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Controlling the removal of bubbles from channels is crucial in microfluidics, either to eliminate air pockets
if they are unwanted, or in pumpless microfluidic applications where receding bubbles is a way to induce
liquid flows. To provide a better physical understanding of air removal in microchannels, we study the
dynamics of invasion of wetting liquids in dead-end microchannels surrounded by an air-permeable
medium. Using polydimethylsiloxane (PDMS)-based devices, we demonstrate that gas permeation through
the channel walls drives an exponential decay in trapped air length with time (in marked contrast with the
so-called Lucas-Washburn law of imbibition in porous media), providing a straightforward route to bubble
elimination. Systematic experiments varying channel width, height, and PDMS thickness reveal how
geometric and material factors modulate the refilling timescale. A simple analytical model, coupling
capillarity and gas diffusion, captures these results quantitatively. For this purpose, we introduce an explicit
expression for the interfacial curvature in microchannels with heterogeneous wettability (e.g., PDMS-on-
glass). This framework offers practical guidelines for microfluidic engineers aiming to prevent or remove
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1 Introduction

Spontaneous or forced imbibition in porous media plays a
central role in many natural and industrial processes, such as
the infiltration of water in soils or the recovery of hydrocarbons
in oil reservoirs. In idealised microfluidic channels open to an
external air reservoir, the imbibition dynamics can often be
described by extensions of the Lucas-Washburn law."” Under
these conditions, the principal limitation typically arises from
viscous dissipation within the invading liquid phase,' leading
to a characteristic growth of the liquid front proportional to the
square root of time. Imbibition can also occur through
mechanisms driven by thermodynamics at imposed pressure,
for instance via condensation in ink-bottle pores. These
nanoporous constrictions lead to liquids existing under negative
pressures, as highlighted by Vincent et al.® in a context relevant
for xylem embolism refilling in plant physiology.” Understanding
such phenomena is essential for explaining how cavitated
conduits in plants might refill despite internal pressure deficits.
Microfluidic systems present additional motivations for
studying liquid imbibition, particularly when undesired air
bubbles enter a chip. Such bubbles can result from
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trapped bubbles without relying on active pumping.

incomplete priming, dissolved gas emerging under pressure/
temperature shifts, or imperfect sealing of the microchannel
network. Once formed, they can severely disrupt flow
patterns, obstruct the transport of important reagents or
cells, and even cause oxidative or chemical reactions if
retained in oxygen-sensitive processes. Consequently, there is
strong incentive to eliminate these trapped air pockets, which
connects directly to the idea of liquid imbibition removing
gas from otherwise inaccessible parts of the device.

Kang et al.® studied the elimination of spurious bubbles
in microfluidic channels, by permeation through PDMS walls
under pressurisation. Their experiments revealed an
exponential decay in bubble volume, which is faster when the
overpressure in the channels increases. Another strategy to
eliminate bubbles in microchannels has been proposed by
Guo et al,’ using three parallel channels separated by
constrictions. Interestingly, they mention that their device is
bioinspired by the repair of embolisms in angiosperms,”'*™
although this biological question is still hotly debated and
that the possible repair mechanisms in plants remain
unclear. They recover an exponential decay of the bubbles,
and show experimentally that the decay time increases with
the channel width and the PDMS thickness.

Xu et al.'® provided a broader review of air transport
through PDMS for applications, mentioning that air can be
eliminated from the channels either by first degassing the

This journal is © The Royal Society of Chemistry 2025
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PDMS itself, or by applying a low-pressure environment in
separate, adjacent chambers, thus drawing the gas out from
the channels of interest. Not only can this be used to
eliminate air bubbles, but it opens the way to vacuum-driven
power-free pumpless microfluidics, with applications e.g. for
blood separation or cell cultures. This possibility to operate
microfluidic devices for sample preparation without
complicated and bulky pumping has developed recently a lot
of interest."*™*® A comprehensive overview of pervaporation-
based strategies and other mass-transfer-driven microfluidics
has also been provided by Bacchin et al.*®

However, the dynamics of liquid refilling (or bubble
removal) in PDMS microchannels has hitherto not been
rationalised by a comprehensive model, whilst it is necessary
to control the timescale associated to e.g. pumpless
microfluidics. In particular, the dynamics is often quantified in
terms of permeability through a thin membrane of thickness
0.5%13 However, in most practical situations in microfluidics,
the PDMS surrounding the channels cannot be identified to a
thin membrane, because of side effects (fluxes from the side
walls of the channel) and because the top PDMS part of the
channel must generally not be too compliant. To account for
these complications (as compared to the simple membrane
case), empirical correction factors have been proposed,’® but
they have not been related to the device geometry by a
predictive model. This calls for a proper study of the influence
of all geometrical parameters: not only PDMS thickness, but
also channel width and height, on the flux.

In this paper, we revisit the problem of bubble removal and
liquid imbibition in PDMS microchannels, focusing on dead-
end geometries in which air cannot be simply swept away by a
primary flow. We present experiments under well-controlled
capillary overpressure conditions, systematically varying
channel width, height, and PDMS thickness. We then propose
a theoretical framework that accounts for both capillary and
imposed pressures, combined with mass transport through the
entire PDMS bulk. This allows us to quantify precisely the
timescale of bubble shrinkage and channel refilling, moving
beyond the previously reported exponential fitting. Our
objective is to provide microfluidic users with a simple, yet
robust predictive tool for controlling bubble dynamics in
permeable environments, thereby improving the reliability of
pumpless microfluidic technologies and other air-permeable-
medium-based applications.

2 Materials and methods
2.1 Microchannel production

A silicon wafer serves as the base for photolithography using
an SU-8 photoresist (Gersteltec). After depositing a uniform
layer of resist by spin coating (to achieve a target thickness #),
the wafer is selectively exposed through a photomask (Selba).
The unexposed areas are subsequently removed in propylene
glycol methyl ether acetate (PGMEA, Sigma-Aldrich), revealing a
topography corresponding to the final channel geometry. A
post-exposure bake at 200 °C completes the mold fabrication.

This journal is © The Royal Society of Chemistry 2025
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The polydimethylsiloxane, a silicone elastomer hereafter
referred to as PDMS, (Sylgard™ 184, Dow) is prepared by
thoroughly mixing a 10:1 mass ratio of base to curing agent.
The mixture undergoes vacuum degassing for approximately
one hour to eliminate trapped air. A controlled volume (e.g.,
2.5 mL) of this degassed solution is then spread over the
structured wafer by spin coating for 10 s at 500 rpm, followed
by 40 s at speeds between 700 and 2000 rpm, depending on
the desired PDMS thickness H. The coated wafer is then
placed for an additional hour to ensure uniform levelling of
the film, before the curing step.

