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A 3D Patternoid Model for the Reproducible Character-
ization of Invasive Phenotypes and Drug Sensitivity in

PDAC

Sophie C. Kurzbach ®f Violetta Carvajal-Heckele ®f, Tetsuhiko F. Teshima “¢, Maximilian
Reichert ?¢/¢" and Andreas R. Bausch ®f

Pancreatic ductal adenocarcinoma (PDAC) is a highly invasive and heterogeneous malignancy, posing
challenges for reproducible modeling and functional phenotypic analysis. To address these limita-
tions, we developed a standardized 3D patternoid platform using collagen-based microcavity arrays

to enhance organoid formation consistency and quantify subtype-specific invasion mechanisms. We

utilized murine primary PDAC cells stratified by epithelial-mesenchymal transition (EMT) into three
subtypes: epithelial (E-9591), hybrid EMT (Mlow-8028), and mesenchymal (M-16992). The plat-
form'’s sensitivity was verified by a strong correlation between EMT scores and invasive phenotypes, as

well as responses to physiological concentrations of the protease inhibitor Batimastat. Key invasion

parameters—including invasive area, maximum invasion distance, and branching complexity—were
measured under both genomic and drug-induced conditions. The platform demonstrated high inter-
organoid reproducibility, with precise control over initial cell numbers ensuring batch-to-batch com-

parability. Invasion dynamics analysis revealed that epithelial cells (E-9591) primarily relied on spatial

constraints within the microcavity to invade. Batimastat drug sensitivity assays further distinguished

invasion dependencies of the mesenchymal subtypes, confirming that M-16992 patternoids exhibit

a stronger sensitivity towards MMP inhibition compared to Mlow-8028 patternoids. Concurrentlty,
both subtypes experienced a shift towards epithelial-like spatial constraint triggered invasion mor-
phology, reflecting the plasticity of PDAC invasiveness. This scalable and adaptable 3D patternoid
platform enables high-throughput analysis of invasive behaviors and therapeutic responses, offering

significant potential for preclinical cancer research and personalized medicine.

1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is among the most ag-
gressive malignancies, with late-stage diagnosis and pronounced
inter- and intratumoral heterogeneity contributing to its poor
prognosis3,  Existing clinical approaches for therapeutic se-
lection primarily focus on genetic profiling and histopathology;
however, these methods fail to capture functional aspects of tu-
mor behavior, such as invasive phenotypes and therapeutic re-
sistance®. To address this limitation, three-dimensional (3D)
patient-derived organoid (PDO) systems have emerged as promis-
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ing tools for modeling tumor dynamics and screening drug sen-
sitivity in the context of individual patient profiles. These sys-
tems have demonstrated significant potential, particularly in gen-
erating chemograms that correlate drug responses with patient
outcomes, highlighting their relevance in precision medicine for
multiple cancer types=>"Z,

Most PDO systems currently rely on spheroid-based models cul-
tured in Matrigel domes. These models often face challenges re-
lated to reproducibility, such as variability in starting cell num-
bers and limited control over the microenvironment. As a result,
they predominantly yield spherical morphologies, which restrict
many analyses to viability assays and can reduce the capacity to
explore mechanisms of invasion and metastasis®. To expand the
investigative potential of organoid models, Papagyriou et al. has
established a branched organoid system for murine and human
pancreatic cancer. This approach aims to more closely mimic key
features of the pancreatic cancer phenotype and has been used
to study processes such as epithelial-to-mesenchymal transition
(EMT) and its role in invasive behavior, both of which are rele-
vant for understanding metastasis and therapy resistance. While
this system contributes valuable insights into PDAC heterogene-
ity, certain aspects of its application — including reproducibility
in the context of drug response assessment — remain areas of
ongoing refinement 210,

To overcome these limitations, we introduce a 3D patternoid
platform that employs biomimetic microcavities to standardize
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organoid formation. The patternoid model achieves high sensi-
tivity in correlating EMT scores with invasive phenotypes while
ensuring low inter-organoid heterogeneity and batch-to-batch re-
producibility through precise control of starting cell numbers. Ad-
ditionally, the defined spatial arrangement of patternoids within
the extracellular matrix (ECM) facilitates high-content pheno-
typic analyses. This platform thus provides robust and repro-
ducible readouts, enabling direct assessment of distinct invasion
mechanisms and drug responses, highlighting its potential for
precision medicine and preclinical research.

2  Results

2.1 Development and Characterization of PDAC Patternoids
for Invasive Phenotype Analysis
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Fig. 1 Pipeline for the generation of PDAC patternoids and inva-
sive phenotype characterization. A The collagen is patterned using a
PDMS stamp that generates 25x26 microcavities in the collagen gel (3x4
shown in top view illustration (B) and top view images (C) for simplifica-
tion), followed by seeding singularized cells into the microcavities. After
washing, a collagen lid is added with a glass coverslip, which is subse-
quently removed before adding the cultivation medium. After 24h, either
a medium change is done or Batimastat treatment is performed for 48h.
At the endpoint, patternoids are fluorescence-stained and imaged. D Seg-
mented patternoids (binary image) are used to extract key invasive pa-
rameters. Qualitative comparison under varying conditions is performed
based on SUM z-projections of binary images of segmented patternoids
(heatmaps).

By seeding cells into a defined array of 650 collagen microcav-
ities with a precisely controlled cylindrical shape, we establish
a standardized geometric baseline for patternoid development
(Fig. [IA-C). This setup minimizes inter-organoid morphological
heterogeneity. The surrounding high-concentration collagen ma-
trix was specifically selected to mimic the elevated stiffness of the
PDAC tumor microenvironment, a key factor in inducing mechan-
ical cues that drive cancer progression and invasionL,

This approach enables the generation of hundreds of invasive
PDAC patternoids within only three days, producing distinct in-
vasive phenotypes (Fig.[2D) based on the genomic profiles of the
tumor-derived cells used (Fig. -C). To assess the platform’s sen-
sitivity to genomic differences, we utilized primary cancer cells
derived from KC mice that developed varying Kras dosages during
tumor progression12, These cells were analyzed to characterize
subtype-specific invasive phenotypes.

