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A 3D patternoid model for the reproducible
characterization of invasive phenotypes and drug
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Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive and

heterogeneous malignancy, posing challenges for reproducible

modeling and functional phenotypic analysis. To address these

limitations, we developed a standardized 3D patternoid platform

using collagen-based microcavity arrays to enhance organoid

formation consistency and quantify subtype-specific invasion

mechanisms. We utilized murine primary PDAC cells stratified by

epithelial–mesenchymal transition (EMT) into three subtypes:

epithelial (E-9591), hybrid EMT (Mlow-8028), and mesenchymal

(M-16992). The platform's sensitivity was verified by a strong

correlation between EMT scores and invasive phenotypes, as well

as responses to physiological concentrations of the protease

inhibitor batimastat. Key invasion parameters—including invasive

area, maximum invasion distance, and branching complexity—

were measured under both genomic and drug-induced

conditions. The platform demonstrated high inter-organoid

reproducibility, with precise control over initial cell numbers

ensuring batch-to-batch comparability. Invasion dynamics

analysis revealed that epithelial cells (E-9591) primarily relied on

spatial constraints within the microcavity to invade. Batimastat

drug sensitivity assays further distinguished invasion

dependencies of the mesenchymal subtypes, confirming that M-

16992 patternoids exhibit a stronger sensitivity towards MMP

inhibition compared to Mlow-8028 patternoids. Concurrentlty,

both subtypes experienced a shift towards epithelial-like spatial

constraint triggered invasion morphology, reflecting the plasticity

of PDAC invasiveness. This scalable and adaptable 3D patternoid

platform enables high-throughput analysis of invasive behaviors

and therapeutic responses, offering significant potential for

preclinical cancer research and personalized medicine.

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is among the most
aggressive malignancies, with late-stage diagnosis and
pronounced inter- and intratumoral heterogeneity
contributing to its poor prognosis.1–3 Existing clinical
approaches for therapeutic selection primarily focus on
genetic profiling and histopathology; however, these methods
fail to capture functional aspects of tumor behavior, such as
invasive phenotypes and therapeutic resistance.4 To address
this limitation, three-dimensional (3D) patient-derived
organoid (PDO) systems have emerged as promising tools for
modeling tumor dynamics and screening drug sensitivity in
the context of individual patient profiles. These systems have
demonstrated significant potential, particularly in generating
chemograms that correlate drug responses with patient
outcomes, highlighting their relevance in precision medicine
for multiple cancer types.5–7

Most PDO systems currently rely on spheroid-based
models cultured in Matrigel domes. These models often face
challenges related to reproducibility, such as variability in
starting cell numbers and limited control over the
microenvironment. As a result, they predominantly yield
spherical morphologies, which restrict many analyses to
viability assays and can reduce the capacity to explore
mechanisms of invasion and metastasis.8 To expand the
investigative potential of organoid models, Papagyriou et al.
has established a branched organoid system for murine and
human pancreatic cancer. This approach aims to more
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closely mimic key features of the pancreatic cancer
phenotype and has been used to study processes such as
epithelial-to-mesenchymal transition (EMT) and its role in
invasive behavior, both of which are relevant for
understanding metastasis and therapy resistance. While this
system contributes valuable insights into PDAC
heterogeneity, certain aspects of its application—including
reproducibility in the context of drug response assessment—
remain areas of ongoing refinement.9,10

To overcome these limitations, we introduce a 3D
patternoid platform that employs biomimetic microcavities
to standardize organoid formation. The patternoid model
achieves high sensitivity in correlating EMT scores with
invasive phenotypes while ensuring low inter-organoid
heterogeneity and batch-to-batch reproducibility through
precise control of starting cell numbers. Additionally, the
defined spatial arrangement of patternoids within the
extracellular matrix (ECM) facilitates high-content phenotypic
analyses. This platform thus provides robust and
reproducible readouts, enabling direct assessment of distinct
invasion mechanisms and drug responses, highlighting its
potential for precision medicine and preclinical research.

2 Results
2.1 Development and characterization of PDAC patternoids
for invasive phenotype analysis

By seeding cells into a defined array of 650 collagen
microcavities with a precisely controlled cylindrical shape, we
establish a standardized geometric baseline for patternoid

development (Fig. 1A–C). This setup minimizes inter-
organoid morphological heterogeneity. The surrounding
high-concentration collagen matrix was specifically selected
to mimic the elevated stiffness of the PDAC tumor
microenvironment, a key factor in inducing mechanical cues
that drive cancer progression and invasion.11

This approach enables the generation of hundreds of invasive
PDAC patternoids within only three days, producing distinct
invasive phenotypes (Fig. 2D) based on the genomic profiles of
the tumor-derived cells used (Fig. 2A–C). To assess the platform's
sensitivity to genomic differences, we utilized primary cancer
cells derived from KC mice that developed varying Kras dosages
during tumor progression.12 These cells were analyzed to
characterize subtype-specific invasive phenotypes.

Patternoid characterization was performed using
z-projected segmentation analysis to quantify five key

Fig. 1 Pipeline for the generation of PDAC patternoids and invasive
phenotype characterization. A The collagen is patterned using a PDMS
stamp that generates 25 × 26 microcavities in the collagen gel (3 × 4
shown in top view illustration (B) and top view images (C) for
simplification), followed by seeding singularized cells into the
microcavities. After washing, a collagen lid is added with a glass
coverslip, which is subsequently removed before adding the cultivation
medium. After 24 h, either a medium change is done or batimastat
treatment is performed for 48 h. At the endpoint, patternoids are
fluorescence-stained and imaged. D Segmented patternoids (binary
image) are used to extract key invasive parameters. Qualitative
comparison under varying conditions is performed based on SUM
z-projections of binary images of segmented patternoids (heatmaps).

