IPM) noninvasively 
measures the optical path delay (OPD) profile of cells, or its 
integral refractive-index profile, enabling analysis of cell 
morphology and subcellular contents, without using external 
labelling agents17–20. We have previously shown that IPM is 
sensitive enough to grade cancer cells (healthy/primary cancer 
/metastatic cancer)21, even during flow on the background of 
blood cells22.  IPM typically requires the acquisition of full-frame 
off-axis imaging interferograms, generally dictating a low 
throughput of tens to hundreds of frames per second when 
using modest-budget cameras.

Several high-throughput quantitative phase imaging 
strategies have been developed for rapid imaging flow 
cytometry. For example, multi-ATOM enables blur-free 
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quantitative phase imaging of over 10,000 cells per second 
using asymmetric detection and real-time FPGA processing23, 
while Coherent-STEAM applies dispersive Fourier transform for 
high-speed, label-free phase mapping of cells in flow24. 
However, these techniques require complicated optical setups, 
such as laser scanning modules, and meticulous alignments, 
which are not suitable for seamless integration into existing 
imaging flow cytometry setups.

In this paper, we propose a new concept for rapid and 
efficient quantitative label-free imaging and grading of rare cells 
within liquid biological samples, by utilizing a rapid event-based 
camera acquiring the cells during flow in a microfluidic chip and 
triggering a slower interferometric frame-based camera when 
rare cells that require a more sensitive analysis are detected. 
We demonstrate this approach’s potential for detecting 
circulating tumor cells (CTCs) in liquid biopsies obtained in 
routine lab tests by using a human model of blood spiked with 
colorectal cancer cells.  

Finding cancer in its early curable stages represents a critical 
unmet need in oncology. Certain cancers, such as pancreatic 
and colorectal cancers, can progress without noticeable 
symptoms, thereby bypassing early diagnosis25,26. Liquid 
biopsies, such as peripheral routine blood samples, can be 
analysed to detect CTCs, as a means of detection and 
monitoring of cancer. Currently, however, this procedure’s  
sensitivity for analysing and grading the cells remains limited 
due to the extremely low concentration of CTCs; for example, 
there are typically 1–10 cells per 10 mL of peripheral blood27–29. 
In our label-free imaging flow cytometry setup, detecting a cell 
can be accomplished by monitoring multiple cells during flow 
within a confined region and time window3,30, followed by 
immediate triggering activation of the frame-based camera for 
more sensitive IPM analysis for cell grading, as soon as a  
candidate cancer cell is detected by the event-based camera. 
IPM cell grading utilises a deep learning network, which is 
trained to classify between the rare cell types (primary/ 
metastatic cancer), such that during inference, when IPM is 
triggered by the event camera, it can predict the rare cell type 
directly based on the raw interferograms, further increasing the 
process throughput.

Several sensor approaches have been previously explored to 
combine high-speed detection with high-resolution imaging. 
High-speed CMOS cameras can record at kilohertz rates, yet 
they require full-frame readout, producing terabytes of data 
quickly and heavy post-processing, which limits real-time 
scalability. Hybrid sensors like DAVIS34631, offer simultaneous 
events and frames but are constrained by lower dynamic range 
and reduced spatial resolution. Shared readout pathways 
further degrade temporal precision. These limitations 
underscore the need for our dual-sensor design, which 
preserves both sparse, low-latency detection and high-quality 
interferometric imaging.

Methods and Materials
Integrated Imaging Flow Cytometry Setup

The proposed integrated imaging flow cytometry is shown in 
Fig. 1. For biological cell flow, we use a microfluidic chip (width: 
100 μm, height: 37 μm, #10001444, ChipShop) containing a 
liquid sample with biological cells. The selected chip height 
minimizes cell focus variation across the field of view. A 
pressure pump (LU-FEZ-2000, LineUp Flow EZ, Fluigent) is used 
to control the flow rate, which is maintained between 5–15 
millibar. The microfluidic chip is mounted on a three-axis stage, 
which enables fine alignment of the sample plane with the 
optical depth of focus. To further ensure focused imaging, the 
pressure is adjusted to maintain a steady flow velocity, so that 
cells move consistently within the focal plane on the floor of the 
channel. Under laminar flow conditions, cells are confined to a 
narrow z-range, further reducing the likelihood of defocusing. 