Patternoid characterization was performed using z-projected
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segmentation analysis to quantify five key invasive parameters
(Fig. [ID). The invasive area provides a general measure of in-
vasion extent, while the maximum invasive distance reflects the
subtype’s invasive potential. Additionally, branching complexity
was analyzed by quantifying the number of invasive roots and
tips, with the ratio of tips to roots defining the branching factor.
The invasive roots number was found to be an indicator for the
reliance of PDAC subtypes on spatial constraints as a trigger for
invasion, which will be discussed in detail in the Subsection 2.5
The non-invasive area represents the area within the microcavity,
that is covered by non-invasive cells at day 3.

A crucial criterion for batch comparability and reliable differ-
entiation of PDAC subtypes—based solely on genomically driven
phenotypic differences—is the control of starting cell numbers
within each microcavity. Despite using the same initial cell den-
sity during seeding, variability in the starting cell number may
arise due to shear forces during washing steps, leading to un-
even cell distribution. While automated handling can reduce vari-
ability, inherent statistical fluctuations (e.g., Poisson distribution
effects) still affect the initial cell count per microcavity. Conse-
quently, documenting the starting cell number is essential for en-
suring reproducibility.

Patternoids were therefore categorized into ¢, classes, defined
as tolerance ranges (co = 10%) around a target starting cell num-
ber ¢y. This range was experimentally determined to balance sen-
sitivity and practicality in analysis. For the comparison between
batches, only patternoid replicates derived from the same ¢ class
were used for analysis. Alternatively, patternoid replicates from
multiple ¢( classes can be pooled for analysis, as applied for the
analysis shown in Figure 2D,E. When using this approach, main-
taining a consistent distribution of ¢, classes across batches is crit-
ical to ensure reliable comparisons (Fig. 2D, bottom right).

To precisely control starting cell numbers, we established a doc-
umentation step at time point 0. An overview image of each sam-
ple was captured within 2 h after seeding (Supp. Fig. [6A), en-
abling accurate determination of the starting cell number for each
patternoid ID. Patternoids meeting strict inclusion criteria were
selected for further analysis (see Methods [4] and Supp. Fig. [6IC-
F). While only 10-25% of seeded microcavities yielded suitable
patternoids, this approach significantly reduces variability caused
by seeding inconsistencies. As a result, phenotypic readouts accu-
rately reflect genomic differences and drug effects, ensuring high
experimental reliability.

Besides the acceptable margin of variability for the definition
of the ¢ class, also the definition of the minimum ¢ class and
thus the cell seeding density strongly correlates with the hetero-
geneity of the cell population used. The minimum ¢ class in this
study was set at 10; however, for cell populations with increased
heterogeneity, such as patient-derived samples, a higher ¢, class
may be necessary to ensure reproducibility.

2.2 Correlation Between EMT Score and Patternoid Invasive
Phenotypes

To systematically correlate EMT-driven invasion with phenotypic
outputs as demonstration for the patternoids platform’s utility.
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Fig. 2 EMT marker expression in PDAC subtypes and reproducible
invasive patternoid phenotype. A Representative brightfield (BF) im-
ages of PDAC subtypes in adherent cell culture at confluencies around
70-90% show distinct phenotypes. Fluorescence (FLUO) images show lo-
calization and expression levels for E- and N-cadherin and Vimentin and
DAPI (blue) for nucleus localization. To enable a direct comparison across
subtypes, brightness settings were kept consistent; this standardization
may obscure low-expression signals. These weaker signals are visualized
separately in Suppl. Fig. Scale bar = 50 pum. BF and FLUO images
originate from different experiments. B Illustration of EMT score char-
acteristics in regards of phenotype, EMT marker expression levels and
categorization into epithelial/mesenchymal. C Cytoplasmic E-cadherin
levels are quantified together with N-cadherin and Vimentin for compa-
rability, while specific E-cadherin localization at cell-cell junctions (visible
in images) highlights phenotypic differences. D Binary image heatmaps
of all patternoid replicates that were used for analysis in E. The number of
replicates is indicated in the calibration scale. A representative patternoid
3D reconstruction is presented in the lower left of each heatmap. The ¢,
class distribution of the replicates used for each heatmap is shown in the
lower right. E-I Quantitative invasive parameters of each PDAC subtype.
N=2 independent experiments. The non-invasive area was normalized to
the projected area of the circular microcavity (d = 100 um, A = 7854 um?).
Scale bar = 100 um.
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Primary cancer cells derived from KC mice—a model representing
the cellular heterogeneity observed in PDAC patients—were uti-
lized for this study. These cells, classified into epithelial (E-9591),
hybrid EMT (Mlow-8028), and mesenchymal (M-16992) subtypes
using bulk RNA-seql?, were analyzed for key EMT markers, in-
cluding cytoplasmic E-cadherin (E-cadh), N-cadherin (N-cadh),
and vimentin, through immunofluorescence staining and confo-
cal imaging (Fig. [2A). A central aim was to determine whether
the Mlow-8028 subtype represents a true hybrid EMT state, char-
acterized by intermediate expression levels of epithelial and mes-
enchymal markers, or merely a mixture of epithelial and mes-
enchymal cells.

Using these cell lines, PDAC subtype patternoids were gener-
ated to quantify differences in invasive behaviour driven by dis-
tinct EMT states. Patternoid replicates for analysis were selected
based on the starting cell number ¢ class of 10, 20, and 30. Com-
parable proportions of each ¢, class were pooled across all PDAC
subtypes to ensure consistency and comparability (Fig. 2D, right
bottom).

In E-9591, the specific localization of E-cadh in the cell-cell
junctions was observed qualitatively (Fig. [2]A). No cytoplasmic E-
cadh nor mesenchymal marker expression levels further reflect
the epithelial character of this subtype (Fig. 2C). The low N-cadh
and vimentin levels suggest a rigid cytoskeleton and low adapt-
ability, conferring a minimal EMT score (Fig.[2B) that aligns with
the low invasive potential that is observed in the patternoid mor-
phology (Fig. —I) 13

Mlow-8028 is characterized by cytoplasmic E-cadherin and el-
evated N-cadherin and vimentin levels (Fig. ,C), which rises
suggestions to a classification as hybrid subtype (Fig.[2B). The cy-
toplasmic localization of E-cadherin indicates reduced cell-cell ad-
hesion and a partial loss of epithelial integrity, typical of cells that
are transitioning along the EMT spectrum. Concurrently, high N-
cadherin and vimentin levels introduce mesenchymal properties
that enhance cellular flexibility, adaptability, and motility within
the ECM (Fig. ) 14 The cellular plasticity enables localized in-
vasion while retaining some epithelial features, which is also rep-
resented by the moderate invasiveness that is observed in Mlow-
80028 patternoids (Fig.[2D-D).

