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Rare cell classification using label-free imaging
flow cytometry via motion-sensitive-triggered
interferometry

Eden Dotan, a Dana Yagoda-Aharoni,a Eli Shapirab and Natan T. Shaked *a

We present a label-free imaging flow cytometry system that integrates a microfluidic chip, imaged by a

motion-sensitive (event-based) camera and an interferometric phase microscopy module using a simple

frame-based camera. The event camera captures activity from the flowing cells, corresponding to

thousands of frames per second, and triggers the significantly slower interferometric camera when a rare

cell, requiring more sensitive analysis, is detected via a single raw-interferogram analysis, significantly

reducing data volume. The raw interferometric data serves as an input to a deep neural network for

rare-cell classification. We demonstrate the use of this system to detect and grade rare cancer cells in

blood, where the event camera is used to rapidly classify between the common white blood cells and

the rare cancer cells, and the interferometric camera is used to grade the cancer cell type (primary/

metastatic), as a human model for detecting and grading circulating tumor cells in liquid biopsies. This

hybrid approach enables efficient data acquisition, rapid processing, and high sensitivity, significantly

reducing computational load, and is expected to find various applications in detecting and processing

rare cells in imaging flow cytometry.

Introduction

In recent years, motion-sensitive (event-based) sensors have
emerged as bio-inspired imaging devices, mimicking the
asynchronous and change-sensitive nature of the human
retina. Unlike frame-based cameras that capture entire scenes
at a fixed rate, event-based cameras independently record pixel
level changes in brightness with high temporal resolution on
the order of sub-microseconds and low latency.1,2 These
sensors detect an event when a significant change in light
intensity occurs. This event contains the pixel address, the
timestamp of the change of brightness, and the polarity, which
indicates an increase or decrease in brightness.1,3 In addition
to high temporal resolution, event-based cameras generally
acquire a highly sparse data stream compared to the dense
pixel data produced by frame-based cameras,1–4 significantly
lowering the data load at any given time interval.1,3 This leads
to more efficient processing, as algorithms can be designed to
operate directly on the asynchronous stream of events.4

Typically, such algorithms rely on event aggregation or filtering
within local spatial and temporal neighbourhoods, which is
considerably less computationally demanding than processing
full image matrices.3 This sparse imaging nature of event data

translates directly into reduced computational resource
requirements. For these reasons, event cameras are well suited
for detecting fast events, including moving objects.

Flow cytometry is a high-throughput technique capable of
analysing up to hundreds of thousands of biological cells per
second as they pass through laser beams. It can provide
information on cell size and internal complexity using
forward and side light scatter, respectively.5 While
conventional flow cytometry lacks imaging capabilities,
imaging flow cytometry combines high-throughput analysis
with cellular imaging during flow, thus allowing
morphological and functional profiling of single cells.6–8

Event cameras are well suited for imaging flow cytometry
since they generate events only when a cell passes through
the sensor's field of view.3,4

To achieve molecular specificity and reliable identification
in flow cytometry, fluorescence based labelling with
antibodies is typically required.9 This approach is widely used
across immunology, cancer biology, and infectious disease
research,10–15 but relies on the presence of distinct surface
markers. Challenges arise when target cells lack unique
antigens or share markers with other cell types. Moreover,
attaching labels to the cell membrane may alter cell
behaviour or compromise measurement integrity.16

Label-free imaging methods overcome these limitations by
leveraging intrinsic optical properties of cells. One such
parameter, the refractive index, reflects intracellular
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composition, including the cell dry mass and concentration.
Interferometric phase microscopy (IPM) noninvasively
measures the optical path delay (OPD) profile of cells, or its
integral refractive-index profile, enabling analysis of cell
morphology and subcellular contents, without using external
labelling agents.17–20 We have previously shown that IPM is
sensitive enough to grade cancer cells (healthy/primary
cancer/metastatic cancer),21 even during flow on the
background of blood cells.22 IPM typically requires the
acquisition of full-frame off-axis imaging interferograms,
generally dictating a low throughput of tens to hundreds of
frames per second when using low-cost cameras.

