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Simulation of particle induced X-ray emission (PIXE) spectra is not a recent subject. Still, when samples are
not homogeneous, problems emerge even in the simplest case of layered samples. If it is necessary to
consider the presence of the same chemical element in more than one physically distinct layer the
number of available simulation codes is very small. In addition, although X-ray emission spectra from
PIXE experiments are much less prone to significant secondary fluorescence issues than their X-ray
fluorescence spectrometry (XRF) counterpart, cases do emerge where secondary fluorescence
calculations are necessary to ensure good PIXE spectral simulations, even if corrections are small. The
case of secondary fluorescence induced by primary X-rays in thick homogeneous samples was solved
long ago by various authors. In the case of non-homogenous targets, the problem becomes much more
complex and, although also addressed long ago, a general solution cannot be found in the standard
accessible literature on the PIXE technique. In the present work we revise a secondary fluorescence
correction method presented in 1996 to handle homogeneous targets and extend it to be applicable to
multilayered targets. Its implementation in the DT2 code allows simulation of PIXE spectra taking into
account this type of matrix effect correction in complex multilayer targets. Fluorescence between
different physical layers, the possibility of the presence of one chemical element in more than one layer,
and the potential “illusional” presence of a chemical element in a given layer due to secondary

fluorescence effects, when its real concentration in that layer is null, are dealt with. This is the first of
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Accepted 21st May 2025 what is intended to be a series of three papers. In this part | work, the model is presented for the case of

secondary X-rays induced by primary X-rays produced by particle collisions. Applications and potentially
demanding experimental conditions will be dealt with in part Il, and the case of secondary X-rays
induced by primary radiation from non-radiative transitions of fast electrons will be addressed in part Ill.
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1 Introduction

Quantitative work on particle induced X-ray emission (PIXE)"
can be performed using a very simple approximation if the
targets are thin enough so that the ion beam particles impacting
the target do not lose any significant amount of energy while
crossing it and the characteristic X-rays of sample elements are
well separated in the spectra. In this case, if standard samples
have been previously analysed under the same conditions,
integrating the characteristic X-ray peaks, or even just using
their height, will provide quantitative data without the need for
much complex processing.”

Still, in many cases the situation is not so simple. If the
target is not thin enough, the target X-ray yield must be deter-
mined by integration of the yield function along the ion beam
particle path in the target, and it can even happen that
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enhancement of X-ray emission relative to the yield expected
from particle induced ionizations takes place. In “standard”
cases, as mentioned by Folkmann in 1974, it is important to
consider the fluorescence processes that result from the
absorption of primary X-rays (the X-rays induced directly by
particle collisions), in particular those cases that result from the
absorption of the primary characteristic X-rays in the sample
material. This absorption is named self-absorption, and the
fluorescence processes are usually referred to as secondary
fluorescence, which is probably the most important phenom-
enon leading to this enhancement.

Being quite significant when studying some types (e.g:: metal
alloys) of thick targets (targets that are thick enough to
completely stop the incident ion beam), the X-ray yield
enhancement effect due to secondary fluorescence was addressed
long ago by several authors and solved for the case of homoge-
neous thick samples. In the case of PIXE work, Reuter et al. in
1975,* Ahlberg in 1977 (ref. 5) and Richter and Witjen in 1981
(ref. 6) presented analytical solutions to the problem. Van Oys-
taeyen and Demortier in 1983 (ref. 7) developed a Monte Carlo
method; Campbell et al. in 1989 (ref. 8) calculated the need for
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tertiary corrections and Ryan et al, at the beginning of the
1990s,>* implemented calculation processes in GeoPIXE to deal
with thin layers and inclusions in complex geological samples.

The secondary fluorescence effect in PIXE is similar to what
is observed in X-ray fluorescence spectrometry (XRF), and
therefore some of these methods resemble and reflect the 1960s
work of Shiraiwa and Fujino,'* even though the primary yield
determination in the case of PIXE cannot be handled simply as
an exponential term and must be obtained by numerical
calculation, which complicates all further calculations.

At the beginning of the 1990s decade, the issue was revisited
by myself while developing the first version of the DATTPIXE
package.” After the first approach based on the work of Ahl-
berg,® a variant was developed taking the model of Richter and
Witjen® as a working base to define a function of depth term for
the secondary fluorescence correction, which can be added to
the primary X-ray yield prior to integration along the particle
penetration path. This model, then named the “penetration
function model”, as presented in 1996, was applicable for
thick and half-thick targets and was implemented as such in the
DATTPIXE package 1996 version.*

As mentioned above, PIXE samples are considered thin if it is
possible to assume that the energy loss of incoming particles
after crossing the target is negligible. In practice, in many cases,
this energy loss is not negligible and the samples must be
considered either half-thick, if the beam particles emerge from
the target, or thick if they are completely stopped inside it.

If the samples are not homogeneous in depth the simplest
case that can be considered is that of layered targets. These are
targets that can be modeled as a set of physically distinct layers,
each of them being a thin or half-thick target that is crossed by
the particles of the beam, which may in the end be stopped in
a thick substrate on top of which the layers are successively
present. In this case, a more complex situation is faced, both for
yield calculation and even more for cases where the secondary
fluorescence effect must be accounted for.

In the case of XRF, the handling of secondary fluorescence
effects in layered targets has been described in detail by De
Boer.™ In this case, since the primary and secondary excitation
processes are identical, major correction terms may be expected
in several cases since the ionization cross-section of the radia-
tion inducing secondary fluorescence is higher than the corre-
sponding ionization cross-section of the incident X-ray beam.

This is not the case in PIXE, since the particle collision
ionization cross-sections of matrix atoms are, in most (if not all)
of the cases, higher or even much higher than the ionization
cross-sections of matrix atoms by the primary X-rays produced
after the particle collisions.

In many cases, in PIXE experiments, secondary fluorescence
enhancement effects in layered targets can, therefore, be
neglected since it is reasonably possible to assume that any
possible correction is very small. Nevertheless, since the PIXE
technique is becoming increasingly used to study layered
targets, frequently using a Total-IBA™ approach, complex
problems are starting to emerge and secondary fluorescence
calculations in layered targets can no longer be disregarded,
even if just to ensure that they are small.
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Although, also for PIXE, the problem of secondary fluores-
cence effects in non-homogeneous samples has been addressed
since the beginning of the 1990s,>' still, a systematic and
detailed description of the general PIXE case of layered targets,
similar to De Boer's work for XRF, could not be found in the
standard accessible literature, even though it is mentioned in
Ryan et al.’s 1990s papers as “in preparation”.

Besides this difficulty in finding calculation details on the
1990s work on the subject, the present paper focuses on PIXE
spectral simulation, while previous work has so far focused on
calculating changes that must be taken into account to fit
spectral details. In fact, although the two goals share a signifi-
cant fraction of problems, not all of them are exactly the same
and the best solutions for one and other issues are also not fully
coincident.

In this work, we revisit the secondary fluorescence correction
penetration function model published in 1996 (ref. 13) for
homogeneous thick and half-thick targets and extend it to
include layered targets.

No limitation is set on the presence of elements in layers,
meaning that elements may be repeated in different physical
layers and/or generate secondary X-rays due to primary radia-
tion originating in layers where they are not physically present;
in such cases the “illusion” of an element being present where
the primary radiation originates may emerge.

Finally, to ensure that details on changes in relative inten-
sities of various transitions to the same sub-shell are properly
dealt with, calculations and integration over the multilayer
structure are carried out for each transition individually.

Taking into account the complexity of the problem, in this
work the presentation is limited to the description of the model
in the case where secondary X-rays are induced by primary
characteristic X-rays, and to its implementation in the DT2
package.'*™ In related studies, to be published in the near
future (parts II and III), applications and the problem of
secondary X-rays induced by electrons provenant from the non-
radiative transitions following the initial collision of beam
particles, will be addressed.

2 PIXE target X-ray yield
2.1 Thin targets

When considering thin targets under particle irradiation, the
number of X-rays, Nj,, detected from rearrangement transi-
tions j (K, Ly,...) of element Z; can be written as:

Q
Nz = Redct,/Tsia/NpCpp (Ep)bcsg}} (1)
being
4 13 X
YL (E,) = 2 ¢ (E,) ——— 2
],Z,( P) MaI,Z,- aj,Z,( P) Cos(l//inc) fZI ( )
where
Na, (barn per cm? .
Cpart = AV( P ) , being for protons @«

particle charge in nC (g pg™)
3.75872462 x 10°
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e is the detector solid angle fraction, eqe¢; and Ty are the

energy dependent detector efficiency and the transmission
coefficient of the absorbers placed between the sample and the
detector, respectively, for the X-rays emitted by transitions j of
element Z;. N, is the number of particles used in the irradiation,
Cpp is the charge per particle in pC, b, is the particle beam
cross-section and ¥, is the incidence angle defined between
the beam direction and the normal to the target surface.

27/}%(Ep) is the target total X-ray yield, for transition j of
element Z;, per uC for a target irradiated by E|, energy particles,
and includes the mass fraction of element Z; in the target, fz.
Finally, N, is Avogadro's number, M, the molar mass of
element Z;, UJ’-fZI_ (Ep) the X-ray production cross-section in barns
for particles of energy E;, and £ is the sample areal mass in ug
cm 2, frequently referred to as thickness even though it does
not have the dimensions of a distance. The value of @p,c has
been calculated from the revised SI standard based on the 2017
CODATA revision.*

It is important to emphasize here that the mass fraction, f,
of element Z; is not included in &, but is kept separate on
purpose both to allow it to be treated as an unknown in
analytical processes, or to serve as a parameter in system cali-
bration operations.

