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supervised machine learning for
classification of Ti-rich nanoparticles and
microparticles measured by spICP-TOFMS†

Raven L. Buckman Johnson, a Hark Karkee a and Alexander Gundlach-
Graham *ab

Single-particle inductively coupled plasma time-of-flight mass spectrometry (spICP-TOFMS) can be used

to measure metal-containing nanoparticles (NPs) and sub-micron particles (mPs) at environmentally

relevant concentrations. Multielement fingerprints measured by spICP-TOFMS can also be used to

differentiate natural and anthropogenic particle types. Thus, the approach offers a promising route to

classify, quantify, and track anthropogenic NPs and mPs in natural systems. However, biases in spICP-

TOFMS data caused by analytical sensitivities, Poisson detection statistics, and elemental variability at the

single-particle level complicate particle-type classification. To overcome the inherent bias in spICP-

TOFMS data for the classification of particle types, we have developed a multi-stage semi-supervised

machine learning (SSML) strategy that identifies and subsequently trains on systematic noise in spICP-

TOFMS data to produce more robust particle-type classifications. Here, we apply our two-stage SSML

model to classify individual Ti-containing NPs and mPs via spICP-TOFMS analysis. To build our model, we

measure neat suspensions of anthropogenic TiO2 particles (E171) and natural titanium-containing particle

types: rutile, ilmenite, and biotite by spICP-TOFMS. Element mass amounts recorded per particle are

used to classify particle type by SSML and then systematic particle misclassifications are identified and

recorded as uncertainty classes. Following, a second SSML model is trained with the addition of

uncertain particle-type categories. With two-stage SSML, we demonstrate low false-positive rates (#5%)

and moderate particle recoveries (50–90%) for all anthropogenic and natural particle types. Two-stage

SSML is a streamlined, hands-off method to identify and overcome bias in spICP-TOFMS training data

that provides a robust particle-type classification.
Introduction

Titanium (Ti) is the ninth most abundant element in the earth's
crust and can be derived from a variety of Ti-containing
minerals.1 Naturally occurring titanium is primarily derived
from rutile and ilmenite, which together account for approxi-
mately 90% of titanium minerals. Smaller amounts are also
obtained from other minerals, such as biotite, brookite, and
sphene. These minerals undergo various geochemical processes
and can degrade into nanoparticles (NPs, one dimension < 100
nm) or submicron-particles (mPs, diameter < 1 mm). In addition
to natural Ti nanominerals, Ti-containing NPs and mPs are
manufactured for a variety of purposes ranging from consumer
products to biomedical applications.2–4 Food-grade TiO2 (E171)
particles have been widely used as a coloring agent; however,
rsity, Ames, Iowa, USA. E-mail: alexgg@
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0, 1658–1665
potential health concerns have brought the use of E171 into
question.5,6 The European Commission banned E171 as a food
additive in 2022 and prompted several research studies into the
prevalence of TiO2 in food products and environmental
samples.7–13 E171 particles have diameters from the nano- to the
submicron-size regimes,2,5,14 and have been previously charac-
terized with several analytical techniques including trans-
mission electron microscopy (TEM),15 asymmetric ow eld-
ow fractionation (AF4),16 and inductively coupled plasma
mass spectrometry (ICP-MS).17–21 With an increasing interest in
identication and source apportionment of Ti-containing
anthropogenic particles, methods for single-particle classica-
tion of these particle types have also been explored.22,23

The use of single-particle inductively coupled plasma time-
of-ight mass spectrometry (spICP-TOFMS) to measure and
classify natural or anthropogenic NPs and mPs is a growing area
of research interest. spICP-TOFMS provides high-throughput
measurement and quantication of elements in individual
particles, and this data can also be used to classify particle-types
based on elemental ngerprints and their mass fractions.
Strategies and rules for particle-type classication based on
This journal is © The Royal Society of Chemistry 2025
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spICP-TOFMS data are still being developed and a consensus
has not been reached. In the simplest case, particle-type
detection limits and decision tree classication based on
known, or measured, unique element associations and ratios
can be established.8,24–26 Other approaches to classify individual
particles by spICP-TOFMS use clustering algorithms to group
and classify particles according to their detected elemental
signatures.19,20,27,28 Supervised machine learning has also been
used to classify particle-types with t-stochastic neighbor
embedding (tSNE) and light gradient boosted decision trees,29

binomial logistic regression,30 and k-nearest neighbor embed-
ding.31 While all of these examples demonstrate reasonable
classication results, few examples of workows with broad
applicability to multiple particle types without extensive
renement have been reported. This is, in part, due to the
inherent bias of spICP-TOFMS measurements.