M-16992 cells exhibit a fully mesenchymal phenotype char-
acterized by the absence of E-cadherin, with expression levels
of N-cadherin and vimentin similar to those observed in the in-
termediate Mlow-8028 cells (Fig. [2]A,C). This lack of E-cadherin
eliminates any residual epithelial adhesion, allowing these cells
to fully adopt a mesenchymal state (Fig.[2B), enhancing their in-
vasive potential. The presence of N-cadherin and vimentin facili-
tates dynamic cell-ECM interactions and provides structural flex-
ibility, supporting effective migration and invasion through the
ECM resulting in the invasive phenotype of M-16992 patternoids
(Fig.[2D-D.

These findings reveal, that distinct invasive phenotypes corre-
late with the EMT-related molecular profiles of each PDAC sub-
type (Fig. [2B,D). The mesenchymal subtype M-16992 demon-
strates a large and complex invasive morphology, with a mean
invasive area of 23,971 410,507 /,Lm2 (Fig. ), a maximum in-
vasive distance of 379.7+96.1 um (Fig. [2G), and a branching
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factor of 3.15+0.965, indicating an invasive complexity approxi-
mately two times greater than that of the epithelial (E-9591) and
hybrid EMT (Mlow-8028) subtypes (Fig. ,I). The absence of
E-cadherin in M-16992 (Fig. -C), which reduces cell-cell ad-
hesion, likely facilitates the fractal development of its invasive
branches (Fig. [2D,H,I).

In contrast, the cytoplasmic E-cadherin in Mlow-8028 may sup-
port collective invasion, resulting in a lower branching factor of
1.61 £0.530 (Fig. ,H,I), comparable to the 1.56 +0.507, that is
observed in the epithelial subtype. Despite its less complex struc-
tures (Fig. 2D), E-9591 exhibits a notably high number of ini-
tial invasive events, averaging 7.5+ 3.725 (Fig. ), which are
evenly distributed along the microcavity boundaries (Fig. 2D).
Meanwhile, Mlow-8028 and M-16992 display fewer initial inva-
sive events, averaging 4.15+2.492 and 4.8 +1.699 (Fig. [2H), yet
these events lead to distinct morphologies: thicker branches in
Mlow-8028 and thinner, more fractal branches in M-16992 (Fig-
ure ). Moreover, all three PDAC subtypes exhibit distinct nor-
malized non-invasive areas, which increase as the EMT score de-
creases (Fig. ). The inverted normalized non-invasive area can
thus be interpreted as an indicator of invasiveness.

The relative EMT marker expression levels in patternoids of the
PDAC subtypes Mlow-8028 and E-9591 do not differ significantly.
Both subtypes show elevated levels of mesenchymal markers (N-
cadherin and vimentin), albeit lower than in M-16992, and ex-
hibit minimal E-cadherin expression (Suppl. Fig. [SA,B). These
findings suggest that patternoids shift toward a mesenchymal
phenotype either during invasion or as a prerequisite for matrix
invasion, indicating the potential in vivo plasticity of PDAC12ME,

2.3 Development and Invasion Dynamics of PDAC Patter-
noids

In order to investigate the temporal dynamics of patternoid inva-
sion during the 3-day cultivation period leading up to the end-
point analysis. To achieve this, patternoids from each PDAC sub-
type were imaged hourly over a 72-hour period. For consistency,
quantification was limited to patternoid replicates initiated with a
starting cell number ¢y = 20. Representative replicates highlight
the key developmental stages of patternoid formation for each
PDAC subtype (see Fig.[3]A). Careful examination of pre-invasion
behavior within the microcavity not only provided insight into the
"non-invasive area" parameter but also clarified the distinct inva-
sive mechanisms of each PDAC subtype.

Upon seeding, cells transitioned from a rounded, non-adherent
morphology to an adherent state along the microcavity walls,
marking the onset phase. During this period, cells engaged with
the collagen matrix and formed initial attachments, establishing
structures that later drove subtype-specific invasion.

The quantitative and statistical analysis shows that the base-
line values for the relative non-invasive area did not differ sig-
nificantly across subtypes (Fig. [3IC). This confirms that the initial
condition, provided by a defined starting cell number of ¢y=20,
were consistent across all patternoid replicates used in the analy-
sis. Quantification of the non-invasive area revealed a statistically
significant increase over time for all subtypes (Fig. [3[C). Despite
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Fig. 3 Invasion dynamics of PDAC subtype patternoids. A Maximum
projections of representative replicates of different PDAC subtypes patter-
noids at time points 2, 24, 36, 48, and 72 h (scale bar = 100 um) with
corresponding zoom-ins of the microcavity region (green boxes). For bet-
ter visibility, standard deviation projections are shown (scale bar = 50
um). Epithelial monolayer formation is observed in E-9591, while partial
monolayer closure is seen in Mlow-8028. Invasion correlates with sites of
cell accumulations in Mlow-8028 and M-16992 (yellow arrows). B Kymo-
graphs highlight invasion dynamics over 72h, showing cohesive growth in
E-9591 (green arrows) and fluctuating migratory cells in Mlow-8028 and
M-16992 (yellow arrows) (scale bar = 50 um). C, D The relative quan-
tification of the invasive and non-invasive area of PDAC patternoids de-
rived from ¢( class = 20 over time illustrates the subtype specific growth
dynamics. Number of patternoid replicates used for analysis: N=4 (E),
N=5 (Mlow) and N=6 (M).
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inherent limitations in brightfield quantification—such as poten-
tial inaccuracies in ROI alignment and illumination artifacts—
the observed trends were reproducible across biological repli-
cates. The slower expansion of the non-invasive area observed
in both mesenchymal subtypes was significantly different from
that of the epithelial subtype (p = 0.028 for M-16992; p < 0.001
for Mlow-8028; Fig. B[C). The small, non-significant difference
in non-invasive growth rates between M-16992 and Mlow-8028
aligns with their qualitatively similar non-invasive morphologies
shown in Figure [BA.