Fig. 2 EMT marker expression in PDAC subtypes and reproducible
invasive patternoid phenotype. A Representative brightfield (BF) images
of PDAC subtypes in adherent cell culture at confluencies around 70–
90% show distinct phenotypes. Fluorescence (FLUO) images show
localization and expression levels for E- and N-cadherin and vimentin
and DAPI (blue) for nucleus localization. To enable a direct comparison
across subtypes, brightness settings were kept consistent; this
standardization may obscure low-expression signals. These weaker
signals are visualized separately in Fig. S7.† Scale bar = 50 μm. BF and
FLUO images originate from different experiments. B Illustration of EMT
score characteristics in regards of phenotype, EMT marker expression
levels and categorization into epithelial/mesenchymal. C Cytoplasmic
E-cadherin levels are quantified together with N-cadherin and vimentin
for comparability, while specific E-cadherin localization at cell–cell
junctions (visible in images) highlights phenotypic differences. D Binary
image heatmaps of all patternoid replicates that were used for analysis in
E. The number of replicates is indicated in the calibration scale. A
representative patternoid 3D reconstruction is presented in the lower left
of each heatmap. The c0 class distribution of the replicates used for each
heatmap is shown in the lower right. E–I Quantitative invasive parameters
of each PDAC subtype. N = 2 independent experiments. The non-
invasive area was normalized to the projected area of the circular
microcavity (d = 100 μm, A = 7854 μm2). Scale bar = 100 μm.
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invasive parameters (Fig. 1D). The invasive area provides a
general measure of invasion extent, while the maximum
invasive distance reflects the subtype's invasive potential.
Additionally, branching complexity was analyzed by
quantifying the number of invasive roots and tips, with the
ratio of tips to roots defining the branching factor. The
invasive roots number was found to be an indicator for the
reliance of PDAC subtypes on spatial constraints as a trigger
for invasion, which will be discussed in detail in the
subsection 2.5. The non-invasive area represents the area
within the microcavity, that is covered by non-invasive cells
at day 3.

A crucial criterion for batch comparability and reliable
differentiation of PDAC subtypes—based solely on
genomically driven phenotypic differences—is the control of
starting cell numbers within each microcavity. Despite using
the same initial cell density during seeding, variability in the
starting cell number may arise due to shear forces during
washing steps, leading to uneven cell distribution. While
automated handling can reduce variability, inherent
statistical fluctuations (e.g., Poisson distribution effects) still
affect the initial cell count per microcavity. Consequently,
documenting the starting cell number is essential for
ensuring reproducibility.

Patternoids were therefore categorized into c0 classes,
defined as tolerance ranges (c0 ± 10%) around a target
starting cell number c0. This range was experimentally
determined to balance sensitivity and practicality in analysis.
For the comparison between batches, only patternoid
replicates derived from the same c0 class were used for
analysis. Alternatively, patternoid replicates from multiple c0
classes can be pooled for analysis, as applied for the analysis
shown in Fig. 2D and E. When using this approach,
maintaining a consistent distribution of c0 classes across
batches is critical to ensure reliable comparisons
(Fig. 2D, bottom right).

To precisely control starting cell numbers, we established
a documentation step at time point 0. An overview image of
each sample was captured within 2 h after seeding (Fig.
S6A†), enabling accurate determination of the starting cell
number for each patternoid ID. Patternoids meeting strict
inclusion criteria were selected for further analysis (see
Methods 4 and Fig. S6C–F†). While only 10–25% of seeded
microcavities yielded suitable patternoids, this approach
significantly reduces variability caused by seeding
inconsistencies. As a result, phenotypic readouts accurately
reflect genomic differences and drug effects, ensuring high
experimental reliability.

Besides the acceptable margin of variability for the
definition of the c0 class, also the definition of the minimum
c0 class and thus the cell seeding density strongly correlates
with the heterogeneity of the cell population used. The
minimum c0 class in this study was set at 10; however, for
cell populations with increased heterogeneity, such as
patient-derived samples, a higher c0 class may be necessary
to ensure reproducibility.

2.2 Correlation between EMT score and patternoid invasive
phenotypes

To systematically correlate EMT-driven invasion with
phenotypic outputs as demonstration for the patternoids
platform's utility. Primary cancer cells derived from KC mice
—a model representing the cellular heterogeneity observed in
PDAC patients—were utilized for this study. These cells,
classified into epithelial (E-9591), hybrid EMT (Mlow-8028),
and mesenchymal (M-16992) subtypes using bulk RNA-seq,10

were analyzed for key EMT markers, including cytoplasmic
E-cadherin (E-cadh), N-cadherin (N-cadh), and vimentin,
through immunofluorescence staining and confocal imaging
(Fig. 2A and 7). A central aim was to determine whether the
Mlow-8028 subtype represents a true hybrid EMT state,
characterized by intermediate expression levels of epithelial
and mesenchymal markers, or merely a mixture of epithelial
and mesenchymal cells.

Using these cell lines, PDAC subtype patternoids were
generated to quantify differences in invasive behaviour driven
by distinct EMT states. Patternoid replicates for analysis were
selected based on the starting cell number c0 class of 10, 20,
and 30. Comparable proportions of each c0 class were pooled
across all PDAC subtypes to ensure consistency and
comparability (Fig. 2D, right bottom).

In E-9591, the specific localization of E-cadh in the cell–
cell junctions was observed qualitatively (Fig. 2A). No
cytoplasmic E-cadh nor mesenchymal marker expression
levels further reflect the epithelial character of this subtype
(Fig. 2C). The low N-cadh and vimentin levels suggest a rigid
cytoskeleton and low adaptability, conferring a minimal EMT
score (Fig. 2B) that aligns with the low invasive potential that
is observed in the patternoid morphology (Fig. 2D–I).13

Mlow-8028 is characterized by cytoplasmic E-cadherin and
elevated N-cadherin and vimentin levels (Fig. 2A and C), which
rises suggestions to a classification as hybrid subtype (Fig. 2B).
The cytoplasmic localization of E-cadherin indicates reduced
cell–cell adhesion and a partial loss of epithelial integrity,
typical of cells that are transitioning along the EMT spectrum.
Concurrently, high N-cadherin and vimentin levels introduce
mesenchymal properties that enhance cellular flexibility,
adaptability, and motility within the ECM (Fig. 2B).14 The
cellular plasticity enables localized invasion while retaining
some epithelial features, which is also represented by the
moderate invasiveness that is observed in Mlow-80028
patternoids (Fig. 2D–I).