In spICP-TOFMS, elements are only recorded in a given
particle if they produce enough signal to be registered as
a particle event, i.e. more signal than element-specic critical
values (LC,sp). While LC,sp values depend on steady-state back-
ground levels and the background-signal distribution, the
likelihood that an element produces signal greater than LC,sp
also depends on a number of factors, including the true mass
amount of the element present in a given particle, the
measurement sensitivity, and random signal variations due to
Poisson counting noise.32 In addition, the shape of the analyte
particle size distribution and the heterogeneity of multi-
element composition per particle can also lead to systematic
biases apparent in spICP-TOFMS data. For example, minor
elements in small particles may be undetectable, but become
detectable in larger particles. These smaller particles do not
have true altered element mass fractions, but—in the spICP-
TOFMS data—their multi-element ngerprints lack the minor
elements, and so their composition appears to have changed.
This is bias in the spICP-TOFMS measurement, and it will
inuence the element compositions recorded for populations of
particles. For single-particle classication, a workow must be
robust enough to account for the uncertainty and bias in
a spICP-TOFMS measurement and should be readily adaptable
for various particle-types.

To address the limitations of spICP-TOFMS particle classi-
cation, we developed a multi-stage semi-supervised machine
learning (SSML) strategy.33 In our multi-stage SSML workow,
determined element mass amounts per particle from spICP-
TOFMS measurements of known particle types are used to
train an initial decision tree-based ensemble semi-supervised
classication model. Misclassied particles from this rst
SSML model are largely due to systematic biases inherent to
spICP-TOFMS measurements. Therefore, we reclassify the
misclassied particles as belonging to uncertain class types.
These new uncertain classes are incorporated into the second
stage SSML model, which then produces more robust classi-
cation results. Two-stage SSML classies particles based on
both elemental mass distributions and associated elemental
signatures, which allows for a practical and streamlined
approach for particles with inherent heterogeneity. In this
study, we apply our SSML workow to classify mixtures of Ti-
This journal is © The Royal Society of Chemistry 2025
containing NPs and mPs, i.e. E171 (TiO2), rutile (TiO2),
ilmenite (FeTiO3), and biotite ((K(Fe2+/Mg)2(Al/Fe

3+/Mg/Ti)([Si/
Al/Fe]2Si2O10)(OH/F)2) with median diameters ranging from 100
to 200 nm, and size ranges from 50 to 600 nm.8 In previous
work, two-stage SSML was used to classify Ce-rich natural and
anthropogenic particle types.33 Here, we extend our method for
the (more challenging) analysis of a Ti-containing particles; our
aim is to further explore the utility of the two-stage SSML clas-
sication approach as a tool for spICP-TOFMS data analysis.
Materials and methods
spICP-TOFMS measurements and data

For training our SSML model, suspensions of ground mineral
samples of rutile, ilmenite, and biotite were used to represent
natural Ti-containing particles. Engineered Ti-containing
particles were represented by suspensions of E171 TiO2 parti-
cles. Neat and mixed suspensions were measured by spICP-
TOFMS; sample preparation details are described elsewhere.8

Single-particle measurements were performed with an icpTOF-
S2 instrument (TOFWERK, Thun, Switzerland). Liquid suspen-
sions of particles were introduced to the instrument with
a microFAST MC autosampler and PFA pneumatic nebulizer
(PFA-ST, Elemental Scientic, NE, USA) connected to the torch
inlet via a baffled cyclonic spray chamber. Element mass
quantication was performed with an online microdroplet
calibration system, as previously described.34,35 Data processing
was performed using “Time-of-Flight Single-Particle Investi-
gator” (TOF-SPI, ver. 2.7.4), a free-use particle analysis so-
ware.36 User-specied parameters for TOF-SPI are given in Table
S1.† Typical sensitivities and critical mass values of our spICP-
TOFMS measurements are provided in Table S2.† In our anal-
ysis, all analytes were quantied as their total element mass
amounts except for Ti, for which the masses of Ti-48 and Ti-49
were determined independently.
Two-stage semi-supervised machine learning