The epithelial subtype E-9591 displayed the steepest non-
invasive growth trajectory, followed by M-16992, whereas Mlow-
8028 exhibited the slowest expansion, plateauing at approxi-
mately 40% after 27 h (Fig. [3IC). Concurrently, the invasive area
of Mlow-8028 began to increase more steeply after 27 h (Fig.[3D),
indicating a shift from proliferation within the microcavity to out-
ward invasion (Fig. [3]A). This subtype migrated as cohesive clus-
ters, extending multicellular invasive strands (Fig. ), a behav-
ior likely enabled by hybrid EMT traits such as partial cell-cell
adhesion and moderate MMP expression (Fig. [2B).

A comparable shift occured in E-9591 patternoids at around
38 hours, when the non-invasive area reached ~70% (Fig. [3[C).
Following the formation of a continuous epithelial monolayer
along the microcavity wall (Fig.[3]A,B, green arrows), E-9591 initi-
ated cohesive, collective invasion through evenly distributed pro-
trusions. The decline in the slope of the non-invasive area tra-
jectory (Fig. [BC), together with a modest but detectable increase
in invasive area (Fig. [3D), suggests that E-9591 cells initiate in-
vasion primarily in response to spatial confinement—consistent
with their epithelial phenotype (Fig[2B).

In contrast, M-16992 showed an early and continuous increase
in invasive area (see Fig. [3]D), largely independent of its non-
invasive growth trajectory. This behavior reflects a reduced re-
liance on spatial cues and is evident in the pronounced, branched
morphology of its invasive front (see Fig. [3]A) and its compar-
atively large relative invasive area (Fig. [3D, [2E). These features
are characteristic of a strongly mesenchymal phenotype with high
matrix remodeling capacity (Fig[2B).

In summary, E-9591 exhibits an initial phase of epithelial ex-
pansion followed by delayed, spatially regulated invasion; Mlow-
8028 demonstrates earlier invasion with hybrid characteristics;
and M-16992 demonstrates early, extensive, and spatially uncon-
fined invasion typical of a mesenchymal program. These distinct
invasion patterns reflect underlying EMT states and underscore
the functional heterogeneity among PDAC subtypes.

2.4 Effect of Starting Cell Number on Invasion Phenotypes

Building on the observation that the initial confluency is a criti-
cal factor for invasion onset, its influence was systematically as-
sessed across the different PDAC subtypes. Invasive parameters
were quantified for patternoids derived from ¢ classes of 10, 20,
and 30 to evaluate the role of cell density in shaping invasion
phenotypes (Fig. 4A,B).

Across all subtypes, higher ¢ classes resulted in a consistent
and significant increase in invasive and non-invasive area, max-
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Fig. 4 Distinct invasion phenotypes across different ¢ classes for all
PDAC subtypes.

A Representative maximum projections M-16992, Mlow-8028, and E-9591
patternoids (stained with CellMask-DeepRed membrane dye) and binary
image heatmaps of all replicates that were used for the quantitative anal-
ysis in B. Initial cell numbers (c¢p) = 10, 20, and 30 were examined for
their effect on invasive morphology. Scale bar: 100 um.

B Quantitative comparisons show distinct effect of ¢, classes on invasive
parameters. N=2 independent experiments.

imum invasive distance, and branching factor (Fig. [4B). Despite
intrinsic differences in invasive propensity among the subtypes,
these trends remained conserved, underscoring the importance
of confluence for invasion, irrespective of the PDAC subtype and
the corresponding invasive mechanisms (Suppl. Fig.[9).

The findings establish the starting cell number ¢ as a critical
experimental parameter for controlling invasion phenotypes and
ensuring reproducibility. Accurate documentation of ¢y across
experiments is essential for reliable phenotypic characterization
and robust assessment of therapeutic interventions across multi-
ple batches (Figl5).

2.5 Drug Sensitivity Assay for Invasion Mechanisms

We next sought to demonstrate the potential of the PDAC patter-
noid model for detailed phenotypic drug testing, aimed at further
investigating protease- and spatial constraint-mediated invasion
mechanisms in the mesenchymal subtypes Mlow-8028 and M-
16992 (Fig.[5). By leveraging the reproducible patternoid forma-
tion achieved through collagen-based microcavity arrays, we per-
formed a drug sensitivity assay to distinguish between protease-
mediated and spatial constraint-driven invasion mechanisms in
these subtypes. The assay workflow—including cell seeding, pat-
ternoid formation, drug treatment, and endpoint analysis—was
optimized for consistency, as described earlier.

Batimastat, a broad-spectrum matrix metalloproteinase (MMP)
inhibitor, was used to suppress protease-mediated invasion, en-
abling us to observe the phenotypic shifts in response to drug
treatment across increasing concentrations (10-2500 nM). Dose-
response analyses revealed notable trends across the two sub-
types, highlighting their distinct reliance on protease-dependent
invasion. Quantitative invasion parameters—-including invasive
and non-invasive area, maximum invasive distance, number of in-
vasive roots and tips—were extracted and analyzed using a Hill
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Fig. 5 Batimastat dose-response effects on PDAC patternoid invasive-
ness. A Representative maximum projections of patternoids for M-16992
and Mlow-8028 (stained with CellMask-DeepRed membrane dye) and bi-
nary image heatmaps of all replicates that were used for the quantitative
invasion analyses. B The Invasive area (umz) decreases with increas-
ing Batimastat concentrations, following a Hill-Fit. M-16992 exhibits a
steeper decline and an 18% lower ECs5y=424.50 compared to Mlow-8028
(ECsp=521.15). C Normalized non-invasive area increases, plateauing
at 500-1000 nM for both subtypes. Mlow-8028 exhibits a flatter slope
(m = 0.00005) compared to M-16992 (m = 0.002), reflecting a slower
inhibitory response to Batimastat. D Maximum invasive distance (um)
decreases by > 80% at 1000 nM for both subtypes, indicating protease
inhibition-driven shifts. M-16992 shows a steeper decline with an ECs of
629.74 nM. Mlow-8028 exhibits a 2.26 times higher ECsy of 1424.11 nM,
reflecting reduced sensitivity to Batimastat treatment. E, F Normalized in-
vasive roots and tips as a linear function of Batimastat concentration. Both
subtypes show a gradual increase in invasive roots and tips, with slightly
reduced branching complexity, indicative of spatial-constraint-induced in-
vasion with epithelial-like characteristics. A linear fit was applied to the
data below 500 nM, as data above this concentration was excluded due
to offset effects. No significant difference is observed between subtypes.
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model where applicable, to capture dose-dependent responses.
Otherwise linear fits were applied to identify residual linear
trends.

