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PIXE spectral simulation (X,X)
secondary fluorescence correction algorithm

M. A. Reis ab

Simulation of particle induced X-ray emission (PIXE) spectra is not a recent subject. Still, when samples are

not homogeneous, problems emerge even in the simplest case of layered samples. If it is necessary to

consider the presence of the same chemical element in more than one physically distinct layer the

number of available simulation codes is very small. In addition, although X-ray emission spectra from

PIXE experiments are much less prone to significant secondary fluorescence issues than their X-ray

fluorescence spectrometry (XRF) counterpart, cases do emerge where secondary fluorescence

calculations are necessary to ensure good PIXE spectral simulations, even if corrections are small. The

case of secondary fluorescence induced by primary X-rays in thick homogeneous samples was solved

long ago by various authors. In the case of non-homogenous targets, the problem becomes much more

complex and, although also addressed long ago, a general solution cannot be found in the standard

accessible literature on the PIXE technique. In the present work we revise a secondary fluorescence

correction method presented in 1996 to handle homogeneous targets and extend it to be applicable to

multilayered targets. Its implementation in the DT2 code allows simulation of PIXE spectra taking into

account this type of matrix effect correction in complex multilayer targets. Fluorescence between

different physical layers, the possibility of the presence of one chemical element in more than one layer,

and the potential “illusional” presence of a chemical element in a given layer due to secondary

fluorescence effects, when its real concentration in that layer is null, are dealt with. This is the first of

what is intended to be a series of three papers. In this part I work, the model is presented for the case of

secondary X-rays induced by primary X-rays produced by particle collisions. Applications and potentially

demanding experimental conditions will be dealt with in part II, and the case of secondary X-rays

induced by primary radiation from non-radiative transitions of fast electrons will be addressed in part III.
1 Introduction

Quantitative work on particle induced X-ray emission (PIXE)1

can be performed using a very simple approximation if the
targets are thin enough so that the ion beam particles impacting
the target do not lose any signicant amount of energy while
crossing it and the characteristic X-rays of sample elements are
well separated in the spectra. In this case, if standard samples
have been previously analysed under the same conditions,
integrating the characteristic X-ray peaks, or even just using
their height, will provide quantitative data without the need for
much complex processing.2

Still, in many cases the situation is not so simple. If the
target is not thin enough, the target X-ray yield must be deter-
mined by integration of the yield function along the ion beam
particle path in the target, and it can even happen that
tituto Superior Técnico, Univ. de Lisboa,

95-066, Portugal. E-mail: mareis@ctn.

orres Vedras, 2560-256, Portugal

f Chemistry 2025
enhancement of X-ray emission relative to the yield expected
from particle induced ionizations takes place. In “standard”
cases, as mentioned by Folkmann in 1974,3 it is important to
consider the uorescence processes that result from the
absorption of primary X-rays (the X-rays induced directly by
particle collisions), in particular those cases that result from the
absorption of the primary characteristic X-rays in the sample
material. This absorption is named self-absorption, and the
uorescence processes are usually referred to as secondary
uorescence, which is probably the most important phenom-
enon leading to this enhancement.

Being quite signicant when studying some types (e.g.: metal
alloys) of thick targets (targets that are thick enough to
completely stop the incident ion beam), the X-ray yield
enhancement effect due to secondary uorescence was addressed
long ago by several authors and solved for the case of homoge-
neous thick samples. In the case of PIXE work, Reuter et al. in
1975,4 Ahlberg in 1977 (ref. 5) and Richter and Wätjen in 1981
(ref. 6) presented analytical solutions to the problem. Van Oys-
taeyen and Demortier in 1983 (ref. 7) developed a Monte Carlo
method; Campbell et al. in 1989 (ref. 8) calculated the need for
J. Anal. At. Spectrom., 2025, 40, 2507–2525 | 2507
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tertiary corrections and Ryan et al., at the beginning of the
1990s,9,10 implemented calculation processes in GeoPIXE to deal
with thin layers and inclusions in complex geological samples.

The secondary uorescence effect in PIXE is similar to what
is observed in X-ray uorescence spectrometry (XRF), and
therefore some of these methods resemble and reect the 1960s
work of Shiraiwa and Fujino,11 even though the primary yield
determination in the case of PIXE cannot be handled simply as
an exponential term and must be obtained by numerical
calculation, which complicates all further calculations.

At the beginning of the 1990s decade, the issue was revisited
by myself while developing the rst version of the DATTPIXE
package.12 Aer the rst approach based on the work of Ahl-
berg,5 a variant was developed taking the model of Richter and
Wätjen6 as a working base to dene a function of depth term for
the secondary uorescence correction, which can be added to
the primary X-ray yield prior to integration along the particle
penetration path. This model, then named the “penetration
function model”, as presented in 1996,13 was applicable for
thick and half-thick targets and was implemented as such in the
DATTPIXE package 1996 version.13

Asmentioned above, PIXE samples are considered thin if it is
possible to assume that the energy loss of incoming particles
aer crossing the target is negligible. In practice, in many cases,
this energy loss is not negligible and the samples must be
considered either half-thick, if the beam particles emerge from
the target, or thick if they are completely stopped inside it.

If the samples are not homogeneous in depth the simplest
case that can be considered is that of layered targets. These are
targets that can be modeled as a set of physically distinct layers,
each of them being a thin or half-thick target that is crossed by
the particles of the beam, which may in the end be stopped in
a thick substrate on top of which the layers are successively
present. In this case, a more complex situation is faced, both for
yield calculation and even more for cases where the secondary
uorescence effect must be accounted for.

In the case of XRF, the handling of secondary uorescence
effects in layered targets has been described in detail by De
Boer.14 In this case, since the primary and secondary excitation
processes are identical, major correction terms may be expected
in several cases since the ionization cross-section of the radia-
tion inducing secondary uorescence is higher than the corre-
sponding ionization cross-section of the incident X-ray beam.

This is not the case in PIXE, since the particle collision
ionization cross-sections of matrix atoms are, in most (if not all)
of the cases, higher or even much higher than the ionization
cross-sections of matrix atoms by the primary X-rays produced
aer the particle collisions.

In many cases, in PIXE experiments, secondary uorescence
enhancement effects in layered targets can, therefore, be
neglected since it is reasonably possible to assume that any
possible correction is very small. Nevertheless, since the PIXE
technique is becoming increasingly used to study layered
targets, frequently using a Total-IBA15 approach, complex
problems are starting to emerge and secondary uorescence
calculations in layered targets can no longer be disregarded,
even if just to ensure that they are small.
2508 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
Although, also for PIXE, the problem of secondary uores-
cence effects in non-homogeneous samples has been addressed
since the beginning of the 1990s,9,10 still, a systematic and
detailed description of the general PIXE case of layered targets,
similar to De Boer's work for XRF, could not be found in the
standard accessible literature, even though it is mentioned in
Ryan et al.’s 1990s papers as “in preparation”.

Besides this difficulty in nding calculation details on the
1990s work on the subject, the present paper focuses on PIXE
spectral simulation, while previous work has so far focused on
calculating changes that must be taken into account to t
spectral details. In fact, although the two goals share a signi-
cant fraction of problems, not all of them are exactly the same
and the best solutions for one and other issues are also not fully
coincident.

In this work, we revisit the secondary uorescence correction
penetration function model published in 1996 (ref. 13) for
homogeneous thick and half-thick targets and extend it to
include layered targets.

No limitation is set on the presence of elements in layers,
meaning that elements may be repeated in different physical
layers and/or generate secondary X-rays due to primary radia-
tion originating in layers where they are not physically present;
in such cases the “illusion” of an element being present where
the primary radiation originates may emerge.

Finally, to ensure that details on changes in relative inten-
sities of various transitions to the same sub-shell are properly
dealt with, calculations and integration over the multilayer
structure are carried out for each transition individually.

Taking into account the complexity of the problem, in this
work the presentation is limited to the description of the model
in the case where secondary X-rays are induced by primary
characteristic X-rays, and to its implementation in the DT2
package.16–19 In related studies, to be published in the near
future (parts II and III), applications and the problem of
secondary X-rays induced by electrons provenant from the non-
radiative transitions following the initial collision of beam
particles, will be addressed.

2 PIXE target X-ray yield
2.1 Thin targets

When considering thin targets under particle irradiation, the
number of X-rays, Nj,Zi

, detected from rearrangement transi-
tions j (Ka, La,.) of element Zi can be written as:

Nj;Zi
¼ U

4p
3det;jTsis;jNpCpp

�
Ep

�
bcsY tot

j;Zi
(1)

being

Y tot
j;Zi

�
Ep

� ¼ C part

Mat;Zi

sX
j;Zi

�
Ep

� x

cosðjincÞ
fZi

(2)

where

C part ¼
NAv

�
barn per cm2

�
particle charge in mC ðg mg�1Þ ; being for protons C part

¼ 3:75872462� 106
This journal is © The Royal Society of Chemistry 2025
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U

4p
is the detector solid angle fraction, 3det,j and Tsis,j are the

energy dependent detector efficiency and the transmission
coefficient of the absorbers placed between the sample and the
detector, respectively, for the X-rays emitted by transitions j of
element Zi. Np is the number of particles used in the irradiation,
Cpp is the charge per particle in mC, bcs is the particle beam
cross-section and jinc is the incidence angle dened between
the beam direction and the normal to the target surface.