The spin-coated PDMS is then cured in an oven at 65 °C
for 24 h. Once polymerised, the flexible PDMS layer is gently
released from the silicon wafer, exposing the channel
features in negative topography. A brief atmospheric plasma
treatment on a glass slide provides a surface amenable to
bonding. Finally, the PDMS is carefully placed onto the
plasma-treated slide.

2.2 Microchannel design

We investigate two channel geometries: first channels of
constant width, and then channels of variable width. The first
geometry consists of straight channels of length L, with a
constant width w, examined in sec. 3 and modelled in sec. 4.
The height of the channels is %, and the thickness of the total
PDMS membrane is H, such that a layer of PDMS of thickness
0 = H — h separates the top wall of the channels from the
surrounding air (Fig. 1). Five such channels, with similar height
and PDMS thickness but different widths, are actually placed
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Fig. 1 Sketches of the channel, not to scale. (a) Sketch of the cross-
section, with the relevant dimensions and the coordinates. (b)
Longitudinal side-view sketch along the channel. The meniscus,
sketched as an arc of circle inside the channel, separates a gas pocket
on its right side and a liquid-filled region on its left side. The green
dashed arrows depict the air flux leaving the channel by permeation
through PDMS, owing to the overpressure in the gas pocket. (c) Top-
view sketch of the channel. In (b) and (c), the drop deposited at the
entrance of the channel is sketched as a portion of a circle.
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as an array on the same chip (Fig. 2a). We checked that they
are far enough apart that they can be considered as
independent as far as the flux through PDMS is concerned.”>*
The second geometry builds on insights from the first
configuration and is developed in sec. 6: it consists in channels
with a width w(x) that varies linearly along their longitudinal
direction x (Fig. 2b). This extended design enables further tests
of our theoretical approach under spatially non-uniform
geometries, and promises reliable applications on networks
with arbitrary geometries.

2.3 Experimental protocol

The experiments proceed as follows. First, the channels are
unsealed at one end by incising the PDMS layer with a sharp
scalpel. The incised channels are placed under a binocular. We
first checked by visual inspection that the incision is sharp and
clean; indeed, uncontrolled roughness is to be avoided, because
it is known to affect flow resistance** and transfer rates, e.g. in
the case of evaporation.>* A drop of liquid of volume of order 1
mL is deposited at the open end of the channels. Imbibition
ensues, and is recorded with a CCD camera. In the images, the
advancing menisci separating dark bubbles from bright liquid-
filled portions of the channels are readily detectable: they are
highlighted by the red dashed arrows in Fig. 2. It is worth noting
that the liquid-filled parts of the channels are almost invisible,
owing to the very similar values of the refractive index of PDMS
(n = 1.43) and of pentanol (n = 1.41), the liquid used in most of
our experiments (see sec. 2.4). Once imbibition is completed and
all bubbles have disappeared, the movies are analysed using
home-made Matlab scripts to extract the time evolution of the
bubble length L(). All experiments are run at 25 + 1 °C.

2.4 On the choice of the liquid

The choice of the liquid is important in this study. We first
checked that it is impossible to fill the microchannels with

- -
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pure water. By placing a water droplet at the channel
entrance, we then observed that the meniscus remains stuck
at the entrance. Indeed, water on PDMS has a very high
contact angle (0 = 108°),>* hence PDMS is too hydrophobic
for spontaneous imbibition with pure water to take place.
However, it sufficed to add a minute amount of soap in the
water droplet to initiate filling: soap decreases the surface
tension of water, hence its contact angle with PDMS, enough
for spontaneous imbibition to start.

Since we wanted to avoid the potential complications
associated with solutions, this early observation led us to
search for pure liquids that present good wetting with PDMS,
hence liquids of low surface tension. The wetting liquid should
be not too soluble in PDMS to minimise swelling.>® Lastly, it
must be not too volatile, to keep a little reservoir of liquid at
the entrance of the channel throughout the experiments. The
alcohol family presents some good candidates, and we chose
pentan-1-ol (henceforth called pentanol for simplicity) to
produce all of the experimental data and results presented in
this work, except in sec. 3.4 where a comparison with octanol is
made. We note for future reference that the contact angle of

pentanol on PDMS is around @ = 30°.>

3 Experimental results
3.1 An exponentially decaying dynamics

We show in Fig. 3a the time evolution of the length of the air
pocket L(¢) for five channels of fixed total length L,, height A
and upper wall thickness ¢, but varying width w. All curves
display a decrease of the air length with time, with a rate of
decrease |L| = -dL/dt which itself decreases with time. The
dynamics is faster for narrower channels.

The experimental dynamics is extremely well fitted by an
exponential decay:

L(t) = L(t = 0)e™™", (1)

(b)

- — -

- N

Fig. 2 Snapshots of the channels used in this study. Scale bars correspond to 1 mm. (a) Single channels of constant width w: from bottom to top,
w = 60, 80, 100, 120 and 140 um. The inlet of the channels is at the left of the picture, where menisci can be observed (red dashed arrows). The
dead ends of the channels are the right of the picture, indicated by blue solid arrows. (b) Two channels of linearly variable width, decreasing at left
and increasing at right. They are connected at the beginning of the experiment, but once the meniscus (at the bottom of the snapshot, indicated
by a red dashed line) reaches the bifurcation, it splits in two menisci, one in each channel, which then evolve independently towards the two dead

ends (in the top, indicated by blue solid arrows).

5032 | Lab Chip, 2025, 25, 5030-5042

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5lc00407a

Open Access Article. Published on 19 August 2025. Downloaded on 10/31/2025 7:17:22 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Lab on a Chip

and it turns out to be the case for all other experiments
analysed in this study. This exponential decay confirms
previous studies on bubble removal in microfluidic channels.®®
We shall henceforth focus mostly on the value of the parameter
7, which we call the imbibition timescale.

To confirm the validity of the exponential decay, we also
extract the rate of decrease |L| by finite differences on the
experimental data of L(¢), and plot it as a function of L, in the
inset of Fig. 3a. Although the data are more noisy, as always
when estimating a time derivative of discrete data, they agree
very well with a linear law of the form |L| = L/z. Moreover,
the values of 7;, measured as the best fitting slope in the inset
of Fig. 3a agree with the value of r measured as the best
fitting parameter in Fig. 3a within 3%.