As shown in Figure Batimastat induced a concentration-
dependent reduction of invasive features in both M-16992 and
Mlow-8028, albeit with distinct sensitivities. The invasive area
was strongly reduced in both subtypes, following a sigmoidal
dose-response curve (Fig. ). M-16992 exhibited a lower ECs
(424.5 nM) compared to Mlow-8028 (521.2 nM), indicating
higher sensitivity to Batimastat. The normalized non-invasive
area increased proportionally with Batimastat concentration,
plateauing between 500 and 1000 nM, indicating a progressively
reduced capacity of cells to escape the microcavity. This reflects
a concentration-dependent stabilization of the confined patter-
noid body under MMP inhibition. Notably, the steeper slope ob-
served for M-16992 (m = 0.002) compared to Mlow-8028 (m
= 0.00005) highlights a more abrupt cessation of invasion upon
protease inhibition, consistent with its higher Batimastat sensitiv-
ity reflected in the invasive area reduction (Fig. ). The maxi-
mum invasive distance decreased by over 50% already at 500 nM
Batimastat, reflecting an effective impairment of long-distance
invasion (Fig. [5D). Again, M-16992 showed a markedly lower
ECsy (629.74 nM) than Mlow-8028 (1424.11 nM), confirming a
stronger protease dependency for M-16992 in regards of invasive
front progression. Both subtypes exhibited up to a twofold in-
crease in invasive roots and a moderate rise in invasive tips at
intermediate Batimastat concentrations (500 nM), followed by
saturation or reduction at higher doses (> 1000 nM) (Fig. ,F).
These trends reflect a shift toward less branched invasion modes,
with an increased number of initial invasion events. This behavior
mirrors the invasion adaptation previously observed for epithelial
subtypes under spatial confinement (Fig. [2D,E), before offset ef-
fects were observed for concentrations > 1000 nM. No significant
differences between the two subtypes were observed for these pa-
rameters.

Both subtypes showed a consistent adaptive response to MMP
inhibition characterized by an increase in invasive roots and re-
duced branching complexity (Fig. [5E,F)—morphologically re-
sembling the invasive phenotype of epithelial subtypes (Fig. BA-
C). Since Batimastat does not affect proliferation, the observed
adaptation is likely a consequence of increased spatial constraints
and mechanical compression within the microcavity, as previously
described for the epithelial subtype (Fig.[3]A,C). Under these con-
ditions, cells initially attempt to maintain invasive escape mech-
anism by increasing the number of protrusions (invasive roots),
but ultimately fail to penetrate the matrix once proteolytic activity
is fully blocked. The resulting epithelial-like invasion, character-
ized by significantly reduced invasive distance and area, reflects
a transition to spatial confinement-driven invasion mechanisms.
This suggests a pronounced plasticity of PDAC subtypes and their
ability to dynamically adapt to protease inhibition and environ-
mental constraints.

3 Conclusion

This study presents a 3D patternoid platform that enables detailed
phenotypic analyses of PDAC invasion mechanisms while address-
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ing key limitations of existing 3D culture systems. Conventional
PDO systems, while successful in generating chemograms and es-
tablishing drug-response correlations, face challenges in repro-
ducibility due to uncontrolled starting cell numbers, reliance on
viability assays, and oversimplified environments that fail to cap-
ture invasive phenotypes. By employing biomimetic microcav-
ities, the patternoid platform standardizes organoid formation,
allowing for controlled starting conditions and reproducible phe-
notypic analyses.

Our findings demonstrate that the patternoid system exhibits
sensitivity in correlating epithelial-to-mesenchymal transition
(EMT) scores with distinct invasive phenotypes, despite the shift
of epithelial and hybrid PDAC subtypes toward mesenchymal-like
subtypes during patternoid development. This observation af-
firms the invasive potential of different PDAC subtypes while ac-
counting for PDAC plasticity in a tumor-like microenvironment.

Moreover, integrating EMT scores with invasion dynamics
through a multi-parameter classification approach can improve
the stratification of PDAC subtypes. This co-classification allows
for a more refined analysis by not only considering the molecu-
lar EMT status but also incorporating functional aspects such as
migration patterns, protease dependency, and spatial constraints,
which themselves vary with the initial cell number. Such an ap-
proach enhances the predictive power of the system, ensuring a
more comprehensive understanding of tumor cell behavior and
its dependence on experimental conditions.

Live-cell measurements, as depicted in Figure [3} provide ad-
ditional insights into temporal invasion dynamics, paving the
way for real-time analyses, particularly for applications involv-
ing other cell populations like patient-derived organoids (PDOs).
Further refinement of the system to better mimic the in vivo tu-
mor microenvironment (TME)—for instance, by incorporating co-
culture with immune cells to study tumor-immune interactions or
dynamic microenvironments that simulate fluid flow, mechani-
cal stress, or extracellular matrix remodeling—could significantly
expand its utility. Additionally, the platform’s versatility could
be increased by extending its applications to other solid tumors
and incorporating advanced readouts, such as real-time metabolic
profiling or immune cell interactions.

Drug sensitivity assays further demonstrated the platform’s
ability to distinguish between protease-mediated and spatial
constraint-driven invasion mechanisms. Batimastat treatment
confirmed that MMP activity predominantly drives invasion in
mesenchymal subtype M-16992 in comparison to the hybrid EMT
subtype Mlow-8028. Dose-response analyses revealed comple-
mentary invasion strategies, with M-16992 displaying higher sen-
sitivity to protease inhibition, transitioning to an epithelial-like
phenotype at lower drug concentrations compared to Mlow-8028.