SSML was conducted according to our previously established
workow.33 Machine learning classication was performed in
MATLAB R2023b (MathWorks Inc., MA, USA) with the Statistics
and Machine Learning Toolbox™ ver. 23.3; an example of our
code and relevant data is available on Github (https://
github.com/TOFMS-GG-Group/SSML_CeNPClassication/tree/
TiNPClassication). For all the analyses described here, only
particle events containing detectable amounts of 48Ti were
classied. The aim of our study is to demonstrate robust
classication of Ti-containing particles. We evaluate the
performance of our SSML approach at both the rst and second
stages of the workow using two sets of mixtures: the rst
containing only natural particles types, and the second con-
taining both natural and engineered particles.
Results and discussion

Supervised and semi-supervised machine learning models are
inherently limited by the quality of their training sets and can
J. Anal. At. Spectrom., 2025, 40, 1658–1665 | 1659
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only accurately predict outcomes for data that are similar to the
training data. If the test data and the training data are suffi-
ciently different, the model will perform with (at best) a 50%
success rate; ultimately, performing guesswork. SSML, while
subject to the same limitations as supervised ML, is allowed
more exibility in its ability to use deductive reasoning to make
decisions.33 In our previous work, we investigated the capabil-
ities of SSML for the classication of Ce-containing particles
with similar sizes and overlapping Ce-mass distributions; the
Ce-containing particles were estimated to be, on average,
between 30 and 45 nm in diameter.24,32,33 For this case, two-stage
SSML was able to achieve an accuracy of 80% with low false-
positive rates. In our current work, we measure particles from
E171, rutile, ilmenite, and biotite with median diameters
ranging from 100 to 200 nm, and size ranges from 50 to
600 nm.8 In the analysis of particles with this larger size range,
we did not nd any signicant particle-size dependent limita-
tions or improvements regarding the two-stage SSML approach.
As long as particles are completely atomized in the ICP and
contain detectable elemental mass amounts, two-stage SSML
can be used to develop an accurate classication model.
spICP-TOFMS data

From spICP-TOFMS measurements of pristine rutile, ilmenite,
biotite, and E171 suspensions, we compared the detected
elemental signatures from each particle type. In Fig. S1,† we
provide sunburst plots describing the detected elemental
signatures, which show that particle events with a variety of
single- and multi-metal combinations were measured. Initial
observation of the sunburst plots gives an impression of
differentiability. However, upon closer examination, it is clear
that many of the detected elemental signatures are shared, or
are similar, amongst the four particle types. For example, single-
element Ti particles made up 98.8% of the E171 sample and
were also detected in the three natural suspensions (40.8%
rutile, 7.2% ilmenite, and 0.3% biotite). In Fig. 1, we plot the
Fig. 1 Mass distributions of 48Ti in the pristine suspensions of biotite,
E171, rutile, and ilmenite.

1660 | J. Anal. At. Spectrom., 2025, 40, 1658–1665
mass distributions of 48Ti in all four particle types. All four of
the Ti mass distributions overlap signicantly, making classi-
cation based on Ti mass amounts difficult.30,33 Specically, at
the single-particle level, a particle with 48Ti mass within the
range shown in Fig. 1 could originate from any of the four
samples.
Training and characterization