M-16992 cells exhibit a fully mesenchymal phenotype
characterized by the absence of E-cadherin, with expression
levels of N-cadherin and vimentin similar to those observed
in the intermediate Mlow-8028 cells (Fig. 2A and C). This
lack of E-cadherin eliminates any residual epithelial
adhesion, allowing these cells to fully adopt a mesenchymal
state (Fig. 2B), enhancing their invasive potential. The
presence of N-cadherin and vimentin facilitates dynamic
cell–ECM interactions and provides structural flexibility,
supporting effective migration and invasion through the
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ECM resulting in the invasive phenotype of M-16992
patternoids (Fig. 2D–I).

These findings reveal, that distinct invasive phenotypes
correlate with the EMT-related molecular profiles of each
PDAC subtype (Fig. 2B and D). The mesenchymal subtype M-
16992 demonstrates a large and complex invasive
morphology, with a mean invasive area of 23 971 ± 102 507
μm2 (Fig. 2E), a maximum invasive distance of 379.7 ± 96.1
μm (Fig. 2G), and a branching factor of 3.15 ± 0.965,
indicating an invasive complexity approximately two times
greater than that of the epithelial (E-9591) and hybrid EMT
(Mlow-8028) subtypes (Fig. 2H and I). The absence of
E-cadherin in M-16992 (Fig. 2A–C), which reduces cell–cell
adhesion, likely facilitates the fractal development of its
invasive branches (Fig. 2D, H and I).

In contrast, the cytoplasmic E-cadherin in Mlow-8028
may support collective invasion, resulting in a lower
branching factor of 1.61 ± 0.530 (Fig. 2D, H and I),
comparable to the 1.56 ± 0.507, that is observed in the
epithelial subtype. Despite its less complex structures
(Fig. 2D), E-9591 exhibits a notably high number of initial
invasive events, averaging 7.5 ± 3.725 (Fig. 2H), which are
evenly distributed along the microcavity boundaries
(Fig. 1D). Meanwhile, Mlow-8028 and M-16992 display fewer
initial invasive events, averaging 4.15 ± 2.492 and 4.8 ±
1.699 (Fig. 2H), yet these events lead to distinct
morphologies: thicker branches in Mlow-8028 and thinner,
more fractal branches in M-16992 (Fig. 2D). Moreover, all
three PDAC subtypes exhibit distinct normalized non-
invasive areas, which increase as the EMT score decreases
(Fig. 2F). The inverted normalized non-invasive area can
thus be interpreted as an indicator of invasiveness.

The relative EMT marker expression levels in patternoids
of the PDAC subtypes Mlow-8028 and E-9591 do not differ
significantly. Both subtypes show elevated levels of
mesenchymal markers (N-cadherin and vimentin), albeit
lower than in M-16992, and exhibit minimal E-cadherin
expression (Fig. 8). These findings suggest that patternoids
shift toward a mesenchymal phenotype either during
invasion or as a prerequisite for matrix invasion, indicating
the potential in vivo plasticity of PDAC.15,16

2.3 Development and invasion dynamics of PDAC patternoids

In order to investigate the temporal dynamics of patternoid
invasion during the 3 day cultivation period leading up to the
end-point analysis. To achieve this, patternoids from each
PDAC subtype were imaged hourly over a 72 hour period. For
consistency, quantification was limited to patternoid
replicates initiated with a starting cell number c0 = 20.
Representative replicates highlight the key developmental
stages of patternoid formation for each PDAC subtype (see
Fig. 3A). Careful examination of pre-invasion behavior within
the microcavity not only provided insight into the “non-
invasive area” parameter but also clarified the distinct
invasive mechanisms of each PDAC subtype.

Upon seeding, cells transitioned from a rounded, non-
adherent morphology to an adherent state along the
microcavity walls, marking the onset phase. During this
period, cells engaged with the collagen matrix and formed
initial attachments, establishing structures that later drove
subtype-specific invasion.

The quantitative and statistical analysis shows that the
baseline values for the relative non-invasive area did not
differ significantly across subtypes (Fig. 3C). This confirms
that the initial condition, provided by a defined starting cell
number of c0 = 20, were consistent across all patternoid
replicates used in the analysis. Quantification of the non-
invasive area revealed a statistically significant increase over
time for all subtypes (Fig. 3C). Despite inherent limitations in
brightfield quantification—such as potential inaccuracies in
ROI alignment and illumination artifacts—the observed

Fig. 3 Invasion dynamics of PDAC subtype patternoids. A maximum
projections of representative replicates of different PDAC subtypes
patternoids at time points 2, 24, 36, 48, and 72 h (scale bar = 100 μm)
with corresponding zoom-ins of the microcavity region (green boxes).
For better visibility, standard deviation projections are shown (scale bar
= 50 μm). Epithelial monolayer formation is observed in E-9591, while
partial monolayer closure is seen in Mlow-8028. Invasion correlates
with sites of cell accumulations in Mlow-8028 and M-16992 (yellow
arrows). B Kymographs highlight invasion dynamics over 72 h, showing
cohesive growth in E-9591 (green arrows) and fluctuating migratory
cells in Mlow-8028 and M-16992 (yellow arrows) (scale bar = 50 μm).
C and D The relative quantification of the invasive and non-invasive
area of PDAC patternoids derived from c0 class = 20 over time
illustrates the subtype specific growth dynamics. Number of patternoid
replicates used for analysis: N = 4 (E), N = 5 (Mlow) and N = 6 (M).
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trends were reproducible across biological replicates. The
slower expansion of the non-invasive area observed in both
mesenchymal subtypes was significantly different from that
of the epithelial subtype (p = 0.028 for M-16992; p < 0.001 for
Mlow-8028; Fig. 3C). The small, non-significant difference in
non-invasive growth rates between M-16992 and Mlow-8028
aligns with their qualitatively similar non-invasive
morphologies shown in Fig. 3A.