The microfluidic chip is simultaneously imaged by two 
cameras, a rapid event camera and a simple CMOS camera. It 
combines an inverted microscope illuminated by a Helium-
Neon (He-Ne) laser (𝜆 =  632.8 nm, 17 mW), which provides 
coherent light necessary for interferometric imaging. The laser 
beam is directed through the microfluidic chip positioned on a 
three-axes microscope stage. Cells flow in the microfluidic chip 
is induced via a pressure-controlled pump system. The event 
camera (IDS, UE-39B0XCP-E) is used for rapid preliminary cell 
detection and the frame-based CMOS camera (IDS, UI-3060CP-
Rev.2) is used for further and more sensitive cell analysis via 
interferometric detection. In this setup, the event camera acts 
as a real-time trigger, detecting rare, rapidly flowing cells on 
localized bursts of events (sparse imaging). The event camera 
was configured with polarity thresholds of 80 for both ON and 
OFF events. When such a rare cell target is identified, the 
system is designed to initiate capture on the frame-based 
camera via the IPM module, recording off-axis imaging 
interferograms only upon these rare events, thus allowing much 
slower acquisition frame rate processing suitable for these rare 
events and just across the areas of the candidate cell. The 
optical path includes a 60×, 0.85 numerical aperture (NA) 
infinity corrected microscope objective (Newport), which is 
shared by both the event-based and frame-based cameras, 
where a beam splitter positioned after the objective divides the 
magnified image between two imaging channels. Tube lenses 
positioned in the event-based and frame-based camera beam 
paths create total magnifications of 77× and 70×, respectively. 
This dual-path design allows both cameras to image the same 
scene with appropriate magnifications for their respective 
sensing modalities. The event camera captures the magnified 
image responses to motion only, via changes in brightness at 
the pixel level and outputs a continuous stream of events 
indicating the presence of moving cells. In our case, the event 
stream is grouped into temporal windows of Δt = 1000 μs, and 
we preliminarily detect rare cancer cells, which are larger than 
the background blood cells. This is done by converting the event 
stream into a binary image and applying morphological dilation 
to connect nearby events. The Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) algorithm is applied to 
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group events into clusters representing individual cells. A 
diameter-based threshold of 180 pixels is then used to filter out 
small clusters and retain only those corresponding to larger 
cells. This threshold was selected based on the minimum cancer 
cell diameter measured in the training dataset and is consistent 
with the morphological filtering parameters (kernel size 10 × 10 
with 2 iterations). The value matches the chosen event 
accumulation window of Δt and could vary if a smaller temporal 
window is employed. Together with the selected temporal 
window, morphological dilation reduces missed detections by 
ensuring that weak or fragmented events are aggregated into 
candidate cells. Once a candidate cancer cell is identified, its 
centroid is computed and projected onto the frame-based 
camera coordinate space using a homography transformation 
derived from prior calibration. Thus, the frame-based camera is 
activated only when it receives a trigger that a rare cell is 
detected by the event camera. When multiple clusters exceed 
the threshold, each centroid is projected through the 
homography transformation to capture all relevant areas of 
interest simultaneously. Cell aggregates are filtered out using a 
maximum-size threshold and roundness criteria, as they are not 
considered reliable inputs for classification. Missed triggers of 
the interferometric camera are unlikely, as the inherent delay 
between event detection and trigger activation significantly 
exceeds the camera exposure time, ensuring readiness for the 
next trigger. This frame-based camera is positioned after a 
compact flipping interferometry (FI) module32. The module 
enables off-axis interferometric imaging by creating an 
interference pattern between the sample image and its flipped 

version, thus allowing external interferometry that is 
mechanically stable. The FI module consists of a beam splitter 
that divides the magnified beam into two paths: one is directed 
toward a retro-reflector and the other toward a slightly tilted 
mirror. The interference between these two beams generates 
an off-axis image interferogram, containing amplitude and the 
quantitative phase map of the sample, capturing the sample 
morphology and content via its refractive index changes, thus 
allowing sensitive quantitative imaging without using chemical 
staining.

