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Transforming microfluidics for single-cell analysis
with robotics and artificial intelligence

Jinxiong Cheng, †ab Rajiv Anne†ab and Yu-Chih Chen *abcd

Single-cell analysis has advanced biomedical research by revealing cellular heterogeneity with

unprecedented resolution, identifying rare subpopulations that drive disease progression and therapeutic

resistance. Microfluidics is central to this advancement, enabling precise single-cell isolation, manipulation,

and cellular profiling. However, limitations in automation, reliability, and technical barriers hinder the

widespread adoption of microfluidic single-cell analysis. This review highlights key innovations in

experimental methods and deep learning-driven data analysis to overcome these challenges. Operating

microfluidics with robotic operation, digital microfluidics, or microrobots enhances experimental precision

and scalability. Beyond experimental automation, deep learning revolutionizes data interpretation through

label-free image processing and cell status classification and regression. Generative models further refine

analysis by correcting batch effects and generating synthetic datasets, improving accuracy and

reproducibility in single-cell studies. Considering the complexity of integrating these technologies, remote

shared cloud labs represent a potential pathway toward standardized and high-throughput single-cell

analysis, facilitating broader access to advanced experimental workflows. Overall, the convergence of

robotics and artificial intelligence in single-cell analysis will change data acquisition, hypothesis testing, and

model refinement, driving breakthroughs in drug discovery and personalized medicine. While

implementation remains challenging, this paradigm shift is transforming biomedical research, enabling

unprecedented precision, scalability, and data-driven innovation.

1. Introduction
1.1. Historical convergence of microfluidics, robotics, and AI

Over the past two decades, microfluidics, robotics, and
artificial intelligence (AI) have each undergone remarkable
technological evolution, individually transforming the
landscape of biological research. When viewed through a
historical lens, these three fields reveal a converging
trajectory that now positions their integration as both
inevitable and impactful, especially in the realm of single-
cell analysis. As illustrated in Fig. 1, the microfluidics field
emerged with the advent of polydimethylsiloxane (PDMS)
soft lithography1 and Quake valves2 in the early 2000s,
enabling precise fluid control over cellular
microenvironments.3,4 Digital microfluidics (DMF)
subsequently introduced enhanced automation and

programmability, with droplet volumes exhibiting
coefficients of variation (CVs) as low as 1%, thereby
enabling reliable single-cell manipulation.5–7 Droplet
microfluidics8 enabled massively parallel single-cell
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encapsulation (∼44 000 single cells in a single run) and laid
the foundation for technologies like Drop-seq9 and CITE-
seq.10 However, its implementation often involves complex
fluidic control systems and surfactant management. Organ-
on-a-chip platforms improved biological relevance and
disease modeling fidelity through biomimetic architectures
yet often lacked the spatial resolution and throughput
necessary for robust single-cell-level analysis, such as spatial
heterogeneity profiling.11–14 In parallel, robotics progressed
from basic mobile platforms like AIBO15 and Roomba16 to
sensor-rich collaborative robots (e.g., PR2 (ref. 17)), and
eventually to human-assistive or autonomous systems
capable of delicate biological operations. This trajectory has
enabled robust sample handling, fluidic actuation, and
physical automation of complex workflows, essential in
biology. Meanwhile, the rise of deep learning and large
language models transformed AI from static classifiers to
adaptable, multi-modal systems capable of interpreting
imaging, text, and command instructions. AI-guided
decision-making was being integrated into real-time
optimization and context-aware control in healthcare
applications.18 The synergy among these domains is no
longer aspirational but has become technically and
conceptually aligned. In the context of single-cell research,
microfluidics provides the physical interface for cell
handling, robotics enables scalable and precise execution,
and AI supplies the intelligence to drive adaptive control
and data interpretation. This convergence is essential not
just for scaling experiments, but for enabling new modes of
inquiry in precision biology and clinical diagnostics.

With the advancement of robotics, the concept of a
“robot scientist” was first introduced by King et al. in
2004.19 They envisioned an automated system capable of

both hypothesis generation and experimental execution,
integrating machine learning to acquire background
knowledge and analyze results. Building on this vision,
Soldatova et al. developed ontology of scientific
experiments (EXPO) in 2006, the first formal ontology to
digitally capture and structure every aspect of the
scientific process.20 This foundation enabled the creation
of Adam, a robot scientist that autonomously generated
biological hypotheses and performed wet-lab experiments
to test them, particularly in yeast functional genomics.21

Following this, the same group introduced Eve, a second-
generation robot scientist focused on drug discovery.22 Eve
combined machine learning-based activity prediction with
high-throughput screening to prioritize validation of
candidate compounds, an early attempt to close the loop
between in silico prediction and wet-lab verification. In
parallel, Savall et al. developed an automated platform for
Drosophila neuroscience that integrated robotic handling,
microsurgery, machine vision, and behavioral analysis into
a single pipeline.23 During this period, platforms including
Transcriptic (now Strateos) and Emerald Cloud Lab began
offering remote-controlled, automated experimentation,
which have been described as early demonstrations of the
envisioned “cloud lab” concept. A significant breakthrough
came with Maholo, a dual-arm humanoid robot introduced
by Yachie et al. in 2017.24,25 Unlike traditional liquid-
handling robots confined to custom workstations, Maholo's
human-like architecture allowed it to operate standard lab
tools without modification. This human-compatible design
greatly enhanced its flexibility, enabling seamless
integration into existing workflows and broadening its
utility across diverse biological protocols. Since 2020,
continued advances in robotics and AI have driven the
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emergence of more intelligent and autonomous robotic
scientists. For example, Cooper et al. developed a mobile
chemist that employed Bayesian optimization to iteratively
guide experiments.26 The platform developed by Lunt
et al. introduced coordinated multi-robot systems with
autonomous decision-making,27 while the ChemAgents
system proposed by Song et al. leveraged large language
models (LLMs) to perform six complex, multi-step
experimental tasks.28 While early implementations have
largely centered on chemical research, recent advances in
biological interfacing and intelligent control signal a
growing opportunity within the life sciences, particularly
in the context of single-cell analysis. In this review, we
aim to explore the potential of such trio-interaction by
examining how microfluidics provides the physical
interface, robotics delivers precise and scalable execution,
and AI enables adaptive decision-making. By synthesizing
progress across these three domains, we seek to identify

opportunities, challenges, and future directions toward
truly intelligent biological studies.

1.2. Single-cell analysis in biomedical research

Single-cell analysis has emerged as a transformative approach
in biomedical research, enabling the investigation of cellular
heterogeneity with unprecedented resolution.29–34 Unlike
bulk analysis, which averages signals across a population of
cells, single-cell techniques dissect the molecular and
functional diversity within seemingly homogeneous tissues.
This is particularly critical given that cellular heterogeneity is
a fundamental property of biological systems, arising from
genetic, epigenetic, and environmental variations.35–38 Even
within a clonal population, stochastic gene expression,
differential microenvironmental interactions, and dynamic
cellular states contribute to variability in function and fate.
Traditional bulk measurements often obscure these crucial