The epithelial subtype E-9591 displayed the steepest non-
invasive growth trajectory, followed by M-16992, whereas
Mlow-8028 exhibited the slowest expansion, plateauing at
approximately 40% after 27 h (Fig. 3C). Concurrently, the
invasive area of Mlow-8028 began to increase more steeply
after 27 h (Fig. 3D), indicating a shift from proliferation
within the microcavity to outward invasion (Fig. 3A). This
subtype migrated as cohesive clusters, extending
multicellular invasive strands (Fig. 3A), a behavior likely
enabled by hybrid EMT traits such as partial cell–cell
adhesion and moderate MMP expression (Fig. 2B).

A comparable shift occured in E-9591 patternoids at
around 38 hours, when the non-invasive area reached ∼70%
(Fig. 3C). Following the formation of a continuous epithelial
monolayer along the microcavity wall
(Fig. 3A and B, green arrows), E-9591 initiated cohesive,
collective invasion through evenly distributed protrusions.
The decline in the slope of the non-invasive area trajectory
(Fig. 3C), together with a modest but detectable increase in
invasive area (Fig. 3D), suggests that E-9591 cells initiate
invasion primarily in response to spatial confinement—
consistent with their epithelial phenotype (Fig. 2B).

In contrast, M-16992 showed an early and continuous
increase in invasive area (see Fig. 3D), largely independent of
its non-invasive growth trajectory. This behavior reflects a
reduced reliance on spatial cues and is evident in the
pronounced, branched morphology of its invasive front (see
Fig. 3A) and its comparatively large relative invasive area
(Fig. 3D and 2E). These features are characteristic of a
strongly mesenchymal phenotype with high matrix
remodeling capacity (Fig. 2B).

In summary, E-9591 exhibits an initial phase of epithelial
expansion followed by delayed, spatially regulated invasion;
Mlow-8028 demonstrates earlier invasion with hybrid
characteristics; and M-16992 demonstrates early, extensive,
and spatially unconfined invasion typical of a mesenchymal
program. These distinct invasion patterns reflect underlying
EMT states and underscore the functional heterogeneity
among PDAC subtypes.

2.4 Effect of starting cell number on invasion phenotypes

Building on the observation that the initial confluency is a
critical factor for invasion onset, its influence was
systematically assessed across the different PDAC subtypes.
Invasive parameters were quantified for patternoids derived
from c0 classes of 10, 20, and 30 to evaluate the role of cell
density in shaping invasion phenotypes (Fig. 4A and B).

Across all subtypes, higher c0 classes resulted in a
consistent and significant increase in invasive and non-
invasive area, maximum invasive distance, and branching
factor (Fig. 4B). Despite intrinsic differences in invasive
propensity among the subtypes, these trends remained
conserved, underscoring the importance of confluence for
invasion, irrespective of the PDAC subtype and the
corresponding invasive mechanisms (Fig. 9).

The findings establish the starting cell number c0 as a
critical experimental parameter for controlling invasion
phenotypes and ensuring reproducibility. Accurate
documentation of c0 across experiments is essential for
reliable phenotypic characterization and robust assessment
of therapeutic interventions across multiple batches (Fig. 5).

2.5 Drug sensitivity assay for invasion mechanisms

We next sought to demonstrate the potential of the PDAC
patternoid model for detailed phenotypic drug testing, aimed
at further investigating protease- and spatial constraint-
mediated invasion mechanisms in the mesenchymal
subtypes Mlow-8028 and M-16992 (Fig. 5). By leveraging the
reproducible patternoid formation achieved through
collagen-based microcavity arrays, we performed a drug
sensitivity assay to distinguish between protease-mediated
and spatial constraint-driven invasion mechanisms in these
subtypes. The assay workflow—including cell seeding,
patternoid formation, drug treatment, and endpoint analysis
—was optimized for consistency, as described earlier.

Batimastat, a broad-spectrum matrix metalloproteinase
(MMP) inhibitor, was used to suppress protease-mediated
invasion, enabling us to observe the phenotypic shifts in
response to drug treatment across increasing concentrations

Fig. 4 Distinct invasion phenotypes across different c0 classes for all
PDAC subtypes. A Representative maximum projections M-16992,
Mlow-8028, and E-9591 patternoids (stained with CellMask-DeepRed
membrane dye) and binary image heatmaps of all replicates that were
used for the quantitative analysis in B. Initial cell numbers (c0) = 10, 20,
and 30 were examined for their effect on invasive morphology. Scale
bar: 100 μm. B Quantitative comparisons show distinct effect of c0
classes on invasive parameters. N = 2 independent experiments.
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(10–2500 nM). Dose–response analyses revealed notable trends
across the two subtypes, highlighting their distinct reliance on
protease-dependent invasion. Quantitative invasion parameters
—including invasive and non-invasive area, maximum invasive
distance, number of invasive roots and tips—were extracted
and analyzed using a Hill model where applicable, to capture
dose-dependent responses. Otherwise linear fits were applied
to identify residual linear trends.