2.2 The equivalent thickness concept

When dealing with thick or half-thick targets, the calculation of
the total X-ray target yield is not so straightforward. In these
cases, as the ion beam particles penetrate the target, they lose
energy, which changes their X-ray production cross-section,
‘sz,. (Ep), since E, is reduced, and the induced X-rays are
absorbed before exiting the sample. The target total X-ray yield
for any transition j originating from any element Z; must now be
determined by integrating the differential effective yield
density. Still, introducing the concept of equivalent thickness,*

Eeq,j,Z,[Ep)y

Equ.,Zi (EP) - JEP 0',/{{2, (Ep) S(x) I*
X(Eout) G'/XZ E(X))
_ i Zi T d
Jo a7, (E) k) N

eqn (1) still allows the calculation of the target total X-ray
yield, W;Ozt, (Ep), for thick and half-thick targets as:

Cpar
Q/;Oth (Ey) = lezlo;‘{zl (Eﬂ)geqdlf (EP) (4)

In eqn (3) x(E) is the penetration depth variable defined as the
distance of a given point along the particle penetration path and
the sample surface, measured along the ion beam path.

T; z(x(E)) = T;z(x) is the absorption of X-rays j of element Z;
while travelling from penetration depth x = x(E) to the surface

dE
of the sample, and S(x(E)) = d_; is the ion beam particle

energy loss derivative.
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Normalizing to the incident energy X-ray production cross-
section allows the total thick target yield to be formally
written in the same way as for thin targets by replacing the
target thickness by the equivalent thickness. The main differ-
ence is that, while the thin target surface area is independent of
the X-ray being measured, the equivalent thickness is different
for each X-ray.

2.3 Non-homogeneous targets

The use of the equivalent thickness concept allows the expres-
sion for the target total X-ray yield to be extended, even for
the general multilayer case. Still, it is important to realize
that now the elemental mass fraction in each layer must be
also included in the definition because it changes from layer to
layer.

Making 7", the transmission of element Z;j transition X-rays
from layer n to the surface, the result is:

(gparl X

M., 957 (EP) :2;1,/.21 (Ep) (5)

Z)//t'-oztlml (Ep) =

m=1 n=1

] All layers [/ m—1 ‘T},(Z,- <E;”)
g::”_z’ (Ep) = Z <H T;_’z}) OT"X‘,Z, (Ep) fZ,‘.m.

m

J‘*wom) M

Tiz(x) dx (6)
07, (E{!‘ >

Last but not necessarily least, even if the sample is not
laterally homogeneous and/or if the detector size or detector
sample distance leads to transmission terms or layer structure
description that depends on the y, z positioning of the beam on
the sample, the concept although becoming a bit abstract, can
still be used to establish the following general expression for the
PIXE target yield of general targets irradiated by particles of E,,
energy, if a set of homogeneous (y,, zp) regions can be estab-
lished to describe the sample:

]VJI<ZI (EP) =

All (ya,zp)pairs Q(}’a~2b)

(vasz6) r(Vaszb) AT(Va.z ML (ayzb)
41t Ed}el,/'h Tsi)s,/' ’ N](b) ' b>CPP (Ep)bcs '7/;1,12:‘ ’ (7)

(a,zp)=1

being
g (g = ot x oy emliea) (g 3
7z (Ep) = maj‘z,»( ») °q,,Zi (Ep) (8)
and
All layers M(yq,2) " X <Em('v' b))
1,(va,zi (3, I Zi P my,
et (g) = S ) L < VS
m(‘_a‘:w:l ”()‘a:b):l o-j.Z,-( p)

M)
’ ‘7},(2,. (E(x)) 7700w

"“(Eo..o
My My, Ji
'xn(‘d b) O.XZ <Ep (a b)>
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3 Secondary fluorescence
penetration function model
3.1 Primary point emission and cylindrical symmetry

Consider Fig. 1 representing a homogenous target. As the ion
beam particles penetrate the target, at any given penetration
depth x;, X-rays are induced and emitted in all directions. A
fraction of these, say BR"™, travels in the direction of the
detector, while others, say 4,, are emitted in another direction
and may be absorbed in the target material, say in a volume dV
at a distance r from the x; position, and also induce the emis-
sion of Bg X-rays, which may be emitted in the direction of the
detector and contribute, with say B§’“ X-rays, to the B peak in
the measured spectrum. In this case, the A, and Bg X-rays
produced at x; position are named primary X-rays. The Bp X-
rays produced in volume dV at position x; +7, are named
secondary fluorescence X-rays, and some of these may add to
the primary Bg X-rays reaching the X-ray detector, enhancing the
target total X-ray yield for Bg X-rays.

Fig. 1(a) represents the ion beam incident in a direction that
may be not contained in the detection plane defined by the
normal to the sample surface (shown in yellow in both Fig. 1(a)
and (b)) and the line connecting point x; and the detector.
Assuming that any relevant distance r is small relative to the
distance between x; and the detector, so that yg4. can be
assumed as constant and independent of r, the circular
symmetry around the sample normal can be assumed for all the
detection processes, even if the irradiation beam is not in the
detection plane. This is so because point x; is the single
common point for both irradiation and detection processes.
Furthermore, if the target can be considered laterally homoge-
neous (meaning that layers are infinite and homogeneous in the
planes parallel to the sample surface), all points x, (along the
beam path) outside of the detection plane may be assumed, for

d
T
A
Wet. «
;1 Lo, /0
S g o
o Ru
Bj
’_%
(a)

Fig.1 Primary X-rays A, produced at a penetration depth x; lead to the
emission of secondary X-rays Bg in volume dV that add to primary Bg
X-rays, enhancing their target yield. The X-ray emission process is
assumed to have cylindrical symmetry and therefore be possible to
describe using a simple 2D image (b). This is so, even if the ion beam
direction is outside the detection plane defined by the sample normal
(in yellow in the images) and the direction defined by x; and the
detector. The angle « between the incidence plane defined by the
beam and the sample normal (a) and the detection plane can take any
value (check main text for details). Still, for the presented calculations
to be valid, it must be possible to assume the samples as infinite and
homogeneous in the plane perpendicular to the sample normal (e.g.,
planes e and f in the left image).
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all calculation purposes, to be equivalent to their projection
(x',) on the sample normal.

In the case of complex wide angle detector geometries the
whole approach still applies, although numerical integration
over the various yg4. values will now be required.

The need for numerical integration in these cases is not
a restriction of the secondary fluorescence correction process,
but is also required to properly determine matrix corrections
processes affecting the primary X-ray yield, as mentioned in the
previous section.

3.2 Secondary X-ray fluorescence cross-section

In order to determine the total amount of secondary B X-rays,

it is necessary to start by writing the differential density func-
tion, dXjp 4 (x1), describing the conversion of X-rays A,, produced
at a penetration depth x; into secondary X-rays By (the “sec”
superscript will be omitted for simplicity of writing) that reach
the target surface after being induced in the volume element dVv.
The following expression may be used as a starting point:

dXBB(AoL;xl) = '@ix(E(xl))TBB(xhr’ 0}%%{3(141)92,41()61,}’) dV
(10)

where:

o 7§ (E(x1)) =0} ,(E(x1))fa is the primary A, X-ray
production density function at penetration depth x;

e Ty (x1, 1, 0) is the transmission factor of Bg X-rays from the
volume dV up to the target surface, calculated for the detector
direction;

e #p(A,) is the conversion probability that A, X-rays
absorbed in element B in sub-shell n are converted into Bg
secondary X-rays; and

e 2, (xq, r) is the cross-section for an A, X-ray to be absor-
bed at a distance r away from the emission point x;.

The primary X-ray production term corresponds to the
differential terms in the expressions presented in the previous
sections, which were also partially addressed in the previous
subsection.

It therefore remains to discuss the other terms, whose
product may be referred to as the secondary fluorescence cross-
section for the conversion of A, primary X-rays in Bg secondary
X-rays.

Still, before any other discussion, it is necessary to address
the lack of an explicit term for the element B mass fraction, fg, in
eqn (10), which is needed to add the term resulting from this
exercise to eqn (3), to obtain an appropriate expression for an
equivalent thickness secondary fluorescence correction, since
€eq,,z(Ep) has no mass term.

3.21 %, and pjp specific conversion probabilities.
Obtaining this explicit mass term can be done by factoring out
the %}, (A,) conversion probability component. Only the cases
where the absorbing and emitting shell of B are the same will be
considered, because the number of secondary Bg X-rays emitted
from transitions to a shell different from the shell absorbing the
primary A, X-rays is, in most cases, not relevant compared to the
primary Bg X-rays produced in that shell. The cases where this is
not valid are just the situations where the ion beam particles

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ja00463a

Open Access Article. Published on 28 May 2025. Downloaded on 10/18/2025 1:44:39 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

either do not reach the fluorescence layer containing the emitter
of the Bg X-rays, or reach it having already lost most of its
energy, while the Bg X-rays can still significantly emerge from
the sample towards the detector. This is a condition which is
probably extremely rare in practice.

This being set, the factoring out of the #7 (4,) term in the
simplest case, an absorbing K-shell, can be obtained based on
the following result:

(1 e photn( A)fagAr
pK . H
Ry, (4,) = A1}Ln0 (1 — e *ubr)

photo
,, a (A )wK.BkB_B
= Ry, (4,) = ke A ;A —B

wK,BkB,B

(11)

where oR5"°(4,) is the K-shell photoelectric ionization cross-
section of B for A, X-rays, wgp is the K-shell fluorescence coef-
ficient of B and kg is the branch ratio of transition B out of all
radiative transitions to the K-shell of the B element.