Several high-throughput quantitative phase imaging
strategies have been developed for rapid imaging flow
cytometry. For example, multi-ATOM enables blur-free
quantitative phase imaging of over 10 000 cells per second
using asymmetric detection and real-time FPGA processing,23

while Coherent-STEAM applies dispersive Fourier transform
for high-speed, label-free phase mapping of cells in flow.24

However, these techniques require complicated optical
setups, such as laser scanning modules, and meticulous
alignments, which are not suitable for seamless integration
into existing imaging flow cytometry setups.

In this paper, we propose a new concept for rapid and
efficient quantitative label-free imaging and grading of rare
cells within liquid biological samples. This approach utilizes a
rapid event-based camera that acquires cells during flow in a
microfluidic chip and triggers a slower interferometric frame-
based camera when rare cells requiring more sensitive analysis
are detected. We demonstrate this approach's potential for
detecting circulating tumor cells (CTCs) in liquid biopsies
obtained in routine lab tests by using a human model of blood
spiked with colorectal cancer cells.

Finding cancer in its early curable stages represents a
critical unmet need in oncology. Certain cancers, such as
pancreatic and colorectal cancers, can progress without
noticeable symptoms, thereby bypassing early diagnosis.25,26

Liquid biopsies, such as peripheral routine blood samples,
can be analysed to detect CTCs, as a means of detection
and monitoring of cancer. Currently, however, this
procedure's sensitivity for analysing and grading the cells
remains limited due to the extremely low concentration of
CTCs; for example, there are typically 1–10 cells per 10 mL
of peripheral blood.27–29

In our label-free imaging flow cytometry setup, detecting a
cell can be accomplished by monitoring multiple cells during
flow within a confined region and time window.3,30 Once a
candidate cancer cell is detected by the event-based camera,
the frame-based camera is immediately triggered, providing a
more sensitive IPM analysis for cell grading. IPM cell grading
utilises a convolutional neural network (CNN) trained to
classify the rare cell types (primary/metastatic cancer), such
that during the network inference, when IPM is triggered by
the event camera, it can predict the rare cell type directly
based on the raw interferograms, further increasing the
process throughput.

Several sensor approaches have been previously explored
to combine high-speed detection with high-resolution
imaging. High-speed CMOS cameras can record at kilohertz
rates, yet they require full-frame readout, producing terabytes
of data quickly and heavy post-processing, which limits real-
time scalability. Hybrid sensors like DAVIS346,31 offer
simultaneous events and frames but are constrained by lower
dynamic range and reduced spatial resolution. Shared
readout pathways further degrade temporal precision. These
limitations underscore the need for our dual-sensor design,
which preserves both sparse, low-latency detection and high-
quality interferometric imaging.

Methods and materials
Integrated imaging flow cytometry setup

The proposed integrated imaging flow cytometry setup is
shown in Fig. 1. For biological cell flow, we use a microfluidic
chip (width: 100 μm, height: 37 μm, #10001444, ChipShop)
containing a liquid sample with biological cells. The selected
chip height minimizes cell focus variation across the field of
view. A pressure pump (LU-FEZ-2000, LineUp Flow EZ,
Fluigent) is used to control the flow rate, which is
maintained between 5–15 millibar. The microfluidic chip is
mounted on a three-axis stage, which enables fine alignment
of the sample plane with the optical depth of focus. To
further ensure focused imaging, the pressure is adjusted to
maintain a steady flow velocity, so that cells move
consistently within the focal plane on the floor of the
channel. Under laminar flow conditions, cells are confined to
a narrow z-range, further reducing the likelihood of
defocusing.