As shown in Fig. 5, batimastat induced a concentration-
dependent reduction of invasive features in both M-16992
and Mlow-8028, albeit with distinct sensitivities. The invasive
area was strongly reduced in both subtypes, following a
sigmoidal dose–response curve (Fig. 5B). M-16992 exhibited a
lower EC50 (424.5 nM) compared to Mlow-8028 (521.2 nM),
indicating higher sensitivity to batimastat. The normalized
non-invasive area increased proportionally with batimastat
concentration, plateauing between 500 and 1000 nM,
indicating a progressively reduced capacity of cells to escape
the microcavity. This reflects a concentration-dependent
stabilization of the confined patternoid body under MMP

inhibition. Notably, the steeper slope observed for M-16992
(m = 0.002) compared to Mlow-8028 (m = 0.00005) highlights
a more abrupt cessation of invasion upon protease
inhibition, consistent with its higher batimastat sensitivity
reflected in the invasive area reduction (Fig. 5C). The
maximum invasive distance decreased by over 50% already at
500 nM batimastat, reflecting an effective impairment of
long-distance invasion (Fig. 5D). Again, M-16992 showed a
markedly lower EC50 (629.74 nM) than Mlow-8028 (1424.11
nM), confirming a stronger protease dependency for M-16992
in regards of invasive front progression. Both subtypes
exhibited up to a twofold increase in invasive roots and a
moderate rise in invasive tips at intermediate batimastat
concentrations (500 nM), followed by saturation or reduction
at higher doses (≥1000 nM) (Fig. 5E and F). These trends
reflect a shift toward less branched invasion modes, with an
increased number of initial invasion events. This behavior
mirrors the invasion adaptation previously observed for
epithelial subtypes under spatial confinement
(Fig. 2D and E), before offset effects were observed for
concentrations ≥1000 nM. No significant differences between
the two subtypes were observed for these parameters.

Both subtypes showed a consistent adaptive response to
MMP inhibition characterized by an increase in invasive roots
and reduced branching complexity (Fig. 5E and F)—
morphologically resembling the invasive phenotype of
epithelial subtypes (Fig. 3A–C). Since batimastat does not affect
proliferation, the observed adaptation is likely a consequence
of increased spatial constraints and mechanical compression
within the microcavity, as previously described for the
epithelial subtype (Fig. 3A and C). Under these conditions, cells
initially attempt to maintain invasive escape mechanism by
increasing the number of protrusions (invasive roots), but
ultimately fail to penetrate the matrix once proteolytic activity
is fully blocked. The resulting epithelial-like invasion,
characterized by significantly reduced invasive distance and
area, reflects a transition to spatial confinement-driven
invasion mechanisms. This suggests a pronounced plasticity of
PDAC subtypes and their ability to dynamically adapt to
protease inhibition and environmental constraints.

3 Conclusion

This study presents a 3D patternoid platform that enables
detailed phenotypic analyses of PDAC invasion mechanisms
while addressing key limitations of existing 3D culture systems.
Conventional PDO systems, while successful in generating
chemograms and establishing drug-response correlations, face
challenges in reproducibility due to uncontrolled starting cell
numbers, reliance on viability assays, and oversimplified
environments that fail to capture invasive phenotypes. By
employing biomimetic microcavities, the patternoid platform
standardizes organoid formation, allowing for controlled
starting conditions and reproducible phenotypic analyses.

Our findings demonstrate that the patternoid system
exhibits sensitivity in correlating epithelial-to-mesenchymal

Fig. 5 Batimastat dose–response effects on PDAC patternoid
invasiveness. A Representative maximum projections of patternoids for
M-16992 and Mlow-8028 (stained with CellMask-DeepRed membrane
dye) and binary image heatmaps of all replicates that were used for the
quantitative invasion analyses. B The invasive area (μm2) decreases with
increasing batimastat concentrations, following a Hill-fit. M-16992
exhibits a steeper decline and an 18% lower EC50 = 424.50 compared
to Mlow-8028 (EC50 = 521.15). C Normalized non-invasive area
increases, plateauing at 500–1000 nM for both subtypes. Mlow-8028
exhibits a flatter slope (m = 0.00005) compared to M-16992 (m =
0.002), reflecting a slower inhibitory response to batimastat. D
Maximum invasive distance (μm) decreases by >80% at 1000 nM for
both subtypes, indicating protease inhibition-driven shifts. M-16992
shows a steeper decline with an EC50 of 629.74 nM. Mlow-8028
exhibits a 2.26 times higher EC50 of 1424.11 nM, reflecting reduced
sensitivity to batimastat treatment. E and F Normalized invasive roots
and tips as a linear function of batimastat concentration. Both subtypes
show a gradual increase in invasive roots and tips, with slightly reduced
branching complexity, indicative of spatial-constraint-induced invasion
with epithelial-like characteristics. A linear fit was applied to the data
below 500 nM, as data above this concentration was excluded due to
offset effects. No significant difference is observed between subtypes.
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transition (EMT) scores with distinct invasive phenotypes,
despite the shift of epithelial and hybrid PDAC subtypes
toward mesenchymal-like subtypes during patternoid
development. This observation affirms the invasive potential
of different PDAC subtypes while accounting for PDAC
plasticity in a tumor-like microenvironment.

Moreover, integrating EMT scores with invasion dynamics
through a multi-parameter classification approach can
improve the stratification of PDAC subtypes. This co-
classification allows for a more refined analysis by not only
considering the molecular EMT status but also incorporating
functional aspects such as migration patterns, protease
dependency, and spatial constraints, which themselves vary
with the initial cell number. Such an approach enhances the
predictive power of the system, ensuring a more
comprehensive understanding of tumor cell behavior and its
dependence on experimental conditions.

Live-cell measurements, as depicted in Fig. 3, provide
additional insights into temporal invasion dynamics, paving
the way for real-time analyses, particularly for applications
involving other cell populations like patient-derived
organoids (PDOs). Further refinement of the system to better
mimic the in vivo tumor microenvironment (TME)—for
instance, by incorporating co-culture with immune cells to
study tumor-immune interactions or dynamic
microenvironments that simulate fluid flow, mechanical
stress, or extracellular matrix remodeling—could significantly
expand its utility. Additionally, the platform's versatility could
be increased by extending its applications to other solid
tumors and incorporating advanced readouts, such as real-
time metabolic profiling or immune cell interactions.