The mass fraction term, f3, can now be factored out in order
to establish a specific probability, ,u"fBB (A), independent of both
the mass fraction and the mass absorption coefficient of the 4,
X-rays, namely:

R (A
oy, (As) = “m# = of5 " (As)wx pkyp
(12)

H;;Bﬁ (A2)

=R, (Aa) = — —,

Ha,

Eqn (10) can now be written with f5 factored out, namely as:
dXp,(Ay; x1) = #) (E(x1))f3,

Fop, (Aa)

TB ('x17 r, 0)
b My,

24,(xy, 1) dV (13)

In the case of L and M sub-shells the situation is a bit more
complex; nevertheless, the same reasoning as used for the K-
shell applies since changes are only present in the photoelec-
tric cross-section term. The generalization of eqn (12), defining
Iz, (Az), can therefore be made.

K, L and M sub-shell photoelectric ionization cross sections
are normally approximated®" based on the total absorption
cross-section of the X-ray energy, or5(A.) = ua, and the jump
ratios, S,, for the sub-shell. Taking E; to be the X-ray or the sub-
shell ionization energy, as applicable, the following results
apply to K, L and M sub-shell fluorescence (omitting the 4, term
for simplicity):

S K — 1 photo

h
if Ex <Eq,0% oto — Se OTB; N?Bﬁ oxp wkpkps  (14)

If By < Eq, < Bx

photo SL3 -1 . photo SLZ -1

o =90 o = OTB;
L3B TB> O12B T.B;
NENEMN NEN
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h h h
u,%éﬁ = [(leszzs +fL13)UEI?1;0 “'szaUlEz?éo + 053?1;0} wispkpp (16)

L2 _ photo photo . L1 photo
Moy = (le2‘7L1,B + 0o )wLZ-BkB,Bv Moy = ‘7L1 B WLI Bkpp (17)
If By, <Ey <Epq

U,photo _ SL3 - 10_ . Uphmo _ SL2 — 10 (18)
L3B — T.B, YLaB — T.B
SLSSLZ SLZ

L3 _ photo photo ___photo
MﬂBﬁ - <fL23aL2.B + UL3,B )wLS,BkB,By ,LLpo ULZB sz’Bk&B (19)
If B3 <Es <Ep

Sis— 1
photo __ L3 . L3 photo
LB = g 0185 Mg, = O3B wi3 ke (20)

If By < Eg, < Ers

SM]—l

0T B
Swmi

Swmj— 1

photo __ Mj . . photo __

OMiB = T o OTB for je |2, 5{; OMmip =
i:l(SMi)

(21)
'“pBB [(Aiafmsafvas + fnfmss + fuiafmas +fMlS)U§/}[T‘]§
+(fminfmaa/maafmas + Mviafmoafmss +fM12fM24fM45)UMft§
+(fmaafmaafmas + fmoafmss + fvoafmas +fM25)0'K/1[]2011‘3)

to photo photo
+(fmzafmas +fM35)0'M3 B +fM450'M4vB + O'MS‘B:| wwmsp kpp

(22)

M%‘; = [nfuzfviss + fnafvos + finafuss +fMl4)”K/}1Tl§

photo photo photo
+(fm2afmas + fm24) 0o g + M40y + UM4.B] wmaBKp B

(23)

M3 _ photo photo
Mppy = |:(fM12fM23 + fmi3) e +/M23 Ovop T Mw]wakB_’B

(24)
h h h

ngzﬁ = <fM12lT§41°‘t§ + U&;;;))wMZ‘BkB’B; N%;IB = 0&10111;) M1 BKp B
(25)

If Engp < Eg, < Eng

Sm; — 1 Sme — 1
a"thg’ = jM’iaTB for je |3, 5|; cr"Mh;t,;’ = I‘ils,z—ch,B
' i1 (Swi) M2

(26)

#%353 = [(fmaafasafvas + fvoafass + fvizafaas +fivl25)‘7§;l§tl§

photo photo photo
+(fmsafmas + fm3s)0ms s +/MasOman + Tusp | ©OmsBKp B

(27)
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l“'xgz = [(szzJMM +fM24)JlK4§_I§ +fM34UpM;1§ + U&ﬁ;} Wya kB
(28)
h h h
M%y}[} = [szNﬁ/I;ﬂg + 0&%’ (JJM37BkB.B; M%gi = UE/[;"]‘;J(L)MZA,B](B,B
(29)
If Ems < By, < Emo
Sm; — 1 Smz — 1
aﬁ?ﬁ{f = 7/1\@ oryp for je |4, 5 ;a;’};‘g = I‘S—JT,B
i1 (Swmi) M3
(30)
h h, h
llxgz = [(fM34fM45 + fM35) 0y B +fM450pMZt§ + UPM;E;J} wwmsskpB
(31)
h h h
#%t = [stw"M;‘E + U&ﬁ;} wmapkpB; ﬂ,%[gi = U'K/[;t; wmsp Kpp
(32)
If Epa < Ea, < En3
Sms — 1 Sma — 1
photo M35 photo M4
= 70"1"3’ = ——0T1B 33
M5,B (SwiaSus) » OM4B Swis (33)
h
K = T n @viaBKp (34)
I h, h
/«L,l:/i,vsB = [Uﬁ;‘g +fM450'§42t§ + 0&?];’ wwms ks (35)
If Eygs < Ey, < Epgg
h Sms — 1
MSB = —oOTB (36)
Sms
h
“,1:/1[955 = Ullz/[;l];)wMS,BkB,B (37)
3.2.2 Secondary fluorescence production and survival.

Using the definitions of the primary 4, X-ray production density
function #j (E(x1)) and the conversion probability %3 (4,),
the differential density function describing the conversion of
primary A, X-rays produced at a penetration depth x; into
secondary fluorescence Bg X-rays at the volume element dV,
which reach the target surface, dXp 4 (x1), as defined in eqn (10),
may be rewritten as:

dXp,(Ay; x1) = oy, (E(x1))fafs

#yp, (Aa)

TBB(xl,r,ﬁ){ » } 24, (xy,7) dV (38)
o dav

In order to obtain the density function for secondary Bg X-
rays emerging from the target surface towards the detector,
due to secondary emission induced by primary A, X-rays
emitted at penetration depth x; it is necessary to integrate
eqn (38) over the whole target volume, and we can use this step

2512 | J Anal At. Spectrom., 2025, 40, 2507-2525

View Article Online

Paper
to define the corresponding specific density function, xza,(x1)
by dividing by fg; the result obtained is:

Xy, (x1) = 07, 7 (E(x1))fa

:“-ZB[; (4a)

J TBB()Q,I’7 0) ,u,Au

Viarget

D4, (x1,r) dV (39)

The integral in eqn (39) represents the fraction of primary A,
X-rays that may be converted to secondary Bg X-rays, and, if that
happens, will survive until reaching the target surface.

3.2.3 The 25,4, (x;) function and SFC equivalent thickness.
In order to properly analyse eqn (39), it is important to focus on
the differential under the integral:

/LZBﬁ (Afz)

d2p,4,(x1,7) = Tp,(x1,7,0)
My,

:‘.JZAl(.X],I’)dV (40)

This is the differential cross-section for a primary 4, X-ray
produced at the penetration depth x; to be absorbed at a distance
r from x; and converted into a secondary Bg X-ray that reaches the
target surface along a trajectory that leads to the X-ray detector.

Although it looks simple, there are a few details, including
theoretical ones, which are worth taking into account carefully.

The most critical term, even if it may not seem so, is the
detailed description of the absorption of A, X-rays in the
differential volume. Using spherical coordinates, there are two
main components in this process. A geometrical one that is
related to the angular description, which leads to a term in the
angular variables, namely r’sin(f)dfd¢, and a second term
related to the ionization process itself.

Since X-rays vanish when interacting with atoms to produce
ionization, as opposed to what is observed with ions, which just
lose energy but do not vanish, the number of matrix atoms
ionized is proportional to the number of absorbed X-rays.

Considering a small slab of thickness Ar — dr this results in
the following expression for the number of absorbed 4, X-rays,
N;%i)v using a first order Taylor series approximation:

N3ila) (A7) = Ny (0)(1 — e )

d
(1 —e™")| o dr =, Ny, (0) dr

— Nx(4,)(0) a

(41)

Nx(a,)(0) is the number of X-rays reaching the slab. The
absorption in volume dV therefore contributes with an overall
term given by u, r’sin(#)drdfde.

Taking into account that this expression makes use of the
number of X-rays reaching the slab, a term describing the loss of
intensity of 4, X-rays between the emission point x; and the
absorbing volume dV, must be considered. Therefore, the
differential cross-section for an A, X-ray to be absorbed in
volume dV at a distance r away from the emission point x; is:

24,(x1, r)dV = %e’”m"rzsin(ﬁ)drdﬂd(j)

47ty (42)
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The remaining term to be mentioned is the probability that
the Bg X-rays emitted in the elemental volume dV in the direc-
tion of the detector reach the target surface. With up, being the
target mass absorption coefficient and x; and r expressed in
consistent units, usually areal mass units, the result is:

x1€08(Yine) + recosf

TBB (X] , 0) = eﬂtﬂﬁ cos (Vger) (43)

Finally, writing the whole term in spherical coordinates, for
a homogeneous target (see Fig. 1), the result is:

; N :qu P T
d2p4,(x1, 1) = a2 © "
. Xicos(Wine) + recosby o (A4,
e P €08 (Vder) pBB( ) rzsin(ﬁ)drdﬁde (44]

My,

Therefore the final expression is:

gy ()
4250, (01, 1) = B2

Lo Ml

x1¢08(Yinc)+  r-cos(6)
e B cos(Vget)

sin(6)drdfde¢ (45)

The d2p,(x1, r) differential may be referred to as the
secondary fluorescence differential cross-section for the
conversion of A, X-rays into Bg X-rays that emerge from the
target in the direction of the detector.