CTC Model, Cell Culture and Sample Preparation

The imaging flow cytometry concept explained above is 
relevant for detecting and grading rare cells on the background 
of common blood cells, where the event-based camera 
performs the initial classification to trigger the frame-based 
camera for more sensitive analysis and cell grading. We have 
chosen to demonstrate the system for detecting and grading of 
cancer cells on the background of white blood cells, as a human 
model of CTCs in liquid biopsy. For this, a pair of isogenic human 
colorectal adenocarcinoma cell lines was used: SW480 (ATCC 
CCL-228), derived from a primary tumor, and SW620 (ATCC CCL-
227), derived from a metastatic lesion in a lymph node of the 
same patient. Cells were cultured in Dulbecco's Modified Eagle 
Medium (DMEM; ATCC, Cat. No. 30–2002) supplemented with 
10% Fetal Bovine Serum (FBS; Biological Industries, Cat. No. 04-
007-1A). Cultures were maintained at 37°C in a humidified 
incubator with 5% CO₂. Cells were grown to approximately 80% 
confluence before harvesting. Prior to imaging, cells were 

Fig. 1. Integrated imaging flow cytometry setup combing event camera for high-throughput sparse imaging of flowing biological cells for preliminary detection of rare cells and 
triggering a slower interferometric camera for cell grading. a) The entire setup. b) The microfluidic chip and pump. c) The off-axis interferometric module (flipping interferometry) 
with beam tracing. BS, beam splitter; L, tube lens; M, mirror; MO, microscope objective; RR, retroreflector; S, sample.
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diluted in phosphate-buffered saline (PBS) at a concentration of 
2 × 10⁶ cells/mL, which served as the buffer medium during the 
flow experiments. For preliminary data acquisition, cells were 
imaged in flow using both the frame-based CMOS camera and 
the event-based camera. The frame-based camera provided 
reference images for training and validation while the event 
camera images were used to explore data signatures and verify 
that the event-based data alone was not sufficient to distinguish 
between the two cell types, emphasizing the need for IPM. 

For the actual CTC model, we used cancer-cell-spiked blood. 
Whole blood was obtained from the Israel National Blood 
Services, following the Tel Aviv University's IRB approval. 
First, red blood cells were depleted using a suitable depletion 
kit (EasySep, STEMCELL Technologies) following the 
manufacturer's protocol, leaving white blood cells (WBCs). To 
facilitate comparison between cancer cell types, two controlled 
samples were prepared: one spiked with SW480 cells and the 
other with SW620 cells, each at a 1:100 cancer cell to WBC ratio. 
These samples were then inserted into the microfluidic chip and 
imaged using the setup described above.

Cancer Cell Classification using Interferometric Imaging

We collected raw off-axis interferograms of the two types of 
colorectal cancer cells for training and analysis. Following data 
acquisition, a convolutional neural network (CNN) based on the 
MobileNetV2 architecture. This model has previously been 
shown to outperform other commonly used CNNs for classifying 
similar colorectal cancer cell types33. We trained it for 
classification based on the acquired data. To further evaluate 
the system performance, a controlled sample was created by 
spiking WBCs with cancer cells. Cancer-cell detection on the 
background of WBCs was then performed using an event-based 
camera. The detected cells were subsequently analysed using 
the trained model to assess classification accuracy. The network 

was trained directly on the raw interferograms without OPD 
extraction. A background interferogram frame was first 
prepared through averaging a sequence of frames without cells 
present and subtracted from the actual interferograms with the 
cells, enhancing cell visibility for segmentation. During training, 
cell label (primary/metastatic) was known since a one-type cell 
sample was imaged by the interferometric system. In this stage, 
1400 images were collected for each cell type, and the database 
was divided into train and test sets in an 80:20 ratio, 
respectively. Since classification is done on the raw 
interferograms rather than on the OPD maps of the cells, the 
model was first trained on synthetic digital off-axis holograms 
having varying off-axis fringe spatial frequency, designed to 
improve robustness against interference patterns, thereby 
enhancing training efficiency and classification accuracy33. The 
model was trained using the Adam optimizer with a batch size 
of 32, 20 epochs, and a decreasing learning rate schedule to 
optimize convergence. All computations were performed on an 
Intel i7-10700 CPU. After training, the CNN can predict the 
cancer cell type based on the raw interferogram.

Figure 2 shows examples of cancer cells imaged by the event 
camera (first row), their off-axis interferogram as imaged by the 
CMOS camera through the interferometric module (second 
row), and their OPD extracted map (third row), as obtained by 
applying an off-axis hologram reconstruction process (although 
not used for cell classification)34. 