Currently, the primary bottleneck limiting the platform’s scal-
ability, is the reliance of classical tools, such as CellPose, on
high-quality images—particularly in bright-field microscopy—to
identify cell segments and, consequently, determine cell numbers.
This reliance results in a trade-off between the scan time of the
gel overview and the image resolution, which restricts the number
of samples that can be scanned per experiment before cells begin
forming clusters or proliferating. However, this limitation could
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be addressed in the future through the application of machine or
deep learning-based image processing tools, which do not depend
on high-resolution images for cell number determination. In the
context of deep learning, the ability to generate a high number of
replicates through parallelization offers substantial potential for
creating robust training and testing datasets. This capability is
particularly valuable for applications such as the high-throughput
analysis of drug responses.

In summary, the 3D patternoid platform offers a reproducible
and adaptable system for studying cancer invasion mechanisms.
Its innovative design, which standardizes organoid generation
and addresses inter-organoid reproducibility challenges, repre-
sents a major advancement in cancer modeling. Future efforts to
optimize its components and broaden its applications may further
solidify its role in personalized medicine and preclinical studies.

4 Methods

Collagen Microcavity Preparation

Biomimetic microcavities were fabricated to cultivate pancreatic
ductal adenocarcinoma (PDAC) patternoids using a polydimethyl-
siloxane (PDMS) stamp-assisted molding technique, as previously
described!Z. For this, a solution of rat tail collagen type I (ibidi)
was prepared following the manufacturer’s protocol. To mim-
ick the elevated stiffness characteristic of the tumor microen-
vironment, a collagen concentration of 5 mg/mL was selected,
although the method is compatible with concentrations ranging
from 2 to 6 mg/mL.

The collagen solution was adjusted to physiological pH and de-
gassed to eliminate air bubbles. A custom-designed PDMS stamp
was then used to create a precise array of 25x26 cylindrical mi-
crocavities in the collagen matrix. The microcavities were defined
by a diameter of 100 um, a height of 200 um, and a spacing of
600 um between centers. The collagen solution was polymerized
under the PDMS stamp at 37°C for 90min, ensuring stable cavity
formation.

After polymerization, the PDMS stamp was carefully removed,
resulting in a patterned collagen gel. The patterned gels were
then immersed in cultivation medium to maintain hydration dur-
ing storage at 4°C under sterile conditions. Prior to cell seeding,
the cultivation medium was removed.

Cell Sources and Classification

Primary cancer cells were isolated from a genetically engineered
Kras (G12D) mouse model. The cells M-16992, Mlow-8028 and
are three distinct tumor-derived populations, that were charac-
terized via RNA-Seq and were classified based on Kras mutation
dosage and EMT scores2. The correlation between Kras dosage
and EMT score reflects key aspects of molecular heterogeneity ob-
served in human PDAC subtypes. Consequently, it is reasonable to
refer to these cells as PDAC subtype-derived in the context of this
study. The cells were generously provided by Saur and Reichert.

Cell and Patternoid Maintanance

Cells were initially thawed from cryopreserved stocks by incubat-
ing at 37°C until a small ice particle remained in the suspension.
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The thawed suspension was transferred into 10 mL of prewarmed
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with
10% fetal bovine serum (FBS) and 1% penicillin-streptomycin
(P/S). Cells were centrifuged at 300 X g for 5min, the super-
natant was discarded, and the cell pellet was resuspended in fresh
medium. Cells were cultured as adherent monolayers in T175
culture flasks to generate sufficient cell numbers for the experi-
ments under standard physiological conditions (37°C, 5% CO; in
a humidified atmosphere). Confluency was monitored regularly,
and cells were split when reaching 70-90% confluency. Split-
ting involved trypsinization using trypsin-EDTA for 5min at 37°C,
followed by neutralization with fresh medium, centrifugation to
pellet the cells, resuspension in fresh medium, and cell counting
to determine density for seeding. Routine checks for contami-
nation, including mycoplasma testing, and maintaining a sterile
environment were performed to ensure reproducibility. For ex-
perimental consistency, all cells were harvested at the same con-
fluency and maintained under the same number of splitting cycles
post-thaw, although passage numbers varied between the differ-
ent PDAC subtypes (M-16992 P21, Mlow-8028 P25, E-9591 P28).

For cell monolayer experiments, the cells were seeded into ibidi
4-well imaging dishes at single cell densities and cultivated under
standard culture conditions for 24 h before further processing for
imaging.

For the generation of patternoids, the harvested cells were
seeded into the prepared microcavities at a cell density of 0.5 x
107 cells/mL and allowed to settle for 2min at room temperature
to ensure even distribution. Excess cells were washed away, and a
thin layer of collagen was added to create a closed 3D extracellu-
lar matrix (ECM) environment. For that, a coverslip was covered
with a thin layer of collagen solution and placed on top of the
collagen gel. The cover slip was removed carefully after collagen
polymerization. Fresh medium was added and the cells were in-
cubated under standard culture conditions for 72h. A medium
change was performed once after 24h for both control and drug
treatment experiments. During this period, cells adhered, prolif-
erated, and formed subtype-specific invasive structures suitable
for further analysis.

Fluorescent Staining and Imaging

After 72h of cultivation, PDAC patternoids were fixed and stained
for fluorescence imaging. To ensure adequate staining within the
dense collagen matrix, the collagen gel was pre-digested with col-
lagenase for 5min at 37°C and 70rpm. During this step, mem-
brane staining for endpoint analysis was performed with a 1:1
dilution of CellMask DeepRed (1x in DMEM) and collagenase.
The digestion reaction was terminated by washing with ice-cold
phosphate-buffered saline (PBS), followed by fixation with 4%
paraformaldehyde (PFA) for 30min at room temperature (RT)
and 70rpm. After thourough washing with PBS, the nucleus stain-
ing with 10 ug/mL Hoechst 33342 was performed for 30 min at
RT and 60rpm. Subsequently, the samples were washed with PBS
and stored at 4°C until imaging within 24h for nucleus segmenta-
tion and within 7 days for patternoid segmentation.