To assess the robustness and reproducibility of our
results, we recorded five independent time evolutions L(¢) in
a channel with a given geometry in Fig. 3b. The
corresponding five curves all collapse together, and they are
all extremely well fitted by the exponential law (1). From the
statistics of the five fitted timescales 7, we get 7 =47.0 + 0.7 s:

0 500 1000

t(s)

1500

(b)

Fig. 3 (a) Time evolution of the length of the air-filled part of five
channels, with dimensions Lo = 18 mm, h = 60 um, H = 66 um, and w
= 60 (0), 80 (O), 100 (0), 120 (») and 140 pum (V). Curves are fits by an
exponential law L(t) = Loe™". Inset: plot of the velocity of the air/liquid
interface as a function of the length of the air-filled part of the five
channels. Lines are fits by a linear law |L| = L/z. (b) Five independent
time evolutions (with different colours) of the length of the air-filled
part of a channel with dimensions Lo = 7 mm, h = 11.3 um, H = 68.6
pum and w = 100 um. Curves are fits by an exponential law L(t) = Loe ",

This journal is © The Royal Society of Chemistry 2025
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the very small value of the standard deviation compared to
the mean confirms the reproducibility of our measurements.

3.2 Comparison of imbibition in closed-end and open-end
channels

To clearly demonstrate the difference in imbibition dynamics
with closed or open ends, we focused on one channel. We first
recorded its imbibition dynamics with a dead end (open
symbols in Fig. 4). Once the imbibition was completed, we let
the pentanol pervaporate out of the channel, then incised the
dead end of the channel to open it. We then redid the
imbibition experiment (close symbols in Fig. 4). The imbibition
dynamics is strikingly different: not only is the process about
500 times faster, but L(¢) follows closely the square root
behaviour typical of the Lucas-Washburn law in tubes of
constant section,' in marked contrast with the exponential
dynamics for the closed-end channel. This simple comparison
convincingly demonstrates that whilst the driving force for the
imbibition is the same in both cases, stemming from the
capillary pressure, the resistive force is completely different:
viscous dissipation for the open-end channels vs. gas transfer
through PDMS for the close-end channels.

3.3 Dependence of the imbibition timescale on the
geometrical parameters

We now study the influence of the various geometrical
parameters of the channel: its total length, width, height and
upper wall thickness, on the imbibition timescale 7. We first
plot the imbibition timescale as a function of the total
channel length, for different widths, at fixed height and
thickness, in Fig. 5a. It shows that the imbibition timescale is
almost independent of the total length in our studied range
of parameters (here L, is varied between 4.5 and 18 mm): its
relative variation, defined as the ratio between the standard
deviation and the mean of ¢ for each series (see caption of

t/T

Fig. 4 Time evolution of the length of the air-filled part of a channel
with dimensions w = 100 um, h = 40 um and H = 125 um, either with a
closed end (0) or with an open end (®). The time T equals 2500 s for the
closed-end experiment and 5 s for the open-end experiment. The curves
are fit by the exponential law (1) for the closed-end channel, and by a
square-root law: L(t) = L(t = 0) x (17 «/t/rw) for the open-end channel.
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Fig. 5a for the values) does not exceed 2.5%. Fig. 5a also
confirms that r increases at increasing width.

Next, we plot the imbibition timescale as a function of the
channel width, for two different upper wall thicknesses, at
fixed channel length and height, in Fig. 5b. It evidences the
increase of the imbibition timescale at increasing width, with
a slight concave trend.

Finally, we plot the imbibition timescale as a function of the
channel height, at fixed channel width and length and fixed upper
wall thickness, in Fig. 5c. It is much more difficult to obtain these
data points, because each channel height requires making a new
mold, and because aiming at a constant upper wall thickness
requires to adjust the spin coating velocity of PDMS with some
trial and error (whence the error bar on ¢ mentioned in the
caption of Fig. 5¢c, which comes from the statistical dispersion of
the three measured values of §). For this reason, we could obtain
only three data points in Fig. 5c. However, they are noteworthy
because they show that the imbibition timescale increases
strongly, and in a superlinear fashion, with the channel height.

3.4 Effect of the liquid

To ensure that the dynamics discussed in this work does not
only apply to a specific liquid, we studied imbibition in four
channels of same height and thickness and different width
with two liquids: pentanol and octanol (Fig. 6). We recover the
exponential decay of L(t) for octanol, and the data points are
almost undistinguishable from those for pentanol. The ratio
of the imbibition timescales for pentanol 7., and for octanol
Toct 1S plotted in the inset of Fig. 6, showing a constant value
of 1.03 independent of the channel width.

4 Theory

The goal of this Section is to predict the imbibition timescale

View Article Online
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Since pentanol is wetting the channel walls, Laplace
pressure implies that the air pocket inside the channel is in
overpressure relative to the liquid in contact with the
meniscus, the pressure difference being equal to y& with y
the surface tension and € the curvature of the meniscus.
Assuming that pressure variations are negligible in the liquid,
an assumption that we will shortly justify, the air trapped in
the channel is therefore in overpressure relative to the
ambient air around the channel. Hence, the air bubble tends
to permeate outwards, which justifies the decrease of L.

4.1 Air flux through PDMS

We assume that the channels do not deform under the action
of the overpressure, and we neglect the transport of pentanol
through PDMS with respect to the transport of air. Hence,
the instantaneous volume of the air pocket is AwL, and the
conservation of air volume imposes that:

hwL = -Q, (2)
where Q is the volumetric flux of air leaving the channel. In the
absence of significant pressure variation throughout the
experiment, we assume that the air density remains constant,
whence the validity of volume (instead of mass) conservation.
Moreover, the air pocket is slender, in the sense that its length
is much greater than all cross-section dimensions 4, w and H,
except at the very end of the filling process. Hence, neglecting
end effects, the permeation rate per unit length ¢ is constant
all along the air pocket, which is at constant pressure, and the
outwards air flux is simply proportional to L: Q = gL. Together
with (2), this justifies the experimentally observed exponential
decay (1), and predicts that the imbibition timescale is:

T=— 3
as a function of the geometrical parameters of the channels q G)
and of the material parameters of the PDMS.
1200 ‘ A 1500
1000 ; 1500 (C) 1
74
800 1 1000
. = = = g1 1000 .
<600 z RCH
= © © © b 4 3
400 500 500
20 (@) (b)
0 : 0 0
0 5 10 15 0 50 100 0 20 40 60 80

Ly (mm) h (pm)