Drug sensitivity assays further demonstrated the platform's
ability to distinguish between protease-mediated and spatial
constraint-driven invasion mechanisms. Batimastat treatment
confirmed that MMP activity predominantly drives invasion in
mesenchymal subtype M-16992 in comparison to the hybrid
EMT subtype Mlow-8028. Dose–response analyses revealed
complementary invasion strategies, with M-16992 displaying
higher sensitivity to protease inhibition, transitioning to an
epithelial-like phenotype at lower drug concentrations
compared toMlow-8028.

Currently, the primary bottleneck limiting the platform's
scalability, is the reliance of classical tools, such as CellPose,
on high-quality images—particularly in bright-field microscopy
—to identify cell segments and, consequently, determine cell
numbers. This reliance results in a trade-off between the scan
time of the gel overview and the image resolution, which
restricts the number of samples that can be scanned per
experiment before cells begin forming clusters or proliferating.
However, this limitation could be addressed in the future
through the application of machine or deep learning-based
image processing tools, which do not depend on high-
resolution images for cell number determination. In the
context of deep learning, the ability to generate a high number
of replicates through parallelization offers substantial potential
for creating robust training and testing datasets. This capability

is particularly valuable for applications such as the high-
throughput analysis of drug responses.

In summary, the 3D patternoid platform offers a
reproducible and adaptable system for studying cancer
invasion mechanisms. Its innovative design, which
standardizes organoid generation and addresses inter-organoid
reproducibility challenges, represents a major advancement in
cancer modeling. Future efforts to optimize its components
and broaden its applications may further solidify its role in
personalized medicine and preclinical studies.

4 Methods
Collagen microcavity preparation

Biomimetic microcavities were fabricated to cultivate
pancreatic ductal adenocarcinoma (PDAC) patternoids using
a polydimethylsiloxane (PDMS) stamp-assisted molding
technique, as previously described.17 For this, a solution of
rat tail collagen type I (ibidi) was prepared following the
manufacturer's protocol. To mimick the elevated stiffness
characteristic of the tumor microenvironment, a collagen
concentration of 5 mg mL−1 was selected, although the
method is compatible with concentrations ranging from 2 to
6 mg mL−1.

The collagen solution was adjusted to physiological pH
and degassed to eliminate air bubbles. A custom-designed
PDMS stamp was then used to create a precise array of 25 ×
26 cylindrical microcavities in the collagen matrix. The
microcavities were defined by a diameter of 100 μm, a height
of 200 μm, and a spacing of 600 μm between centers. The
collagen solution was polymerized under the PDMS stamp at
37 °C for 90 min, ensuring stable cavity formation.

After polymerization, the PDMS stamp was carefully
removed, resulting in a patterned collagen gel. The patterned
gels were then immersed in cultivation medium to maintain
hydration during storage at 4 °C under sterile conditions.
Prior to cell seeding, the cultivation medium was removed.

Cell sources and classification

Primary cancer cells were isolated from a genetically
engineered Kras (G12D) mouse model. The cells M-16992,
Mlow-8028 and are three distinct tumor-derived populations,
that were characterized via RNA-Seq and were classified
based on Kras mutation dosage and EMT scores.12 The
correlation between Kras dosage and EMT score reflects key
aspects of molecular heterogeneity observed in human PDAC
subtypes. Consequently, it is reasonable to refer to these cells
as PDAC subtype-derived in the context of this study. The
cells were generously provided by Saur and Reichert.

Cell and patternoid maintanance

Cells were initially thawed from cryopreserved stocks by
incubating at 37 °C until a small ice particle remained in the
suspension. The thawed suspension was transferred into 10
mL of prewarmed Dulbecco's modified Eagle medium
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(DMEM) supplemented with 10% fetal bovine serum (FBS)
and 1% penicillin–streptomycin (P/S). Cells were centrifuged
at 300 × g for 5 min, the supernatant was discarded, and the
cell pellet was resuspended in fresh medium. Cells were
cultured as adherent monolayers in T175 culture flasks to
generate sufficient cell numbers for the experiments under
standard physiological conditions (37 °C, 5% CO2 in a
humidified atmosphere). Confluency was monitored
regularly, and cells were split when reaching 70–90%
confluency. Splitting involved trypsinization using trypsin–
EDTA for 5 min at 37 °C, followed by neutralization with
fresh medium, centrifugation to pellet the cells, resuspension
in fresh medium, and cell counting to determine density for
seeding. Routine checks for contamination, including
mycoplasma testing, and maintaining a sterile environment
were performed to ensure reproducibility. For experimental
consistency, all cells were harvested at the same confluency
and maintained under the same number of splitting cycles
post-thaw, although passage numbers varied between the
different PDAC subtypes (M-16992 P21, Mlow-8028 P25, E-
9591 P28).

For cell monolayer experiments, the cells were seeded into
ibidi 4-well imaging dishes at single cell densities and
cultivated under standard culture conditions for 24 h before
further processing for imaging.

For the generation of patternoids, the harvested cells were
seeded into the prepared microcavities at a cell density of 0.5
× 107 cells per mL and allowed to settle for 2 min at room
temperature to ensure even distribution. Excess cells were
washed away, and a thin layer of collagen was added to create
a closed 3D extracellular matrix (ECM) environment. For that,
a coverslip was covered with a thin layer of collagen solution
and placed on top of the collagen gel. The cover slip was
removed carefully after collagen polymerization. Fresh
medium was added and the cells were incubated under
standard culture conditions for 72 h. A medium change was
performed once after 24 h for both control and drug
treatment experiments. During this period, cells adhered,
proliferated, and formed subtype-specific invasive structures
suitable for further analysis.