Fig. 1 Milestones in microfluidics, robotics and AI in two decades. This timeline highlights key milestones in microfluidics, from PDMS
prototyping1 to the emergence of AI-guided microfluidics.187 Notable advances include the Quake valve,2 cell culture integration,4 digital,6 paper-
based,188 and droplet microfluidics,9 along with acoustofluidics,189 magnetofluidics,190 3D printing,191 and optofluidics.192 Recent breakthroughs
encompass Drop-seq,9 organ-on-a-chip,11–14 CITE-seq,10 POCT for COVID-19,193 and single-cell multi-omics.95 Parallel progress in robotics and AI
includes early consumer robotics (AIBO,15 Roomba16), autonomous navigation through the DARPA Grand Challenge, and interactive systems such
as PR2, ROS,17 and Kinect.194 The rise of deep learning with AlexNet195 and achievements like AlphaGo196 and GPT-2/3/4 (ref. 197) enabled smarter,
perception-driven automation. By the 2020s, the introduction of RT-2 (ref. 198) and Tesla Optimus marked a shift toward intelligent robotic
workflows. Key robotic scientist milestones include EXPO (2006),20 Adam (2009),21 Maholo (2017),24,25 Robot Chemist (2020),199 and ChemAgents
(2024).28 Created using BioRender, based on references.1,4,6,9–17,20,21,24,25,28,95,187–199
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differences, masking rare but biologically significant
subpopulations. By providing a high-dimensional view of
cellular heterogeneity, single-cell analysis allows researchers
to deconvolute complex biological processes, identify rare or
transient cell states (<1%), and construct precise maps of
tissue organization and disease progression.39–41

The impact of single-cell analysis is particularly evident in
cancer and immunology research, where cellular
heterogeneity directly influences disease outcomes. In
oncology, single-cell transcriptomics has uncovered distinct
tumor subpopulations with varying drug sensitivities,
providing critical insights into therapeutic resistance.42–46

Even a small fraction of drug-resistant cells, can drive disease
progression and treatment failure.47,48 Single-cell RNA
sequencing (scRNA-seq) has identified stem-like subclones in
high-grade serous ovarian cancer, fueling recurrence and
metastasis.49,50 Likewise, single-cell epigenomic profiling has
revealed non-genetic mechanisms of drug tolerance, exposing
adaptive resistance strategies that evade conventional
detection.51–54 Single-cell analysis has transformed
immunology by revealing the functional diversity of immune
cells, particularly within the tumor microenvironment. Even
rare immune subsets, sometimes comprising less than 1–2%
of the infiltrating population, can drive potent and divergent
immune responses.55–57 Tumor-infiltrating lymphocytes
(TILs) exhibit highly heterogeneous activation states, with
exhausted CD8+ T-cell subsets constraining anti-tumor
immunity.58–60 Single-cell technologies have mapped distinct
exhaustion trajectories, guiding strategies to optimize
immunotherapy. Beyond cancer, single-cell profiling of
peripheral immune responses in infectious diseases has
identified novel immune signatures predictive of disease
severity, advancing precision diagnostics and treatment.61,62

The integration of spatial and multi-omics approaches is
further reshaping biomedical research by uncovering deeper
mechanistic insights, with current platforms achieving pixel
sizes of 10–55 μm (capturing from single cells to small
clusters) and enabling thousands of spatially resolved spots
per tissue section.63–65 By dissecting cellular heterogeneity,
single-cell analysis is driving precision medicine, enabling
patient-specific therapies based on single-cell molecular
profiles rather than bulk tissue properties.

1.3. Microfluidics for single-cell analysis

Microfluidics which precisely manipulate and control fluids
at the microscale level is one of the most important
technologies in single-cell analysis.66–68 This technology
integrates principles from engineering, physics, chemistry,
and biology to create miniaturized systems capable of
performing various analytical, diagnostic, and biological
assays. By leveraging the unique physical phenomena that
occur at the microscale, such as laminar flow, surface
tension, and capillary action, microfluidic devices enable the
efficient handling of small volumes (picoliter–nanoliter) of
liquids with high precision and throughput.69,70 In the realm

of single-cell analysis, microfluidics offers several key
advantages that make it an ideal platform for studying
individual cells at high resolution. First, microfluidic devices
enable the isolation and manipulation of single cells with
unparalleled precision (70–90%), allowing researchers to
study cellular behavior and responses in a controlled
microenvironment.33,71,72 By confining cells within micro-
chambers or droplets, microfluidic systems minimize cell-to-
cell interactions and ensure uniform experimental
conditions, enhancing the reproducibility and reliability of
single-cell experiments. High-density microchambers or
droplets drive parallel, high-throughput single-cell analysis,
enabling rapid and precise large-scale cellular profiling (104–
106 cells per run).73 Integrating microfluidics with imaging,
sensors, and molecular analysis techniques, such as
fluorescence microscopy, RNA sequencing, and proteomic
profiling, unlocks comprehensive, high-dimensional insights
from individual cells at an unprecedented scale.9,74–76 This
capability is essential for characterizing cell-to-cell variability,
identifying rare cell populations, and elucidating complex
biological processes at the single-cell level. Moreover,
microfluidic systems offer precise spatial and temporal
control over cellular microenvironments, enabling
researchers to mimic physiological conditions and study
dynamic cellular processes in real time.77–79 By modulating
fluid flow, chemical gradients, and environmental cues
within microfluidic devices, researchers can investigate
diverse aspects of cellular physiology, including cell
migration, proliferation, differentiation, and signaling
dynamics, with high spatiotemporal resolution.

In addition to facilitating functional assays and dynamic
cell behavior studies, microfluidics has also profoundly
advanced the field of single-cell omics by enabling the
precise manipulation and processing of individual cells
across multiple molecular dimensions. In single-cell
genomics, Zahn et al. developed a microfluidic device
comprising 192 nanoliter-scale chambers to perform direct
library preparation (DLP) without the need for
preamplification, enabling efficient whole-genome
sequencing of hundreds of single cells.80 Building upon this
approach, Laks et al. further introduced DLP+, an automated
and scalable platform that integrates image-based single-cell
identification and positioning, ultimately achieving
processing of 51 926 single-cell genomes across diverse
sample types.81 Zheng et al. developed Microbe-seq, a
droplet-based microfluidic platform that enables high-
throughput single-microbe whole-genome sequencing by
encapsulating individual microbes into droplets, followed by
cell lysis, whole-genome amplification, and droplet-specific
barcoding to achieve strain-level resolution in complex
microbiomes.82 In transcriptomics, Bai et al. developed the
dielectrophoresis (DEP)-trapping-nanowell-transfer (DEP-
dTNT) platform, which utilizes electric field-driven DEP to
actively trap single cells into nanowells, followed by
hydrodynamic co-loading of barcoded beads.83 The paired
cells and beads are then encapsulated within reaction
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chambers, enabling efficient mRNA capture and barcoding
for downstream single-cell RNA sequencing. In proteomics,
Zhu et al. developed the nanoPOTS (nanodroplet processing
in one pot for trace samples) platform,84 which enables
highly sensitive proteomic analysis within reaction volumes
smaller than 200 nL, achieving the identification of ∼1500 to
∼3000 proteins from as few as ∼10 to 140 cells. Separately,
Gebreyesus et al. introduced the single-cell integrated
proteomic microfluidic chip (SciProChip),85 a fully integrated
system that automates single-cell isolation, counting,
imaging, and sample preparation on-chip, and is directly
compatible with data-independent acquisition (DIA) mass
spectrometry for high-throughput single-cell proteomics.
More recently, DMF platforms such as active-matrix digital
microfluidic chip for single-cell proteomics (AM-DMF-SCP)86

have demonstrated robust single-cell proteomic capabilities
by enabling automated nanoliter-scale processing and label-
free analysis, while addressing challenges of integration and
sensitivity through active matrix control. In metabolomics
analysis, researchers have developed approaches for intact
single-cell metabolite profiling87–89 or targeted metabolite
extraction followed by mass spectrometry (MS) analysis.90,91

More recently, microfluidic impedance cytometry has enabled
one-step sample preparation for single-cell MS (>99%
sorting/desalting, high purity), streamlining workflow and
opening opportunities for multi-modal (electrical and
metabolic) single-cell characterization.92 In lipidomics,
microfluidic platforms coupled with mass spectrometry (e.g.,
MALDI-MS93 and DASEI-MS94) have enabled single-cell lipid
profiling with high structural resolution. In addition, the
digital microfluidic isolation of single cells for -omics
(DISCO) platform95 leverages DMF in combination with AI-
guided image processing and laser-based cell lysis to enable
selective isolation and multi-omics analysis of individual
cells, including their genomes, transcriptomes, and
proteomes. Its tissue-resolved variant, tissue-DISCO
(tDISCO),96 extends this capability to spatially contextualized
cells within tissue slices, providing an integrated view of
molecular profiles with spatial precision. For more detailed
discussions on microfluidics-based omics strategies, readers
are referred to recent reviews by Gebreyesus et al.97 and
Zhang et al.,98 which comprehensively summarize
microfluidic innovations in single-cell proteomics and multi-
omics integration, respectively.