Fig. 5 (a) Plot of the imbibition timescale as a function of the channel length, for channels of dimensions h = 60 um, H = 116.5 pm, and w = 60
(0), 80 (O), 100 (0), 120 (A) and 140 um (V). Lines are average of the data; the statistics over each series of four data points gives: T = 525 + 4, 714
+ 4,861+ 7,1000 + 15 and 1105 * 28 s respectively for w = 60, 80, 100, 120 and 140 um. (b) Plot of the imbibition timescale as a function of the
channel width, for channels of dimensions h = 60 um, Lo = 18 mm, and ¢ = 57 (0) and 127 um (2). The linear size of the symbols is proportional to
the channel width. The curves are fits by (11), where a = (DS%,)) ! is taken as a free fitting parameter, with value a = 0.0258 and 0.0231 ym™> s
respectively for = 57 and 127 um. (c) Plot of the imbibition timescale as a function of the channel height, for fixed channel length Lo = 18 mm
and width w = 100 um, and fixed upper wall thickness & = 57.9 + 1.8 um. The curve is a fit by (11), where a = (DS3y)™" is taken as a free fitting
parameter, with value a = 0.0259 um™> s. For (a), (b) and (c), the chosen values of the parameters (Lo, w, h and §) were selected to enable the
independent variation of each geometric factor, ensuring that their individual influence on the imbibition timescale could be clearly assessed.

w (pm)
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Fig. 6 Time evolution of the length of the air pocket, for four channels
with dimensions Lo = 18 mm, h = 60 um, H = 180 um, and w = 80 (blue),
100 (green), 120 (violet) and 140 um (red). The channels were filled with
pentanol (0) and octanol (>). The lines (simple for pentanol, dotted for
octanol) are fits by eqn (1). Inset: ratio of the imbibition timescales of
pentanol z,ent and octanol 7., as a function of channel width.

The next step consists in predicting g. This permeation rate
per unit length arises from the outwards diffusion of air within
the PDMS resulting from the pressure difference between the
air pocket and the atmosphere; using Fick's law, we have:

g = - [DVcnds, 4)

where D = 3.4 x 107° m® s is the diffusion constant of
dissolved air within PDMS®’ and ¢ its concentration, and
where the integral is taken along the channel/PDMS
boundary (in the cross-section), of curvilinear abscissa s and
unit outwards vector n. Notice that since g is a volumetric
flux per unit length, it has the same dimensions as D, hence
¢ here is dimensionless: its meaning is the dissolved volume
of gas per unit volume of PDMS. To proceed, we must
determine the concentration field, which obeys the diffusion
equation. Since the typical order of magnitude of the
transverse dimensions (e.g. the channel width or the PDMS
thickness) is ¢ ~ 10™* m, the typical diffusion time in the
cross-section is ¢*/D ~ 3 s, which is two orders of magnitude
smaller than the measured values of 7 in almost all
experiments (see sec. 3.3), except for the smallest channel
heights. Hence, we may consider that the diffusion is
quasisteady, and the concentration field obeys the two-
dimensional Laplace equation in the cross-section.

To get the boundary conditions, it is required to know the
amount of dissolved air in the PDMS in the range of
pressures of the experiments. For this, we use the solubility
coefficient $,%” defined such that ¢ = Sp at the PDMS/gas
boundaries, where p is the partial pressure of air. This linear
relationship is an example of Henry's law, and it is valid
because the air concentration in PDMS is small. Hence, we
take the following boundary conditions: at the PDMS/
atmosphere interface, ¢ = Spaum, With pam = 1 atm = 10° Pa,

This journal is © The Royal Society of Chemistry 2025
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and at the PDMS/channel interface, ¢ = Sp;,, with p;, the
pressure inside the gas pocket, neglecting the influence of
the pentanol vapour in the gas pocket. Finally, there is no
flux at the glass/PDMS interface.

Let us define the following dimensionless function related
to the concentration field:

c-Sp
R )
S(pin _patm)

then f obeys the two-dimensional Laplace equation (see
Fig. 1a for the definition of the coordinates):

?f 9
o P,
ox>  9y?

with boundary conditions:

f=0aty=H, %:Oaty:OandMZw/Z, (6)

f=tlaty=hand |x| <w/2,and at |x| =w/2and 0 <y < h.

The second of these three conditions expresses that glass
is impermeable to air. This problem has been solved
analytically in Appendix A of ref. 21. In particular, as long as
Jo/lw < 1.5 or h/w < 0.1, a condition met in our experiments,
the following approximation was found to hold within 1%:

2[, (H+d0h H, H+0o

— 1 —1 . 7
. 5 +5nh @)

—JVf-nds :%—i-

The two terms in the right-hand side can be interpreted as
follows. The term w/d represents the “direct” transfer through
the PDMS wall of width w and thickness J separating the
channel top from the atmosphere. The second term represents
the transfer from the sides of the channel to the atmosphere
through the thicker body of PDMS. In our experimental
conditions, this side-transfer term is far from negligible.

Coming back to the definition (5) of f and plugging (7)
into (4), we thus get the flux:

q = DS (p;, —patm){%—o—% {ln (H + o)k +ElnH+ﬂ } (8)

b1 5 0 h

4.2 Capillary pressure

To predict the pressure difference p;, — paum remaining in (8), we
first split it in two parts: pin = Patm = (Pin = P¢) + (Pe = Parm), Where
P in the pressure in the liquid in contact with the meniscus.
Hence, pi, — p, is the Laplace pressure across the meniscus. A
difficulty in our experiments is that the meniscus is in contact
with two different materials: PDMS at the side walls and at the
top wall, and glass at the bottom wall. Since glass is more
hydrophilic than PDMS, the contact angle of pentanol on glass &'
is lower than the contact angle # = 30° of pentanol on PDMS. To
account for this presence of two different materials, which is an
ubiquitous situation in microfluidics owing to the frequent
gluing of PDMS channels on glass slides, the following
expression of the capillary pressure has been claimed to apply
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without justification®® and quoted in subsequent review
articles:* pi, — p, = y[(cos & + cos &)/h + 2 cos H/w]. However, this
unjustified formula is erroneous, and we derive in the Appendix
the correct formula for arbitrary, extending a method introduced
by Mason and Morrow.*® Taking for simplicity ¢ = 0, hence
assuming that pentanol is perfectly wetting on glass, this
formula reads:

v

1 1
—p =" Zw@ Zw(1 -
Pin=Pe =7 <2w( +cos0)+hcos€+{{2w( + cos)—hcosd

In our experiments, y = 25.7 mN m™" for pentanol and / is at
most 80 pm, hence the order of magnitude of p;, — p, is y/h = 3
x 10> Pa.