Fluorescent staining and imaging

After 72 h of cultivation, PDAC patternoids were fixed and
stained for fluorescence imaging. To ensure adequate
staining within the dense collagen matrix, the collagen gel
was pre-digested with collagenase for 5 min at 37 °C and 70
rpm. During this step, membrane staining for endpoint
analysis was performed with a 1 : 1 dilution of CellMask
DeepRed (1× in DMEM) and collagenase. The digestion
reaction was terminated by washing with ice-cold phosphate-
buffered saline (PBS), followed by fixation with 4%
paraformaldehyde (PFA) for 30 min at room temperature (RT)
and 70 rpm. After thourough washing with PBS, the nucleus
staining with 10 μg mL−1 Hoechst 33342 was performed for
30 min at RT and 60 rpm. Subsequently, the samples were

washed with PBS and stored at 4 °C until imaging within 24
h for nucleus segmentation and within 7 days for patternoid
segmentation.

Immunofluorescent staining was conducted on PDAC
subtype cell monolayers and patternoids to analyze
epithelial-to-mesenchymal transition (EMT) markers,
including E-cadherin, N-cadherin, and vimentin, for subtype
characterization. Cell membranes were permeabilized using
0.1% Triton-X for 30 min at RT, followed by blocking with
serum from the secondary antibody donor species overnight
at 4 °C. Both primary and secondary antibodies were
prepared in PBS supplemented with 5% bovine serum
albumin (BSA). Primary antibodies were incubated overnight
at 4 °C, and after thorough PBS washes, secondary antibodies
were incubated for 2.5 h at RT. Stained samples were stored
in PBS at 4 °C and imaged within 24 h.

EMT score analysis in cell monolayers and patternoids

Immunofluorescently stained samples were imaged using a
confocal fluorescence microscope. Secondary antibody
controls, prepared without primary antibodies, were utilized
to optimize imaging parameters and minimize background
or nonspecific signal detection. Uniform imaging settings
were applied across all three subtypes to ensure
comparability.

Confocal images were processed to generate a maximum
z-projection. For single-cell and patternoid segmentation, the
E-cadherin channel was used for the epithelial subtype E-
9591, while the N-cadherin channel was employed for the
mesenchymal subtypes M-16992 and Mlow-8028. The mean
fluorescence intensity of the vimentin, E- and N-cadherin
channels was measured within the segmented areas to
quantify cytoplasmic expression levels per cell/patternoid.

Patternoid selection and imaging workflow

An overview image of each collagen gel sample was captured
within 2 h after cell seeding (Fig. 6A), before single cells
began to merge (Fig. 6C), to determine the initial cell number
in each microcavity. Imaging was performed using an
epifluorescence microscope, and initial cell numbers were
assigned to individual patternoids based on their positional
IDs within the matrix. Patternoids derived from c0 classes of
10, 20, and 30 cells (±10%) were used for analysis.

For drug treatment experiments, an additional overview
scan of each sample was conducted immediately before the
addition of batimastat.

The final overview scan was performed post-fixation and
staining to serve as a quality control measure and as a basis
for selecting patternoids suitable for further analysis
(Fig. 6B). Patternoid selection criteria included the following:

Day 0:
• Successful identification of the starting cell number with

no evidence of cell merging in the initial overview scan
(Fig. 6C).
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• Absence of excess cells surrounding the patternoids that
could interfere with final patternoid formation (Fig. 6C).

Day 1 (drug treatment experiments only):
• Patternoids classified as non-invasive at the time of drug

addiction.
Day 3:
• Successful cell membrane staining for segmentation

during analysis.
• No conjoined neighboring patternoids throughout the

cultivation period (Fig. 6E).
• Presence of invasive cells only, without planar cell

growth between the collagen gel and lid (indicative of
migratory leakage or improperly sealed regions, Fig. 6D) and
no collapsed structures caused by collagen pre-digestion
(Fig. 6F).

A selection of as many patternoid replicates as possible was
made based on these criteria, aiming for approximately 20
replicates per c0 class. For the c0 = 10 class, this target was not
achievable due to boundary condition constraints.

Selected replicates were imaged using a Leica confocal
microscope Stellaris 8 equipped with a WLL. Imaging was
performed with a Zeiss objective (32× magnification, 0.4 NA,
water immersion) and an LHC PL FLUOTAR objective (10×

magnification, 0.3 NA, dry). Imaging parameters included
z-step sizes of 2 μm and 5 μm, pixel sizes of 0.569 μm and
2.27 μm, and gain values of 100 and 25, respectively.
Constant parameters across both setups ensured
comparability, including a frame rate of 1 frame per s, laser
power at 1%, scan speed of 400 Hz, image resolution of 512 ×
512 pixels, and use of the HyD X3 detector.

Images acquired under these conditions were processed
using a custom analysis pipeline implemented as a macro in
ImageJ Fiji. The pipeline included the following steps:

Fig. 6 Representative overview scans of patterned collagen gels at
quality control steps on day 0 and day 3, along with examples of
patternoids that were excluded from analysis. A Representative
overview scan of the complete collagen gel at day 0, required for c0
classification and quality control of microcavity quality for each
patternoid ID. B Representative overview scan of the complete
collagen gel at day 3, required for quality control of patternoid
development (here: E-9591). C and D Corresponding zoom-in views of
(A) and (B). The red box in (C) highlights a microcavity containing a cell
agglomeration, which prevents proper single-cell counting for
determining the initial cell number; thus, it is excluded from analysis.
In (D), red arrows indicate planar outgrowth of cells, which suggests
migratory rather than invasive behavior due to collagen lid detachment
from the collagen gel—hence excluded from analysis. E Red arrows
highlight the conjoinment of neighboring M-16992 patternoids at day
3, leading to their exclusion from analysis. F Collapsed 3 days old
M-16992 patternoid structures due to collagen lid degradation, caused
by improper collagen digestion required for cell membrane staining
(e.g., insufficient stopping of digestion on ice), resulting in their
exclusion from analysis.