Y tot
j;Zi

ðEpÞ is the target total X-ray yield, for transition j of
element Zi, per mC for a target irradiated by Ep energy particles,
and includes the mass fraction of element Zi in the target, fZi

.
Finally, NAv is Avogadro's number, Mat,Zi

the molar mass of
element Zi, sXj;ZiðEpÞ the X-ray production cross-section in barns
for particles of energy Ep and x is the sample areal mass in mg
cm−2, frequently referred to as thickness even though it does
not have the dimensions of a distance. The value of C part has
been calculated from the revised SI standard based on the 2017
CODATA revision.20

It is important to emphasize here that the mass fraction, fZi
,

of element Zi is not included in x, but is kept separate on
purpose both to allow it to be treated as an unknown in
analytical processes, or to serve as a parameter in system cali-
bration operations.
2.2 The equivalent thickness concept

When dealing with thick or half-thick targets, the calculation of
the total X-ray target yield is not so straightforward. In these
cases, as the ion beam particles penetrate the target, they lose
energy, which changes their X-ray production cross-section,
sXj;ZiðEpÞ; since Ep is reduced, and the induced X-rays are
absorbed before exiting the sample. The target total X-ray yield
for any transition j originating from any element Zimust now be
determined by integrating the differential effective yield
density. Still, introducing the concept of equivalent thickness,13

xeq,j,Zi
(Ep),

xeq;j;Zi

�
Ep

� ¼ ðEout

Ep

sX
j;Zi

ðEÞ
sX
j;Zi

�
Ep

� Tj;Zi
ðxðEÞÞ
SðxÞ dE

¼
ðxðEoutÞ

0

sX
j;Zi

ðEðxÞÞ
sX
j;Zi

�
Ep

� Tj;Zi
ðxÞ dx (3)

eqn (1) still allows the calculation of the target total X-ray
yield, Y tot

j;Zi
ðEpÞ; for thick and half-thick targets as:

Y tot
j;Zi

�
Ep

� ¼ C part

Mat;Zi

sX
j;Zi

�
Ep

�
xeq;j;Zi

�
Ep

�
(4)

In eqn (3) x(E) is the penetration depth variable dened as the
distance of a given point along the particle penetration path and
the sample surface, measured along the ion beam path.

Tj,Zi
(x(E)) h Tj,Zi

(x) is the absorption of X-rays j of element Zi
while travelling from penetration depth x h x(E) to the surface

of the sample, and SðxðEÞÞ ¼ dEp

dx
is the ion beam particle

energy loss derivative.
This journal is © The Royal Society of Chemistry 2025
Normalizing to the incident energy X-ray production cross-
section allows the total thick target yield to be formally
written in the same way as for thin targets by replacing the
target thickness by the equivalent thickness. The main differ-
ence is that, while the thin target surface area is independent of
the X-ray being measured, the equivalent thickness is different
for each X-ray.
2.3 Non-homogeneous targets

The use of the equivalent thickness concept allows the expres-
sion for the target total X-ray yield to be extended, even for
the general multilayer case. Still, it is important to realize
that now the elemental mass fraction in each layer must be
also included in the denition because it changes from layer to
layer.

Making Tn
j;Zi

the transmission of element Zi j transition X-rays
from layer n to the surface, the result is:

Y tot;ml
j;Zi

�
Ep

� ¼ C part

Mat;Zi

sX
j;Zi

�
Ep

�
xml
eq;j;Zi

�
Ep

�
(5)

xml
eq;j;Zi

�
Ep

� ¼ XAll layers

m¼1

 Ym�1

n¼1

Tn
j;Zi

!
sX
j;Zi

�
Em

p

�
sX
j;Zi

�
Ep

� fZi ;m$

ðxmðEoutÞ
xm
0

sX
j;Zi

ðEðxÞÞ
sX
j;Zi

�
Em

p

� Tj;Zi
ðxÞ dx (6)

Last but not necessarily least, even if the sample is not
laterally homogeneous and/or if the detector size or detector
sample distance leads to transmission terms or layer structure
description that depends on the y, z positioning of the beam on
the sample, the concept although becoming a bit abstract, can
still be used to establish the following general expression for the
PIXE target yield of general targets irradiated by particles of Ep
energy, if a set of homogeneous (ya, zb) regions can be estab-
lished to describe the sample:

Nj;Zi

�
Ep

� ¼
XAll ðya ;zbÞpairs

ðya ;zbÞ¼1

Uðya ;zbÞ

4p
3
ðya ;zbÞ
det;j T

ðya ;zbÞ
sis;j Nðya ;zbÞ

p Cpp

�
Ep

�
bcsY

ml;ðya ;zbÞ
j;Zi

(7)

being

Y ml;ðya ;zbÞ
j;Zi

�
Ep

� ¼ C part

Mat;Zi

sX
j;Zi

�
Ep

�
x
ml;ðya ;zbÞ
eq;j;Zi

�
Ep

�
(8)

and

x
ml;ðya ;zbÞ
eq;j;Zi

�
Ep

� ¼ XAll layers

mðya ;zbÞ¼1

0
@ Ymðya ;zbÞ�1

nðya ;zbÞ¼1

T
nðya ;zbÞ
j;Zi

1
A sX

j;Zi

�
E

mðya ;zbÞ
p

�
sX
j;Zi

�
Ep

� f
mðya ;zbÞ
Zi

$

ðxmðya ;zbÞðEout Þ

x
mðya ;zbÞ
0

sX
j;Zi

ðEðxÞÞ
sX
j;Zi

�
E

mðya ;zbÞ
p

�Tmðya ;zbÞ
j;Zi

ðxÞ dx

(9)
J. Anal. At. Spectrom., 2025, 40, 2507–2525 | 2509
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3 Secondary fluorescence
penetration function model
3.1 Primary point emission and cylindrical symmetry

Consider Fig. 1 representing a homogenous target. As the ion
beam particles penetrate the target, at any given penetration
depth x1, X-rays are induced and emitted in all directions. A
fraction of these, say Bprimb , travels in the direction of the
detector, while others, say Aa, are emitted in another direction
and may be absorbed in the target material, say in a volume dV
at a distance r from the x1 position, and also induce the emis-
sion of Bb X-rays, which may be emitted in the direction of the
detector and contribute, with say Bsecb X-rays, to the Bb peak in
the measured spectrum. In this case, the Aa and Bb X-rays
produced at x1 position are named primary X-rays. The Bb X-
rays produced in volume dV at position x1

!þ~r; are named
secondary uorescence X-rays, and some of these may add to
the primary Bb X-rays reaching the X-ray detector, enhancing the
target total X-ray yield for Bb X-rays.

Fig. 1(a) represents the ion beam incident in a direction that
may be not contained in the detection plane dened by the
normal to the sample surface (shown in yellow in both Fig. 1(a)
and (b)) and the line connecting point x1 and the detector.
Assuming that any relevant distance r is small relative to the
distance between x1 and the detector, so that jdet can be
assumed as constant and independent of r, the circular
symmetry around the sample normal can be assumed for all the
detection processes, even if the irradiation beam is not in the
detection plane. This is so because point x1 is the single
common point for both irradiation and detection processes.
Furthermore, if the target can be considered laterally homoge-
neous (meaning that layers are innite and homogeneous in the
planes parallel to the sample surface), all points xn (along the
beam path) outside of the detection plane may be assumed, for
Fig. 1 Primary X-rays Aa produced at a penetration depth x1 lead to the
emission of secondary X-rays Bb in volume dV that add to primary Bb

X-rays, enhancing their target yield. The X-ray emission process is
assumed to have cylindrical symmetry and therefore be possible to
describe using a simple 2D image (b). This is so, even if the ion beam
direction is outside the detection plane defined by the sample normal
(in yellow in the images) and the direction defined by x1 and the
detector. The angle a between the incidence plane defined by the
beam and the sample normal (a) and the detection plane can take any
value (check main text for details). Still, for the presented calculations
to be valid, it must be possible to assume the samples as infinite and
homogeneous in the plane perpendicular to the sample normal (e.g.,
planes e and f in the left image).

2510 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
all calculation purposes, to be equivalent to their projection
ðx0nÞ on the sample normal.

In the case of complex wide angle detector geometries the
whole approach still applies, although numerical integration
over the various jdet values will now be required.

The need for numerical integration in these cases is not
a restriction of the secondary uorescence correction process,
but is also required to properly determine matrix corrections
processes affecting the primary X-ray yield, as mentioned in the
previous section.
3.2 Secondary X-ray uorescence cross-section

In order to determine the total amount of secondary Bsecb X-rays,
it is necessary to start by writing the differential density func-
tion, dXBbAa

(x1), describing the conversion of X-rays Aa produced
at a penetration depth x1 into secondary X-rays Bb (the “sec”
superscript will be omitted for simplicity of writing) that reach
the target surface aer being induced in the volume element dV.
The following expression may be used as a starting point:

dXBb
ðAa; x1Þ ¼ P X

Aa
ðEðx1ÞÞTBb

ðx1; r; qÞR h
Bb
ðAaÞQ Aaðx1; rÞ dV

(10)

where:
� P X

AaðEðx1ÞÞ ¼ sXAa;ZiðEðx1ÞÞfA is the primary Aa X-ray
production density function at penetration depth x1;

� TBb
(x1, r, q) is the transmission factor of Bb X-rays from the

volume dV up to the target surface, calculated for the detector
direction;

� R h
Bb
ðAaÞ is the conversion probability that Aa X-rays

absorbed in element B in sub-shell h are converted into Bb
secondary X-rays; and

� Q Aaðx1; rÞ is the cross-section for an Aa X-ray to be absor-
bed at a distance r away from the emission point x1.

The primary X-ray production term corresponds to the
differential terms in the expressions presented in the previous
sections, which were also partially addressed in the previous
subsection.

It therefore remains to discuss the other terms, whose
product may be referred to as the secondary uorescence cross-
section for the conversion of Aa primary X-rays in Bb secondary
X-rays.

Still, before any other discussion, it is necessary to address
the lack of an explicit term for the element Bmass fraction, fB, in
eqn (10), which is needed to add the term resulting from this
exercise to eqn (3), to obtain an appropriate expression for an
equivalent thickness secondary uorescence correction, since
xeq,j,Zi

(Ep) has no mass term.
3.2.1 R h

rBb and m
h
rBb specic conversion probabilities.

Obtaining this explicit mass term can be done by factoring out
the R h

Bb ðAaÞ conversion probability component. Only the cases
where the absorbing and emitting shell of B are the same will be
considered, because the number of secondary Bb X-rays emitted
from transitions to a shell different from the shell absorbing the
primary Aa X-rays is, in most cases, not relevant compared to the
primary Bb X-rays produced in that shell. The cases where this is
not valid are just the situations where the ion beam particles
This journal is © The Royal Society of Chemistry 2025
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either do not reach the uorescence layer containing the emitter
of the Bb X-rays, or reach it having already lost most of its
energy, while the Bb X-rays can still signicantly emerge from
the sample towards the detector. This is a condition which is
probably extremely rare in practice.