While microfluidics has profoundly advanced single-cell
omics by enabling precise spatiotemporal control and high-
throughput cellular profiling, its broader implementation
outside of specialized bioengineering laboratories remains
constrained by several practical limitations. The fabrication
of PDMS-based devices often requires several hours to a full
day of casting, aligning, bonding, and punching, that require
specialized equipment, cleanroom access, and technical
proficiency. These devices are frequently single-use and prone
to failure, and the process is susceptible to chip-to-chip
variability that can compromise reproducibility. Even after
fabrication, fluid control systems (e.g., syringe pumps or

pneumatic valves) and imaging or multi-omics integration
require meticulous calibration and synchronization.
Moreover, microfluidic experiments typically produce large,
complex datasets, such as time-lapse microscopy or high-
content omics, which demand sophisticated analytical
pipelines and expertise in computational biology. These
combined factors present significant barriers for many
biology-focused labs. In this review, we not only discuss these
limitations in detail but also highlight emerging solutions
aimed at advancing and disseminating microfluidic
technologies, such as standardized and automated platforms
and data analysis tools, to make single-cell microfluidics
more accessible, reproducible, and scalable.

2. Automation of microfluidics with
robotics

Automating microfluidics with robotic operation seems
straightforward, yet significant technical challenges remain.
Microfluidic devices are predominantly fabricated using soft
lithography with PDMS due to its biocompatibility, optical
transparency, and gas permeability.99,100 The fabrication
process involves molding PDMS on a photolithographically
patterned master, curing, and manually peeling and
punching to create inlets and outlets. These manual steps
introduce device-device variability, compromising
reproducibility and posing challenges for robotic operation.
Moreover, microfluidic systems depend on tubing for precise
fluid control and seamless integration with various
instruments.101,102 While tubing provides adaptability, its
connection and disconnection remain non-trivial for robotic
handling, introducing additional complexity to fully
automate workflows. Addressing these challenges requires
advancements in standardized fabrication techniques and
robotic dexterity for seamless microfluidic integration.
Alternatively, non-PDMS microfluidic systems actuated by
electrical or optical signals offer a promising solution to
overcome the fabrication and operation challenges associated
with PDMS-based platforms. Emerging digital microfluidics
or microrobotic technologies have demonstrated initial
success in achieving automation, yet there are still
limitations in technical complexity, reliability, throughput,
and scalability. In this section, we will highlight single-cell
analysis advancements enabled by robotics.

2.1. Customized robotic systems for single-cell experiments

Despite existing challenges, several pioneering groups have
developed customized robotic systems specifically designed
for single-cell manipulation. As mentioned earlier, the
nanoPOTS platform was built on a home-assembled
robotic system comprising a high-precision syringe pump,
a high-density nanowell-array chip with a droplet storage
frame, an x–y–z translational stage, and a stereomicroscope
(Fig. 2A).84,103–105 Building on this foundation, an automated,
label-free nanoproteomics imaging approach was introduced to

Lab on a ChipCritical review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

2/
2/

20
25

 3
:3

6:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5lc00216h


Lab Chip, 2025, 25, 6100–6125 | 6105This journal is © The Royal Society of Chemistry 2025

quantitatively map over 2000 proteins across mouse uterine
tissue sections at a spatial resolution of 100 μm, enabling high-
throughput, cell-type-specific spatial proteome analysis.106

Durrer et al. introduced the robot-assisted acoustofluidic end
effector (RAEE) system,107 which merges robotics with
acoustofluidics to overcome limitations in microscale liquid
manipulation (Fig. 2B). Traditional lab processes rely on
macroscale liquid handling, while lab-on-a-chip (LoC)
technologies, despite their promise, often lack automation and
adaptability. The RAEE system bridges this gap by integrating a
robotic arm with an acoustofluidic end effector, enabling
precise fluid pumping, particle trapping, embryo handling, and
automated mixing of viscous liquids. Wang et al. developed the

pick-up single-cell proteomic analysis (PiSPA) workflow,108 a
probe-based single-cell proteomic platform built on the
sequential operation droplet array (SODA) liquid handling
system109 to enable nanoliter-scale cell capture, pretreatment,
and liquid chromatography–mass spectrometer (LC–MS)
injection (Fig. 2C). Target cells are aspirated individually and
processed in insert tubes through in situ lysis, digestion, and
other steps, minimizing sample loss and maximizing protein
recovery. This workflow achieves deep proteome coverage, up
to 3000 proteins per cell, and reveals cellular heterogeneity, as
demonstrated in migrating HeLa cells.

While not all robotic systems were originally designed for
single-cell analysis, several recent innovations in robotic

Fig. 2 Lab-built robotic systems for microfluidic operations in single-cell and microscale biological analysis. (A) The nanoPOTS platform integrates
a high-precision syringe pump, nanowell chip, droplet capture frame, and stereomicroscope for picoliter-scale liquid dispensing in single-cell
proteomics workflows.84 (B) A robot-assisted acoustofluidic end effector system, integrating a robotic arm, glass capillary, piezo transducer, and
acoustofluidic device to enable high-precision fluid mixing, particle manipulation, and biological sample handling.107 (C) The PiSPA (pick-up single-
cell proteomics analysis) system couples a capillary probe with a droplet-array-based liquid handling platform (SODA: sequential operation droplet
array)105 to isolate and process individual cells through sequential in situ lysis, digestion, and LC–MS injection.108 (D) A compact robotic platform
combining a pipette, syringe pump, onboard camera, and motion control system to automate microtissue handling in 384-well plates under sterile
culture hood conditions.110 (E) The RoboCulture system for yeast cultivation integrates real-time optical feedback and force sensing with robotic
tip exchange and liquid handling to enable fully autonomous, long-duration culture and monitoring.111 Created using BioRender, based on
references.84,105,107,108,110,111
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microfluidic handling demonstrate a clear trajectory toward
clinical relevance and intelligent operation in the field. For
example, Stepanov et al. developed a compact, low-cost
robotic platform integrating a pipette, syringe pump, and
onboard camera to manipulate live microtissues in 384-well
plates (Fig. 2D).110 This system operates within standard
tissue culture hoods without the need for pneumatic
controllers or external microscopes, streamlining sterile
workflows and enabling drug testing on limited patient
biopsy samples. In another example, Angers et al.
demonstrated RoboCulture, a fully automated platform for
yeast cultivation that leverages real-time optical and
mechanical feedback to guide experimental decisions over a
continuous 15 hour protocol (Fig. 2E).111 While the system
remains limited in throughput (5 seconds per tip change)
and format (96-well plate), it exemplifies an emerging
paradigm in robotic microfluidics, one where vision systems,
real-time inference, and robotic learning converge to support
fully autonomous biological experimentation. These
precedents, though not tailored to single-cell analysis,
underscore the feasibility and importance of combining
robotics and AI to overcome the manual bottlenecks of
microfluidic operation and pave the way for next-generation
automated biological research.