We now argue that |py — Parm| << Pin — pe. Three terms may
contribute to p, — pam: the Laplace pressure at the surface of the
drop, a gravitational term over the height of the drop, and a
viscous pressure drop in the liquid set into motion by the bubble
shrinkage. In our experiments, the drop is flat and Laplace
pressure is certainly orders of magnitude lower than at the
meniscus between the bubble and the liquid (Fig. 1 is not at
scale). The height of the drop is less than 1 mm, hence
hydrostatic pressure remains lower than 10 Pa. To estimate the
viscous pressure drop, we assume that a length L, — L of the
liquid in the channel is entrained at the velocity of the meniscus
|L| (hence we neglect pervaporation effects), and we use
Poiseuille law in a rectangular channel: |L| = #Vp/y, with Vp the
pressure gradient, 7 = 4 x 10~ Pa s the liquid viscosity and an
effective section given by (see e.g.*"):

1 16 - 1 (2n 4+ 1)mw
F=—h-"h tanh ,
12 W enr1y 2h

n=0

which remains close to h*/12 in our range of experimental

parameters. Hence, a good estimation of the viscous pressure
drop is 124(L, - L)|L|/h* With the exponential law L(t) = Le ",
the quantity (L, — L)|L| has as upper bound Lg/(47). Hence, the
viscous pressure drop is lower than 37Lg/(h%7). This quantity is
equal to 2 Pa with L, = 18 mm, & = 60 um and 7 = 5 x 10” s (an
order of magnitude given by Fig. 5b). This remains more than
two orders of magnitude lower than Laplace pressure (9).
Altogether, the pressure variations within the liquid remain
negligible with Laplace pressure (9), which we can therefore
identify to the term pj, = Pam in (8). Therefore, we get the final
prediction

1

1/2
sifd % cost {11+ cost)- T eost] + A (scostsing s x- w2y
q—DSh<2(1+c059)+w0050+{{2(1+0050) wcos&] +w(300s6’sm0+n 30) X +n In

Inserting this expression in (3), we predict the imbibition time:

n*6

T=—
DSy\ 2
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which constitutes the main theoretical result of our study.
In particular, although we shall compare this prediction to
data on pentanol and octanol in hydrophobic PDMS, eqn
(11) can be applied to any liquid and any surface
treatment, provided the contact angle # is measured. Some
studies also reported that surface treatment can also affect
the diffusion coefficient, which decreases for freshly

2

1/2
+hw(3cos€sin9+n—30)} > (9)

oxidised PDMS:** this possible effect is also accounted for
in our model, since eqn (11) shows that the imbibition
time is inversely proportional to the diffusion coefficient.

5 Comparison between experiments
and theory

We now compare this prediction to the experimental
measurements, first focusing on the effect of geometry.
First, we remark that the imbibition timescale is predicted
not to depend on the channel length, which agrees with
Fig. 5a. Next, we fit the data from Fig. 5b and c by the
formula (11) with a = (DSy)™" taken as a fitting parameter.
These fits show that the model captures qualitatively all the
trends, namely the increase of the imbibition timescale at
increasing width, increasing upper wall thickness and
increasing channel height. In particular, it reproduces
excellently the dependence on the channel height (Fig. 5c),
whilst it predicts slightly stronger variations with the
channel width than the measurements (Fig. 5b). We also
notice that the obtained values of the fitting parameter a,
taken independently for each series of data, are consistent
within 7%; averaging them yields @ = 0.0240 + 0.0016 pm >
s. This suggests that our model includes the essential
ingredients to understand the role of the geometrical
parameters on the imbibition dynamics.

We can also test the predictions for different liquids,
here pentanol and octanol (Fig. 6). According to (11), at
given channel geometry, the ratio of the imbibition times of
the two liquids should be constant and equal to the inverse
ratio of their surface tensions: Tpent/Toct = Yoct/Vpent at given
contact angle 6. The imbibition timescale ratio was found
to be almost constant in experiments (see inset in Fig. 6).
Using the values ypene = 25.4 mN m™, yoee = 27.1 mN m™},

w2 JHy
0 0 h

H+0h H H+5]}
; .

(10)

il Pl

20 [, (H+O)h H H+o B
5 o h ’

(11)
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given for T = 25 °C in,* and comparing with the values
obtained from curve fitting, we find that the results are
predicted well by the theory: we get tpent/toce = 1.03 whilst
Yoct/Vpent = 1.07. The remaining small discrepancy likely
comes from a difference of contact angle between pentanol
and octanol on PDMS.

We now discuss the value of the fitting parameter a. To have
a numerical value for the solubility, we use the data of Merkel
et al.,”” who measured the solubility S of various gases in PDMS.
Merkel et al. showed that the solubility is well represented by an
affine law S = S (1 + np), and provide the following values (see
Tab. II in*’) for Ny: S = 0.09 cm{y, em™ atm™ and ny, = 3 %
10~ atm™', and for O,: S, = 0.18 cmgy, cm™ atm™ and o, = 5
x 107> atm™. Since our pressures remain of order 1 atm = 10’
Pa, these numerical data show that we may take S = S™ as a good
approximation. In the value of the solubility, 1 cmdyp is the
number of moles that would occupy one cubic centimeter at
standard temperature and pressure, as calculated via the ideal
gas law. In our model, since ¢ is dimensionless, we use the
following unit conversion: § = 1 cmgyp cm™ atm™ corresponds
to § =1 atm™ = 10 Pa ". Hence, if we consider a simplified
atmosphere composed of 79% of O, and of 21% of N,, we take
the linear combination of the contributions of these two gases
(which is justified by the additivity of the partial pressures),
whence the following value of the air solubility:
Sg =079 8%, +0.21 8§ = 0.11 cmg,, cm™ atm™. Hence, we
shall use S = 1.1 x 107® Pa™*. With the values already mentioned:
D=34x%x10" m*s" and y = 25 mN m™, this gives (DSy)" =
0.0105 um™ s. This value agrees in order of magnitude with our
fitting value a = 0.024 um ™ s, but it is two times lower. We shall

hcos@
wx=1L

Q :DE% (%(1 + cosf) +

[
ol 0

discuss later some reasons for this discrepancy, in relation with
some simplifying assumptions of the model. However, a
probable explanation for this factor-of-two difference is the
specific PDMS recipe used here, which differs from the
preparation reported by Merkel et al®” In particular, Lamberti
et al.** demonstrated that the gas permeability of PDMS can vary
by a factor of four when the prepolymer-to-curing-agent ratio is
changed. Physically, this variation arises from alterations to the
free-volume “holes” in the polymer matrix-a notion supported
by earlier observations of Carrillo et al®*> and Stafie et al,*
which highlight how increasing the crosslinker content reduces
the size and number of these voids, thereby curbing gas
transport. Consequently, even moderate shifts in PDMS
preparation could readily explain the gap between our parameter
a and the value inferred from Merkel's data. It is also worth
noting that Merkel et al. purchased their PDMS membranes and
do not provide quantitative details about the curing agent, hence
it is probably illusory anyway to expect a 1:1 comparison
between their reported solubilities and the ones inferred from
our study.