Quantied mass amounts of elements per particle were used to
train the SSML model. In SSML, two types of data are used to
train the model: (i) a relatively small dataset with labels
assigned based on user-specied categories, and (ii) a larger
dataset that remains unlabeled.33 For the labeled training data
used in this application, we randomly sampled 1000 particle
events (∼20–25% of the Ti-containing particles) from each of
the pristine samples; this random sampling was performed to
ensure that the labeled training data was as balanced as
possible.33 Particle events from pristine samples were labeled as
Rut, Ilm, Bio, or Eng for rutile, ilmenite, biotite, and E171,
respectively. The unlabeled training data was gathered by
concatenating all the Ti-containing particle events from the
pristine suspensions into a single dataset. Details of the
machine learning parameters can be found in our previous
publication.33 Aer the rst SSML model is trained, we charac-
terized the performance by using the model to predict classes
for both the labeled and unlabeled training data. These results
are summarized in Fig. 2 and Table S3.† Receiver operating
characteristic (ROC) and precision-recall (PR) curves are
provided in Fig. S2† and calculated gures of merit are provided
in Fig. S3.†

In Fig. 2A and B, we show the classication performance of
the rst SSML model for the unlabeled training dataset; clas-
sication results for the unlabeled training data are shown in
Table S3.† Confusion matrices are used in machine learning
research to describe the performance of the model;37 these can
be used to show the true-positives, false-negatives, true-
negatives, and false-positives (TP, FN, TN, and FP, respec-
tively). In the confusion matrix in Fig. 2A, the tiles are colored
according to whether they were correctly (blue) or incorrectly
(pink) predicted by the model. Row- and column-summaries are
normalized to the row and column, respectively, and reect
percentages of TPs, FNs, FPs, and positive-predictions (PPs).

The accuracy of the rst SSML model was determined to be
90.3 ± 0.2%, which indicates that ∼90% of the particles were
correctly classied. From Fig. 2A, it can be seen that the rst
SSML model best classies biotite and ilmenite particles; these
particles, generally, have lower mass amounts of 48Ti and more
additional elemental associations than rutile and E171 (see
Fig. 1 and S1†). Therefore, the rst SSML model is able to
achieve low FN and FP percentages for biotite and ilmenite.
However, the model does not demonstrate the same robustness
for rutile (FP = 13.9%) and E171 (FP = 15.9%) particles. The FP
percentages do not reect the true false-positive rate (FPR)
because they do not consider the TNs.33 FPR is a metric that
reects the probability of a type I error; typically a FPR less than
0.05 (i.e. 5%) is desirable. The FPR and other machine learning
This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ja00108k


Technical Note JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/8
/2

02
5 

1:
12

:4
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
gures of merit were calculated based on the results described
in Table S3† and are summarized in Fig. S3.† The Eng and Rut
particle classes have FPRs of 5.1 ± 0.4% and 5.5 ± 0.7%,
respectively, while Bio and Ilm have FPRs of 0.7 ± 0.1% and 1.5
± 0.1%. While, these FPRs are within an acceptable range, we
still observe systematic misclassications of rutile and E171
particles.

In Fig. 2B, we plot all the particle events in the labeled
training dataset as a function of their 48Ti mass (fg); particles
are grouped vertically based on their true class and colored
according to predicted class. Bubble sizes in Fig. 2B reect the
number of elements detected in the particle event. Here, we see
that a subset of E171 particles with a single-metal ngerprint
and 48Ti mass less than 2 fg are systematically misclassied as
rutile. Similarly, single-metal rutile particles with 48Ti mass
between 2 and 20 fg are systematically misclassied as E171.
These misclassications arise from the mass distributions of
48Ti in particles (see Fig. 1). Generally, the E171 particles have
larger Ti mass than rutile particles, so the model tends to
predict that low-mass single-metal Ti particles are rutile and
Fig. 2 Confusion matrices from the first (A) and second (C) SSML mod
individual particles. Bubbles are divided into four columns based on the tru
sizes in (B) and (D) are proportional to the number of elements detected
UBio: unclassifiable Biotite, UEng: unclassifiable engineered, URut: uncla
negative, PP: positive prediction, FP: false prediction.

This journal is © The Royal Society of Chemistry 2025
high-mass single-metal Ti particles are E171. To overcome these
systematic misclassications, we create new labels based on the
initial misclassications and incorporate these labels into
a second machine learning model.33 For example, particle
events that were falsely predicted to be Eng by the rst model
are relabeled as ‘unclassiable engineered’, i.e. UEng. Likewise,
the particles misclassied as Ilm, Rut, or Bio are relabeled as
UIlm, URut, or UBio, respectively. These unclassiable classes
are a way to represent the uncertainty of class predictions and
also account for the apparent bias in the rst SSML model.