The 24, (x;) function defined as the integral of
d2gy4,(x1, 7) over the whole target volume is the secondary
fluorescence target yield, emitted in the direction of the
detector, originating from the conversion of 4, X-rays into Bg X-
rays, and corresponds to the integral in eqn (39).

Using the fact that d2p,,(x;, r) has cylindrical symmetry,
the 25,4, (x1) integral can be immediately integrated in ¢ by
taking the x axis as being along the normal to the target surface.
Note that the x axis for calculating the integral in eqn (39) is
independent of the definition of x; along the ion beam pene-
tration path and therefore the x axis for this calculation can be
set freely. The result after integrating over ¢ is:

“235 (4x)
2

X1608(Yine)

-
Pga,(x1) = e b eosaa)

0s(6)

=\ Bagt C;—lu T
JJ e ( ’ Vo BB) sin(4)drdé (46)
V

Summing over all primary A, X-rays produced at the pene-
tration depth x; and leading to Bg secondary X-rays, the specific
secondary fluorescence correction density function, xz,(x;), can
be written as:

X, (x1) = o 7 (E(x1))fa25y4,(x1) (47)

all 4, inducing Bg

and added to the equivalent thickness definition, leading to
a secondary fluorescence corrected equivalent thickness,
52?35 (Ep), which now depends not just on the X-ray being
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detected, but also on the various other X-ray emitters present in
the target:

o () — (o) g iy (B (X)) Ty, 28 (X) + X5, (X)
seq,B[;( P) - X (E )
0 Tj(p).z(m) \ =P

dx. (48)

4 The 2p,,(x1) function analytical
solution
4.1 First steps for solving the integral analytically

Considering that r is small relative to the distance to the
detector, so that it is possible to assume that the detection angle
Vdet 1S constant relative to r, the integral in eqn (46) can be
solved analytically, as long as it can be assumed that the sample
is infinite and homogeneous in all planes normal to the surface
normal, at least for the fluorescence process. This means that
the model may be easily adapted for application to a small
inclusion emitting primary X-rays if the particle beam is kept
within it, but it is not applicable to the case of a small inclusion
emitting secondary X-rays due to primary X-rays originating in
its surroundings.

In order to obtain the analytical solution, it is important to
start with a change of variable, namely by setting:

cos(f) c08 (Vo)
Y=ty + tp, =cos(0) = (¥ —uy,)
4 COS(‘pdel) % ( A') HKpg
(49)
=sin(0)dd = 7Md)}
M,
The 25,4,(x,) expression can then be simplified to:
l‘BB
) max (Mgt MCOS(of) N
2pya,(x1) :vd(xl)J J ,4,,: —e?"dydr  (50)
tin bt o7 COS(61)
being
" (Ag)-cos X1€05(Yine)
&,@(XI) = M.efﬂgu éos(wde‘) (51)

2',U«BB

Calculating the integral in eqn (50) is better done by sepa-
rating the full integral in six different cases according to the
relations between d and ¢ described in Table 1 (see Fig. 1 for
variable references).

Table 1 Integration limits for r and @ for the various integrals (/1 to /g)
i T'min,i Tmax,i cos 6; cos O¢
d=t/2 1 0 1 —1
d t-d 1 —d/r
3 t-d o t-ayr —dr
d>t/2 4 0 t-d 1 —1
5 t-d (t-ayr -1
6 d 0 t-ayr —djr
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Equation eqn (50) is thus better written as follows (i values
according to Table 1):

2ya,(x1) :"4("1)'21" (52)
i
being:
Mpyg
+ ——" _cos(6
s g7 |4 oS (Waer) (#)
I ) dr (53)
P Bp
i fhy, + ———cos(6;)
COS(%et) l
Setting now:
Mpg Kz,
8 =ty + oo~ and g =gy, — 9
COS(Wdet) COS(‘//det)
the first three integrals mentioned above become
d gy |8-
I = dr (55)
o T g+
1 Mg -d
t—=d A—y-r|Fde™ Cos(Uar)-r
e cos(Vet) 7
L= J ‘ =6)
d r 8+
#BB""
o e—yv'#A17 E;a]a;?:
L= J T ) r (57)
t—d Hagt+ C0S(Yet) "
Expanding these expressions leads to
ec08(Vaet) — @ COS(Vaer)
d a—thyg, T
e o
I = ZJ dr
o T 2
d .
ety Mp. T
=2 J 'smh( % )d" (58)
0 r COS(I//ch)
td g [l
L = ecos(Vae) — e cos(Wue) | dr
J r
(59)
}‘Bﬁ .
gy d g e HdaT 1—d e_ e el )
- ecOS(\#det)J dr— J B ——
d r d r
S Fagd #ay (=d)
I — J ecos(Vaet) — ¢ cos(Waet) | dr
t—d r
(60)
gy LT N S s
— eo0s(Vaet) | 1 — efcos(\l/del) J dr
t—d r

Now, Gradshteyn®* states
.. 1
J;e‘“smh(bx)dx = E{Ei[(a + b)x] — Ej[(a — b)x]} for a*#b’
(61)
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Both Gradshteyn® and Abramowicz** define the exponential
integral as:
ot [ ot
E;(x) = —lim “ sz +J Tdt} (x>0) (62)

X

Gradshteyn further sets for negative values of x:

-t
Ei(x)=—[" ert (x<0), while Abramowicz** defines the

exponential integral of order 1 for positive values of the
variable as:

@ L~
Ei(x) :J € dt for (x>0) (63)
leading to the relation:
w ot © ot
Ei(x) = fJ. —dr= fJ —dt =—E\(y) = —-Ei(—~x) (64)
x<0 |x| t y>0

These Abramowicz definitions having x € ]0, o[ will be used
for the remainder of this work.

The exponential integral and the exponential integral of
order 1 may also be presented as power series as follows:

Ei(y) =7+1n(y)+i%;; Ei() = —y — In(y) ’i%

" (65)

where y = 0.57721156649... is Euler's constant.

Now in eqn (58) the signs of the constants in the exponential
and sinh() function are well defined since both the mass
absorption coefficients and the distances are positive.

Before applying eqn (61) to (58) it is still important to obtain
a few additional expressions.

Assuming a > 0, b > 0 and x > 0, from eqn (61) using Abra-
mowicz nomenclature, it is important to note that:

J%e'“sinh(bx)dx = %{E,[—(a —b)x] — E[a+ b)x]}

= %{El[(wb)x} — E[(a—b)x]} if a>b
(66)

= %{El[(a+b)x]+Ei[|a—b|x]} if a<b
(67)

If a = b Gradshteyn in its equation 2.484.6 (ref. 21) further
states:

Jie*’xsinh(bx) dx = < [In(x) — E:(2ax)]

N —

that converting to Abramowicz nomenclature becomes:

1

J%eﬂxsinh(bx)dx =5 [In(x) + E;(2ax)] if a=0b. (68)

Before applying these expressions to eqn (58) and other
integrals, it is important to check the case where x — 0, since in
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this condition, In(x), E() and E;() are divergent. The limit It is important to note that, from the above equations, it
differences are: results for all these cases:
lim(E;[(a + b)x] — Ei[(a — b)x 41
x—>0( 1( ) It ) allin})J ;e**sinh(bx)dx:O (75)
~%Jo

o — (=1)"-[(a + b)x]"
= 113( —y —In[(a+ b)x] — ZT+ Y
These results can be written in a more condensed and
Hn[(a — b)x] + Z (=1)"-[(a — b)x] ) physically interesting form, namely:
n=1

_ e . g
ln( —b) +i(_l)'1[(a—b)x]" I = E(g,-d) — Ei(g- d)+1n(g7
+b P n-n!
1 =E(g4-d d)+1
_Z nanJ'rb }}——ln(z+lb7) if a>b (69) I = Ei(g4d) + E(lg-|-d) + n(

) if g->0 (76)

= lim
x—=0

E |) if g <0 (77)