Results
The overall pipeline of our detection and classification is 
illustrated in Figure 3. The system is designed to operate in real 
time, beginning with rapidly capturing both WBCs and cancer 
cells in flow using an event-based camera. 

Fig. 2.  Primary cancer cells (SW480) and metastatic cancer cells (SW620) as imaged during flow by the event-based camera (first row), and off-axis image interferograms as 
imaged by frame-based camera through the interferometric module (second row). The corresponding OPD maps extracted from the interferograms are shown in the third 
row, although not used for cell classification. The white bar indicates 5 μm. The color bar on the bottom right refers to the OPD maps.

SW480
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OPD map

SW620
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The event data is processed to detect potential cancer cells 
based on spatial and temporal event patterns. Upon detection, 
a trigger signal activates the frame-based CMOS camera, which 
captures an off-axis hologram of the detected cell at a specific 
area of interest corresponding to the coordinates obtained 
from the event camera. This approach reduces the 
computational load by limiting processing to a 256×256-pixel 
region per cell, instead of the full 2-megapixel frame.

Supplementary Video S1 shows an illustration of the system 
at work, with both cameras imaging the cells at different frame 
rates. Table 1 summarizes the classification performance on the 
test set using different imaging modalities: event-based data, 
amplitude images, OPD maps, and raw off-axis interferograms. 
As expected, interferogram-based classification achieved the 
highest accuracy due to its ability to capture the cell 
quantitative phase information and amplitude information. 
Classification using the raw off-axis interferograms yielded 
perfect scores which can be attributed to the rich information 
content of the holograms, the use of a MobileNetV2 model pre-
trained on a large synthetic dataset of the same cell types 
acquired with varying fringe frequencies (as detailed in the 
Methods), and we implemented 10-fold cross-validation. This 
approach ensured evaluation across diverse subsets, reducing 
overfitting risk and providing a robust estimate of model 
performance. In contrast, event-based data alone yielded 
limited performance, highlighting the importance of 
interferometric imaging for cancer cell classification, rather 
than just using the data acquired by the event camera for cancer 
cell classification. The event-based imaging did not miss 
detecting any cancer cell but could not classify the cancer cell 
type in high accuracy, necessitating utilizing interferometric-
based classification. The average processing time required to 
detect a candidate cancer cell from the event stream was 
2.05± 7.43 milliseconds per frame, which enables near instant 
triggering of the frame-based interferometric camera.

As part of our experimental validation, we tested the system 
on blood samples spiked with the known cancer cell type. Each 
sample contained a defined ratio of cancer cells to white blood 
cells (1:100). The validation consisted of two independent 
experiments: blood spiked with SW620 cells, and blood spiked 
with SW480 cells, enabling controlled evaluation.  

Table 2 presents the number of WBCs and cancer cells 
detected in each controlled sample, along with the 
corresponding classification accuracy of the CNN model when 
given the respective interferograms as input after projecting the 
coordinates of the detected cancer cells to the interferogram 
coordinate space. 

To further assess the classification performance based on 
the event data alone, the same cells identified in the event 
stream were also fed into a MobileNetV2 architecture model 
that was trained on event-derived input. Notably, these cells 
were misclassified in approximately 38% of cases, suggesting 
that the event-based data lacks the robustness required for 
accurate classification of complex cell types, and that the more 
sensitive imaging by IPM is needed to grade the rare cells.

Conclusions
We introduced a hybrid system of imaging flow cytometry for 
rare cell detection and classification that combines the high 
temporal resolution of an event-based camera via sparse 
imaging for preliminary screening and a more sensitive 
secondary analysis for rare cell grading via off-axis IPM using a 
low temporal resolution frame-based camera. This integration 
enables real-time detection of rare, fast-moving cells in flow, 
triggering IPM only when needed. This selective acquisition 
approach reduces redundant data and minimizes 
computational load, offering a practical high-throughput 
solution for rare cell quantitative imaging flow cytometry. 

Fig. 3. Imaging flow cytometry pipeline of the detection and classification of cancer cell types on the background of WBCs. a) WBCs and cancer cells are captured during flow using 
the event camera. b) The event camera data is processed to generate images only when detection of cancer cells occurs. c) Cancer cells are detected by the event camera based on 
size differences compared WBCs. The frame-based camera is triggered to capture an off-axis interferogram of the detected cancer cells by imaging the projected area of interest. 
e) The off-axis interferogram of a triggered-area containing a cancer cell is used as input for cell classification via a MobileNetV2 deep learning model. f) The output is a prediction 
of the cancer cell type (primary (SW480)/metastatic (SW620)).