The microfluidic chip is simultaneously imaged by two
cameras, a rapid event camera and a conventional CMOS
camera. The setup combines an inverted microscope
illuminated by a helium–neon (He–Ne) laser (λ = 632.8 nm,
17 mW), which provides coherent light necessary for
interferometric imaging. The laser beam is directed through
the microfluidic chip positioned on a three-axis microscope
stage. Cells flow in the microfluidic chip driven by a
pressure-controlled pump system. The event camera (IDS,
UE-39B0XCP-E) is used for rapid preliminary cell detection
and the frame-based camera (IDS, UI-3060CP-Rev.2) is used
for further and more sensitive cell analysis via
interferometric detection. In this setup, the event camera
acts as a real-time trigger, detecting rare, rapidly flowing
cells on localized bursts of events (sparse imaging). The
event camera was configured with contrast thresholds of 80
for both ON and OFF events. When such a rare cell target
is identified, the system is designed to initiate capture on
the frame-based camera via the IPM module, recording off-
axis imaging interferograms only upon these rare events.
This enables much slower acquisition frame rate processing
suitable for these rare events and only across the areas of
the candidate cell. The optical path includes a 60×, 0.85
numerical aperture (NA) infinity corrected microscope
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objective (Newport), which is shared by both the event-
based and frame-based cameras, where a beam splitter
positioned after the objective divides the magnified image
between two imaging channels. Tube lenses positioned in
the event-based and frame-based camera beam paths create
total magnifications of 77× and 70×, respectively. This dual-
path design allows both cameras to image the same scene
with appropriate magnifications for their respective sensing
modalities. The event camera captures the magnified image
responses to motion, via changes in brightness at the pixel
level and outputs a continuous stream of events indicating
the presence of moving cells. In our case, the event stream
is grouped into temporal windows of Δt = 1000 μs, and we
preliminarily detect rare cancer cells, which are larger than
the background blood cells. This is done by converting the
event stream into a binary image and applying
morphological dilation to connect nearby events. The
density-based spatial clustering of applications with noise
(DBSCAN) algorithm is applied to group events into clusters
representing individual cells. A diameter-based threshold of
180 pixels is then used to filter out small clusters and retain
only those corresponding to larger cells. This threshold was
selected based on the minimum cancer cell diameter
measured in the training dataset and is consistent with the
morphological filtering parameters (kernel size 10 × 10 with
2 iterations). The value matches the chosen event
accumulation time window, Δt, and could vary if a smaller

temporal window is employed. Together with the selected
temporal window, morphological dilation reduces missed
detections by ensuring that weak or fragmented events are
aggregated into candidate cells. Once a candidate cancer
cell is identified, its centroid is computed and projected
onto the frame-based camera coordinate space using a
homography transformation derived from prior calibration.
Thus, the frame-based camera is activated only when it
receives a trigger that a rare cell is detected by the event
camera. When multiple clusters exceed the threshold, each
centroid is projected through the homography
transformation to capture all relevant areas of interest
simultaneously. Cell aggregates are filtered out using a
maximum-size threshold and roundness criteria, as they are
not considered reliable inputs for classification. Missed
triggers of the interferometric camera are unlikely, as the
inherent delay between event detection and trigger
activation significantly exceeds the camera exposure time,
ensuring readiness for the next trigger.

The frame-based camera is positioned after a compact
flipping interferometry (FI) module.32 The module enables
off-axis interferometric imaging by creating an interference
pattern between the sample image and its flipped version,
thus allowing external interferometry that is mechanically
stable. The FI module consists of a beam splitter that divides
the magnified beam into two paths: one is directed toward a
retro-reflector and the other toward a slightly tilted mirror.

Fig. 1 Integrated imaging flow cytometry setup combining an event camera for high-throughput sparse imaging of flowing biological cells for
preliminary detection of rare cells, and triggering a slower interferometric camera for cell grading. A) The entire setup. B) The microfluidic chip and
pump. C) The off-axis interferometric module (flipping interferometry) with beam tracing. BS, beam splitter; L, tube lens; M, mirror; MO,
microscope objective; RR, retroreflector; S, sample.
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The interference between these two beams generates an off-
axis image interferogram, containing amplitude and the
quantitative phase map of the sample, capturing the sample
morphology and content via its refractive index changes, thus
allowing sensitive quantitative imaging without using
chemical staining.