. Iy = E\Quy -d) + In(2 +v,ifg_=0 78
I_ILI%)(EI [(a+ b)x] + Efla — blx]) 1 1 Ha, d) n( /‘Amd) RERL S (78)
= (<1)"[(a + b)x]" Addressing the calculation of the definitive integral I,, eqn
= hi%( —y —In[(a + b)x] — Y (72)-(74) are not applicable to eqn (59) and the definitions in
: n=l ’ eqn (63)-(65) must be used directly. Setting £ > 0 and 7 > 0 and
b = at the result is:
+Inf|a — blx] +Z"}) Y
—at ® L—at —at ® Ly © Ly
3 S ) Je—dt:J —dt—J e—dtzj e—dy—J € dy
= lim 1n(|a*b|> +Z“a*b‘x} _ Z(*l) [(a + b)x] n 1 n 1 ¢ ! a Y ac Y (79)
x—0 a+b £~ nen! — n-n! = E\(an) — E(af) for (a>0)
a+b\ .
- 4n(‘a - b‘) if a<b (70) = E(|af¢) ~ Edaln) for (a<0) (80)
lifz)(El(zax) +In(x)) Applying this to eqn (59) the result is:
. - . 2ax " 1
- >1c11>r(1)< ~ In(2ax) — Z ln(x)) gy d g e s’ 1—d ei(”A“Jr COS(‘I/[ZCJ) o’
n=1 I, = ewosae) J p dr — J —r dr
= (-1)"-(2ax)" a a
= lim | —y — In(20) - ZM} iy
X part n-n: — ecos(\pde[) (El (,u'Aa.d) — El [H’Aa (Z‘ — d)})
—Iy+In2a)] if a=b (71) Iy Wy
(ol i) - i) -]
(5o o e sy )
Setting a = u, and b = and applying these to the #iyd
- (1//det) b= e [Ei (s, -d) — Er [y, (t — d)]]
definitive integral I; the result is:
g ~[Ei(g-d) ~ Ei[g, (1~ )] (81)
1 T 1
J Le“sinh(px)dy = 5 {El ((a + b)d] — Er[(a — b)d]
0
I <(a + Z)) } if a>b (72) 4.2 Infinite thickness targets
a—

In the case of thick targets, ¢ = o and only I; and I, apply.
dq 1 Adding eqn (76)—(78) and (81) provides
j —e “sinh(bx)dx = 3 {El [((a+ b)d] + E;[|la — b|d]

0 X gy -d
+ln<a+b )} £ a<b 73 I+ I = eVl By (uy,-d) — Ei(g--d) +ln(g7) for g_ >0
|a — b| (82)
Jd L eorsinh(bx)dx = L[E, (2ad) + In(2ad) + 4] if a=b (74) L
0 X 2 I + I = el By (uy,-d) + Ei(|g-|-d) + 1n(| 7‘> for g_<0
(83)
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Mﬁﬁ‘d
L+ I = E(2uy,-d) + W) Ey (uy, -d)

—Ei(g.d) +1n(2u,d) + v

upy-d

= ecos(Vue) ) (,U,AOt . d) +In (Z,uAud)

(84)

+v for g =0=g, =2pu,,

The computational implementation of these results must take
into account that for very small values of the argument, the
exponential integral diverges due to the term in In(x) in eqn (65).
Still, in the case of small values of d (x; still close to target surface)
no problems arise since the results are:

wpy-d

}fii%(ll +17) = [lzii% eeostae) (—y — In(u,,

View Article Online

Paper

with those on w, and therefore all cases must be addressed

carefully.
Taking into account the power series expansions in eqn (65)
the results for |g_| — 0 while the product |g_|-d does not, are:
lim (11 +12°°) =

li L +1I7
oo olim, (4 17)

pgy-d

— eVl Ey (uy -d) + 7 +log(g,-d)  (88)

As could be expected this expression is identical to that of eqn
(84) since in the limit g, = 2u,4 . In the case where u, -d — 0, two
conditions can be found, namely, |g_| — 0, or not so and g_ <0.
In the first case, the limit of eqn (84) is In(2). In the second case, it

d)) = (—y —In(g_-d)) +1n(§_+)

wpy-d pgy-d r
=1 — ecos(Vqer) — ecos(¥get) o+
lim | | 1 — eeosthae) fry — eeosla [In(wy,) + In(d)] +In(g_) + In(d) +ln<g7>
=In <g—+> for g_ >0 (85)
Mg,
ppgd g
im (1 + 157) = lim %o (—y = In(y, ) + (v + In(lg-|-)) +1“(\?|>
py-d ppg-d g
. +
= 6111_r§(1) 1 — ecostVaed) [y — eeosaed) [In(py,) + In(d)] + In(|g_|) + In(d) + In (@>
=In (gi) for g_ <0 (86)
Ma,

ppgd
lim (1 + 17) = lim | eo0o) (—y = In(py,d)) +In(2uy,-d) + v

=In(2) for g =0
(87)

Before proceeding to deal with half-thick targets, it is still
important to check the theoretical possibility that d is not too
small but either |g_| is too small but not enough to make the
product |g_|-d too small, or the mass absorption coefficient of the
A, X-rays is so small that the product u, -d — 0. In all these cases
numerical calculation problems emerge linked to eqn (82)-(84).
Besides, the problematic conditions in |g_| may also combine

2516 | J Anal. At. Spectrom., 2025, 40, 2507-2525

is necessary to establish an ad hoc cut-off, say @, corresponding
to a 95% intensity decrease of A, X-rays, which causes eqn (58)
and (59) to become:

d /-"BB"‘

hm 11 = J — CCDS(‘pdct) — eicos(wdc,)
ﬂ‘Au_’O ol

KByl

dr

d . br d —br
:Je—dr—Je dr

o o F

© by @ by d —br
:—lim(J e—dn—J e—dn+J € dr)
e—0 - M e M e T

= —im( ~E,(bd) — E(be) + Ey(be) — E1(bd))

Il

|
N
{ (=]
o
s|%

=
o,
=

+
S 2
o

&
o,
~
~—

= E\(bd) + Ei(bd)
(89)
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Cofr 1 #Bﬁ‘d #BB'Y
lim I;““ = J = | ecos(Vaer) — e cos(Vae) | dr
Hay =0 a4 T
“oit | Cofr a—br (90)
:ebdj 7dr—J. ¢ dr
a T a T
4
= ebd -In (TOH) — E1 (bd) + E1 (b%)oﬂ‘)
which, when summed, provides:
. Core (4
11m011 + 1" = Ej(b-d) + " In (7[’“) + E\ (b Cop)
Hay =
. HMp
being b= —"— (91)
oS (Vger)

If in this case d — 0 this equation is also not valid. Using the
power series expansions leads to:

limoll + I;"“ =v+E (b' @nff) + ln(b' @off) (92)

Hap =

4.3 Homogeneous half-thick targets

4.3.1 Primary X-rays emitted before half-layer depth. In the
general case of half-thick targets, all six integrals must be
calculated. As can be seen from Table 1, the six integrals are
separated into two distinct cases. Integrals I; to I; provide the
results for the situation where the point x; exists at a distance to
the target surface less than half of the target thickness, and
integrals I, to I provide results for the situation where this is
not so and therefore d > t/2.

In the case of I, eqn (63) should be applied directly to eqn
(60), the result being:

MBB", Byl © oty T
I, =ewoslVae) | 1 — e cos(Vaer) J dr
t—d r
(93)
kg d Byl
= eoosWu) | 1 — e costvue) | E [,uA“ . ([ — d)]
therefore, setting b = A, the result for I, + I is:
08 (Vet)
L+1= eb‘dEl(,“'A,L'd) - eib'(lid)El[ﬂAu'(Z —d)] — [Ei(g+-d)
— Eilg+(t — )] (94)

For the homogeneous half-thick target and d < = #/2 the sum
of I, I, and I; results in:

11 +12+Iz :El[g+(l—d)] —El(g,d)-i-ln(i—Jr)

+e"E (ny,-d) — e "VE [u,, - (t —d)] if g->0
(95)
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L+hL+L=Eg (t—d)] - E(g|d)+ ln(%)
+e E, (#Am'd) —e E, [/'LAa'(t - dﬂ if g <0
(96)

11 +12 +13 = E1 (2,[,LAad) +€h‘dE1 (,LLAmd) +ln(2,u,A1d) + Y
DB [y, (1= d)] — [Er(g.-d)  Er[go- (1= )]

and since g_ =0 = g, = 24y,

L+ L+ L=ER2u, (t—d]+nQud + vy
+ " Ey(ua,d) — e " P [u, - (t — d)]if g =0 (97)

In this case, when d — 0 the result for all three possibilities
is the same, namely:

Bt bt h=Eee) +n(5) e B0 69)
Ay

In what concerns other extreme cases, as in the previous
subsection, we may find u, — 0 while d is not too small. Once
again we can have two different conditions for this. In the case
when |g_| — 0, the limit of the sums is 0 because if u, — 0and
|g_| — Othen b — 0.If it is instead g_ < 0, then b is no longer
a vanishing value and a cut-off must be used to calculate the I;
integral and (¢ - d) must replace the cut-off in eqn (91), leading
to the result:

lim
tay =0
g-<0,d>0

(h+ L+ L) =E(b-d)+ Eb-(t—d)]

(4 (4
bed . off —b-(1—d) off
¢ < d ) ¢ (t — d)

If now both d — 0 and us, — 0 eqn (99) must be used to
calculate the limit and the result is:

€,
limo(h +L+5L)=E((b1t)+v+ ln(b-@off) —ett 1n( tff)
Hay =
d—0

(100)

4.3.2 Primary X-rays emitted after half-layer depth. Since
the sum of I; to I; is only valid for d < ¢/2, when the contrary is
true, meaning when d > t/2, the sum of integrals I, to I applies.