This being set, the factoring out of the R h
BbðAaÞ term in the

simplest case, an absorbing K-shell, can be obtained based on
the following result:

R K
Bb
ðAaÞ ¼ lim

Dr/0

�
1� e�s

photo

B
ðAaÞfBbDr

�
ð1� e�mAaDrÞ uK;Bkb;B

0R K
Bb
ðAaÞ ¼

s
photo
K;B ðAaÞuK;Bkb;B

mAa

fB

(11)

where sphotoK,B (Aa) is the K-shell photoelectric ionization cross-
section of B for Aa X-rays, uK,B is the K-shell uorescence coef-
cient of B and kb,B is the branch ratio of transition b out of all
radiative transitions to the K-shell of the B element.

The mass fraction term, fB, can now be factored out in order
to establish a specic probability, mK

rBbðAaÞ; independent of both
the mass fraction and the mass absorption coefficient of the Aa
X-rays, namely:

mK
rBb

ðAaÞ ¼ mAa

R K
Bb
ðAaÞ

fBb

¼ s
photo
K;B ðAaÞuK;Bkb;B

0R h
Bb
ðAaÞ ¼

m
h
rBb

ðAaÞ
mAa

fBb

(12)

Eqn (10) can now be written with fBb
factored out, namely as:

dXBb
ðAa; x1Þ ¼ P X

Aa
ðEðx1ÞÞfBb

TBb
ðx1; r; qÞm

h
rBb

ðAaÞ
mAa

Q Aa
ðx1; rÞ dV (13)

In the case of L and M sub-shells the situation is a bit more
complex; nevertheless, the same reasoning as used for the K-
shell applies since changes are only present in the photoelec-
tric cross-section term. The generalization of eqn (12), dening
m
h
rBbðAaÞ; can therefore be made.
K, L and M sub-shell photoelectric ionization cross sections

are normally approximated8,11 based on the total absorption
cross-section of the X-ray energy, sT,B(Aa) h mAa

, and the jump
ratios, Sh, for the sub-shell. Taking Ei to be the X-ray or the sub-
shell ionization energy, as applicable, the following results
apply to K, L andM sub-shell uorescence (omitting the Aa term
for simplicity):

if EK\EAas
photo
K ¼ SK � 1

SK

sT;B; mK
rBb

¼ s
photo
K;B uK;Bkb;B (14)

If EL1 < EAa
< EK

s
photo
L3;B ¼ SL3 � 1

SL3SL2SL1

sT;B; s
photo
L2;B ¼ SL2 � 1

SL2SL1

sT;B;

s
photo
L1;B ¼ SL1 � 1

SL1

sT;B

(15)
This journal is © The Royal Society of Chemistry 2025
mL3
rBb

¼
h
ðfL12fL23 þ fL13Þsphoto

L1;B þ fL23s
photo
L2;B þ s

photo
L3;B

i
uL3;Bkb;B (16)

mL2
rBb

¼
�
fL12s

photo
L1;B þ s

photo
L2;B

�
uL2;Bkb;B; mL1

rBb
¼ s

photo
L1;B uL1;Bkb;B (17)

If EL2 < EAa
< EL1

s
photo
L3;B ¼ SL3 � 1

SL3SL2

sT;B; s
photo
L2;B ¼ SL2 � 1

SL2

sT;B (18)

mL3
rBb

¼
�
fL23s

photo
L2;B þ s

photo
L3;B

�
uL3;Bkb;B; mL2

rBb
¼ s

photo
L2;B uL2;Bkb;B (19)

If EL3 < EAa
< EL2

s
photo
L3;B ¼ SL3 � 1

SL3

sT;B; mL3
rBb

¼ s
photo
L3;B uL3;Bkb;B (20)

If EM1 < EAa
< EL3

s
photo
Mj;B ¼ SMj � 1Qj

i¼1ðSMiÞ
sT;B for j˛

"
2; 5

#
; s

photo
M1;B ¼ SM1 � 1

SM1

sT;B

(21)

mM5
rBb

¼ ½ðfM13fM34fM45 þ fM13fM35 þ fM14fM45 þ fM15Þsphoto
M1;B

þðfM12fM23fM34fM45 þ fM12fM23fM35 þ fM12fM24fM45Þsphoto
M1;B

þðfM23fM34fM45 þ fM23fM35 þ fM24fM45 þ fM25Þsphoto
M2;B

þðfM34fM45 þ fM35Þsphoto
M3;B þ fM45s

photo
M4;B þ s

photo
M5;B

i
uM5;B kb;B

(22)

mM4
rBb

¼ ½ðfM12fM23fM34 þ fM12fM24 þ fM13fM34 þ fM14Þsphoto
M1;B

þðfM23fM34 þ fM24Þsphoto
M2;B þ fM34s

photo
M3;B þ s

photo
M4;B

i
uM4;Bkb;B

(23)

mM3
rBb

¼
h
ðfM12fM23 þ fM13Þsphoto

M1;B þ fM23 s
photo
M2;B þ s

photo
M3;B

i
uM3;Bkb;B

(24)

mM2
rBb

¼
�
fM12s

photo
M1;B þ s

photo
M2;B

�
uM2;Bkb;B; mM1

rBb
¼ s

photo
M1;B uM1;Bkb;B

(25)

If EM2 < EAa
< EM1

s
photo
Mj;B ¼ SMj � 1Qj

i¼1ðSMiÞ
sT;B for j˛

"
3; 5

#
; s

photo
M2;B ¼ SM2 � 1

SM2

sT;B

(26)

mM5
rBb

¼ ½ðfM23fM34fM45 þ fM23fM35 þ fM24fM45 þ fM25Þsphoto
M2;B

þðfM34fM45 þ fM35Þsphoto
M3;B þ fM45s

photo
M4;B þ s

photo
M5;B

i
uM5;Bkb;B

(27)
J. Anal. At. Spectrom., 2025, 40, 2507–2525 | 2511
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mM4
rBb

¼
h
ðfM23fM34 þ fM24Þsphoto

M2;B þ fM34s
photo
M3;B þ s

photo
M4;B

i
uM4;Bkb;B

(28)

mM3
rBb

¼
h
fM23s

photo
M2;B þ s

photo
M3;B

i
uM3;Bkb;B; mM2

rBb
¼ s

photo
M2;BuM2;Bkb;B

(29)

If EM3 < EAa
< EM2

s
photo
Mj;B ¼ SMj � 1Qj

i¼1ðSMiÞ
sT;B for j˛

"
4; 5

#
; sphoto

M3;B ¼ SM3 � 1

SM3

sT;B

(30)

mM5
rBb

¼
h
ðfM34fM45 þ fM35Þsphoto

M3;B þ fM45s
photo
M4;B þ s

photo
M5;B

i
uM5;Bkb;B

(31)

mM4
rBb

¼
h
fM34s

photo
M3;B þ s

photo
M4;B

i
uM4;Bkb;B; mM3

rBb
¼ s

photo
M3;B uM3;B kb;B

(32)

If EM4 < EAa
< EM3

s
photo
M5;B ¼ SM5 � 1

ðSM4SM5ÞsT;B; s
photo
M4;B ¼ SM4 � 1

SM4

sT;B (33)

mM4
rBb

¼ s
photo
M4;BuM4;Bkb;B (34)

mM5
rBb

¼
h
s
photo
M3;B þ fM45s

photo
M4;B þ s

photo
M5;B

i
uM5;Bkb;B (35)

If EM5 < EAa
< EM4

s
photo
M5;B ¼ SM5 � 1

SM5

sT;B (36)

mM5
rBb

¼ s
photo
M5;BuM5;Bkb;B (37)

3.2.2 Secondary uorescence production and survival.
Using the denitions of the primary Aa X-ray production density
function P X

AaðEðx1ÞÞ and the conversion probability R h
Bb
ðAaÞ;

the differential density function describing the conversion of
primary Aa X-rays produced at a penetration depth x1 into
secondary uorescence Bb X-rays at the volume element dV,
which reach the target surface, dXBbAa

(x1), as dened in eqn (10),
may be rewritten as:

dXBb
ðAa; x1Þ ¼ sX

Aa ;Zi
ðEðx1ÞÞfAfB

TBb
ðx1; r; qÞ

�
m
h
rBb

ðAaÞ
mAa

�
dV

Q Aaðx1; rÞ dV (38)

In order to obtain the density function for secondary Bb X-
rays emerging from the target surface towards the detector,
due to secondary emission induced by primary Aa X-rays
emitted at penetration depth x1 it is necessary to integrate
eqn (38) over the whole target volume, and we can use this step
2512 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
to dene the corresponding specic density function, cBbAa
(x1)

by dividing by fB; the result obtained is:

cBbAa
ðx1Þ ¼ sX

Aa ;Zi
ðEðx1ÞÞfA0

B@ ð
Vtarget

TBb
ðx1; r; qÞ

m
h
rBb

ðAaÞ
mAa

Q Aaðx1; rÞ dV

1
CA (39)

The integral in eqn (39) represents the fraction of primary Aa
X-rays that may be converted to secondary Bb X-rays, and, if that
happens, will survive until reaching the target surface.

3.2.3 The Q BbAaðx1Þ function and SFC equivalent thickness.
In order to properly analyse eqn (39), it is important to focus on
the differential under the integral:

dQ BbAaðx1; rÞ ¼ TBb
ðx1; r; qÞ

m
h
rBb

ðAaÞ
mAa

Q Aaðx1; rÞdV (40)

This is the differential cross-section for a primary Aa X-ray
produced at the penetration depth x1 to be absorbed at a distance
r from x1 and converted into a secondary Bb X-ray that reaches the
target surface along a trajectory that leads to the X-ray detector.

Although it looks simple, there are a few details, including
theoretical ones, which are worth taking into account carefully.

The most critical term, even if it may not seem so, is the
detailed description of the absorption of Aa X-rays in the
differential volume. Using spherical coordinates, there are two
main components in this process. A geometrical one that is
related to the angular description, which leads to a term in the
angular variables, namely r2sin(q)dqdf, and a second term
related to the ionization process itself.

Since X-rays vanish when interacting with atoms to produce
ionization, as opposed to what is observed with ions, which just
lose energy but do not vanish, the number of matrix atoms
ionized is proportional to the number of absorbed X-rays.