CTC model, cell culture and sample preparation

The imaging flow cytometry concept explained above is
relevant for detecting and grading rare cells on the
background of common blood cells, where the event-based
camera performs the initial classification to trigger the
frame-based camera for more sensitive analysis and cell
grading. We have chosen to demonstrate the system for
detecting and grading cancer cells on the background of
white blood cells, as a human model of CTCs in liquid
biopsy. For this, a pair of isogenic human colorectal
adenocarcinoma cell lines was used: SW480 (ATCC CCL-228),
derived from a primary tumor, and SW620 (ATCC CCL-227),
derived from a metastatic lesion in a lymph node of the
same patient. Cells were cultured in Dulbecco's Modified
Eagle Medium (DMEM; ATCC, cat. no. 30-2002)
supplemented with 10% Fetal Bovine Serum (FBS; Biological
Industries, cat. no. 04-007-1A). Cultures were maintained at
37 °C in a humidified incubator with 5% CO2. Cells were
grown to approximately 80% confluence before harvesting.
Prior to imaging, cells were diluted in phosphate-buffered
saline (PBS) at a concentration of 2 × 106 cells per mL,
which served as the buffer medium during the flow
experiments. For preliminary data acquisition, cells were
imaged in flow using both the frame-based camera and the
event-based camera. The frame-based camera provided
reference images for training and validation while the event
camera images were used to explore data signatures and
verify that the event-based data alone was not sufficient to
distinguish between the two cell types, emphasizing the
need for IPM.

For the actual CTC model, we used cancer-cell-spiked
blood. Whole blood was obtained from the Israel National
Blood Services, following the Tel Aviv University's IRB
approval. First, red blood cells were depleted using a
commercial depletion kit (EasySep, STEMCELL Technologies)
following the manufacturer's protocol, leaving white blood
cells (WBCs). To facilitate comparison between cancer cell
types, two controlled samples were prepared: one spiked with
SW480 cells and the other with SW620 cells, each at a 1 : 100
cancer cell to WBC ratio. These samples were then inserted
into the microfluidic chip and imaged using the setup
described above.

Cancer cell classification using interferometric imaging

We collected raw off-axis interferograms of the two types of
colorectal cancer cells for training and analysis. Following
data acquisition, a CNN based on the MobileNetV2
architecture was employed. This model has previously been

shown to outperform other commonly used CNNs for
classifying similar colorectal cancer cell types.33 We trained
it for classification based on the acquired data. To further
evaluate the system performance, a controlled sample was
created by spiking WBCs with cancer cells. Cancer-cell
detection on the background of WBCs was then performed
using the event-based camera data. The detected cells were
subsequently analysed using the trained model to assess
classification accuracy. The model was trained directly on
the raw interferograms without OPD extraction. During
training, the cell label (primary/metastatic) was known
since a single type cell sample was imaged by the
interferometric system. In this stage, approximately 1400
images were collected for each cell type, and the database
was divided into train and test sets in an 80 : 20 ratio,
respectively. Since classification is done on the raw
interferograms rather than on the OPD maps of the cells,
the model was first trained on synthetic digital off-axis
holograms having varying off-axis fringe spatial frequency,
designed to improve robustness against interference
patterns, thereby enhancing training efficiency and
classification accuracy.33 The model was trained using the
Adam optimizer with a batch size of 32, 20 epochs, and a
decreasing learning rate schedule to optimize convergence.
All computations were performed on an Intel i7-10700 CPU.
After training, the CNN can predict the cancer cell type
based on the raw interferogram.