Fig. 7 Visulization of epithelial and mesenchymal marker expression
across PDAC subtypes. Immunofluorescence and corresponding
brightfield images of E-9591, Mlow-8028 and M-16992, stained for E-
cadherin, N-cadherin, and vimentin. To improve visibility and ensure
consistent comparison across subtypes, the intensities for N-cadherin
and vimentin were not adjusted in the fluorescence images in Fig. 2, as
this would have caused oversaturation in Mlow-8028 and M-16992
due to their high expression levels. To allow visualization of low
expression in E-9591, an alternative representation using a 16-color
lookup table (LUT) with a reduced dynamic range (16 instead of 255)
were applied. Scale bar = 50 μm.

Fig. 8 Expression of EMT markers and growth rates in PDAC subtype
patternoids. A Brightfield images of representative patternoid
replicates and maximum projections of fluorescence channels for
EMT markers, along with DAPI (blue) for nuclear localization. Scale
bar = 50 μm. B Cytoplasmic expression levels of EMT markers in
different PDAC subtype patternoids after three days of cultivation. C
Growth rates of different PDAC subtypes (mean of all patternoid
replicates used in batch 2 of patternoid characterization analyses,
with standard deviation indicated by error bars). Significant
differences were observed between mesenchymal (M and Mlow) and
epithelial PDAC subtypes.
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1. Maximum z-projection: consolidated three-dimensional
imaging data into two-dimensional formats.

2. Manual cropping: patternoids extending beyond the
field of view were cropped to standardize the dataset.

3. Denoising: background noise was reduced to enhance
structural clarity.

4. Binary image generation: processed data were converted
into binary images for further analysis.

Standardized sample preparation protocols enabled the
application of consistent thresholds for binary image
generation. Minor manual adjustments to thresholds were
made as needed to address sample variability. The binary
images were then analyzed to extract the following
parameters:

• Invasive area: total area infiltrated by cells beyond the
microcavity boundary.

• Normalized non-invasive area: fraction of the cell-
covered microcavity area normalized to the total microcavity
area with A = 7854 μm2.

• Maximum invasive distance: the farthest distance cells
invaded into the collagen matrix.

• Branching ratio: ratio of the invasive roots and tips.
Dose–response experiments with batimastat were analyzed

by fitting the data to the Hill equation, enabling the
calculation of EC50 values.

Growth rate measurement

The same patternoids that were used for invasive parameter
analyses, identified by a unique patternoid ID and its initial
starting cell number c0, underwent subsequent quantification
analysis of the final cell number after 72 h of cultivation. For
the nucleus segmentation, a high-resolution fluorescent
nucleus signal with minimal background noise and small
z-stack step size was required. The segmentation was
performed in Arivis software. The quantified cell numbers
were used to compute the growth rate (r) using the
exponential growth model:

c(t) = c0·e
rt, (1)

where c(t) is the cell count at time t (here: 72 h), c0 is the initial
cell count, and r represents the exponential growth rate.

Statistical analysis

To evaluate statistically significant differences between
PDAC subtypes, c0 classes, or replicates from different
experimental batches, two-sided Student's t-tests were
performed using Python (version 3.10.2) with the scipy.stats
module. For all comparisons, an unpaired two-tailed
Student's t-test was conducted, assuming equal variances
between groups.

Results are presented as mean ± standard deviation (SD).
Sample sizes (n) represent independent biological replicates,
with technical replicates averaged prior to statistical analysis
to avoid pseudoreplication. A significance level of α = 0.05
was used, and p-values below this threshold were considered
statistically significant.

Quantification and statistics of non-invasive and invasive
area over time

Due to the limitations of brightfield imaging, such as
insufficient contrast for precise segmentation and the lack of
fluorescence markers in the dynamic phase, conventional
binary masks could not be generated for time-resolved
patternoid analysis. To enable quantification of invasion
dynamics, we established a standardized method based on
gray-value intensity measurements within predefined ROIs
using Fiji/ImageJ.

Non-invasive and invasive areas were defined by
concentric circular ROIs: the non-invasive area was
measured within a 100 μm diameter circle centered on the
patternoid, while the invasive area was calculated as the
XOR between this ROI and a larger ROI encompassing the
entire structure. Brightfield intensities within each ROI were
normalized to a background measurement taken from a
collagen-only region to correct for acquisition variability.
This approach enabled robust measurement of relative
changes in cell-covered area over time, which served as a
proxy for dynamic tissue expansion. The invasive area was
corrected relative to the signal at 3 h, such that all
replicates started from a common baseline, enabling
assessment of dynamic trends independently of minor
imaging variability. ROIs were carefully aligned across
timepoints using the StackRack plugin when possible;
otherwise, fixed ROIs were applied and visually verified.
Background ROI placement was consistent for all timepoints
within a given replicate. To test for subtype-specific
dynamics in invasive and non-invasive area development,
we applied linear mixed-effects models (LME) using the
statsmodels package in Python. Models were fitted
separately for non-invasive (Final (NInvA)) and invasive (Final
(InvA)) areas, with Time, Subtype, and their interaction as

Fig. 9 Effect of c0 class on invasive phenotypes across PDAC
subtypes. Trends for invasive area (μm2), normalized non-invasive area,
maximal invasion distance (μm), branch tips, and initial branches are
shown for the PDAC subtypes E-9591, Mlow-8028, and M-16992. Each
data point represents the mean value for a given c0 class (10, 20, and
30), with dashed lines indicating the trendlines for each subtype.
Statistical analysis revealed no significant differences (N.S.) in the
degree of dependence on c0 class between the PDAC subtypes M-
16992 vs. Mlow-8028 and Mlow-8028 vs. E-9591 for any of the
evaluated invasive parameters, except for “invasive roots” for E-9591
vs. Mlow-8028/M-16992. This highlights the importance of
documenting and maintaining comparable distributions of c0 classes
across experimental conditions to ensure reliable interpretation of
subtype-specific invasion phenotypes.
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fixed effects, and Replicate ID as a random intercept to
account for repeated measurements. This approach allowed
us to assess differences in both baseline values and trends
over time across subtypes.
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