2.2. Integration of commercial liquid-handling robotics with
microfluidic single-cell systems

In addition to lab-built robotic systems, numerous
commercialized robotic liquid handlers have been applied in

the microfluidics field. Owing to their throughput and
reliability, many of these systems are designed for well plate
formats, such as 3D spheroid cultures using hanging drop
arrays.112 For organ-on-a-chip applications, several research
groups have developed their own robotic liquid handling
platforms, for example, Novak et al. implemented a system
for perfusing multiple vascularized organ chips,113 while
Jiang et al. designed a robotic workflow for organoid-based
assays.114 These platforms have significantly enhanced the
throughput of tissue engineering applications and enabled
the analysis of inter-organoid or inter-spheroid heterogeneity.
However, they generally do not achieve single-cell resolution,
as such drug screening applications often prioritize
scalability over cellular-level precision.

To further extend the applicability of commercial robotic
handlers in single-cell microfluidic systems, system-level
optimizations are essential. One strategy involves
encapsulating individual cells within water-in-oil droplets,
facilitating precise reagent manipulation while preserving
single-cell integrity and minimizing cross-contamination.
Tran et al. demonstrated the automation of droplet
microfluidics using commercial fluid-handling robotics
(Freedom EVO, Tecan). Their approach, robotic operation of
droplet microfluidics (RAD microfluidics), integrates key
microfluidic components, such as droplet generators,
mergers, and sorters, into fully automated workflows,
significantly improving efficiency and scalability (Fig. 3A).115

Alternatively, employing high-precision robotic platforms
such as cellenONE, which supports picoliter-to-nanoliter
dispensing and integrated image-based cell selection, can

Fig. 3 Applications of commercial liquid-handling robots in microfluidic single-cell analysis. (A) A droplet microfluidics system coupled with a
commercial liquid handling robot (Freedom EVO, Tecan) and automated syringe pumps.115 (B) A nanoliter-scale single-cell proteomics workflow
based on the proteoCHIP platform, integrated with the cellenONE robotic system. Single cells are dispensed into nanowells, followed by
nanoliter-scale (nL) cell lysis and tryptic digestion, tandem mass tag (TMT) labeling for multiplexed quantification, and sample pooling for liquid
chromatography–tandem mass spectrometry (LC–MS/MS) analysis.116 (C) A high-throughput single-cell migration platform capable of tracking tens
of thousands of individual cells. The system combines a liquid handling robot (OT-2, Opentrons) with autonomous image analysis software for
microfluidic single-cell analysis.117 Created using BioRender, based on references.115–117
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improve compatibility with low-volume microfluidic
environments. Ctortecka et al. developed an automated
platform for multiplexed single-cell proteomics using a
custom-designed microfabricated chip (proteoCHIP) coupled
with the high-precision robotic system cellenONE. Their
streamlined workflow achieves exceptional sensitivity with
minimal sample loss (Fig. 3B).116 By eliminating manual
handling and carrier proteome dependence, the platform
enabled the identification of ∼2600 proteins across 170
single cells, with high reproducibility and over 90% data
completeness per run. Another approach is to engineer
microfluidic devices with structures such as confined
migration channels or single-cell traps to ensure controlled
cell passage, thereby enhancing throughput and automation
across single-cell workflows. Zhou et al. developed a high-
throughput microfluidic platform capable of tracking single-
cell movement under multiple treatment conditions in a 384-
well format, fully compatible with robotic liquid handling
(Opentrons, OT-2 Liquid Handler) (Fig. 3C).117–119 This
system incorporates autonomous image analysis software for
real-time quantification of cell migration, encompassing
image registration, quality control, channel segmentation,
cell identification, and migration distance calculation in a
semi-automated fashion requiring reduced human
intervention, primarily for tasks such as plate handling,

reagent loading, and experimental setup. Their innovative
approach enabled the screening of 172 compounds for
migration inhibition and toxicity, identifying promising low-
toxicity regulators. With single-cell resolution, the system
quantified both average migration distances and the behavior
of top-ranked fast-moving cells, offering unparalleled insights
into cell dynamics.

Despite technical challenges in integrating microfluidic
single-cell analysis with robotic operation, this convergence
holds the potential to enhance throughput, reliability, and
reproducibility. Standardization in microfluidic fabrication is
crucial, with a shift toward precision-engineered
components, such as those produced via injection molding,
replacing labor-intensive manual soft lithography processes.
Simultaneously, advancements in robotics will enable
increasingly intelligent systems capable of precisely handling
complex fluidic networks. While obstacles persist, the rapid
evolution of both microfluidics and robotics is steadily
bridging the gap.

2.3. On-chip micro-robots for sample manipulation

Beyond robotic operation of microfluidics, advances in
micro-robotics now enable precise, programmable single-cell
manipulation. Among these, electromagnetic field-based

Fig. 4 On-chip microrobots for single-cell manipulation and analysis. (A) A digital microfluidic ferrobotics system enables high-throughput,
programmable fluidic operations for biomedical diagnostics, including SARS-CoV-2 amplification and detection.120,121 (B) An optoelectronic
microrobot within an OET system achieves precise single-cell manipulation with minimal cellular damage. Light-controlled actuation allows
targeted cell collection and transfer.124 (C) Optically actuated, TPP-fabricated soft microrobots enable gentle, high-precision single-cell
manipulation using optical tweezers. The designs illustrate deformation under trapping beam-induced forces, leveraging wireframe structures for
controlled cell manipulation.125 Created using BioRender, based on references.120,121,124,125
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control has emerged as a leading strategy, offering high-
speed, programmable, and reproducible fluidic operations
with robust performance. Yu et al. developed a ferrobotic
system using electrowetting-on-dielectric (EWOD) to achieve
parallelized and sequential droplet control in digital
microfluidics, drawing inspiration from automated guided
vehicles.120 Lin et al. further enhanced this system by
introducing a circuit board-based programmable platform,
significantly improving SARS-CoV-2 amplification and
detection efficiency (Fig. 4A).121 In digital microfluidics, on-
chip ferrobots not only preserve but enhance the advantages
of low sample consumption and high throughput,
establishing an efficient, high-fidelity operational platform
for point-of-care and other biomedical applications.

In addition to ferrobotic systems, Chiou et al. pioneered
optoelectronic tweezer (OET), leveraging image-based DEP to
modulate photoconductive materials and precisely
manipulate particles and cells with an electric field.122 Zhang
et al. advanced this concept with patterned OET (p-OET),
integrating a continuous photoconductive layer to eliminate
the need for constant illumination.123 This breakthrough
enabled the development of optoelectronic micro-robots,
achieving programmable, submillimeter-scale manipulation
(Fig. 4B).124 These micro-robots generate larger, more
uniform forces, minimize cellular damage, and offer flexible
single-cell isolation for downstream applications such as
clonal expansion and RNA sequencing.