Considering a small slab of thickness Dr/ dr this results in
the following expression for the number of absorbed Aa X-rays,
Nabs
XðAaÞ; using a rst order Taylor series approximation:

Nabs
XðAaÞðDrÞ ¼ NXðAaÞð0Þ

�
1� e�mAaDr

�
/NX ðAaÞð0Þ

v

vr
ð1� e�mAarÞjr¼0 dr ¼ mAa

NX ðAaÞð0Þ dr

(41)

NX(Aa)(0) is the number of X-rays reaching the slab. The
absorption in volume dV therefore contributes with an overall
term given by mAa

r2sin(q)drdqdf.
Taking into account that this expression makes use of the

number of X-rays reaching the slab, a term describing the loss of
intensity of Aa X-rays between the emission point x1 and the
absorbing volume dV, must be considered. Therefore, the
differential cross-section for an Aa X-ray to be absorbed in
volume dV at a distance r away from the emission point x1 is:

Q Aaðx1; rÞdV ¼ mAa

4pr2
$e�mAarr2sinðqÞdrdqdf (42)
This journal is © The Royal Society of Chemistry 2025
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Table 1 Integration limits for r and q for the various integrals (I1 to I6)

i rmin,i rmax,i cos qi cos qf

d # t/2 1 0 d 1 −1
2 d t – d 1 −d/r
3 t – d N (t – d)/r −d/r

d > t/2 4 0 t – d 1 −1
5 t – d d (t – d)/r −1
6 d N (t – d)/r −d/r
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The remaining term to be mentioned is the probability that
the Bb X-rays emitted in the elemental volume dV in the direc-
tion of the detector reach the target surface. With mBb

being the
target mass absorption coefficient and x1 and r expressed in
consistent units, usually areal mass units, the result is:

TBb
ðx1; r; qÞ ¼ e

�mBb
x1cosðjincÞ þ r$cos q

cos ðjdetÞ (43)

Finally, writing the whole term in spherical coordinates, for
a homogeneous target (see Fig. 1), the result is:

dQ BbAaðx1; rÞ ¼ mAa

4pr2
$e�mAar$

e
�mBb

x1 cosðjincÞ þ r$cosq

cosðjdetÞ
m
h
rBb

ðAaÞ
mAa

r2sinðqÞdrdqdf (44)

Therefore the nal expression is:

dQ BbAaðx1; rÞ ¼ m
h
rBb

ðAaÞ
4p

$e�mAar$

e
�mBb

x1cosðjincÞþ r$cosðqÞ
cosðjdetÞ sinðqÞdrdqdf (45)

The dQ BbAaðx1; rÞ differential may be referred to as the
secondary uorescence differential cross-section for the
conversion of Aa X-rays into Bb X-rays that emerge from the
target in the direction of the detector.

The Q BbAaðx1Þ function dened as the integral of
dQ BbAaðx1; rÞ over the whole target volume is the secondary
uorescence target yield, emitted in the direction of the
detector, originating from the conversion of Aa X-rays into Bb X-
rays, and corresponds to the integral in eqn (39).

Using the fact that dQ BbAaðx1; rÞ has cylindrical symmetry,
the Q BbAaðx1Þ integral can be immediately integrated in f by
taking the x axis as being along the normal to the target surface.
Note that the x axis for calculating the integral in eqn (39) is
independent of the denition of x1 along the ion beam pene-
tration path and therefore the x axis for this calculation can be
set freely. The result aer integrating over f is:

Q BbAaðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�mBb

x1cosðjincÞ
cosðjdetÞ

ð ð
V

e
�

�
mAaþ

cosðqÞ
cosðjdetÞmBb

	
$r

sinðqÞdrdq (46)

Summing over all primary Aa X-rays produced at the pene-
tration depth x1 and leading to Bb secondary X-rays, the specic
secondary uorescence correction density function, cBb

(x1), can
be written as:

cBb
ðx1Þ ¼

X
all Aa inducing Bb

sX
Aa ;Zi

ðEðx1ÞÞfAQ BbAaðx1Þ (47)

and added to the equivalent thickness denition, leading to
a secondary uorescence corrected equivalent thickness,
xsfceq;Bb

ðEpÞ; which now depends not just on the X-ray being
This journal is © The Royal Society of Chemistry 2025
detected, but also on the various other X-ray emitters present in
the target:

xsfceq;Bb

�
Ep

� ¼ ðxðEoutÞ

0

sX
jðbÞ;ZðBÞðEðxÞÞ$TjðbÞ;ZðBÞðxÞ þ cBb

ðxÞ
sX
jðbÞ;ZðBÞ

�
Ep

� dx: (48)
4 The Q BbAaðx1Þ function analytical
solution
4.1 First steps for solving the integral analytically

Considering that r is small relative to the distance to the
detector, so that it is possible to assume that the detection angle
jdet is constant relative to r, the integral in eqn (46) can be
solved analytically, as long as it can be assumed that the sample
is innite and homogeneous in all planes normal to the surface
normal, at least for the uorescence process. This means that
the model may be easily adapted for application to a small
inclusion emitting primary X-rays if the particle beam is kept
within it, but it is not applicable to the case of a small inclusion
emitting secondary X-rays due to primary X-rays originating in
its surroundings.

In order to obtain the analytical solution, it is important to
start with a change of variable, namely by setting:

y ¼ mAa
þ cosðqÞ

cosðjdetÞ
mBb

0cosðqÞ ¼ �y� mAa

�
$
cosðjdetÞ

mBb

0sinðqÞdq ¼ �cosðjdetÞ
mBb

dy

(49)

The Q BbAaðx1Þ expression can then be simplied to:

Q BbAa
ðx1Þ ¼ A ðx1Þ

ðrmax

rmin

ðmAaþ mBb
cosðjdetÞ cos

�
qf
�

mAaþ
mBb

cosðjdetÞ cosðqiÞ
�e�y$rdydr (50)

being

A ðx1Þ ¼
m
h
rBb

ðAaÞ$cosðjdetÞ
2$mBb

$e
�mBb

x1cosðjincÞ
cosðjdetÞ (51)

Calculating the integral in eqn (50) is better done by sepa-
rating the full integral in six different cases according to the
relations between d and t described in Table 1 (see Fig. 1 for
variable references).
J. Anal. At. Spectrom., 2025, 40, 2507–2525 | 2513
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Equation eqn (50) is thus better written as follows (i values
according to Table 1):

Q BbAa
ðx1Þ ¼ A ðx1Þ$

X
i

Ii (52)

being:

Ii ¼
ðrmax;i

rmin;i

e�y$r

r










mAa

þ mBb

cosðjdetÞ
cos
�
qf
�

mAa
þ mBb

cosðjdetÞ
cosðqiÞ

dr (53)

Setting now:

gþ ¼ mAa
þ mBb

cosðjdetÞ
and g� ¼ mAa

� mBb

cosðjdetÞ
(54)

the rst three integrals mentioned above become

I1 ¼
ðd
0

e�y$r

r






g�

gþ
dr (55)

I2 ¼
ðt�d

d

e�y$r

r






mAa�

mBb
$d

cosðjdetÞ$r

gþ
dr (56)

I3 ¼
ðN
t�d

e�y$r

r






mAa�

mBb
$d

cosðjdetÞ$r

mAaþ
mBb

$ðt�dÞ
cosðjdetÞ$r

dr (57)

Expanding these expressions leads to

I1 ¼ 2

ðd
0

e�mAa$r

r

0
B@e

mBb
$r

cosðjdetÞ � e
�

mBb
$r

cosðjdetÞ

1
CA

2
dr

¼ 2

ðd
0

e�mAa$r

r
$sinh

�
mBb

$r

cosðjdetÞ
	
dr (58)

I2 ¼
ðt�d

d

e�mAa$r

r

0
B@e

mBb
$d

cosðjdetÞ � e
�

mBb
$r

cosðjdetÞ

1
CA dr

¼ e

mBb
$d

cosðjdetÞ
ðt�d

d

e�mAa$r

r
dr�

ðt�d

d

e
�

�
mAaþ

mBb
cosðjdetÞ

	
$r

r
dr

(59)

I3 ¼
ðN
t�d

e�mAa$r

r

0
BB@e

mBb
$d

cosðjdetÞ � e
�
mBb

$ðt�dÞ
cosðjdetÞ

1
CCAdr

¼ e

mBb
$d

cosðjdetÞ

0
B@1� e

�
mBb

$t

cosðjdetÞ

1
CAðN

t�d

e�mAa$r

r
dr

(60)

Now, Gradshteyn21 statesð
1

x
eaxsinhðbxÞdx ¼ 1

2
fEi½ðaþ bÞx� � Ei½ða� bÞx�g for a2sb2

(61)
2514 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
Both Gradshteyn21 and Abramowicz22 dene the exponential
integral as:

EiðxÞ ¼ �lim
3/0þ

� ð�3
�x

e�t

t
dtþ

ðN
3

e�t

t
dt

�
ðx. 0Þ (62)

Gradshteyn further sets for negative values of x:

EiðxÞ ¼ �ÐN�x e�tt dt ðx\0Þ; while Abramowicz22 denes the

exponential integral of order 1 for positive values of the
variable as:

E1ðxÞ ¼
ðN
x

e�t

t
dt for ðx. 0Þ (63)

leading to the relation:

EiðxÞ ¼
x\0

�
ðN
jxj

e�t

t
dt ¼ �

ðN
y. 0

e�t

t
dt ¼ �E1ðyÞ ¼ �E1ð�xÞ (64)

These Abramowicz denitions having x ˛ ]0,N[ will be used
for the remainder of this work.

The exponential integral and the exponential integral of
order 1 may also be presented as power series as follows:

EiðyÞ ¼ gþ lnðyÞ þ
XN
n¼1

yn

n$n!
; E1ðyÞ ¼ �g� lnðyÞ �

XN
n¼1

ð�1Þn$yn
n$n!

(65)

where g = 0.57721156649. is Euler's constant.
Now in eqn (58) the signs of the constants in the exponential

and sinh() function are well dened since both the mass
absorption coefficients and the distances are positive.

Before applying eqn (61) to (58) it is still important to obtain
a few additional expressions.