Based on Table 1 these are:

d

t=d gyor |- e
I = dr; Is = adrand
o T a T #ay (1=d)
. . B Gos(Waer) T
ragd (101)
© eV H 0T Cos(yge)r
Iy = ugy (=) &7
4 r n il B
Mgy coS(Vger) "
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In the case of I, given the formal identity to I; once d is
replaced by (¢ - d), the result is:

=FE [g+-(t - d)} +Elg-|-(t—d)] +1n (é—]) if g <0 (103)

= E\2u4, (1t — d)] + In2uy (t — d)] +v,if g =0  (104)

In the case of I5, expanding the expression in eqn (101)
provides:

d ey Hgr 7#3[5'([*4)
Is :J ecos(Vaet) — e cos(Wae) | dr
t—d r
(105)
d ggr kD) a
= J dr —e cos(¥qe) J dr
—d T —d T

Taking into account eqn (79) and (80) three results are
possible for I5, namely:
Is = E[g--(t — d)] — Ei(g--d)

)

—e W) (Ey[uy,-(t —d)] — Ey(py,-d)) if g->0
(106)

I = E(lg-|-d) — Elg-|-(t — d)]
wp,y (1=d)

—¢ oW (Ey[py,- (1 —d)] — Ey(uy,-d)) if g- <0

(107)
d
Isi=In| ——
MBB‘(f*d)
—e Vel (Ei[uy, (1 = d)] — Ei(ug,d)) if g =0
(108)
In the case of I, the result is:
© oty T mpy-d JLBB'(’*")
Iy, = J ecos(Vaer) — e cos(Vaer) | dr
d r
Pagd Hagy ! © oty T
— ecos(Waet) | 1 — e cos(Wuet) e dr (109)
P
wpyd Mgyt

= ecos(Vue) [ | — e coslvua) | E (,uA d)
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Adding I, Is and I the results are now:
Li+1Is+1g=E[g.-(t—d)] — Ei(g--d) ‘H“(gi)
HRB'({ MRB‘(F‘/)
4+ ecos(Vae) ) (,U'Am'd) —e cos(Vae) F) [:“'A,' (r— d)] if g >0
(110)
it Iy Io = Bl &) + Bl 1)+ in((£)
#BB'd
4 ecos(Vael) F (“Aa«_ d)
ppy (1=d)
—e cosVa) ) [,uAa'(t — d)] if g_<0
(111)
L+Is+1g=E[2u,,-(t —d)] + In(2u,,d) + v
“Kﬁ"l MBH‘(I*‘I)
+ ecosWa) By (uy,-d) — e ©sWae) Ey [#A,; (r— d)] if g=0
(112)

In this case, when (¢ - d) — 0 the results for the three
possibilities are:

14 + 15 +16 = 11'1(%) — El(g,d)

;“BB“]

+ eVl By (uy,-d) if g->0 (113)
My,

mpy-d

+ eV By (uy,-d) if g <0 (114)
wpg-d
14 + 15 + 15 = ln(,uAad) + Y + CCOS(WC‘)El (uAm'd) if g = 0

(115)

As in the previous case, it is also important to address the
potential extreme conditions where w, — 0 while (¢ - d) is not
too small. As before the two situations that may be addressed
are |g_| — 0and g_ <0. In the first case, the result of the sum of
integrals is 0 as it was also for the condition d = t/2. In the case
of g_ < 0 the result is:

lim (I + Is + Is) = E\[b-(t — d)] + E;(b-d) _‘_eb-dhl(%)

oy =0
(4
_ 4)’(1*{1)1 off
€ n|———-
(z—d

(116)

If now also (¢t - d) — 0 applies, the limit of this eqn (116)
must be used, the result being:
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Fig.2 Primary X-rays A, produced at a penetration depth x; in layer to
induce the emission of secondary X-rays Bg in volume dV in layer t;.
These will appear as if produced at depth x;, and will either enhance Bg
X-ray target yield from layer t. or create a "phantom” presence of
element B in layer t.. (a) Case 8: the secondary fluorescence is
produced in a physical layer located deeper into the target than the
layer emitting the primary X-rays. (b) Case 9: the secondary fluores-
cence is produced in a physical layer located less deep in the target
than the layer emitting the primary X-rays. In both cases it is once again
assumed that the sample layers are homogeneous and infinite in the
plane perpendicular to the sample normal (shown in yellow).

. b-d %joff

hmo (L+1s+ 1) = (e - 1)~ln( ) ) (117)
Hag =
(1=d)—0

4.4 The general layered target case

If the target is more complex than a single homogeneous layer
and made up of several physically distinct layers as drawn
schematically in Fig. 2, calculating secondary fluorescence
processes for PIXE experiments becomes a bit more complex
and, as far as the author knows, this work is the first time
a systematic, general global solution is presented in standard
literature.

In this case, three different situations can be faced in respect
to secondary fluorescence: (a) the secondary X-rays are
produced in the same layer as the primary X-rays, (b) the layer
emitting secondary X-rays is located deeper into the target than

This journal is © The Royal Society of Chemistry 2025
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the primary X-rays layer or (c) the layer emitting secondary X-
rays is closer to the target surface than the primary X-rays layer.
In case a, or 7 since it follows integral I, eqn (47) and (50)
need just a slight change to cope with the extra layers that may
be present between the emitting layer and the target surface, the
result being:
Case a (or 7): making

tbeg
2 (x)) =2 X - —
By, (X1) BB.Au< I COS(%C))
based on eqn (50)

ng—1 “lBB li

X () = | J]e oWad
i=1

oy, 2 (E(e)fa2 0 (1)

all 4, inducing Bg

(118)

In cases b, or 8, and c, or 9, the situation is different because
it is necessary to account for three facts, namely, (i) the primary
A, X-ray absorption between the emission point x; and the
absorption volume Vg is not homogeneous, (ii) the path of Bg X-
rays from the integration volume up to the surface of the layer
where secondary fluorescence effects are taking place has
a different expression from the one defined in eqn (43) used for
the case of the single homogeneous layer and case (a) of
multilayered targets, and (iii) a single more complex integral
expression applies.

In cases (b) and (c) eqn (43) and (45) need to be re-written. In
order to simplify the expressions both for easy reading and for
a clear understanding, some definitions are presented in
Table 2.

Based on these definitions and on Fig. 2, eqn (45) can be
promptly adjusted (note that ¢}, is the fraction of the emitting
layer crossed by A, X-rays, and tj is the fraction of the layer
absorbing the A, X-rays, crossed by these) leading to the
following results:

Table 2 Integration limits for r and 4 for the integrals /g and Ig. The
integral limits are the same due to the fact that angle 6 was defined as
the smallest angle to the normal, in both cases

s tre tref G
d<tbes 8(b) - d tpeE - ¢ 7cos(6) - (tre + tref)
dod o) dodF R reos(t) (B ed)
Ci Cf
XSi:COS(e) T's,min T's,max = cos b; = cos O
b
d< tfeg l?e + tfef térse + t?ef + I 1 7
cos(f) cos(d)
d
d> t?n t?e + t?ef t‘r)e + t?ef ti 1 i
cos(8) cos(d)

“ The value of # is an ad hoc cut-off taken as the value above which less
than 5% of primary X-rays exit the emission layer.
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8 —
[N np—1

_ :LLZB[; (Aoc) 'Cﬂl"c'“- cos(0)

d.‘.@i:;m (xh r, 0) A1t os(0)

i=ne+1

8
tf

e’ o T{'y, (r, 0)sin(0)drdodg

T (A ) 1 np+1
9.1¢ _ ’u'ﬂBﬁ( o e dn” cos(8)
Q" (xi, 1, ) = =2 e e s

i=ne—1

9
trf

e " eos@- Tyt (r, §)sin(6)drd6de

8
ng—1 ) t i ) L
cos(Vaer) | @ " "BB " cos(Vaer)

T, (r, 0) =

9
np—1 1 fr—ty

H e 1B cos(Yaer) | @ BB cos(Waer)

Ty (r, 0) =

The following expression replaces eqn (47):

Yoo ol A EE)A2Y, ()

all 4, inducing Bp

X5, (x1) =

being in this case,

25" (x) :” J 42y, (v, 17, 6).
Ve

H e‘#i,Au'

H e*ﬂt:.Aa'
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ng—1
—i iBy i | ~HngBy" beg*d)
coé(a) 'unB (Azz) 7; (i‘ By t) Hop By (tf
”@2:;1 (_xl) = pﬁT-e cos(Vger) .
Hng,55€0S(6)
—{unf.Aﬁ Cfofw} g (127)
Or  [rsmax €
(119) J J et
G5 rsmin “ne.Aq’§e+_ ZI (#i.Ag_l‘i)*Mn‘-_Aa (I?Cgﬂ/>
iZnet
3 e cos(f) sin(#)dédr
cos(6)
np—1
. Z (M,BB‘U) Fhng By |:1f+ <d*l§"d)]
5 9.np ”’pBB (A!Z) =t
25, (n) = L c0sWaet)
120 My BCOS(6)
( ) . rr "r.\',mux e— |:#nr./1a‘ m] " (128)
JOi Jrsmin
121 =
(121) Fong g e+ Z (Bivt ) =t 1 <d—ff"d)
i=ngt1
e cos(f) sin(6)dfdr
(122) Further simplification will result from applying the
following change of variables to the integrals in eqn (125) and
(126):
¢ = cos(f); d¢ = —sin(6)d#b,; (129)
(123) 8 Hoe.B 9 Mone.B
R (C) = My Ay, + —BCa R (:) = :u'n~.A1 - 475: (130)
" COS(‘pdct) " COS(‘//dct)

which using the changes of variable mentioned above results in:

ng—1

(124) 8 \ b
B = Z <“l¥BB'Z’4) Moy (tfeg - d)
i=1

i=

Integrating the above differential expressions having the

integral limits defined in Table 2 provides:

nffl( ) <
§ Ryl | —tng5y | et )
B B\ e rer
n -
(Aa) i=1

: 08 (Vget)

np-1

rcos(ﬁ):| #;ze.Amf§c+ Z (#,,Anf:)

cos(Ye) =0

- ~Hag. B
Jr J".\-.m;\x e cos()
0 Jrgmin
Hng o | T
€

8 8
lre Tl op

~ cos(f)