In Fig. 2C, we provide the confusion matrix for the second
SSML model, which incorporates the unclassiable particle
types. As seen in the second SSMLmodel, the FP percentages for
E171 and rutile particles decrease substantially compared to the
rst SSML model: from 16 to 5% and 14 to 1%, respectively. In
our work, we strive for low false-positive classications because
they are important for the classication of particle types with
large differences in number concentration. For example, if there
are 100×more natural Ti-particles than E171 particles, then the
5% FP in E171 classications would be more abundant than the
el. Bubble plots in (B) and (D) reflect the predicted classifications of
e particle type and colored by the predicted classifications. The bubble
. Abbreviations: Bio: biotite, Eng: engineered, Ilm: ilmenite, Rut: rutile,
ssifiable rutile, UIlm: unclassifiable ilmenite, TP: true positive, FN: false

J. Anal. At. Spectrom., 2025, 40, 1658–1665 | 1661
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TP E171 classications. However, lowering the FP percentage
requires the model to be more selective, which results in
a decrease in TP classications and an increase in FNs. There-
fore, the overall accuracy of the second-stage SSML model was
reduced to 75.2 ± 2.8%. In Table S4,† we provide classication
results for the unlabeled training data. Comparisons between
the rst and second SSML model's ROC and PR curves and
gures of merit are shown in Fig. S2–S4.† ROC curves describe
how well the ML model is able to separate the positive classi-
cations from negative classications; optimal models should
have high TPRs and low FPRs, resulting in an AUC close to one.
In contrast, PR curves illustrate how many predictions made by
the model are truly correct and are best utilized when the
number of positive predictions is low. As with ROC curves, AUC
values of a PR curve that are closer to one describe ideally per-
forming models. Metrics for the models described here are
shown in Fig. S3.† The calculated FPR for the second SSML
model decreases for the Eng and Rut classes but does not
signicantly change for the Bio and Ilm classes (see Fig. S3†).

In Fig. 2D, we show the classication results of the second
SSML model for the labeled training data in the same format as
Fig. 2B. As seen, particles that were incorrectly classied by the
rst SSML model are now classied as uncertain by the second
model. The increase in FN classication can also be observed,
as the model now classies particle events with masses and
elemental signatures similar to those categorized as UEng,
URut, UBio, or UIlm as uncertain. While the creation of the
uncertain classes worsens the overall model accuracy, the
reduction in FPR enables classication across a broader
number concentration range and in more varied particle back-
grounds. Our two-stage SSML work ow results demonstrate
that the approach is suitable for spICP-TOFMS analysis of
anthropogenic and natural Ti-containing particles.
Testing and validation

Comparisons of the model metrics and classication perfor-
mance of the rst and second SSML with the labeled and
unlabeled training data only provides a tailored look into the
Fig. 3 Classification of particles in a mixture only containing the three na
models. The false-positive engineered classifications were reduced by a

1662 | J. Anal. At. Spectrom., 2025, 40, 1658–1665
robustness of the workow. Specically, the similar particle
numbers of each particle type represent an ideal case to achieve
high accuracy via SSML classication. To further test the
strength of our two-stage SSML workow in predicting classi-
cations with variable particle inputs, we applied our model to
classify particles from the spICP-TOFMS analysis of a mixture of
three natural particles types and of mixtures of anthropogenic
and natural particle types.

In Fig. 3, we provide classication results for data from the
spICP-TOFMS analysis of a mixture containing only the three
natural particle types. In these data, we should not record any
Eng particles because they were not in the sample; thus, any Eng
classications are deemed to be FPs. Likewise, any unclassi-
able classications are FNs. As seen, with just the rst SSML
model, 5.2% of the detected particles are incorrectly identied
as Eng. By adding the second SSML model, FP Eng classica-
tions decrease by a factor of 2, though 20% of particle events are
recorded as ‘unclassiable’. Clearly, there is a trade-off between
type I and type II errors (i.e. FPs and FNs)—reducing FPs results
in an increase in FNs. For our application, we claim that it is
more desirable to allow themodel to produce FNs (i.e. to classify
particles as uncertain) than to provide incorrect information to
a user regarding the presence of engineered particles. While FPs
are not entirely eliminated via the second-stage SSML training,
we do see an improvement compared to the rst model.