Assuming a > 0, b > 0 and x > 0, from eqn (61) using Abra-
mowicz nomenclature, it is important to note that:ð

1

x
e�axsinhðbxÞdx ¼ 1

2
fEi½�ða� bÞx� � Ei½�ðaþ bÞx�g

¼ 1

2
fE1½ðaþ bÞx� � E1½ða� bÞx�g if a. b

(66)

¼ 1

2
fE1½ðaþ bÞx� þ Ei½ja� bjx�g if a\b

(67)

If a = b Gradshteyn in its equation 2.484.6 (ref. 21) further
states: ð

1

x
e�axsinhðbxÞ dx ¼ 1

2
½lnðxÞ � Eið�2axÞ�

that converting to Abramowicz nomenclature becomes:ð
1

x
e�axsinhðbxÞdx ¼ 1

2
½lnðxÞ þ E1ð2axÞ� if a ¼ b: (68)

Before applying these expressions to eqn (58) and other
integrals, it is important to check the case where x/ 0, since in
This journal is © The Royal Society of Chemistry 2025
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this condition, ln(x), Ei() and E1() are divergent. The limit
differences are:

lim
x/0

ðE1½ðaþ bÞx� � E1½ða� bÞx�Þ

¼ lim
x/0

 
�g� ln½ðaþ bÞx� �

XN
n¼1

ð�1Þn$½ðaþ bÞx�n
n$n!

þ g

þln½ða� bÞx� þ
XN
n¼1

ð�1Þn$½ða� bÞx�n
n$n!

!

¼ lim
x/0

"
ln

�
a� b

aþ b

	
þ
XN
n¼1

ð�1Þn½ða� bÞx�n
n$n!

�
XN
n¼1

ð�1Þn½ðaþ bÞx�n
n$n!

#
¼ �ln

�
aþ b

a� b

	
if a. b (69)

lim
x/0

ðE1½ðaþ bÞx� þ Ei½ja� bjx�Þ

¼ lim
x/0

 
�g� ln½ðaþ bÞx� �

XN
n¼1

ð�1Þn$½ðaþ bÞx�n
n$n!

þ g

þ ln½ja� bjx� þ
XN
n¼1

½ja� bjx�n
n$n!

!

¼ lim
x/0

"
ln

�ja� bj
aþ b

	
þ
XN
n¼1

½ja� bjx�n
n$n!

�
XN
n¼1

ð�1Þn½ðaþ bÞx�n
n$n!

#

¼ �ln
�
aþ b

ja� bj
	

if a\b (70)

lim
x/0

ðE1ð2axÞ þ lnðxÞÞ

¼ lim
x/0

 
�g� lnð2axÞ �

XN
n¼1

ð�1Þn$ð2axÞn
n$n!

þ lnðxÞ
!

¼ lim
x/0

"
�g� lnð2aÞ �

XN
n¼1

ð�1Þn$ð2axÞn
n$n!

#

¼ �½gþ lnð2aÞ� if a ¼ b (71)

Setting a = mAa
and b ¼ mBb

cosðjdetÞ
; and applying these to the

denitive integral I1 the result is:ðd
0

1

x
e�axsinhðbxÞdx ¼ 1

2

�
E1½ðaþ bÞd� � E1½ða� bÞd�

þ ln

�
aþ b

ða� bÞ
	�

if a. b (72)

ðd
0

1

x
e�axsinhðbxÞdx ¼ 1

2

�
E1½ðaþ bÞd� þ Ei½ja� bjd�

þ ln

�
aþ b

ja� bj
	�

if a\b (73)

ðd
0

1

x
e�axsinhðbxÞdx ¼ 1

2
½E1ð2adÞ þ lnð2adÞ þ g� if a ¼ b (74)
This journal is © The Royal Society of Chemistry 2025
It is important to note that, from the above equations, it
results for all these cases:

lim
d/0

ðd
0

1

x
e�axsinhðbxÞdx ¼ 0 (75)

These results can be written in a more condensed and
physically interesting form, namely:

I1 ¼ E1

�
gþ$d

�� E1ðg�$dÞ þ ln

�
gþ
g�

	
if g� . 0 (76)

I1 ¼ E1

�
gþ$d

�þ Eiðjg�j$dÞ þ ln

�
gþ
jg�j

	
if g�\0 (77)

I1 = E1(2mAa
$d) + ln(2mAa

d) + g, if g_ = 0 (78)

Addressing the calculation of the denitive integral I2, eqn
(72)–(74) are not applicable to eqn (59) and the denitions in
eqn (63)–(65) must be used directly. Setting z > 0 and h > 0 and
y = at the result is:ðz

h

e�at

t
dt ¼

ðN
h

e�at

t
dt�

ðN
z

e�at

t
dt ¼

ðN
ah

e�y

y
dy�

ðN
az

e�y

y
dy

¼ E1ðahÞ � E1ðazÞ for ða. 0Þ
(79)

¼ EiðjajzÞ � EiðjajhÞ for ða\0Þ (80)

Applying this to eqn (59) the result is:

I2 ¼ e

mBb
$d

cosðjdetÞ
ðt�d

d

e�mAa$r

r
dr�

ðt�d

d

e
�

�
mAaþ

mBb

cosðjdetÞ

	
$r

r
dr

¼ e

mBb
$d

cosðjdetÞ
�
E1

�
mAa

$d
�� E1



mAa

$ðt� dÞ��
�
�
E1

��
mAa

þ mBb

cosðjdetÞ
	
$d

�
� E1

��
mAa

þ mBb

cosðjdetÞ
	
$ðt� dÞ

�	

I2 ¼ e

mBb
$d

cosðjdetÞ


E1

�
mAa

$d
�� E1



mAa

$ðt� dÞ��
�
E1

�
gþ$d

�� E1



gþ$ðt� dÞ�� (81)

4.2 Innite thickness targets

In the case of thick targets, t = N and only I1 and I2 apply.
Adding eqn (76)–(78) and (81) provides

I1 þ IN2 ¼ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�� E1ðg�$dÞ þ ln

�
gþ
g�

	
for g� . 0

(82)

I1 þ IN2 ¼ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�þ Eiðjg�j$dÞ þ ln

�
gþ
jg�j

	
for g�\0

(83)
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I1 þ IN2 ¼ E1

�
2mAa

$d
�þ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�

� E1

�
gþ$d

�þ ln
�
2mAa

d
�þ g

¼ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�þ ln

�
2mAa

d
�

þ g for g� ¼ 00gþ ¼ 2mAa

(84)

The computational implementation of these results must take
into account that for very small values of the argument, the
exponential integral diverges due to the term in ln(x) in eqn (65).
Still, in the case of small values of d (x1 still close to target surface)
no problems arise since the results are:
lim
d/0

�
I1 þ IN2

� ¼ lim
d/0

2
64e mBb

$d

cosðjdetÞ
��g� ln

�
mAa

$d
��� ð �g� lnðg�$dÞÞ þ ln

�
gþ
g�

	375

¼ lim
d/0

2
64
0
B@1� e

mBb
$d

cosðjdetÞ

1
CAg� e

mBb
$d

cosðjdetÞ


ln
�
mAa

�þ lnðdÞ�þ lnðg�Þ þ lnðdÞ þ ln

�
gþ
g�

	375
¼ ln

�
gþ
mAa

	
for g� . 0 (85)

lim
d/0

�
I1 þ IN2

� ¼ lim
d/0

2
64e mBb

$d

cosðjdetÞ
��g� ln

�
mAa

$d
��þ ðgþ lnðjg�j$dÞÞ þ ln

�
gþ
jg�j

	375

¼ lim
d/0

2
64
0
B@1� e

mBb
$d

cosðjdetÞ

1
CAg� e

mBb
$d

cosðjdetÞ


ln
�
mAa

�þ lnðdÞ�þ lnðjg�jÞ þ lnðdÞ þ ln

�
gþ
jg�j

	375
¼ ln

�
gþ
mAa

	
for g�\0 (86)
lim
d/0

�
I1 þ IN2

� ¼ lim
d/0

2
64e mBb

$d

cosðjdetÞ
��g� ln

�
mAa

$d
��þ ln

�
2mAa

$d
�þ g

3
75

¼ lnð2Þ for g� ¼ 0

(87)

Before proceeding to deal with half-thick targets, it is still
important to check the theoretical possibility that d is not too
small but either jg−j is too small but not enough to make the
product jg−j$d too small, or themass absorption coefficient of the
Aa X-rays is so small that the product mAa$d/ 0. In all these cases
numerical calculation problems emerge linked to eqn (82)–(84).
Besides, the problematic conditions in jg−j may also combine
2516 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
with those on mAa and therefore all cases must be addressed
carefully.

Taking into account the power series expansions in eqn (65)
the results for jg−j / 0 while the product jg−j$d does not, are:

lim
jg�j/0þ

�
I1 þ IN2

� ¼ lim
jg�j/0�

�
I1 þ IN2

�

¼ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�þ gþ log

�
gþ$d

�
(88)

As could be expected this expression is identical to that of eqn
(84) since in the limit g+ = 2mAa. In the case where mAa$d/ 0, two
conditions can be found, namely, jg−j / 0, or not so and g− < 0.
In the rst case, the limit of eqn (84) is ln(2). In the second case, it
is necessary to establish an ad hoc cut-off, say C off corresponding
to a 95% intensity decrease of Aa X-rays, which causes eqn (58)
and (59) to become:

lim
mAa/0

I1 ¼
ðd
0

1

r

0
B@e

mBb
$r

cosðjdetÞ � e
�

mBb
$r

cosðjdetÞ

1
CAdr

¼
ðd
0

ebr

r
dr�

ðd
0

e�br

r
dr ¼ �

�ð0
�d

e�bh

h
dhþ

ðd
0

e�br

r
dr

	

¼ �lim
3/0

�ðN
�d

e�bh

h
dh�

ðN
3

e�bh

h
dhþ

ðd
3

e�br

r
dr

	

¼ �lim
3/0

ð �EiðbdÞ � Eiðb3Þ þ E1ðb3Þ � E1ðbdÞÞ

¼ E1ðbdÞ þ EiðbdÞ
(89)
This journal is © The Royal Society of Chemistry 2025
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lim
mAa/0

I
C off

2 ¼
ðC off

d

1

r

0
B@e

mBb
$d

cosðjdetÞ � e
�

mBb
$r

cosðjdetÞ

1
CAdr

¼ ebd
ðC off

d

1

r
dr�

ðC off

d

e�br

r
dr

¼ ebd$ln

�
C off

d

	
� E1ðbdÞ þ E1

�
bC off

�
(90)

which, when summed, provides:

lim
mAa/0

I1 þ I
C off

2 ¼ Eiðb$dÞ þ eb$d$ln

�
C off

d

	
þ E1

�
b$C off

�
being b ¼ mBb

cosðjdetÞ
(91)

If in this case d/ 0 this equation is also not valid. Using the
power series expansions leads to:

lim
mAa/0

I1 þ I
C off

2 ¼ gþ E1

�
b$C off

�þ ln
�
b$C off

�
(92)
4.3 Homogeneous half-thick targets

4.3.1 Primary X-rays emitted before half-layer depth. In the
general case of half-thick targets, all six integrals must be
calculated. As can be seen from Table 1, the six integrals are
separated into two distinct cases. Integrals I1 to I3 provide the
results for the situation where the point x1 exists at a distance to
the target surface less than half of the target thickness, and
integrals I4 to I6 provide results for the situation where this is
not so and therefore d > t/2.