5 h
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6 Channels of varying width

We now extend our study to the case of single channels of
varying width. We start by the extension of the theory to such
a case which, as we shall see, is relatively straightforward. An
analogous treatment was realised in the context of drying
channels by pervaporation.’” We use a streamwise coordinate
x along the channel, choose its origin x = 0 at the close end
of the channel, and orient x towards its open end; with this
convention, the meniscus is located at x = L, and its velocity
L is negative. We may then extend the conservation of air (2)
simply by evaluating the width at the meniscus location:

hw(x = L)L = -Q, (12)
with Q the volumetric flux of air leaving the channel. The
latter is easy to evaluate if the cross-section dimensions are
small with respect to the longitudinal scale L,, along which w
varies significantly. The cross-section dimensions (w, ¢ and %)
determine the order of magnitude of the length over which
the concentration field varies across the channel, whilst L,
determines the order of magnitude of the length over which
the concentration field varies along the channel. Hence, if L,,
is much larger than w, ¢ and h, we can still use the
expression (8) of the permeation rate per unit length g
derived in sec. 4.1, provided that in the term between braces
in (8), we use the local value of the channel width. The
volumetric flux Q is then obtained by integrating g over the
length of the air pocket. On the other hand, the Laplace
pressure term pi, — Pawm, given by (9), depends on the width
at the meniscus location. Hence,

hcos6 1?
w(x=1L) w(x=1L)

1/2
(3cosfsiné + n—30)} )

(13)

Once the profile w(x) is known, it is a simple matter to
compute the remaining integral, and to insert the expression
of Q into the equation of conservation of air (12) to obtain a
(nonlinear) differential equation for the dynamics of the
meniscus.

To test this idea experimentally, we designed two channels
with linearly variable width (Fig. 2b). They are both of length L. =
5.5 mm, and their width varies linearly between 80 and 225 pm,
one with increasing width, and the other with decreasing width;
hence, they contain the same volume. We plot in Fig. 7a the time
evolution of the length of the gas pocket for this two channels.
Interestingly, whilst this length decreases initially faster in the
channel with increasing width, there is a crossover at ¢ = 4 x 10°
s in Fig. 7a, and eventually the gas pocket disappears first in the
channel with decreasing width. Moreover, the shape of the
curves is no longer exponential as it was for channels of uniform
width (Fig. 3). Indeed, plotting |L| as a function of L shows that
whilst we get straight lines for channels of uniform width, we
get a convex curve for the channel of increasing width, and a
concave curve for the channel of decreasing width (Fig. 7b).
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To capture the experimental results, we use the following
expression for the width varying linearly between w; at the
close end (x = 0) and w, at the open end (x = L.): w(x) = w,
+ (wo — wy)x/L.. Inserting this expression in (13) and using
(12), we get the following differential equation:

a_ oy L 1(1+cos€)—i—
dt K1+ wW-1)L |2

hcos@
1+ Ww-1)L
20

x 1+1@_nz+,4,m +—In
2 TWq 52 o h

with dimensionless parameters L = L/L., W = wo/w; and h =
h/wy. This is a separable equation which can be solved
analytically to yield an implicit solution of the form ¢(L),
but this is a tedious task, and it is much more direct to
fit the data from Fig. 7b with the right-hand side of (14),
with a as a free fitting parameter. The fitting curve is in
excellent agreement with the data. This validates the
extension of our analysis of imbibition for channels of
varying width.

L (mm)

(b)

Fig. 7 (a) Time evolution of the length of the air-filled part of two
channels, one of increasing width (<) and one of decreasing width (>).
The recording for this experiment has been stopped at 7000 s. (b)
Corresponding plot of the velocity of the air/liquid interface as a
function of the length of the air-filled part; curves are fits by eqn (14).
The inset zooms in the region of low values of L and |L|.
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7 Discussion

7.1 Approximations in the model

Owing to the wetting properties of pentanol, four liquid gutters
are expected to form in the corners of the channel surrounding

hcos6

_ . 1/2
h(3cos@sin + n—30)
1+ (Ww-1)L

(14)

the bubble. It is known that when they are present, such gutters
influence strongly confined drops and bubbles: they play a
significant role in the motion of drops and bubbles in
rectangular capillaries,*® as well as in droplet break-up processes
involving T-junctions®**" or gradients of confinement.*” They
are also essential in our derivation of the capillary pressure (see
Appendix). In our experiments, they are difficult to detect owing
to their small cross-section, but they show by slightly thicker
dark boundaries along the sides of the channel ahead of the
meniscus. However, their extension is limited to about one
millimetre only. Such a limitation is not observed in glass
capillaries. It is likely due to the quick pervaporation of the
pentanol within the gutters through the PDMS. It is because of
their small length that we neglected the presence of gutters to
compute the air flux through PDMS in our model.

Moreover, the channel may deform and bulge out because
the gas pocket is capillary overpressure p;, — p, with respect to
the atmosphere. To get an estimate of this deformation, we
proceed as in,”> and assume that the PDMS layer between the
channel top and the atmosphere behaves as a thin elastic plate.
Even though this layer is not slender in our experimental
conditions, because ¢ is not much smaller than w, this should
give the correct order of magnitude of its deflection. The latter is
maximal at the centre of the channel, where it equals:** {pa =
(pin — pJw"/ (384B), with a bending modulus B = E&6*/[12(1 - 17)]
with E = 2 MPa the Young modulus of PDMS, and v = 0.5 its
Poisson ratio. For the typical height # = 60 pm of our channels
and their largest width (for which the deflection is maximal) w =
140 pm, and the expression (9) of the capillary pressure, we get
the numerical evaluation: {,.x = 24 nm, which is negligible in
comparison with the channel height. Even for the channel of
smallest height z = 11 um (the left point in Fig. 5c), for which w
= 100 um, we get (, = 26 nm, which remains negligible.
Therefore, the channel deformation can be safely neglected in
our study.