] sin(6)dodr

ne—1
i . 9,9
. (A ) ; (Mi.zz[, 1r>+ﬂuf.BB |:’f+<lre+[ref>:|
o

08 (¥get)

ne—1

reos(6) } tneanfiet D (Miagti)

i=ng+1
cos(Yuer) 0

Mg B,
J-()f J)‘x.max e " ﬁ|:
0;

T, 9 19
's,min 1+
THng Ag | T
i~

ref.

cos()

} sin(#)dodr
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ng—1

e%‘zm - Z (Mf‘B[,'ti) + Moy 3, [tf + (d — t?ﬂd)]
i1

np—1

b
125) ((”f/ic.nf _ an,Aq'[fe + E (i, 1) = B, (lfeg _ d)
i=ne+1
ne—1
er,nr = :"Lne.Au't?e + Z ('u'i-Am.t’) = Hupay (d B tind)
i=np+1
" (A Brew (G [rems hen
2y (x1) = “PBﬁT(“).e’wswda). J J MO T drdl
&G Jrymin
(126) d = x1-c08(Yye,)
therefore,
” P . Sy N\ |Tsmax ,
MyB (Aoz) ~_Tenp 193 eﬁx (©)-r _ e
9};}”; (xl) = '"'37«@ COS(\Pdet)»J e ¢ dC
pAo 2 &G xr(c) T's.min
(131)
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which leads to the following integrals that are solved numeri-
cally using Gaussian methods.
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Note that now, because the mass fraction term must be
included in the definition of the equivalent thickness, it cannot
be just put in evidence, as was done in eqn (39).

s s Coronp Bre
(tre + Lret + Zf) ( ¢ C+ COS(‘/’dim))
e d

. X (t_y + > X
;/)257”( (X ) _ 'LLZBB (Aa) of e re ref 7
Bpd, \X1) = 2 rs Nr(g) N‘(C)
*O (’Fﬁt;cr) T g
() ne np
top,(A) (1 1 —e : (E) Lo z =
__ "rbp
e

All terms in the exponential having been grouped together to
avoid numerical integration problems.

The final expression for the number of Bg X-rays emitted by
a layered target, whose structure may be simulated as a set of
layers parallel to the surface, and infinite in the directions
perpendicular to the sample normal, can now be written as:

Q m
Np(Ey) = ao-tdet s Tiis N Cop (Ep)bes 5™ (133)
being
@7&]”
Sy (B = S (B)EIEE) (3)

B
let‘B b

m=1

0'15\:[} (EP)

where, with 2374 (x;) provided by eqn (132), xj;'s, (%) is:

Syle —
XBB,n1l (x ) -
All Bg emitting layers

D

np=1

All Ay inducing By

>

Ay ne=1

S 7%, (B (0) fan 235, (4)

(136)
It is important to note that solving eqn (132) numerically
adds an additional set of sums to the ones already introduced by

eqn (136), combined with eqn (135), which must be carefully
implemented.

This journal is © The Royal Society of Chemistry 2025

(Eout) 0'2‘;5 (EP (X)) Tl’;,B,Z, (X) dx + J\)‘J(,;:Oul) XSB’:m](-x)

. All layers o’gﬁ ( Ep’" ( XE?)) . m—1 . X
N S AR ( 11 TBB> |
k=1 X0

dg (132)

This is not a problem for simulations, but is a complex
situation to address if the problem in question is the exact
fitting of spectra of unknown samples. In the present work, this
issue is not addressed beyond this statement, still it is a subject
that will be addressed in the applications part of this trilogy.

5 The general case expression

Summing up all previous results, it is possible to write a global
expression for the most general case possible, namely for the
PIXE yield of a wide spot or wide detector that requires
a generalized sum over a set of (y,, zp) pairs.

dx (135)

oh (Epe) o aha(Epe))

It is nevertheless important to ensure that homogeneous
conditions are verified within each partial spot (y,, zp,), as
otherwise the expression cannot be used without detailed
adaptations that have not been presented in this paper, even if
they may eventually be derived from the results presented here.

Starting from eqn (7)-(9) and adding up the secondary
fluorescence terms, the final result is:

M:Zl (EP) =

All (ya,zp) pairs Q(}’a-zb)

Va,Z] Va s 2] ' ,2 /ML (Va2
. eget,jb)Ts(i}s,j b)NpO b)Cpp(Elf>)bcsg/jr'l.1z,(1 v (137)
(a,zp)=1
being
a,Z (4 J(ya,z
W () = o (B)E ™ (B)  (138)
at,Z;
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and

X (0 "oaz) [ fm
All layers o E Vv X 0 4Tb (
gml:(}’znzb) (E ) _ FL\P fm("u-'b) | e
B = 3 N Ty e e
m(‘a_:h)fl JZi P R

all layers #m(m‘:b)

) Z Z an,;n(yu,:b) (x) dx

J:Zi3(B
n((“d‘:b):l all 4, inducing Bp ' ( ﬂ)

. hmyy, 4
In these equations, X 0a ) (x) refers to the homogeneous

Zi; (Bg)
cases and case a (or 7) of eqn (118) and x;_;_";%‘;;b)(x) refers to

inter-layer secondary fluorescence, cases b and c (or 8 and 9), as
described by eqn (123).

6 Implementation and analysis
6.1 Homogeneous targets

Once obtained these results, their computational implementa-
tion is reasonably straightforward, the single remaining issue

Table 3 Equation selection table for the case of infinite targets

d lg-| lg-I-d  wa,d g Equation
>107° >107° — >107° g.>0  Eqn(82)
g <0 Eqn (83)
) =10° g <0  Eqn(91)
=10"° >107° >107° — Eqn (88) = (84)
=10"° — In(2)
=10° >107° Eqn (84)
=10° — In(2)
=10 >107° >107° >107° — ! <g+>
n( -t
M,
=10° g <0  Eqn(92)
=10 — — In(2)
=10"°> — — — In(2)
300000
250000 BCS SS387 wi SFC
e 10 SFC
w 200000
% 150000
§ 100000
° 50000
0
1 2 3 4 6 74 9 10 11
E (keV)

Fig. 3 Overlap of simulated spectra for 1.65 MeV proton irradiation of
the BCS_SS387 reference material taking into account secondary
fluorescence corrections (w/SFC) and not considering these (no SFC).
It can be seen that differences are observable in the most intense
peaks, but not so much in the others. In this case, the most intense SFC
effect is observed for Cr at 5.4 keV, with an effect of 11.6%, while Fe at
6.4 keV presents a SFC effect of 7.4%.
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needing some attention being the cases where variables take
very small values so that limit expressions must be used.

h,m
yazy) ! My, M (ya.zy)
0 ) B E@) TV ) X))
IZi My - T
M)~ 7z, <Ep(' h)> 7, (Ep(’ b>)

(139)

The implementation was made as additional code to the
previous DT2 code,'>" which was designed from the start to
allow the handling of multilayered targets.*

6.1.1 The infinite target case. In the infinite target case,
eqn (82) and (83) are used as long as the following expression is
true:

d>10°ANg >107° Ay >107° (140)

If this expression is not true, then each condition must be
taken into account individually. Table 3 lists the conditions,
equations and limit cases replacement when dealing with
infinite (thick) targets.

Simulations corresponding to one of the alloy cases pre-
sented in the 1992 paper' are shown in Fig. 3. In this case the
BCS S387 iron-nickel standard was considered. The spectra
shown correspond to simulations assuming 1.65 MeV proton
beam irradiation, replicating the experimental conditions used
in the 1992 study. Simulations were also carried out for proton
beams of 1.1 MeV and 2.5 MeV. In Fig. 4 the changes in
percentage correction determined as a function of beam energy
are presented for the five elements exhibiting the most signifi-
cant effects. It can be seen that as ion beam energy increases,
the necessary correction also increases. The results are different
from those presented in the 1992 (ref. 12) paper because the
present work uses a penetration function method and Gaussian
integration, which accounts for the whole sample, as used in
the 1996 paper™ and not the Simpson integration over pairs of

16.00

—Ti
BCS SS387

Ci

14.00 ~—S

.

12.00 =F¢
10.00

2

% 8.00
2 6.00
4.00
2.00

0.00
1000 1200 1400 1600 1800 2000 2200 2400 2600

ion beam energy (keV)

Fig. 4 Change in the percentage of secondary fluorescence correc-
tion (%SFC) counts on the total counts in the area of the X-ray peaks
simulated for five different chemical elements, as function of proton
beam energy. It can be seen that for all these cases, the %SFC increases
as ion beam energy increases.
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100000
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Fig. 5 Simulation of a 10 wt% cobalt alloy in copper: overlap of SFC
corrected and not corrected spectra (left) and change in the
percentage of secondary fluorescence correction (%SFC) counts on
the total counts in the area of the Co X-ray peaks simulated as function
of proton and He beam energy. It can be seen that the %SFC increases
as a function of ion beam energy are stronger for proton beams than
for the He beams.

irradiated numerical layers (similar to the Ahlberg et al
method®) used in 1992. The present results for this homoge-
neous thick target are, therefore, identical to those found in the
1996 paper. By applying the correction factors presented in
Fig. 4 for 1.65 MeV, to the experimental data published in Table
3 of ref. 12, relative differences of 1.7%, 0.78%, 5.0% and 1.33%
are found now between secondary fluorescence corrected data
and reference values for Ti, Cr, Mn and Fe respectively. Taking
into account that the reference values have uncertainties of 4%,
0.64%, 5.0% and 0.55% respectively, it can be concluded that
the results obtained after secondary fluorescence correction
fully agree with the standard reference data.