To test the classication performance of E171 particles in the
presence of natural particles and vice versa via our two-stage
SSML model, we applied the model to classify particle events
in mixtures of engineered and natural particles at varying
concentrations. Four dilution conditions were studied: (i) low
and (ii) high natural Ti-containing particle backgrounds with
E171 at different concentrations, as well as (iii) low and (iv) high
E171 particle backgrounds with natural Ti-containing particles
at different concentrations. In Fig. 4, we plot the number of
particle events assigned to each class by our second SSML
model versus the dilution amount of the analyte particles. In
these results, the three natural particle-type classications were
summed together and presented, generically, as ‘natural’; the
tural particle types was performedwith the first (A) and second (B) SSML
factor of two in the second SSML model.

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Scatter plots comparing the classification performance of engineered (red circles), natural (black squares), and unclassifiable (grey
triangles) particles with two-stage SSML model in the four dilution cases (i–iv in (A)–(D), respectively).

Technical Note JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/8
/2

02
5 

1:
12

:4
6 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
individual classications are shown in Fig. S5.† For perfect
recovery, the slope of the regression line should be equal to 1
when plotted on a log–log scale; deviations from this slope
indicate incomplete or overestimated particle-type recoveries.

In Fig. 4, across the four dilution cases, the number of
particle events identied as background remained constant
with slopes not signicantly different from zero; this is
improved from the performance observed in the rst stage of
classication (Fig. S6†). Likewise, for the spiked Ti-particles
(E171 or natural), the number of particle events identied as
the analyte increased with increasing concentrations; however,
none of the dilution cases demonstrated perfect classication.
The deviations of the analyte regressions are likely caused by the
high FNR observed in the secondmodel, thus, slopes less than 1
are expected. It is possible that FPs, while generally estimated to
be low in contribution, are dominant at low number concen-
trations and contribute to the overestimation in the cases in
which natural particles are the analyte of interest. In general,
recoveries between 80 and 90% were observed which indicates
reasonable linearity for all studied conditions.
This journal is © The Royal Society of Chemistry 2025
Conclusions

spICP-TOFMS measurements of particles are recorded with
variable multi-elemental signatures and skewed mass distri-
butions due to the inherent limitations imposed by ion count-
ing (Poisson) noise, analytical sensitivity, and heterogeneity in
the particle size distributions. These factors result in noisy
particle event signals that make particle-type classication
difficult at the single-particle level. For these reasons, we
developed a multi-stage semi-supervised machine learning
(SSML) workow that accounts for uncertainty in the spICP-
TOFMS measured signals. In this study, we demonstrate the
usefulness and robustness of our workow to classify titanium-
containing particles. Natural Ti-particles and E171 are classied
accurately in pristine samples. With two-stage SSML classica-
tion biotite and ilmenite are classied with <1% FP classica-
tion and FP classication of rutile and E171 is 1.4% and 5.2%
respectively. Classication of Ti-particles in mixtures further
validates the robustness of two-stage SSML for classifying
particles in diverse conditions. Our approach emphasizes the
J. Anal. At. Spectrom., 2025, 40, 1658–1665 | 1663
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importance of low false-positive classications for accurate
particle type characterization. Additionally, we demonstrate
that the workow can be adopted for particle types with known,
or suspected, referencematerials. Overall, our multi-stage SMSL
model for single-particle classication identies and overcomes
bias in spICP-TOFMS training data to provide a simple
approach for the incorporation of machine learning models in
particle analysis.
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Single-particle inductively coupled plasma time-of-
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 Semi-supervised machine learning

TEM
 Transmission electron microscopy

AF4
 Asymmetric ow eld-ow fractionation

tSNE
 t-Stochastic neighbor embedding

LC,sp
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