Further expanding the capabilities of micro-robotic
systems, soft micro-robots have emerged as an innovative
approach for precise and stable control of cellular orientation
under minimal forces (ranging from tens to hundreds of
piconewtons). Soft micro-robots excel in collecting, sorting,
transporting, and rotating individual cells with high
sensitivity. Iványi et al. developed an elastic and deformable
micro-robot using multiphoton polymerization, a technique
that offers nanometer-scale resolution while minimizing
biological damage (Fig. 4C).125 This micro-robot is capable of
performing tasks such as collection, rotation, release, and
pairing of single cells. Notably, its actuation mechanism is
based on optical tweezers (OTs), where traction, pushing,
pulling, and deformation forces are generated by two-photon
polymerization (TPP)-fabricated bendable nanorods or
torsion nanostrings. Compared to opto-thermal
manipulation, this non-contact OT-based approach
minimizes thermal effects on cells while allowing vertical cell
positioning. Experimentally, these soft micro-robots have
demonstrated successful operation within microfluidic
chambers, significantly enhancing the sensitivity and
precision of single-cell manipulation.

2.4. Combination of robotic single-cell operation with deep
learning

Based on robotic single-cell operation, there are some pilot
studies including deep learning in the pipeline. Jin et al.
presents a label-free live-cell imaging method that leverages

deep learning to predict cell phenotypes based on whole-
transcriptome sequencing.126 This approach, enabled by the
live imaging and cell picking system (ALPS), establishes a
direct link between cell images and transcriptomic profiles,
allowing real-time molecular characterization without
compromising cell viability. This noninvasive and unbiased
technique offers significant advantages for studying cell
dynamics and functional heterogeneity. In parallel, Guo et al.
introduced an artificial intelligence-assisted digital
microfluidic framework (μDropAI) for multistate droplet
control, which integrates semantic segmentation to recognize
droplet morphology and interactions with an error rate
<0.63%.127 By reducing the coefficient of variation of split
droplet volumes to 2.74%, μDropAI improves precision in
droplet manipulation and highlights the potential of
semantic-driven DMF systems for fully automated and
adaptive operation. Another breakthrough is a deep
learning-based single-cell sorting platform developed by Guo
et al.,128 which integrates YOLOv8, a real-time object
detection system, with digital microfluidics to achieve highly
efficient and pure (>96%) single-cell isolation. Unlike
conventional fluorescence-activated (FACS) and magnetic-
activated (MACS) cell sorting, this label-free approach
enhances precision (98.5% accuracy) by utilizing safe
interval path planning (SIPP) for optimized droplet
trajectory control. Together, these advancements highlight
the transformative potential of deep learning in noninvasive
single-cell analysis and high-precision cell sorting.

2.5. Commercial platforms for single-cell analysis

In addition to academic publications (Table 1), new
commercial systems provide solutions in single-cell
workflows (Table 2). Despite their diversity, these systems
share a common goal: to enhance precision,
reproducibility, and throughput in single-cell assays. These
platforms utilize core microfluidic principles, digital,
droplet-based, optofluidic, or capillary-driven, to enable
diverse omics workflows, including single-cell RNA
sequencing, multi-omics integration, and high-sensitivity
proteomics. High-throughput systems such as BOXmini
SCP (ACX Instruments), Chromium (10× Genomics) and
Beacon (Bruker) exemplify DMF, droplet and optofluidic
solutions for multi-parameter profiling. Other platforms,
such as CellenONE, F.SIGHT, Cell Handler, and
DispenCell, are designed primarily for single-cell isolation
and dispensing and operate in well-plate formats. These
systems integrate imaging and AI-driven decision, making
them well-suited for workflows that require precise cell
selection and deposition into multi-well formats. Their
compatibility with standard labware and omics workflows
makes them practical tools for screening and targeted single-
cell experiments. While most robotic liquid handling systems
rely on physical pipette contact to aspirate and dispense
fluids, raising concerns about cross-contamination and
shear-induced cell damage, non-contact strategies have
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begun to emerge. In addition to DMF, Zhang et al. recently
introduced an acoustofluidic liquid handling platform,
PULSE, which enables precise, programmable ejection of
nanodroplets and single cells via ultrasonic energy.129

Collectively, robotic and commercial systems represent two
complementary directions in single-cell microfluidics:
customized robotic platforms offer flexibility and depth for
specialized applications, whereas commercial robotic
solutions provide robust, standardized workflows suitable for
broader adoption in research and clinical settings. As
integration between robotics, microfluidics, and downstream
omics continues to evolve, these platforms are poised to play
a central role in the next generation of single-cell analysis.

3. Deep learning for single-cell
analysis

Deep learning has transformed single-cell analysis by
enabling the extraction of meaningful insights from
large-scale datasets. Convolutional neural networks

(CNNs),130 generative adversarial networks (GANs),131 and
variational autoencoders (VAEs)132 have emerged as key
frameworks in this transformation. CNNs (Fig. 5A), which
excel in image-based tasks, capture spatial hierarchies of
cellular features, making them indispensable for
classification and regression models. Classification models
categorize cells based on morphological and molecular
characteristics, while regression models predict continuous
variables such as gene expression levels or phenotypic
responses. Generative models, including GANs (Fig. 5B) and
VAEs, further expand analytical capabilities by generating
synthetic single-cell data, correcting batch effects, and
simulating cellular states under diverse conditions. By
integrating these advanced deep learning approaches,
single-cell analysis achieves unprecedented accuracy and
scalability, driving new discoveries in cellular heterogeneity
and disease progression. Building on the transformative
applications of deep learning in single-cell analysis, we will
review key advancements in classification, regression,
generative modeling, and data integration, highlighting

Table 2 Commercial microfluidics platforms for single-cell analysis, isolation and dispensing

Category Platform Brand Principle Automation level Throughput Applications Features

Single-cell
analysis

BOXmini
SCP

ACX
Instruments

Digital
microfluidics

High High (1536 cells
per run)

Proteomics High-throughput
single-cell proteomics
sample preparation

Chromium 10×
Genomics

Droplet
microfluidics

High High (hundreds
to millions of
cells per run)

Multi-omics High-throughput
droplet-based single-cell
encapsulation; supports
scrna-seq, scatac-seq,
multiome

Beacon Bruker Optofluidics High High (500 to
60 000 cells per
run)

Genomics,
transcriptomics

Optofluidic live-cell
culture and functional
profiling; for antibody
discovery, vaccine and
t-cell screening

Single-cell
isolation
and
dispensing

CellShepherd ARRALYZE Microarray-based200 Medium Low (1 cell per
minute)

General cell
applications

Imaging-based cell
tracking and isolation;
AI-driven analysis

Cell Handler Yamaha Wellplate and
capillary

Medium/high Medium
(8-channel tips;
96-/384-well plate)

General cell
applications

Automated imaging and
single-cell picking arm;
Ai-integrated analysis,
high resolution imaging

CellenONE SCIENION Capillary droplet
generation

High High (96 cells
isolation/3
minutes)

Multi-omics High-accuracy
image-based isolation;
temperature control;
omics-compatible

F.SIGHT
OMICS

Cytena Cartridge
microfluidics

Medium/high High (384 cells
isolation/8
minutes)

Multi-omics Morphology- and
fluorescence-based
sorting; picoliter droplet
generation

DispenCell
S4

SEED
Biosciences

Wellplate and
capillary

Low/medium Medium (96 cells
isolation/4
minutes)

General cell
applications

Tip-based monoclonal
cell isolation;
semi-automated; for cell
line development

CellRaft AIR
System

Cell
Microsystem

Microraft array Medium Low (96 cells
isolation/1.5
hours)

General cell
applications

Raft array-based clone
identification; enhanced
cell outgrowth

CellCelector Sartorius Wellplate and
capillary

Medium/high Low (1 cell
isolation/20–30
seconds)

General cell
applications

Image-guided robotic
picking; monoclonal
selection; well/nanowell
compatibility
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their impact on cellular characterization and predictive
modeling (Table 3).