Fig. 2 shows examples of cancer cells imaged by the
event camera (first row), their off-axis interferogram as
imaged by the frame-based camera through the
interferometric module (second row), and their extracted
OPD map (third row), as obtained by applying an off-axis
hologram reconstruction process (although not used for cell
classification).34

Results

The overall detection and classification pipeline is illustrated
in Fig. 3. The system is designed to operate in real time,
beginning with rapidly capturing both WBCs and cancer cells
in flow using an event-based camera.

The event data is processed to detect potential cancer
cells based on spatial and temporal event patterns. Upon
detection, a trigger signal activates the frame-based
camera, which captures an off-axis hologram of the
detected cell at a specific area of interest corresponding
to the coordinates obtained from the event camera. This
approach reduces the computational load by limiting
processing to a 256 × 256-pixel region per cell, instead of
the full 2-megapixel frame.

Video S1 shows an illustration of the system at work, with
both cameras imaging the cells at different frame rates. Table 1
summarizes the classification performance on the test set
using different imaging modalities: event-based data,
amplitude images, OPD maps, and raw off-axis interferograms.
As expected, interferogram-based classification achieved the
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highest accuracy due to its ability to capture both the cell
quantitative phase information and amplitude information.
Classification using the raw off-axis interferograms yielded
perfect scores, which can be attributed to the rich information
content of the holograms, the use of a MobileNetV2 model pre-
trained on a large synthetic dataset of the same cell types
acquired with varying fringe frequencies (as detailed in the
Methods), and the 10-fold cross-validation implemented. This
approach ensured evaluation across diverse subsets, reducing
overfitting risk and providing a robust estimate of model
performance. In contrast, event-based data alone yielded

Fig. 2 Primary cancer cells (SW480) and metastatic cancer cells (SW620) as imaged during flow by the event-based camera (first row), and off-
axis image interferograms as imaged by frame-based camera through the interferometric module (second row). The corresponding OPD maps
extracted from the interferograms are shown in the third row, although not used for cell classification. The white bar indicates 5 μm. The color bar
on the bottom right refers to the OPD maps.

Fig. 3 Imaging flow cytometry pipeline for detection and classification of cancer cell types on the background of WBCs. A) WBCs and cancer cells
are captured during flow using the event camera. B) The event camera data is processed to detect cancer cells on the background of WBCs based
on size differences. C) When detection of a cancer cell occurs, the frame-based camera is triggered to capture an off-axis interferogram of the
detected cancer cell by imaging the projected area of interest. D) The off-axis interferogram of the triggered area containing a cancer cell is used as
input for cell classification via a MobileNetV2 model. E) The output is a prediction of the cancer cell type: primary (SW480) or metastatic (SW620).

Table 1 Performance metrics for cancer-cell classification based on the
test set

Data type Accuracy Label Precision Recall F1-score

Off-axis interferogram 1 SW480 1 1 1
SW620 1 1 1

OPD 0.94 SW480 0.98 0.90 0.94
SW620 0.91 0.98 0.95

Amplitude 0.90 SW480 0.90 0.88 0.89
SW620 0.89 0.91 0.90

Event-based image 0.90 SW480 0.83 1 0.91
SW620 1 0.80 0.89
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limited performance, highlighting the importance of
interferometric imaging for cancer cell classification, rather
than using only the data acquired by the event camera for
cancer cell classification. The event-based imaging did not miss
detecting any cancer cell but could not classify the cancer cell
type with high accuracy, necessitating utilizing interferometric-
based classification. The average processing time required to
detect a candidate cancer cell from the event stream was 2.05 ±
7.43 milliseconds per frame, which enables near instant
triggering of the frame-based interferometric camera.

As part of our experimental validation, we tested the system
on blood samples spiked with known cancer cell type. Each
sample contained a defined ratio of cancer cells to white blood
cells (1 : 100). The validation consisted of two independent
experiments: blood spiked with SW620 cells, and blood spiked
with SW480 cells, enabling controlled evaluation.

Table 2 presents the number of WBCs and cancer cells
detected in each controlled sample, along with the
corresponding classification accuracy of the CNN model
when given the respective interferograms as input, after
projecting the coordinates of the detected cancer cells to the
interferogram coordinate space.