In the case of I3, eqn (63) should be applied directly to eqn
(60), the result being:

I3 ¼ e

mBb
$d

cosðjdetÞ

0
B@1� e

�
mBb

$t

cosðjdetÞ

1
CAðN

t�d

e�mAa$r

r
dr

¼ e

mBb
$d

cosðjdetÞ

0
B@1� e

�
mBb

$t

cosðjdetÞ

1
CAE1



mAa

$ðt� dÞ�
(93)

therefore, setting b ¼ mBb

cosðjdetÞ
; the result for I2 + I3 is:

I2 + I3 = eb$dE1(mAa
$d) − e−b$(t−d)E1[mAa

$(t − d)] − [E1(g+$d)

− E1[g+$(t − d)]] (94)

For the homogeneous half-thick target and d < = t/2 the sum
of I1, I2 and I3 results in:

I1 þ I2 þ I3 ¼ E1



gþ$ðt� dÞ�� E1ðg�$dÞ þ ln

�
gþ
g�

	

þ eb$dE1

�
mAa

$d
�� e�b$ðt�dÞE1



mAa

$ðt� dÞ� if g� . 0

(95)
This journal is © The Royal Society of Chemistry 2025
I1 þ I2 þ I3 ¼ E1



gþ$ðt� dÞ�� Eiðjg�j$dÞ þ ln

�
gþ
jg�j

	

þ eb$d E1

�
mAa

$d
�� e�b$ðt�dÞ E1



mAa

$ðt� dÞ� if g�\0

(96)

I1 þ I2 þ I3 ¼ E1

�
2mAa

$d
�þ eb$dE1

�
mAa

$d
�þ ln

�
2mAa

d
�þ g

� e�b$ðt�dÞE1



mAa

$ðt� dÞ�� 
E1

�
gþ$d

�� E1



gþ$ðt� dÞ��

and since g− = 0 0 g+ = 2mAa
,

I1 + I2 + I3 = E1[2mAa
$(t − d)] + ln(2mAa

d) + g

+ eb$dE1(mAa
$d) − e−b$(t−d)E1[mAa

$(t − d)] if g− = 0 (97)

In this case, when d / 0 the result for all three possibilities
is the same, namely:

I1 þ I2 þ I3 ¼ E1

�
gþ$t

�þ ln

�
gþ
mAa

	
� e�b$tE1

�
mAa

$t
�

(98)

In what concerns other extreme cases, as in the previous
subsection, we may nd mAa

/ 0 while d is not too small. Once
again we can have two different conditions for this. In the case
when jg−j/ 0, the limit of the sums is 0 because if mAa

/ 0 and
jg−j / 0 then b / 0. If it is instead g− < 0, then b is no longer
a vanishing value and a cut-off must be used to calculate the I3
integral and (t – d) must replace the cut-off in eqn (91), leading
to the result:

lim
mAa/0

g� \ 0; d . 0

ðI1 þ I2 þ I3Þ ¼ Eiðb$dÞ þ E1½b$ðt� dÞ�

þ eb$d$ln

�
C off

d

	
� e�b$ðt�dÞ ln

�
C off

t� d

	
(99)

If now both d / 0 and mAa
/ 0 eqn (99) must be used to

calculate the limit and the result is:

lim
mAa/0

d/0

ðI1 þ I2 þ I3Þ ¼ E1ðb$tÞ þ gþ ln
�
b$C off

�� e�b$t ln

�
C off

t

	

(100)

4.3.2 Primary X-rays emitted aer half-layer depth. Since
the sum of I1 to I3 is only valid for d # t/2, when the contrary is
true, meaning when d > t/2, the sum of integrals I4 to I6 applies.

Based on Table 1 these are:

I4 ¼
ðt�d

0

e�y$r

r






g�

gþ
dr; I5 ¼

ðd
t�d

e�y$r

r






g�

mAaþ
mBb

$ðt�dÞ
cosðjdetÞ$r

dr and

I6 ¼
ðN
d

e�y$r

r






mAa�

mBb
$d

cosðjdetÞ$r

mAaþ
mBb

$ðt�dÞ
cosðjdetÞ$r

dr

(101)
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In the case of I4 given the formal identity to I1 once d is
replaced by (t – d), the result is:

I4 ¼ E1



gþ$ðt� dÞ�� E1½g�$ðt� dÞ� þ ln

�
gþ
g�

	
if g� . 0 (102)

¼ E1



gþ$ðt� dÞ�þ Ei½jg�j$ðt� dÞ� þ ln

�
gþ
jg�j

	
if g�\0 (103)

= E1[2mAa
$(t − d)] + ln[2mAa

(t − d)] + g, if g− = 0 (104)

In the case of I5, expanding the expression in eqn (101)
provides:

I5 ¼
ðd
t�d

e�mAa$r

r

0
BB@e

mBb
$r

cosðjdetÞ � e
�
mBb

$ðt�dÞ
cosðjdetÞ

1
CCAdr

¼
ðd
t�d

e�g�$r

r
dr� e

�
mBb

$ðt�dÞ
cosðjdetÞ

ðd
t�d

e�mAa$r

r
dr

(105)

Taking into account eqn (79) and (80) three results are
possible for I5, namely:

I5 ¼ E1½g�$ðt� dÞ� � E1ðg�$dÞ

� e
�
mBb

$ðt�dÞ
cosðjdetÞ

�
E1



mAa

$ðt� dÞ�� E1

�
mAa

$d
��

if g� . 0

(106)

I5 ¼ Eiðjg�j$dÞ � Ei½jg�j$ðt� dÞ�

� e
�
mBb

$ðt�dÞ
cosðjdetÞ

�
E1



mAa

$ðt� dÞ�� E1

�
mAa

$d
��

if g�\0

(107)

I5 ¼ ln

�
d

t� d

	

� e
�
mBb

$ðt�dÞ
cosðjdetÞ

�
E1



mAa

$ðt� dÞ�� E1

�
mAa

$d
��

if g� ¼ 0

(108)

In the case of I6 the result is:

I6 ¼
ðN
d

e�mAa$r

r

0
BB@e

mBb
$d

cosðjdetÞ � e
�
mBb

$ðt�dÞ
cosðjdetÞ

1
CCAdr

¼ e

mBb
$d

cosðjdetÞ

0
B@1� e

�
mBb

$t

cosðjdetÞ

1
CAðN

d

e�mAa$r

r
dr

¼ e

mBb
$d

cosðjdetÞ

0
B@1� e

�
mBb

$t

cosðjdetÞ

1
CAE1

�
mAa

$d
�

(109)
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Adding I4, I5 and I6 the results are now:

I4 þ I5 þ I6 ¼ E1



gþ$ðt� dÞ�� E1ðg�$dÞ þ ln

�
gþ
g�

	

þ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�� e

�
mBb

$ðt�dÞ
cosðjdetÞ E1



mAa

$ðt� dÞ� if g� . 0

(110)

I4 þ I5 þ I6 ¼ E1



gþ$ðt� dÞ�þ Eiðjg�j$dÞ þ ln

�
gþ
jg�j

	

þ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�

� e
�
mBb

$ðt�dÞ
cosðjdetÞ E1



mAa

$ðt� dÞ� if g�\0

(111)

I4 þ I5 þ I6 ¼ E1



2mAa

$ðt� dÞ�þ ln
�
2mAa

d
�þ g

þ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�� e

�
mBb

$ðt�dÞ
cosðjdetÞ E1



mAa

$ðt� dÞ� if g� ¼ 0

(112)

In this case, when (t – d) / 0 the results for the three
possibilities are:

I4 þ I5 þ I6 ¼ ln

�
mAa

g�

	
� E1ðg�dÞ

þ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�
if g� . 0 (113)

I4 þ I5 þ I6 ¼ ln

�
mAa

jg�j
	
þ Eiðjg�jdÞ

þ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�

if g�\0 (114)

I4 þ I5 þ I6 ¼ ln
�
mAa

d
�þ gþ e

mBb
$d

cosðjdetÞE1

�
mAa

$d
�

if g� ¼ 0

(115)

As in the previous case, it is also important to address the
potential extreme conditions where mAa

/ 0 while (t – d) is not
too small. As before the two situations that may be addressed
are jg−j/ 0 and g− < 0. In the rst case, the result of the sum of
integrals is 0 as it was also for the condition d# t/2. In the case
of g− < 0 the result is:

lim
mAa/0

ðI4 þ I5 þ I6Þ ¼ E1½b$ðt� dÞ� þ Eiðb$dÞ þ eb$d ln

�
C off

d

	

� e�b$ðt�dÞln

�
C off

t� d

	
(116)

If now also (t – d) / 0 applies, the limit of this eqn (116)
must be used, the result being:
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Primary X-rays Aa produced at a penetration depth x1 in layer te
induce the emission of secondary X-rays Bb in volume dV in layer tf.
These will appear as if produced at depth x1, and will either enhance Bb

X-ray target yield from layer te or create a “phantom” presence of
element B in layer te. (a) Case 8: the secondary fluorescence is
produced in a physical layer located deeper into the target than the
layer emitting the primary X-rays. (b) Case 9: the secondary fluores-
cence is produced in a physical layer located less deep in the target
than the layer emitting the primary X-rays. In both cases it is once again
assumed that the sample layers are homogeneous and infinite in the
plane perpendicular to the sample normal (shown in yellow).