3.1. Classification of cell states and fates

Classification models are essential for distinguishing cell states
and fates in single-cell analysis. CNNs have been particularly
effective in the recognition of cellular morphology with high
precision. Deep learning methods like Cellpose and LIVECell
have advanced cell segmentation in microscopy images.
Cellpose,133,134 trained on over 70 000 segmented objects,
enables precise segmentation across diverse image types
without retraining. LIVECell,135 a high-quality dataset of 1.6
million phase-contrast images, supports training models for
accurate segmentation in variable cell morphologies and
densities, improving high-throughput imaging. In addition,
Din and Yu advanced single-cell segmentation by developing
deep learning models capable of delineating cell boundaries
with minimal human annotation.136

With segmented individual cells, there are multiple works
that classify cell viability and damage severity, facilitating high-
efficiency toxicity evaluation and the screening of potential
anticancer drugs. For examples, Tox_(R)CNN was established
by Jimenez-Carretero et al. to predict toxicity from images of
DAPI-stained cells.137 Chen et al. developed a deep learning
model that predicts tumorsphere formation on day 14 based
on day 4 images, significantly accelerating cancer stem-like cell
identification.138 Similarly, Pattarone et al. established a deep
learning framework for classifying live and dead breast cancer
cells without staining, expanding the applicability of label-free

cell classification.139 Ulicna et al. developed a Bayesian-based
single-cell tracking approach that performs lineage tree
analysis, by utilizing cell state classification which in turn
improves tracking of cells in both 2D and 3D environments.140

Hartnett et al. introduced live, apoptotic, and necrotic cell
explorer (LANCE), a CNN-based model that classifies apoptotic
and necrotic cells based on brightfield microscopy images, with
an accuracy of 96.3 ± 0.5%, eliminating the need for
fluorescence labeling.141 He et al. developed a deep learning
model, named detector of mitosis, apoptosis, interphase,
necrosis, and senescence (D-MAINS), which leverages cellular
morphology in phase contrast images for accurate cell status
classification.142 Li et al. developed an AI-based approach for
detecting cell damage, utilizing a CNN trained on time-series
fluorescence images collected before and after drug exposure,
achieving an accuracy of over 93%.143 These breakthroughs
underscore the power of deep learning in advancing
classification tasks for single-cell analysis. However, challenges
persist in dataset annotation, model interpretability, and the
generalizability of predictive accuracy across diverse cell
models. To address these limitations, strategies such as
transfer learning144,145 and self-supervised learning146,147 are
being explored to enhance model robustness across diverse
experimental conditions.

3.2. Regression to assess continuous biological variables

Regression models play a pivotal role in single-cell analysis
by predicting continuous biological variables, offering deeper
quantitative insights beyond discrete classification. These

Fig. 5 AI models for single-cell analysis. (A) CNNs capture spatial hierarchies of cellular features, enabling precise cell classification and regression.
Classification models distinguish cells by morphology and molecular traits, while regression models predict continuous variables like gene
expression and phenotypic responses. (B) GANs consist of a generator that creates synthetic data and a discriminator that differentiates real from
fake, engaging in an adversarial process to refine data generation. This framework enables high-fidelity single-cell data synthesis, correcting batch
effects, and simulating cellular states under diverse conditions. Images were created using BioRender.
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methods are particularly valuable for high-throughput
studies, where understanding heterogeneous cellular
responses is essential. Zhang et al. applies random decision
forest and artificial neural network to microfluidic single-cell

migration data, and the model achieved high accuracy in
predicting cell movement direction (over 99%) and speed
(91%), identifying key morphological features that drive cell
migration and metastasis.148 Green et al. leveraged deep

Table 3 Recent deep learning methods in single-cell analysis across segmentation, classification, regression, and generative modeling

Category Source (year) Models/methods Sample type Key advantage/findings Applications Limitations

Cell
segmentation

Cellpose 2.0
(2021)133

DNN + U-Net
style architecture
+ residual blocks

Fluorescence,
and
phase-contrast
microscopy
images

Provides a pretrained model
zoo to accommodate various
microscopy modalities; uses a
human-in-the-loop approach
to simplify model generation

Single-cell
segmentation for
diverse
microscopy data

Human-in-loop
approach may be less
effective for complex
morphologies

LIVECell
(2021)135

CNN-based
segmentation
model

Phase-contrast
microscopy
images

Enables label-free
segmentation across diverse
cell densities and
morphologies

Single-cell
segmentation
and tracking in
live-cell imaging

Performance depends
on imaging quality; less
effective for
non-adherent cells

Din et al.
(2021)136

Self-supervised
CNN
segmentation
model

Bright-field
and
fluorescence
single-cell
microscopy

Achieves accurate
segmentation without manual
labels or extensive supervision

Preprocessing for
pipelines across
modalities

Sensitive to cell density
and imaging
conditions; cannot
distinguish cells from
background in certain
cases

Classification Pattarone
et al. (2021)139

CNN classifier
(live vs. dead
cells)

Bright-field
breast cancer
cell images

Achieves AUC of 0.94–0.98
without staining; suitable for
live-cell analysis

Label-free
viability
screening

Specific to single cell
lines; staining or
capture methods may
limit generalizability

Ulicna et al.
(2021)140

U-Net + classifier
+ Bayesian
tracking

Time-lapse
bright-field
and
fluorescence
microscopy
images

Combines cell classification
with tracking to improve cell
lineage analysis accuracy

Lineage tracking;
single-cell
studies

Requires high-quality
time-lapse imaging

Hartnett et al.
(2022) –
LANCE141

CNN classifier Label-free
bright-field
images of cell
lines

Provides 96.3 ± 0.5% accuracy
in label-free bright-field
imaging; tracks cell dynamics
non-destructively

Cell death
monitoring;
cytotoxicity
assessment

Sensitive to imaging
conditions; may
misclassify certain cell
states

Regression Green et al.
(2021)149

DNN + cGAN Zebrafish
assay HTS
chemical data

Achieves AUC of 0.837 in
consensus models; improves
sensitivity in chemical
screening

Drug toxicity
screening

Requires accurate 3D
chemical structures;
cannot evaluate
mixtures

Pham et al.
(2021/22)150,151

GCN + feed
forward neural
network +
interaction
network +
prediction
network

LINCS L1000,
STRING,
DrugBank,
patient
expression
SARS-CoV-2

Outperforms state-of-the-art
methods; suitable for drug
repurposing

Drug
repurposing;
prediction of
gene expression
changes

Strongly influenced by
input data quality

Chiang et al.
(2024)153

CNN regression
model

Phase-contrast
images of
microfluidic
spheroids

Achieves correlation of r =
0.989 with LIVE/DEAD assays;
transferable across
laboratories