Immunofluorescent staining was conducted on PDAC sub-
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type cell monolayers and patternoids to analyze epithelial-to-
mesenchymal transition (EMT) markers, including E-cadherin, N-
cadherin, and vimentin, for subtype characterization. Cell mem-
branes were permeabilized using 0.1 .% Triton-X for 30min at
RT, followed by blocking with serum from the secondary an-
tibody donor species overnight at 4°C. Both primary and sec-
ondary antibodies were prepared in PBS supplemented with 5%
bovine serum albumin (BSA). Primary antibodies were incubated
overnight at 4°C, and after thorough PBS washes, secondary an-
tibodies were incubated for 2.5h at RT. Stained samples were
stored in PBS at 4°C and imaged within 24h.

EMT score analysis in cell monolayers and patternoids
Immunofluorescently stained samples were imaged using a con-
focal fluorescence microscope. Secondary antibody controls, pre-
pared without primary antibodies, were utilized to optimize imag-
ing parameters and minimize background or nonspecific signal
detection. Uniform imaging settings were applied across all three
subtypes to ensure comparability.

Confocal images were processed to generate a maximum z-
projection. For single-cell and patternoid segmentation, the E-
cadherin channel was used for the epithelial subtype E-9591,
while the N-cadherin channel was employed for the mesenchymal
subtypes M-16992 and Mlow-8028. The mean fluorescence inten-
sity of the Vimentin, E- and N-cadherin channels was measured
within the segmented areas to quantify cytoplasmic expression
levels per cell/patternoid.

Patternoid Selection and Imaging Workflow

An overview image of each collagen gel sample was captured
within 2h after cell seeding (Fig. [6A), before single cells began
to merge (Fig. EF), to determine the initial cell number in each
microcavity. Imaging was performed using an epifluorescence mi-
croscope, and initial cell numbers were assigned to individual pat-
ternoids based on their positional IDs within the matrix. Patter-
noids derived from ¢ classes of 10, 20, and 30 cells (£10%) were
used for analysis.

For drug treatment experiments, an additional overview scan
of each sample was conducted immediately before the addition
of Batimastat.

The final overview scan was performed post-fixation and stain-
ing to serve as a quality control measure and as a basis for select-
ing patternoids suitable for further analysis (Fig. [6B). Patternoid
selection criteria included the following:

Day 0:

* Successful identification of the starting cell number with
no evidence of cell merging in the initial overview scan

(Fig. [[0).

* Absence of excess cells surrounding the patternoids that
could interfere with final patternoid formation (Fig. EF).

Day 1 (Drug Treatment Experiments Only):

* Patternoids classified as non-invasive at the time of drug ad-
dition.
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Day 3:

* Successful cell membrane staining for segmentation during
analysis.

* No conjoined neighboring patternoids throughout the culti-
vation period (Fig. [E).

* Presence of invasive cells only, without planar cell growth
between the collagen gel and lid (indicative of migratory
leakage or improperly sealed regions, Fig.[fD) and no col-
lapsed structures caused by collagen pre-digestion (Fig. [6F).

A selection of as many patternoid replicates as possible was
made based on these criteria, aiming for approximately 20 repli-
cates per cg class. For the ¢y = 10 class, this target was not achiev-
able due to boundary condition constraints.

Selected replicates were imaged using a Leica Confocal Micro-
scope Stellaris 8 equipped with a WLL. Imaging was performed
with a Zeiss objective (32X magnification, 0.4 NA, water immer-
sion) and an LHC PL FLUOTAR objective (10X magnification, 0.3
NA, dry). Imaging parameters included z-step sizes of 2 um and
5 um, pixel sizes of 0.569 um and 2.27 um, and gain values of
100 and 25, respectively. Constant parameters across both setups
ensured comparability, including a frame rate of 1 frame/s, laser
power at 1%, scan speed of 400 Hz, image resolution of 512x512
pixels, and use of the HyD X3 detector.

Images acquired under these conditions were processed using
a custom analysis pipeline implemented as a macro in ImageJ Fiji.
The pipeline included the following steps:

1. Maximum z-projection: Consolidated three-dimensional
imaging data into two-dimensional formats.

2. Manual cropping: Patternoids extending beyond the field
of view were cropped to standardize the dataset.

3. Denoising: Background noise was reduced to enhance
structural clarity.

4. Binary image generation: Processed data were converted
into binary images for further analysis.

Standardized sample preparation protocols enabled the appli-
cation of consistent thresholds for binary image generation. Mi-
nor manual adjustments to thresholds were made as needed to
address sample variability. The binary images were then analyzed
to extract the following parameters:

* Invasive Area: Total area infiltrated by cells beyond the mi-
crocavity boundary.

* Normalized Non-Invasive Area: Fraction of the cell-
covered microcavity area normalized to the total microcavity
area with A = 7854 um?.

e Maximum Invasive Distance: The farthest distance cells
invaded into the collagen matrix.

* Branching Ratio: Ratio of the invasive roots and tips.

Dose-response experiments with Batimastat were analyzed by
fitting the data to the Hill equation, enabling the calculation of
ECsq values.
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Growth rate measurement

The same patternoids that were used for invasive parameter anal-
yses, identified by a unique patternoid ID and its initial starting
cell number ¢y, underwent subsequent quantification analysis of
the fincal cell number after 72h of cultivation. For the nucleus
segmentation, a high-resolution fluorescent nucleus signal with
minimal background noise and small z-stack step size was re-
quired. The segmentation was performed in Arivis software. The
quantified cell numbers were used to compute the growth rate (r)
using the exponential growth model:

c(t)y=cp-e", €}

where c(7) is the cell count at time ¢ (here: 72h), ¢ is the initial
cell count, and r represents the exponential growth rate.

Statistical Analysis

To evaluate statistically significant differences between PDAC
subtypes, ¢ classes, or replicates from different experimental
batches, two-sided Student’s t-tests were performed using Python
(version 3.10.2) with the scipy.stats module. For all compar-
isons, an unpaired two-tailed Student’s t-test was conducted, as-
suming equal variances between groups.

Results are presented as mean * standard deviation (SD). Sam-
ple sizes (n) represent independent biological replicates, with
technical replicates averaged prior to statistical analysis to avoid
pseudoreplication. A significance level of o = 0.05 was used, and
p-values below this threshold were considered statistically signif-
icant.