Event Cameraa) b) c)

d) MobileNetV2 Architecture

Cell Type Prediction: SW620 or SW480

e)

Event camera

Frame-based camera

Event camera

Trigger

Dw
ise

 C
on

v
3x

3,
Re

lU
6

Co
nv

 3
x3

,
Li

ne
ar

Co
nv

 1
x1

,
Re

lU
6

Page 5 of 8 Lab on a Chip

La
b

on
a

C
hi

p
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
4/

20
25

 6
:0

3:
21

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5LC00634A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5lc00634a


 ARTICLE

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 6

Please do not adjust margins

Please do not adjust margins

Table 1. Performance metrics for cancer cell line classification based on the test set. 

Table 2. Detection counts and classification accuracy for WBCs and cancer cells in various spiking ratios 

The processing time to detect a candidate cancer cell is 
influenced primarily by the number of activated pixels in each 
event frame, which scales with the spatial extent of the 
detected cells. In particular, larger cells generate denser event 
clusters, resulting in increased computational load. Notably, all 
processing was performed on a standard CPU, suggesting that 
further reductions in latency could be achieved through GPU 
acceleration or algorithmic optimization. These improvements 
would enhance real-time compatibility in high-throughput 
applications. Importantly, the trained model provided accurate 
predictions for every controlled sample, correctly distinguishing 
the cancer cell types. This successful classification between 
primary and metastatic colorectal cancer cell lines provides 
meaningful morphological insights that could be used for 
diagnosis of cancer from routine blood test, be used for cancer 
monitoring to inform personalized treatment decisions. In this 
proof-of-concept implementation, the acquisition of the cells 
was applied in real time, but the triggering mechanism was 
applied offline to retrospectively identify and extract relevant 
frames with rare cells using recorded event data, effectively 
demonstrating the potential to reduce redundant data 
acquisition. Validation was performed through two 
independent spiking experiments at a 1:100 cancer to blood cell 
ratio: one with SW620 cancer cells and another with SW480 
cancer cells. These controlled experiments provided initial 
evidence of reproducibility and feasibility, while future clinical 
evaluation should assess performance at the lower CTC levels 
typically observed (<10 cells/10 mL), in addition to conducting 
further biological replicates. Future real-time triggering is 
possible by opening a specific area of interest via the application 
programming interface (API) of the frame-based camera. The 
event camera processing window was configured to match a 30 
frames-per-second acquisition rate of the frame-based camera. 

However, the system is designed to support faster cameras by 
adjusting Δt of the event-based camera accordingly in order to 
enable high-throughput operation driven by the event-based 
trigger. Beyond cancer detection in liquid biopsies, this 
framework opens new possibilities for rare event identification 
in biomedical and industrial applications, including stem cell 
studies for personalized medicine. The suggested approach’s 
ability to detect rare phenomena with minimal processing 
supports the development of compact, low-power diagnostic 
tools suited for point-of-care or resource-limited settings, 
especially when label-free imaging is used. Apart from 
biomedical uses, the suggested dual-sensor approach could 
support various high-speed monitoring tasks such as industrial 
quality control through vibration analysis or analysis for fluid 
dynamics by triggering high-resolution imaging only during 
relevant events, thereby reducing data load while capturing key 
information.

In summary, the proposed system offers a fast, label-free, 
and computationally efficient quantitative imaging flow 
cytometry method for rare-cell detection and classification, 
with strong potential to impact early cancer diagnostics, as well 
as broader rare-event sensing domains.
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Data type Accuracy Label Precision Recall F1-score

SW480 1 1 1
Off-axis interferogram 1

SW620 1 1 1
SW480 0.98 0.90 0.94

OPD 0.94
SW620 0.91 0.98 0.95
SW480 0.90 0.88 0.89

Amplitude 0.90
SW620 0.89 0.91 0.90
SW480 0.83 1 0.91

Event-based image 0.90
SW620 1 0.80 0.89

Sample Label CTCs Detected WBCs Detected
Detected Ratio 
(WBCs:CTCs)

Classification Accuracy

SW480 80 11,252 0.71:100 100%
SW620 160 10,833 1.48:100 100%
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