High-throughput
drug screening

Imaging conditions
may affect prediction

Generative
modeling

Palma et al.
(2025)158

Generative
modeling for
morphology
prediction

Single-cell
images under
perturbations

Predicts morphological
changes under drug or genetic
perturbations

In silico
screening of
morphological
effects

Requires diverse
perturbation training
datasets

Xu et al.
(2020) –
scIGANs160

GAN-based
imputation
model

Single-cell
RNA-seq data

Improves imputation accuracy
and reduces sparsity in
scRNA-seq data

Enhanced
scRNA-seq
analysis and
clustering

Sensitive to input data
quality; risk of
over-smoothing

Lopez et al.
(2018)163

VAE Single-cell
RNA-seq data

Learns latent structures;
supports clustering and
trajectory inference

Unsupervised
transcriptomics
analysis

Interpretation
challenges;
computationally
intensive

Marouf et al.
(2020)201

GAN/cscGAN Single-cell
RNA-seq data

Generates realistic scRNA-seq
profiles; improves
downstream analysis

Data
augmentation;
rare-cell analysis

Susceptible to mode
collapse; high
computational demand
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neural networks (DNNs) and conditional generative
adversarial networks (cGANs) to predict toxicological
responses from large-scale screening data, improving drug
candidate prioritization, achieving an area under the receiver
operating characteristic of 0.837.149 Pham et al. introduced
DeepCE, a deep-learning framework that predicts chemical-
induced gene expression changes in a cell-type-specific
manner, facilitating drug discovery and toxicology
assessments and supporting drug repurposing for COVID-19
(ref. 150 and 151) Lakkis et al. introduced single cell
imputation protein embedding neural network (sciPENN),152 a
versatile deep learning framework designed for the integration
of CITE-seq and scRNA-seq data, enabling protein expression
prediction for scRNA-seq and protein expression imputation
for CITE-seq. Zhang et al. (1920 tumor spheres) and Chiang
et al. (12 000 spheroids per chip) leveraged deep learning for
label-free viability assessment of cancer spheroids in
microfluidic platforms, reducing reliance on fluorescence
staining while maintaining high classification accuracy.153,154

Ma et al. systematically predicted the efficacy of >6000
compounds against therapy-resistant polyploid giant cancer
cells.155 Despite their promise, single-cell regression models
face challenges such as biological noise, batch effects, and
variability in experimental conditions. To mitigate these issues,
the incorporation of more diverse single-cell datasets, along
with the application of data augmentation, ensemble learning,
and regularization techniques, is anticipated to improve model
robustness and enhance predictive accuracy.

3.3. Generative modeling for single-cell analysis

Generative models, including GANs and VAEs, have emerged
as powerful tools in single-cell analysis, enabling data
augmentation, image denoising, and cellular behavior
simulation. These models significantly enhance
computational biology by facilitating synthetic data
generation and improving analytical methodologies. In
image-based single-cell analysis, Witmer and Bhanu
employed GANs for dataset augmentation,156 improving
classification accuracy and achieving a 2% increase in both
true positive rate and F1-score compared to imbalanced
datasets. Similarly, Wu et al. developed a GAN-based method
to generate synthetic images of human cardiomyocytes at
various maturation stages,157 enhancing classification
accuracy and cellular structure analysis, outperforming
conventional machine learning approaches. Palma et al.
introduced the image perturbation autoencoder (IMPA)158 to
predict morphological changes in response to genetic and
chemical perturbations, improving high-content screening
analysis by accounting for batch effects and technical
variations, making it a valuable tool for drug discovery.
Additionally, Ternes et al. developed a multi-encoder VAE,159

improving single-cell image analysis by extracting biologically
relevant features, enhancing cell population separation,
phenotypic distinctions, and correlation with other analytical
methods. Beyond morphological analysis, generative models

also aid in scRNA-seq, which, despite its ability to
characterize transcriptomic profiles at high throughput, faces
challenges such as dropout errors and technical noise. To
address these limitations, GANs, including scRNA-seq
imputation GANs (scIGANs)160 and conditional single-cell
GANs (cscGANs),161 generate realistic imputed or augmented
single-cell RNA-seq data, improving downstream analyses,
rare cell population detection, and classification robustness.
These models also mitigate data sparsity, enhance expression
quality, and reduce reliance on biological samples, improving
reproducibility and cost efficiency in biomedical research.
Overall, GANs and VAEs are transforming single-cell analysis
by improving data integrity, addressing technical limitations,
and expanding analytical capabilities, paving the way for
more accurate and scalable biomedical research.

3.4. The role of AI in enhancing single-cell data integration
and analysis

AI is also playing an increasingly central role in the
integration of multi-omics single-cell data by addressing
challenges spanning data generation, integration, storage,
analysis, and interpretation. In data generation, AI-driven
experimental design and active learning methods help
optimize sampling strategies, enabling researchers to
prioritize informative cell populations or experimental
conditions that maximize biological insight while reducing
experimental costs and redundancy.162 For example, adaptive
sampling algorithms can guide iterative single-cell RNA
sequencing to focus on rare or transitional cell states. In the
realm of data integration, cutting-edge AI models such as
variational autoencoders (e.g., scVI163 and TotalVI164) and
graph neural networks165,166 have proven effective at aligning
and integrating diverse modalities including transcriptomics,
proteomics, and epigenomics, enabling comprehensive
characterization of cellular states across multiple molecular
layers. These models can overcome batch effects and
technical noise, harmonizing datasets collected across
different platforms or time points.

Scalable data storage, transfer, and archiving
infrastructures, combined with standardized metadata
frameworks (such as the Human Cell Atlas metadata
standards167,168), are critical to support reproducible AI-
driven analyses and facilitate large-scale data sharing. To
enable efficient AI applications, curated and well-annotated
databases, like the Single Cell Expression Atlas169 and Tabula
Muris,170 are developed with AI-friendly formats,
accompanied by modular, reproducible pipelines (e.g.,
Scanpy171 and Seurat172) that streamline preprocessing and
downstream machine learning analyses. AI-powered quality
control tools automatically detect technical artifacts, low-
quality cells, and batch effects; methods like
DoubletFinder173 and SoupX174 are widely used to clean
single-cell datasets prior to analysis.

Importantly, advances in explainable AI are making it
possible to interpret complex models and extract biologically
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meaningful insights. For example, CellOracle175 uses
machine learning to infer gene regulatory networks and
predict cellular responses to perturbations, providing
mechanistic insights rather than black-box predictions.
Similarly, scMoMaT176 integrates multi-omics single-cell data
to identify coordinated regulatory programs, facilitating
hypothesis generation grounded in interpretable features.
Together, these developments demonstrate AI's
transformative potential to not only enhance technical
aspects of data handling but also to enable deeper biological
discovery through integrative and interpretable analyses in
single-cell and multi-omics research.

3.5. Barriers to reliable AI in single-cell microfluidics

Despite their impressive performance, current AI pipelines
for single-cell imaging and microfluidic read-outs still suffer
from a number of limitations that negatively affect scientific
transparency and reproducibility.177 The deeply layered,
“black-box” nature of CNNs, GANs, and transformer models
obscures the mechanistic links between an input image and
the model's prediction, making it hard for researchers or
regulators to verify AI-generated hypotheses or understand
the thought process behind certain classifications or features
that might be selected for training the models. Because
models typically demand large, expertly annotated datasets,
any bias or noise introduced during annotation, image
acquisition, or batch processing can propagate through
training and destabilize downstream results. Even when
sizeable datasets exist (e.g., Cellpose or LIVECell), differences
in microscope settings, cell lines, or microfluidic chip
geometries often erode model generalizability, forcing each
laboratory to perform costly re-training and hyper-parameter

tuning that are rarely described in sufficient detail for others
to reproduce. The heavy computational footprint of state-of-
the-art networks further complicates transparency: model
weights, training logs, and version-specific software
dependencies are rarely saved, so a result obtained on one
graphics processing unit (GPU) stack may be irrecoverable on
another. Finally, the field lacks standardized benchmarks for
evaluating continuous-variable regressors (e.g., viability scores
or migration velocities), leaving researchers to report
disparate metrics that impede cross-study comparison.
Addressing these gaps will require open, modality-matched
reference datasets, shareable training pipelines with locked
random seeds and environment files, and the wider adoption
of interpretable, self-supervised, or transfer-learning
frameworks that can be audited and stress-tested across
laboratories before their biological conclusions are trusted.