Table 2 Integration limits for r and q for the integrals I8 and I9. The
integral limits are the same due to the fact that angle q was defined as
the smallest angle to the normal, in both cases

s tsre tsref tsrf

d < tbegf 8(b) tende – d tbegf – tende r cos(q) – (t8re + t. 8
ref)

d > tendf 9(c) d – tbege tbege – tendf r cos(q) – (t9re + t. 9
ref)

xsi=cos(q) rs,min rs,max

zi
= cos qi

zf
= cos qf

d < tbegf t8re þ t8ref
cosðqÞ

t8re þ t8ref þ tf

cosðqÞ
1 L a

d > tendf t9re þ t9ref
cosðqÞ

t9re þ t9ref þ tf

cosðqÞ
1 L a

a The value of L is an ad hoc cut-off taken as the value above which less
than 5% of primary X-rays exit the emission layer.
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lim
mAa/0

ðt�dÞ/0

ðI4 þ I5 þ I6Þ ¼
�
eb$d � 1

�
$ln

�
C off

d

	
(117)

4.4 The general layered target case

If the target is more complex than a single homogeneous layer
and made up of several physically distinct layers as drawn
schematically in Fig. 2, calculating secondary uorescence
processes for PIXE experiments becomes a bit more complex
and, as far as the author knows, this work is the rst time
a systematic, general global solution is presented in standard
literature.

In this case, three different situations can be faced in respect
to secondary uorescence: (a) the secondary X-rays are
produced in the same layer as the primary X-rays, (b) the layer
emitting secondary X-rays is located deeper into the target than
This journal is © The Royal Society of Chemistry 2025
the primary X-rays layer or (c) the layer emitting secondary X-
rays is closer to the target surface than the primary X-rays layer.

In case a, or 7 since it follows integral I6, eqn (47) and (50)
need just a slight change to cope with the extra layers that may
be present between the emitting layer and the target surface, the
result being:

Case a (or 7): making

Q 7;nf
Bb ;Aa

ðx1Þ ¼ Q Bb ;Aa

 
x1 � t

beg
f

cosðjincÞ

!

based on eqn (50)

c
7;nf
Bb

ðx1Þ ¼

0
BB@Y

nf�1

i¼1

e
�

mi
Bb

ti

cosðjdetÞ

1
CCA X

all Aa inducing Bb

sX
Aa ;Zi

ðEðx1ÞÞfAQ 7;nf
Aa ;Bb

ðx1Þ:

(118)

In cases b, or 8, and c, or 9, the situation is different because
it is necessary to account for three facts, namely, (i) the primary
Aa X-ray absorption between the emission point x1 and the
absorption volume V is not homogeneous, (ii) the path of Bb X-
rays from the integration volume up to the surface of the layer
where secondary uorescence effects are taking place has
a different expression from the one dened in eqn (43) used for
the case of the single homogeneous layer and case (a) of
multilayered targets, and (iii) a single more complex integral
expression applies.

In cases (b) and (c) eqn (43) and (45) need to be re-written. In
order to simplify the expressions both for easy reading and for
a clear understanding, some denitions are presented in
Table 2.

Based on these denitions and on Fig. 2, eqn (45) can be
promptly adjusted (note that tsre is the fraction of the emitting
layer crossed by Aa X-rays, and tsrf is the fraction of the layer
absorbing the Aa X-rays, crossed by these) leading to the
following results:
J. Anal. At. Spectrom., 2025, 40, 2507–2525 | 2519
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dQ 8;nf
BbAa

ðx1; r; qÞ ¼ m
h
rBb

ðAaÞ
4p

$e
�mne ;Aa$

t8re
cosðqÞ$

0
B@ Ynf�1

i¼neþ1

e
�mi;Aa$

ti
cosðqÞ

1
CA$

e
�mnf ;Aa$

t8
rf

cosðqÞ$Tnf
8;Bb

ðr; qÞsinðqÞdrdqdf
(119)

dQ9;nf
BbAa

ðx1; r; qÞ ¼ m
h
rBb

ðAaÞ
4p

$e
�mne ;Aa$

t9re
cosðqÞ$

0
B@ Ynfþ1

i¼ne�1

e
�mi;Aa$

ti
cosðqÞ

1
CA$

e
�mnf ;Aa$

t9
rf

cosðqÞ$Tnf
9;Bb

ðr; qÞsinðqÞdrdqdf
(120)

T
nf
8;Bb

ðr; qÞ ¼

0
B@Ynf�1

i¼1

e
�mi;Bb$

ti
cosðjdetÞ

1
CAe

�mnf ;Bb$
t8
rf

cosðjdetÞ (121)

T
nf
9;Bb

ðr; qÞ ¼

0
B@Ynf�1

i¼1

e
�mi;Bb$

ti
cosðjdetÞ

1
CAe

�mnf ;Bb$
tf�t9

rf

cosðjdetÞ (122)

The following expression replaces eqn (47):

c
s;nf
Bb

ðx1Þ ¼
X

all Aa inducing Bb

sX
Aa ;Zi

ðEðx1ÞÞfAQ s;nf
BbAa

ðx1Þ (123)

being in this case,

Q s;nf
BbAa

ðx1Þ ¼
ð ð ð

Vnf

dQ s;nf
BbAa

�
x1; rf ; q

�
: (124)

Integrating the above differential expressions having the
integral limits dened in Table 2 provides:

Q 8;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�

Pnf�1

i¼1

�
mi;Bb

$ti

�
�mnf ;Bb

$

�
t8reþt8

ref

�
cosðjdetÞ

$

ðqf
qi

ðrs;max

rs;min

e
�mnf ;Bb

�
r cosðqÞ
cosðjdetÞ

�
$e

�
mne ;Aat

8
reþ
Pnf�1

i¼neþ1

ðmi;AatiÞ
cosðqÞ

$e

�mnf ;Aa

"
r�

t8reþt8
ref

cosðqÞ

#
sinðqÞdqdr

(125)

Q 9;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�

Pnf�1

i¼1

�
mi;Bb

$ti

�
þmnf ;Bb

$

h
tfþ
�
t9reþt9

ref

�i
cosðjdetÞ

$

ðqf
qi

ðrs;max

rs;min

e
mnf ;Bb

�
rcosðqÞ
cosðjdetÞ

�
$e

�
mne ;Aat

9
reþ
Pne�1

i¼nfþ1

ðmi;AatiÞ
cosðqÞ

$e

�mnf ;Aa

"
r�

t9reþt9
ref

cosðqÞ

#
sinðqÞdqdr

(126)
2520 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
Q 8;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�

Pnf�1

i¼1

�
mi;Bb

$ti

�
�mnf ;Bb

$

�
t
beg

f
�d

�
cosðjdetÞ $

ðqf
qi

ðrs;max

rs;min

e
�

�
mnf ;Aa

þ
mnf ;Bb

cosðqÞ
cosðjdetÞ

�
r

$e
�
mne ;Aat

8
reþ
Pnf�1

i¼neþ1

ðmi;AatiÞ�mnf ;Aa

�
t
beg

f
�d

�
cosðqÞ sinðqÞdqdr

(127)

Q 9;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�

Pnf�1

i¼1

�
mi;Bb

$ti

�
þmnf ;Bb

$

h
tfþ
�
d�tend

f

�i
cosðjdetÞ

$

ðqf
qi

ðrs;max

rs;min

e
�

�
mnf ;Aa

�
mnf ;Bb

cosðqÞ
cosðjdetÞ

�
r

$e
�
mne ;Aat

9
reþ
Pne�1

i¼nfþ1

ðmi;AatiÞ�mnf ;Aa

�
d�tend

f

�
cosðqÞ sinðqÞdqdr

(128)

Further simplication will result from applying the
following change of variables to the integrals in eqn (125) and
(126):

z = cos(q); dz = −sin(q)dq; (129)

a
8ðzÞ ¼ mnf ;Aa

þ mnf ;Bb

cosðjdetÞ
z; a

9ðzÞ ¼ mnf ;Aa
� mnf ;Bb

cosðjdetÞ
z (130)

which using the changes of variable mentioned above results in:

B8
ne ;nf

¼
Xnf�1

i¼1

�
mi;Bb

$ti

�
� mnf ;Bb

$
�
t
beg
f � d

�

B9
ne ;nf

¼
Xnf�1

i¼1

�
mi;Bb

$ti

�
þ mnf ;Bb

$
h
tf þ

�
d � tendf

�i

C 8
ne ;nf

¼ mne ;Aa
$t8re þ

Xnf�1

i¼neþ1

�
mi;Aa

$ti
�� mnf ;Aa

�
t
beg
f � d

�

C 9
ne ;nf

¼ mne ;Aa
$t9re þ

Xne�1

i¼nfþ1

�
mi;Aa

$ti
�� mnf ;Aa

�
d � tendf

�

Q s;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�

Bs
ne ;nf

cosðjdetÞ$
ðzf
zi

ðrs;max

rs;min

�e�asðzÞ$r$e�
C s

ne ;nf

z drdz;

d ¼ x1$cosðjdetÞ
therefore,

Q s;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

$e
�

Bs
ne ;nf

cosðjdetÞ$
ðzf
zi

�
e�a

sðzÞ$r

asðzÞ
	





rs;max

rs;min

$e
�
C s

ne ;nf

z dz

(131)
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http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ja00463a


Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

8 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
18

/2
02

5 
1:

44
:3

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
which leads to the following integrals that are solved numeri-
cally using Gaussian methods.
Q s;nf
BbAa

ðx1Þ ¼
m
h
rBb

ðAaÞ
2

ðzs
f

zs
i

�

2
6664e

�a
sðzÞ
z

�
tsre þ tsref

�
asðzÞ � e

�a
sðzÞ
z

�
tsre þ tsref þ tf

�
asðzÞ

3
7775$e

�

 
C s

ne ;nf

z
þ

Bs
ne ;nf

cosðjdetÞ

!
dz

¼ m
h
rBb

ðAaÞ
2

ð1
L *

1� e
�asðzÞ$tf

z

asðzÞ $e

�

0
@asðzÞ

�
tsreþts

ref

�
þC s

ne ;nf

z
þ

Bs
ne ;nf

cosðjdetÞ

1
A

dz (132)
All terms in the exponential having been grouped together to
avoid numerical integration problems.