Secondary fluorescence correction situations may, never-
theless, be significantly different from this. Testing as examples
some potentially complex cases such as MoP, PbCrO,, Ti82.5-
Mo10-Mn2.5 and Co10-Cu90, under 1.65 MeV proton irradia-
tion, different cases can be observed.

In the case of low energy X-rays, namely P-K, Mo-L and Pb-M,
no meaningful secondary fluorescence corrections are
observed; the most intense case is Mo-Lg, that shows a 1.86%
increase under irradiation of a bulk Ti82.5-Mo010-Mn2.5
sample. The difference in energy between Pb L lines and the Cr-
K absorption edge results in a photo-electric absorption cross
section that is too low for a significant effect to be observable in
PbCro,.

In the Co10-Cu90 case, a different situation applies and
secondary fluorescence corrections for Co K, lines from 18% to
30% are found. The effect visible in the Co K, peak height, for
a proton irradiation at 1.65 MeV, is shown in Fig. 5.

Table 4 Equation selection table for the sum Iy + [, + I3 (primary
emission point located before the layer half-thickness) for the case of
homogeneous half-thick layer targets

d=t/2 lg—| lg—|-d Ma,d g Equation
>107° >107° — >107° 2->0 Eqn (95)
g <0 Eqn (96)
=107° g.<0 Eqn (99)
=107 — >107° — Eqn (97)
=10 — 0
=10"° >107° >107° >107° — Eqn (98)
=107° g.<0 Eqn (100)
=107° — — 0
=10"° — — — 0
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Table 5 Equation selection table for the sum I4 + Is + g (primary
emission point located beyond the layer half-thickness) for the case of
homogeneous half-thick layer targets

t-d=t2 |g| lg-l(t-d) paft-d) g Equation
>107° >107° — >107° g.>0 Eqn(110)
g <0 Eqn(111)
=107 g.<0 Eqn(116)
=10 — >107° — Eqn (112)
=107 — 0
=10 >107° >107° >0 E
= g qn (113)
g <0 Eqn(114)
=10"° g.<0 Eqn(117)
=107 — — — Eqn (115)
35.00 C0 10% Cu 90% W% =»— proton beam thick target
—4— He beam thick target
30.00 proton beam 0.1mg/cm2
e He beam 0.1mg/cm2
25.00 —»— proton beam 0.2mg/cm2
-A He beam 0.2mg/cm2
== proton beam 0.4mg/cm2
8 20.00 He beam 0.4mg/cm2
n —e— proton beam 0.8mg/cm2
e 1500 »/"/_k”/——— He beam 0.6mg/cm2
== proton beam 1.6mg/cm2
10.00 ></x""f—————"" —4— He beam 1.6mg/cm2
o~ o= proton beam 3.2mg/cm2
5.00 —— He beam 3.2mg/cm2
. ""‘N__T proton beam 6.4mg/cm2
0.00 A— ~#— He beam 6.4mg/cm2
' 0 1000 2000 3000 4000 5000 6000

ion beam energy (keV)

Fig. 6 Simulation of 10 wt% cobalt alloy in copper: change in the
percentage of secondary fluorescence correction (%SFC) counts of
the total counts in the area of the Co X-ray peaks as a function of beam
energy and target thickness.

6.1.2 The half-thick target case. In the case of the half-thick
targets, as shown in Section 3.3, calculations are a bit more
complex, and so is their implementation. The selection of
equations for this case is summarized in Tables 4 and 5, since
two different sets of integral sums must be dealt with.

Applying these to the simulation of the most intense case
shown in the previous section, namely the cobalt copper alloy, it
can be seen that the secondary fluorescence correction in thin
targets is not zero, but it decreases significantly with thickness
as well as with ion beam energy.

In Fig. 6 it can be seen that the secondary fluorescence
correction increases as a function of beam energy (as already
observed for thick targets) as well as the target thickness.

Although not shown in the graph, He ions at 2500 keV are
fully stopped in 3.2 and 6.4 mg cm 2 targets, and the same
applies to He 5000 keV and proton 1100 keV beams in the
6.4 mg cm™ > target. Still, out of these four cases, only for the He
2500 keV beam in the 6.4 mg cm™ > target is the secondary
fluorescence correction identical to that of the thick target.

This results from the fact that secondary fluorescence effects
that take place beyond the ion beam range, still affect the
overall spectra.

6.2 Layered targets

If the target is not thick enough but composed of more than
a single homogeneous layer, secondary fluorescence may be
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8.0E+04
1.6 mg/cm2 Co10Cu90 on bulk MoP with SFC Co
—— 1.6 mg/cm2 Co10Cu90 on bulk MoP no SFC

6.0E+04

4.0E+04

d Counts/ d E

2.0E+04

Energy (keV)

Fig. 7 Simulation of a 1.6 mg cm~2 film of 10 wt% cobalt alloy in
copper placed on top of a bulk MoP substrate.

6.0E+05
Mo-L Multilayer 3 sets of equal double layers 1/3 the charge
5.0E+05 —— MoP 0.8 mg/cm? before CoCu 0.8 mg/cm?

PK CoCu 0.8 mg/cm? before MoP 0.8 mg/cm?

4.0E+05
3.0E+05

2.0E+05
Mo-L
escape peaks

A

Fig. 8 Spectra of a 0.8 mg cm~2 MoP film on top of a 0.8 mg cm™
Co10-Cu90 film, a Col0-Cu90 film on top of a MoP film and
a multilayer sequence of 3 pairs of MoP/Col0-Cu90 films. The
differences can be observed to be very significant, as expected.

Counts/Energy bin

CuK

+
1.0E+05 escape peaks  Co-K

0.0E+00
]

Energy (keV)

2

induced in the same region or in regions different from the one
where the primary X-rays are emitted.

As presented in the previous section, the complexity of the
case requires that in the second case, the integrals involved
must be solved numerically.

The first of these cases, which involves calculating secondary
fluorescence effects taking place in the same physical layer as
the primary X-rays emission, is handled using eqn (118) and
apart from the absorption term and the shift in the penetration
value relative to the layer surface, nothing is changed relative to
the homogeneous half-thick layer target case.

The second of these two conditions involves the emission of
secondary fluorescence X-rays from layers different from that
emitting the primary X-rays.

In this case, two conditions can arise, namely either the layer
emitting secondary X-rays is deeper than that emitting the
primary X-rays, or vice versa.

In each of these situations, eqn (132) applies and the only
numerical extreme issue that must be overcome is the occur-
rence of vanishing cosine values, which is resolved by setting an
ad hoc cut-off as mentioned in Table 2.

Although this extreme value problem is minor in this case, it
is still necessary to take into account and overcome a large
number of embedded sums, which must be managed to ensure
proper implementation of the general case calculation.

In order to illustrate these types of conditions, simulations
were run for a combination of layers and substrate materials,

2524 | J Anal At. Spectrom., 2025, 40, 2507-2525
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specifically MoP and Co10-Cu90 alloy. As shown, in the case of
MoP bulk, secondary fluorescence induced in P by Mo-L lines is
small relative to the direct primary induction of P X-rays. If
a film of Co10-Cu90 alloy is set on top of it, not much difference
is observed even though the secondary fluorescence in P
increases to roughly 11%. In Fig. 7 the effect of a 1.6 mg cm >
film of Co10-Cu90 placed on top of a bulk MoP substrate is
shown.

Still, if the order of the materials is exchanged, a different
image can be found. In Fig. 8 the change of the effect observable
as a function of top layer thickness is presented for both the
MoP layer on top and the other way around; the figure also
includes a comparison of the simulated spectra for a multilayer
sequence of 0.8 mg cm™~> MoP and Co10-Cu90 films starting
with MoP, using three times less charge.

It can be seen that important differences are observed. A
systematic validation of these results is necessary to ensure that
both theoretical work and software implementation are working
properly, before the results presented here can be used
systematically. Still, the report of this validation will be pre-
sented in part II.

7 Conclusions

Simulation of PIXE spectra is a useful tool for various purposes,
ranging from the simplest task of teaching PIXE without access
to an accelerator to its unavoidable use for analysis of data from
Total-IBA™ experiments.

PIXE spectral reproduction is available through a few
computer codes described in the literature, such as GUPIX,*
GeoPIXE’ or LibCPIXE* but to the best of author's knowledge,
up until the present paper, no available computer code was able
to deal with simulation and secondary fluorescence corrections
of multilayer samples where the same chemical element may be
present in more than one layer.

As far as the author is aware, a general and global theory
presented here to deal with X-ray induced secondary X-ray
fluorescence in PIXE experiments under such general condi-
tions was not previously available in standard and easily
accessible literature before this work.

The present algorithms are implemented in the new version
of the DT2 code (DT2F_0v9_98), therefore corresponding to
a major upgrade of its prior versions.'®*

Data availability

The data used in the present work are entirely generated by the
revised version of the DT2 computer code mentioned in the
Conclusions section. At the present moment, the generated
data used in this work are available just upon request to the
author. Still, in the near future a repository will be created for it
and the possibility of making the simulation software available
as freeware is under evaluation. In the event of a positive
response to this evaluation, the freeware version of the execut-
able and the usage conditions will be made available in the
same repository.

This journal is © The Royal Society of Chemistry 2025
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