4. Potential role of cloud lab
concepts in single-cell
experimentation

Despite the transformative potential of integrating
microfluidics, robotics, and AI in single-cell analysis,
technical and operational challenges remain significant.
These complexities have prompted interest in a new
envisioned model: the cloud lab.178–180 Cloud labs (Fig. 6)
have been described as centralized facilities equipped with
sophisticated instrumentation and infrastructure that
researchers can access remotely.181–183 Through cloud
interfaces, scientists can submit standardized protocols and
samples, receive real-time or asynchronous experimental
outputs, and conduct downstream computational analyses,

Fig. 6 Cloud Lab synergizing microfluidics, robotics, and AI for accelerated single-cell discovery. The Cloud Lab concept connects laboratory
protocol management, single-cell microfluidics, robotic operation, and artificial intelligence into a unified workflow. Laboratory modules manage
experimental protocols, while microfluidic systems enable high-throughput single-cell data collection. Robotic platforms execute automated
workflows, and AI modules generate and refine hypotheses based on acquired data. Images were created using BioRender.
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enabling a degree of experimentation without direct physical
presence. This model holds promise for supporting single-
cell workflows, where robotic execution of highly repetitive
and sensitive steps, such as droplet generation, reagent
dispensing, and high-content imaging, could benefit from
automation and central standardization if realized. In
practice, however, many upstream elements of single-cell
experiments, such as microfluidic chip fabrication, reagent
formulation, and biological sample preparation, still demand
expert manual handling and cannot yet be fully automated.
As such, cloud labs should currently be seen as
complementary to traditional laboratories, providing
infrastructure for partial automation, protocol
standardization, and collaborative data analysis, rather than
serving as complete replacements. Cloud labs offer
advantages in enhancing reproducibility and scalability in
robotic-driven workflows. By centralizing the execution of
experimental protocols and integrating with cloud-based data
processing pipelines, they can minimize human variability in
routine tasks and improve consistency across different users
and institutions. For example, robotic liquid handling and
imaging systems operated within cloud lab environments can
deliver consistent performance under tightly controlled
conditions, reducing experimental drift over time and
variations between laboratories, which is critical for deep
learning data analysis.

From a collaborative perspective, cloud labs are especially
useful within structured partnerships or consortia, where
institutions can share expertise and infrastructure under
clearly defined governance models. In such frameworks,
cloud labs act as intermediaries, allowing remote users to
leverage specialized instrumentation managed by trained
personnel. Commercial platforms (e.g., Strateos, Emerald
Cloud Lab) have provided early demonstrations to operate
this model through subscription or usage-based services,
offering access to robotics and analytical infrastructure for
research groups without direct access to such resources.
While the financial expense of cloud lab access varies
depending on experimental complexity and support needs,
this shared-access model has the potential to lower entry
barriers for technically demanding workflows such as
single-cell assays.

Importantly, while cloud labs offer a forward-looking
infrastructure, claims that they can fully eliminate physical
laboratory needs or democratize all aspects of experimental
biology should be considered in light of real-world
constraints, including cost, technical complexity, and the
need for real-time decision-making in dynamic biological
experiments. A more realistic and achievable path lies in
hybrid integration, in which cloud-connected systems
enhance reproducibility, enable remote collaboration, and
operate standardized components of experiments, while still
relying on local expertise for complex, hands-on steps.
Overall, cloud labs represent an envisioned framework that
may, in the future, support single-cell research, particularly
in the realms of standardized data acquisition, robotics, and

inter-institutional collaboration. While challenges remain in
areas such as device fabrication and biological sample
handling, cloud labs may ultimately augment traditional
laboratory workflows, acting as powerful facilitators of
experimental rigor, scalability, and accessibility.

5. Conclusion and perspective:
challenges and opportunities in
integrating AI and robotics for
advancing single-cell analysis

Currently, AI and robotics are transforming single-cell
research, with their potential realized through integration
across three critical domains: (1) robotic generation of large-
scale datasets for deep learning, (2) rapid validation of novel
hypotheses generated by AI, and (3) iterative feedback to
enhance model refinement. Robotics is indispensable for
creating high-quality, large-scale datasets required to train
and optimize AI models. For example, microfluidic platforms
can process thousands of single cells simultaneously,
generating vast datasets for transcriptomics, proteomics, or
metabolomics. These datasets feed into AI algorithms,
sharpening their predictive capabilities and enabling the
generation of increasingly complex and innovative
hypotheses. Recent developments in deep visual proteomics
(DVP)184 and single-cell DVP (scDVP)185 demonstrate how AI-
guided image processing and robotic microdissection can
link spatial cellular phenotypes to proteomic profiles at
single-cell resolution, uncovering spatially regulated disease
mechanisms in complex tissues. These approaches illustrate
the promise of this technological convergence.

However, this vision is also constrained by both technical
and conceptual limitations. One major challenge is the
annotation burden: biological datasets often require expert
labeling to train supervised models, which become
particularly onerous in single-cell contexts where
morphological, molecular, and functional heterogeneity is
high. Moreover, many AI models, especially deep neural
networks, function as “black boxes”, raising concerns about
interpretability and the transparency of biological insights
they generate. Without a clear understanding of how
predictions are derived, it can be difficult to assess their
scientific validity or clinical relevance. Furthermore, even
with automation, reproducibility in AI-driven workflows
remains a concern, particularly when predictions rely on
complex models trained with non-standardized preprocessing
pipelines or limited sample diversity. These issues may
undermine confidence in AI-generated hypotheses unless
carefully addressed through rigorous experimental design
and benchmarking.

Looking ahead, the iterative feedback loop between AI and
robotics represents an envisioned paradigm for biomedical
research (Fig. 6). Robotic experimentation generates data that
improves AI models, while AI refines hypotheses that drive
further experimentation. This self-reinforcing cycle, although
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not yet fully realized, could accelerate discovery, enabling
deeper insights and breakthroughs that would be
unattainable with either technology alone. Together, AI and
robotics are poised to revolutionize single-cell analysis and
redefine biomedical innovation. The symbiotic relationship
between AI and robotics can also extend to the development
of new experimental techniques. Robotics can facilitate the
design and testing of novel methodologies proposed by
unsupervised AI models.186 For instance, AI might suggest
unconventional ways to sort or label cells based on subtle,
previously unrecognized features through unsupervised
learning. Robotic platforms can implement these techniques,
generating data that not only validates the methodology but
also expands the boundaries of what is experimentally
possible. This iterative process continuously pushes the
limits of single-cell analysis, enabling breakthroughs that
were previously inconceivable.

Ultimately, the convergence of microfluidics, robotics,
and AI is poised to reshape single-cell analysis. While each
of these technologies has independently contributed to
advances in throughput, precision, and discovery, their true
transformative power lies in their integration. However, the
field remains fragmented, with relatively few platforms
offering end-to-end solutions from sample preparation to
hypothesis generation and validation. We anticipate a shift
from Siloed tool development to modular, interoperable
ecosystems, where standardization, cloud-based
experimentation, and real-time AI feedback loops will be
central. Importantly, the next phase of innovation will
demand more than technical optimization; it will require
frameworks for interpretability, reproducibility, and
deployment of autonomous decision-making in biological
research. Rather than a linear progression, we foresee the
field evolving into a multidimensional space, one that
combines biological insight, engineering, and responsible
AI. In this light, integration should be viewed not as an
accomplished reality, but as a forward-looking vision that
redefines how discovery in life sciences may be achieved in
the future.
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