7.2 Predicting bubble removal timescale for microfluidics
engineering

Having established a formula that describes spontaneous
imbibition in our specific configuration (a wetting liquid
invading a dead-end channel under capillary action), we now
discuss how to extend this approach to bubble removal in
broader microfluidic contexts. In many practical devices,

This journal is © The Royal Society of Chemistry 2025
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especially those featuring complex networks or bypass
geometries, trapped air pockets cannot be evacuated by a
main flow alone. These bubbles typically inhabit dead-end
branches or become pinned in regions unfavourable for
advection-driven clearance. When the contact angle is not
sufficiently low, the capillary pressure may be too weak to
eliminate such gas pockets on its own. A commonly
employed solution in microfluidics engineering is to impose
an inlet pressure p, exceeding ambient pressure. In such a
setup, operators normally stop or block other flows: the
outlet, if present, is either sealed or set to the same pressure
as the inlet. The gas pocket therefore remains stationary,
whilst its internal pressure p;, becomes:

Pin = Pe + Pecap (15)
where pe,, is the net capillary contribution (which can be
positive for favourable wetting or negative otherwise), and is
given by (9) in its range of validity. Even a modest overpressure
can significantly speed up the gas diffusion through the
surrounding PDMS, thereby removing the bubble more quickly.
This generalises our earlier analysis of spontaneous imbibition:
rather than relying solely on the meniscus curvature to drive
diffusion, the total bubble pressure now reflects both p,, and
the imposed inlet pressure p,. Retaining the same treatment of
the net diffusion flux through the channel walls, we obtain a
generic expression for the characteristic timescale of bubble
elimination:

hw

D§<p€ +pcap _penv>r(5a w, h)

T= (16)

where 7 and w denote the channel height and width, D is the
diffusion coefficient of air in PDMS, and S the air solubility. The
term peny is the external (often atmospheric) pressure, which can
be made down to very low values by operators using vacuum to
boost bubble removal. The term /15, w, h) encapsulates
geometric factors dictating the overall permeation flux, as
derived in a previous article related to pervaporation:*!

2, (H+d0h H, H+6

F(dw,h):%—i-gln oty

(17)

with ¢ the thickness of the upper wall and H the total thickness
of the chip, such that H="h + 6.

From an experimental standpoint, the parameter not
always tabulated is the product DS which can differ
significantly based on fabrication factors - such as curing-
agent ratio or post-baking steps - especially for elastomers
like PDMS (see our discussion at the end of sec. 5). Once a
single calibration experiment is performed for a given
material (and preparation recipe), operators can extract this
product, then apply eqn (16) to predict bubble-removal
timescales under new geometric or pressure conditions.

Although eqn (16) was derived assuming uniform-width
channels, an analogous treatment can be extended to more
complex geometries like those in sec. 6, or even intricate

This journal is © The Royal Society of Chemistry 2025
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network topologies. Moreover, whilst our derivation focused on
PDMS due to its wide usage and high gas permeability, the
same conceptual approach can be extended to other chip
materials so long as their air-diffusion and solubility properties
are known or can be calibrated. This versatility makes the
overall framework broadly applicable to a range of bubble-
management challenges in microfluidic devices.

Conclusions

Our work provides and
theoretical framework for predicting the time required to remove
air pockets from dead-end microchannels via gas diffusion in
PDMS. We showed that spontaneous imbibition of a wetting
liquid, combined with gas permeation through the channel
walls, follows a simple exponential law whose timescale is set by
geometry, capillarity, and PDMS material properties. Crucially,
we quantified how variations in channel width, height, and
material thickness can shift the dynamics of bubble shrinkage
by orders of magnitude. By developing a physically grounded
model and validating it against experimental measurements, we
offer a robust tool for microfluidic operators confronted with
trapped air pockets. This approach not only simplifies device
operation and maintenance but also lays the groundwork for
future advances in pumpless and passive microfluidics.
Additionally, in deriving the interface curvature for channels
composed of different wall materials, a configuration commonly
seen in PDMS-on-glass microfluidics, we correct some existing
erroneous predictions and provide an expression with broad
relevance, applicable to diverse droplet-based or two-phase flow
configurations well beyond this study.

Future explorations would profit from extending our
approach to complex network architectures, such as branched
and interconnected microfluidic layouts in which individual
branches can compete or couple, making bubble removal more
intricate. Another promising direction involves incorporating the
deformability of soft channels, where elastocapillary effects
become significant and channel walls can distend in response to
local capillary pressures, potentially leading to unexpected
dynamics.  Furthermore, introducing strong geometric
constrictions, as opposed to the incremental width variations
explored here (sec. 6), may produce sharply nonlinear imbibition
scenarios, much like what could be observed in the reverse
configuration of air penetration in liquid-filled channels with
constrictions.”> Indeed, such constrictions parallel the
functionality of bordered pits in plant xylem,>*>*® so
investigating their influence in PDMS microchannels could
provide fresh insights relevant to both biomimetic design and
microfluidic applications.

a comprehensive experimental

A. Derivation of the capillary pressure

In this Appendix, we derive the capillary pressure p;, — p, in the
channel bounded by PDMS at the top, left and right edges
(contact angle ) and by glass at the bottom edge (contact angle
). Crucially, we assume that the contact angles are low enough
that wedge-like gutters form ahead of the meniscus,*” as shown
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in the sketch of the cross section of the channel in Fig. 8. The
success of our method relies on this assumption: as we shall
see, it enables to bypass the direct computation of the
meniscus curvature which can be done only numerically. For
simplicity, we shall reason on a half-width of the cross section,
without loss of generality.