Quantification and Statistics of Non-invasive and Invasive
Area Over Time

Due to the limitations of brightfield imaging, such as insufficient
contrast for precise segmentation and the lack of fluorescence
markers in the dynamic phase, conventional binary masks could
not be generated for time-resolved patternoid analysis. To enable
quantification of invasion dynamics, we established a standard-
ized method based on gray-value intensity measurements within
predefined ROIs using Fiji/ImageJ.

Non-invasive and invasive areas were defined by concentric cir-
cular ROIs: the non-invasive area was measured within a 100
um diameter circle centered on the patternoid, while the invasive
area was calculated as the XOR between this ROI and a larger ROI
encompassing the entire structure. Brightfield intensities within
each ROI were normalized to a background measurement taken
from a collagen-only region to correct for acquisition variability.
This approach enabled robust measurement of relative changes
in cell-covered area over time, which served as a proxy for dy-
namic tissue expansion. The invasive area was corrected relative
to the signal at 3h , such that all replicates started from a com-
mon baseline, enabling assessment of dynamic trends indepen-
dently of minor imaging variability. ROIs were carefully aligned
across timepoints using the StackRack plugin when possible; oth-
erwise, fixed ROIs were applied and visually verified. Background
ROI placement was consistent for all timepoints within a given
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Fig. 6 Representative overview scans of patterned collagen gels at
quality control steps on Day 0 and Day 3, along with examples of pat-
ternoids that were excluded from analysis. A Representative overview
scan of the complete collagen gel at Day 0, required for cO classifica-
tion and quality control of microcavity quality for each patternoid ID.
b Representative overview scan of the complete collagen gel at Day 3,
required for quality control of patternoid development (here: E-9591).
C,D Corresponding zoom-in views of (A) and (B). The red box in (C)
highlights a microcavity containing a cell agglomeration, which prevents
proper single-cell counting for determining the initial cell number; thus, it
is excluded from analysis. In (D), red arrows indicate planar outgrowth of
cells, which suggests migratory rather than invasive behavior due to colla-
gen lid detachment from the collagen gel—hence excluded from analysis.
e Red arrows highlight the conjoinment of neighboring M-16992 patter-
noids at Day 3, leading to their exclusion from analysis. f Collapsed 3 days
old M-16992 patternoid structures due to collagen lid degradation, caused
by improper collagen digestion required for cell membrane staining (e.g.,
insufficient stopping of digestion on ice), resulting in their exclusion from
analysis.

Brightfield

E-cadherin N-cadherin Vimentin

Miow-802:

M-16992

Fig. 7 Visulization of epithelial and mesenchymal marker expression
across PDAC subtypes. Immunofluorescence and corresponding bright-
field images of E-9591, Mlow-8028 and M-16992, stained for E-cadherin,
N-cadherin, and vimentin. To improve visibility and ensure consistent
comparison across subtypes, the intensities for N-cadherin and vimentin
were not adjusted in the fluorescence images in Figure [2] as this would
have caused oversaturation in Mlow-8028 and M-16992 due to their high
expression levels. To allow visualization of low expression in E-9591,
an alternative representation using a 16-color lookup table (LUT) with a
reduced dynamic range (16 instead of 255) were applied. Scale bar =
50 pum.
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Fig. 8 Expression of EMT markers and growth rates in PDAC sub-
type patternoids. A Brightfield images of representative patternoid repli-
cates and maximum projections of fluorescence channels for EMT mark-
ers, along with DAPI (blue) for nuclear localization. Scale bar = 50 um. B
Cytoplasmic expression levels of EMT markers in different PDAC subtype
patternoids after three days of cultivation. C Growth rates of different
PDAC subtypes (mean of all patternoid replicates used in Batch 2 of pat-
ternoid characterization analyses, with standard deviation indicated by
error bars). Significant differences were observed between mesenchymal
(M and Mlow) and epithelial PDAC subtypes.

B % ‘ ) % o E) % o P % 0 S
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Fig. 9 Effect of ¢ class on invasive phenotypes across PDAC subtypes.
Trends for invasive area (um?), normalized non-invasive area, maximal
invasion distance (um), branch tips, and initial branches are shown for
the PDAC subtypes E-9591, Mlow-8028, and M-16992. Each data point
represents the mean value for a given ¢y class (10, 20, and 30), with
dashed lines indicating the trendlines for each subtype. Statistical analysis
revealed no significant differences (N.S.) in the degree of dependence on
¢o class between the PDAC subtypes M-16992 vs. Mlow-8028 and Mlow-
8028 vs. E-9591 for any of the evaluated invasive parameters, except for
"Invasive roots" for E-9591 vs. Mlow-8028/M-16992. This highlights the
importance of documenting and maintaining comparable distributions of
¢y classes across experimental conditions to ensure reliable interpretation
of subtype-specific invasion phenotypes.
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replicate. To test for subtype-specific dynamics in invasive and
non-invasive area development, we applied linear mixed-effects
models (LME) using the statsmodels package in Python. Models
were fitted separately for non-invasive (Final (NInvA)) and inva-
sive (Final (InvA)) areas, with Time, Subtype, and their interaction
as fixed effects, and Replicate ID as a random intercept to account
for repeated measurements. This approach allowed us to assess
differences in both baseline values and trends over time across
subtypes.
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Data Availability Statement

The raw data supporting the findings of this study are available in the
Zenodo repository
“Supplementary Information PDAC Patternoids Raw data” at
https://doi.org/ 10.5281/zenodo.14918384.

The dataset (unzipped approximately 300 GB) is organized according to
the zenodo description.

Access is restricted and can be granted upon request. Interested
researchers should contact the corresponding author at
abausch@mytum.de to obtain access credentials.

The processed and source data supporting the findings of this study
have been included as .zip file in the Supplementary Information. This
includes:

1. Processed Data: Processed images used for quantified analysis of
invasion parameters and marker expression.

2. Source Data: Data tables and scripts used for processing,
analysis and plot generation and .png files used for figure
generation.

All additional data that was added within the scope of revision were
provided as .zip file as Supplementary Information. This includes:
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1. Quant analysis: Raw and Source data and Python scripts used for
quantification, data plotting and statistical analysis in Figure
3C,D.
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