To further assess the classification performance based on
the event data alone, the same cells identified in the event
stream were also fed into a MobileNetV2 model that was
trained on event-derived input. Notably, these cells were
misclassified in approximately 38% of cases, suggesting that
the event-based data lacks the robustness required for
accurate classification of complex cell types, and that the
more sensitive imaging by IPM is needed to grade the rare
cells.

Conclusions

We introduced a hybrid system of imaging flow cytometry for
rare cell detection and classification. It combines the high
temporal resolution of an event-based camera via sparse
imaging for preliminary screening, with a more-sensitive
secondary analysis for rare cell grading via off-axis IPM using
a slower frame-based camera. This integration enables real-
time detection of rare, fast-moving cells in flow, triggering
IPM only when needed. This selective acquisition approach
reduces redundant data and minimises computational load,
offering a practical high-throughput solution for rare cell
quantitative imaging flow cytometry.

The processing time to detect a candidate cancer cell is
influenced primarily by the number of activated pixels in
each event frame, which scales with the spatial extent of the

detected cells. In particular, larger cells generate denser
event clusters, resulting in increased computational load.
Notably, all processing was performed on a standard CPU,
suggesting that further reduction in latency could be
achieved through GPU acceleration or algorithmic
optimization. These improvements would enhance real-time
compatibility in high-throughput applications. Importantly,
the trained model yields accurate predictions for every
controlled sample, correctly distinguishing the cancer cell
types. This successful classification between primary and
metastatic colorectal cancer cell lines provides meaningful
morphological insights that could be used for diagnosis of
cancer from routine blood test, for cancer monitoring, and
for personalized treatment decisions.

In this proof-of-concept implementation, cell acquisition
was performed in real time, but the triggering mechanism
was applied offline to retrospectively identify and extract
relevant frames with rare cells using recorded event data,
effectively demonstrating the potential to reduce redundant
data acquisition. Future real-time triggering is possible by
opening a specific area of interest via the application
programming interface (API) of the frame-based camera. The
event camera processing window was configured to match a
30 frames-per-second acquisition rate of the frame-based
camera. However, the system is designed to support faster
cameras by adjusting Δt of the event-based camera
accordingly in order to enable high-throughput operation
driven by the event-based trigger. Validation was performed
through two independent spiking experiments at a 1 : 100
cancer to blood cell ratio: one experiment with SW620 cancer
cells and another experiment with SW480 cancer cells.
These controlled experiments provide initial evidence of
reproducibility and feasibility, while future clinical evaluation
should assess performance at the lower CTC levels typically
observed in blood (<10 cells per 10 mL). Beyond cancer
detection in liquid biopsies, the suggested framework opens
new possibilities for rare-event identification in biomedical
and industrial applications, including stem cell studies for
personalized medicine. The ability of the suggested approach
to detect rare phenomena with minimal processing supports
the development of compact, low-power diagnostic tools
suitable for point-of-care or resource-limited settings,
especially when label-free imaging is used. Apart from
biomedical uses, the suggested dual-sensor approach could
support various high-speed monitoring tasks, such as
industrial quality control through vibration analysis, analysis
for fluid dynamics, and in the automobile industry, by
triggering high-resolution imaging only during relevant rare
events, thereby reducing data load while capturing key
information.

In summary, the proposed system offers a fast, label-free,
and computationally efficient quantitative imaging flow
cytometry method for rare-cell detection and classification,
with strong potential to impact early cancer diagnostics, as
well as has potential to contribute to broader rare-event
sensing domains.

Table 2 Detection counts and classification accuracy for WBCs and
cancer cells in various spiking ratios

Sample
label

CTCs
detected

WBCs
detected

Detected ratio
(WBCs : CTCs)

Classification
accuracy

SW480 80 11 252 0.71 : 100 100%
SW620 160 10 833 1.48 : 100 100%
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