On Fig. 8, we denote .« the area filled with air, which spans
the cross section excluding the gutters. The outer perimeter &
of this air-filled region is split in three parts: & = & + Pp +
&, where &y, is the perimeter between air and liquid, &5 the
perimeter between the air and PDMS, and &, the perimeter
between the air and glass. Considering a virtual displacement
dx of the meniscus in the longitudinal direction of the channel
yields the following virtual work balance: (pi, — pe)-Zdx = (£,
+ &Ppcosf + P, cos)dx. This equation is a straightforward
extension of the approach of Mason and Morrow,*® who
considered a single contact angle, to the case of two contact
lines on two solid materials with different contact angles. The
capillary pressure is related to the mean radius of curvature r
of the meniscus by pi, — p, = y/r; and r is also the radius of
curvature of the gutters far ahead the meniscus, as their cross
section becomes independent of x. Hence, r obeys the relation:

= PL+ Prpcosl 4+ Pycosd. (18)

We now consider the geometry of the gutters, to transform
(18) into a equation of the second degree relating r to i, w, 0
and @'. First, &, is the curvilinear length of the two arcs of
circle AB and A'B":

Py, =1(n - 30-0. (19)
F D A—C
Gf\w/\\\\
WA -
L//// \
o 4 |F
o} 0 |q
f\i::i/ﬁaD
I\ ~L
A1
9‘%\/
L\ ]
Fl El Bl C

Fig. 8 Representation of the half-width cross section of the channel
in the case w/h = 1.5, ¢ = 25° and ¢’ = 10°. The gutters are the circular
triangles, filled in light blue, at the top right and bottom right of the
channel. The perimeter of the air-filled regions comprises three parts:
a part separating air and PDMS, of length &5 (green lines FA and BA’);
a part separating air and glass, of length &4 (red line F'B’); and a part
separating air and liquid at the gutter boundaries, of length & (blue
curves AB and A'B’).
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Then, from elementary geometry, O'D’ = rcosf, D'A’ =
rsinf, O'E' = rcos® and E'B' = rsinf'. Hence, B'C' = E'C’
- E'B' = OD' - EB' = r(cosf - sin@'). Since B'C’ must be
positive for a gutter to form, a necessary condition for the
existence of a gutter at the corner between PDMS and
glass is therefore cos@ > sinf'. We thus obtain:

; 1
Py = F'B'= F'C'-B'C' =-w-r(cosf-sin®’). (20)
2

We also have A'C' = O'E’ - A'D’ = r(cos @ - sin #'). Similarly,
we obtain OD = OE = rcos 0, and DA = EB = rsin ¢, hence AC
= BC = r(cosf - sinf), which shows that a necessary
condition for the existence of a gutter at the corner between
two PDMS sides is 6 < w/4, as already known.'” Hence,

1
FA = Ew—r(cosﬁ—sinﬁ). Moreover, AB'=h -BC - A'C'=h -

r(cos @ + cos @ - 2sinf). We can thus express the perimeter
between air and PDMS:

_ 1
#p = FA+A'B :Ew+h—r(2cosﬁ+cos&'—3sin0). (21)

Finally, .« = %hw —area(ABC) —area(A'B'C’). Now, from
elementary geometry, area(ABC) = area(ODCE) - area(OAD) —
area(OBE) — area(OAB) = > cos® 0 — r”>cos fsin 0 — % (g - 20) .
area(O'D'C'E’) - area(O'A'D’) -
(OAB) = r’cosfcos® -

Similarly, area(A'B'C) =
area(O'B’E’) -  area

1 . 1 . 1/m
~r?cosfsinf- =r’cosf'sinf — = (f —0—0’>r2. Hence,
2 2 2\2

1
,M:Ehw—ﬂ(coszﬁ—cosﬁsinﬁ— g—i— 0)

1 1 T 1
_ 2 r_ 3 _ = P r_ = i
r {cos@cos@ 2cosﬁsmﬁ 20050 sinf 4+2(0+0) .

Inserting (19)-(22) in (18), and simplifying after some
algebra, yields the equation of second degree for the gutter
curvature x = 1/r:

1 1 1
0 :Ehwrcz— Kiw+h)cosc9+§wcosﬁ' Kk +cos’d (23)

3 n 3 1
cosfcost' — —cosfsinf— —+—0+ =6
+ 2 2+2 +2 ’

which can be solved to obtain x. We distinguish in
the following three different cases, depending on the
value of ¢. First expressing the curvature for two
particular @ = ¢ and @ = 6), and then
developing the general expression of x for arbitrary
values of ¢ and @'

cases

Alcasel: 0=0'

In the simple case, corresponding to the four walls made
with the same materials, one has 6 = ¢'. eqn (23) is readily
solved, and a result obtained by Wong et al.*® is recovered:

This journal is © The Royal Society of Chemistry 2025
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1 h n\? hm )
k=—|(1+—)cosfO+ 1-— c0529+4—<——0+smt‘)cosé)> .
h w w w\4

A2 case2: 0 =60

Most relevant for our study is the case ¢ = 6, which
corresponds to the case of perfect wetting on glass. The
equation of second degree on x then becomes:

Ozf(zc):%hwzcz—[(%w+h)cos@+%w}x (24)

3 n 3
2 .
cos“ 0 + cosf— —cosfsinf—- —+ -0
+ + 2 2+2 ,

1 2
which has a discriminant A = {E w(1 + cos @) - hcos 9} +

hw(3cosfsin® + m - 36), which is obviously positive in
the relevant range 0 < 6 < mw/4 for the contact angle.
Hence, there are two real solutions x., and a quick study
of the signs of the coefficients of (24) show that the two
solutions are positive, hence more work is required to
determine which one gives the true curvature. However,
for a positive solution to be physically admissible, two
adjacent gutters must not merge, which requires A'B > 0
on Fig. 8. Hence, from the previous geometrical
calculations, this sets a lower bound for the curvature: x
= k. = (1 + cosf - 2sinf)/h. A quick calculation yields
flre) = —%(1 +cos@—ZsinH)sin@+%cos€sin6—g+;0,
which is obviously negative. But f(x) defined in (24) is a
second-order polynomial whose coefficient of order 2 is
positive, hence . lies between its two roots: k- < k. < ki,
which proves that the only admissible curvature is:

1
hw

1 1
Ky =-— (Zw(l + cosd) + hcosO + { {Ew(l + cos®) —hcosd

whence the expression of the capillary pressure pi, — pe =

yi, used in the main text in section 4.

A.3 case 3: arbitrary values for # and 6’

In the general case, for any value of # and 6, one

can follow the same procedure, which yields the
1 1 2

discriminant A = Kiw + h) cosd + Jweos 9’} - hw(2cos®

0 + 2cosfcos@ — 3cosfsind — n + 30 + ) from eqn (23).
Keeping only the largest root as the correct physical curvature,
one gets:

h 2

1(/1 & 1 1 h\? 1
x+-—{(—+—>cos€+—cos0’+K———) cos®>f + = cos* @' +
w 2 2w 4

This expression for the curvature can be taken directly to
deduce the value of AP, = pin — p¢ = yx: in the final
discussion (sec. 7) when discussing the generic expression to
be used by microfluidic operators.

This journal is © The Royal Society of Chemistry 2025
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