The nal expression for the number of Bb X-rays emitted by
a layered target, whose structure may be simulated as a set of
layers parallel to the surface, and innite in the directions
perpendicular to the sample normal, can now be written as:

Nml
Bb

�
Ep

� ¼ U

4p
3det;Bb

Tsis;Bb
NpCpp

�
Ep

�
bcsY

tot;ml
Bb

(133)

being

Y tot;ml
Bb

�
Ep

� ¼ C part

Mat;B

sX
Bb

�
Ep

�
x
scf;ml
eq;Bb

�
Ep

�
(134)
x
scf;ml
eq;Bb

�
Ep

� ¼ XAll layers

m¼1

sX
Bb

�
Em

p

�
xm
0

��
sX
Bb

�
Ep

� $fB;m$

 Ym�1

k¼1

Tk
Bb

!
$

ðxmðEout Þ
xm
0

sX
Bb

�
EpðxÞ

�
Tm

Bb ;Zi
ðxÞ

sX
Bb ;Zi

�
Em

p ðxm
0 Þ
� dxþ

ðxmðEoutÞ
xm
0

c
s;m
Bb ;mlðxÞ

sX
Bb ;Zi

�
Em

p ðxm
0 Þ
� dx

3
5

2
4 (135)
where, with Q s;ne
BbAaðx1Þ provided by eqn (132), cs;ne

Bb;mlðxÞ is:
c
s;ne
Bb ;mlðxÞ ¼
XAll Bb emitting layers

nf¼1

"
fB;nf$

XAll Aa;ne inducing Bb

Aa;ne¼1

sX
Aa

�
Ene

p ðxÞ
�
fA;neQ

s;ne
BbAa

ðxÞ ​ ​ ​ ​
#

(136)

It is important to note that solving eqn (132) numerically
adds an additional set of sums to the ones already introduced by
eqn (136), combined with eqn (135), which must be carefully
implemented.
This journal is © The Royal Society of Chemistry 2025
Note that now, because the mass fraction term must be
included in the denition of the equivalent thickness, it cannot
be just put in evidence, as was done in eqn (39).
This is not a problem for simulations, but is a complex
situation to address if the problem in question is the exact
tting of spectra of unknown samples. In the present work, this
issue is not addressed beyond this statement, still it is a subject
that will be addressed in the applications part of this trilogy.
5 The general case expression

Summing up all previous results, it is possible to write a global
expression for the most general case possible, namely for the
PIXE yield of a wide spot or wide detector that requires
a generalized sum over a set of (ya, zb) pairs.
It is nevertheless important to ensure that homogeneous
conditions are veried within each partial spot (ya, zb), as
otherwise the expression cannot be used without detailed
adaptations that have not been presented in this paper, even if
they may eventually be derived from the results presented here.

Starting from eqn (7)–(9) and adding up the secondary
uorescence terms, the nal result is:

Nj;Zi

�
Ep

� ¼
XAll ðya ;zbÞ pairs

ðya ;zbÞ¼1

Uðya ;zbÞ

4p
3
ðya ;zbÞ
det;j T

ðya ;zbÞ
sis;j Nðya ;zbÞ

p Cpp

�
Ep

�
bcsY

ml;ðya ;zbÞ
j;Zi

(137)

being

Y ml;ðya ;zbÞ
j;Zi

�
Ep

� ¼ C part

Mat;Zi

sX
j;Zi

�
Ep

�
x
ml;ðya ;zbÞ
eq;j;Zi

�
Ep

�
(138)
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and
x
ml;ðya ;zbÞ
eq;j;Zi

�
Ep

� ¼ XAll layers

mðya ;zbÞ¼1

8><
>:
sX
j;Zi

�
E

mðya ;zbÞ
p

�
sX
j;Zi

�
Ep

� f
mðya ;zbÞ
Zi

$

ðxmðya ;zbÞðEoutÞ

x
mðya ;zbÞ
0

2
64
0
@ Ymðya ;zbÞ�1

nðya ;zbÞ¼1

T
nðya ;zbÞ
j;Zi

1
A sX

j;Zi
ðEðxÞÞ$Tmðya ;zbÞ

j;Zi
ðxÞ

sX
j;Zi

�
E

mðya ;zbÞ
p

� þ
c
h;mðya ;zbÞ
j;Zi ;ðBbÞðxÞ

sX
j;Zi

�
E

mðya ;zbÞ
p

�

þ
Xall layerssmðya ;zbÞ

nfðya ;zbÞ¼1

X
all Aa inducing Bb

c
nf ;mðya ;zbÞ
j;Zi ;ðBbÞ ðxÞ

3
75dx

9>=
>; (139)
In these equations, c
h;mðya ;zbÞ
j;Zi; ðBbÞðxÞ refers to the homogeneous

cases and case a (or 7) of eqn (118) and c
nf ; mðya ;zbÞ
j;Zi ; ðBbÞ ðxÞ refers to

inter-layer secondary uorescence, cases b and c (or 8 and 9), as
described by eqn (123).
6 Implementation and analysis
6.1 Homogeneous targets

Once obtained these results, their computational implementa-
tion is reasonably straightforward, the single remaining issue
Fig. 3 Overlap of simulated spectra for 1.65 MeV proton irradiation of
the BCS_SS387 reference material taking into account secondary
fluorescence corrections (w/SFC) and not considering these (no SFC).
It can be seen that differences are observable in the most intense
peaks, but not somuch in the others. In this case, themost intense SFC
effect is observed for Cr at 5.4 keV, with an effect of 11.6%, while Fe at
6.4 keV presents a SFC effect of 7.4%.

Table 3 Equation selection table for the case of infinite targets

d jg−j jg−j$d mAa
$d g− Equation

>10−5 >10−5 — >10−5 g− > 0 Eqn (82)
g− < 0 Eqn (83)

#10−5 g− < 0 Eqn (91)
#10−5 >10−5 >10−5 — Eqn (88) h (84)

#10−5 — ln(2)
#10−5 >10−5 Eqn (84)

#10−5 — ln(2)
#10−5 >10−5 >10−5 >10−5 —

ln
�
gþ
mAa

	
#10−5 g− < 0 Eqn (92)

#10−5 — — ln(2)
#10−5 — — — ln(2)
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needing some attention being the cases where variables take
very small values so that limit expressions must be used.
The implementation was made as additional code to the
previous DT2 code,16,19 which was designed from the start to
allow the handling of multilayered targets.23

6.1.1 The innite target case. In the innite target case,
eqn (82) and (83) are used as long as the following expression is
true:

d > 10−5 ^ g− > 10−5 ^ mAa
> 10−5 (140)

If this expression is not true, then each condition must be
taken into account individually. Table 3 lists the conditions,
equations and limit cases replacement when dealing with
innite (thick) targets.

Simulations corresponding to one of the alloy cases pre-
sented in the 1992 paper12 are shown in Fig. 3. In this case the
BCS S387 iron–nickel standard was considered. The spectra
shown correspond to simulations assuming 1.65 MeV proton
beam irradiation, replicating the experimental conditions used
in the 1992 study. Simulations were also carried out for proton
beams of 1.1 MeV and 2.5 MeV. In Fig. 4 the changes in
percentage correction determined as a function of beam energy
are presented for the ve elements exhibiting the most signi-
cant effects. It can be seen that as ion beam energy increases,
the necessary correction also increases. The results are different
from those presented in the 1992 (ref. 12) paper because the
present work uses a penetration function method and Gaussian
integration, which accounts for the whole sample, as used in
the 1996 paper13 and not the Simpson integration over pairs of
Fig. 4 Change in the percentage of secondary fluorescence correc-
tion (%SFC) counts on the total counts in the area of the X-ray peaks
simulated for five different chemical elements, as function of proton
beam energy. It can be seen that for all these cases, the %SFC increases
as ion beam energy increases.

This journal is © The Royal Society of Chemistry 2025
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Fig. 6 Simulation of 10 wt% cobalt alloy in copper: change in the
percentage of secondary fluorescence correction (%SFC) counts of
the total counts in the area of the Co X-ray peaks as a function of beam
energy and target thickness.

Table 5 Equation selection table for the sum I4 + I5 + I6 (primary
emission point located beyond the layer half-thickness) for the case of
homogeneous half-thick layer targets

t – d # t/2 jg−j jg−j(t – d) mAa
(t – d) g− Equation

>10−5 >10−5 — >10−5 g− > 0 Eqn (110)
g− < 0 Eqn (111)

#10−5 g− < 0 Eqn (116)
#10−5 — >10−5 — Eqn (112)

#10−5 — 0
#10−5 >10−5 — >10−5 g− > 0 Eqn (113)

g− < 0 Eqn (114)
#10−5 g− < 0 Eqn (117)

#10−5 — — — Eqn (115)

Fig. 5 Simulation of a 10 wt% cobalt alloy in copper: overlap of SFC
corrected and not corrected spectra (left) and change in the
percentage of secondary fluorescence correction (%SFC) counts on
the total counts in the area of the Co X-ray peaks simulated as function
of proton and He beam energy. It can be seen that the %SFC increases
as a function of ion beam energy are stronger for proton beams than
for the He beams.
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irradiated numerical layers (similar to the Ahlberg et al.
method5) used in 1992. The present results for this homoge-
neous thick target are, therefore, identical to those found in the
1996 paper. By applying the correction factors presented in
Fig. 4 for 1.65 MeV, to the experimental data published in Table
3 of ref. 12, relative differences of 1.7%, 0.78%, 5.0% and 1.33%
are found now between secondary uorescence corrected data
and reference values for Ti, Cr, Mn and Fe respectively. Taking
into account that the reference values have uncertainties of 4%,
0.64%, 5.0% and 0.55% respectively, it can be concluded that
the results obtained aer secondary uorescence correction
fully agree with the standard reference data.

Secondary uorescence correction situations may, never-
theless, be signicantly different from this. Testing as examples
some potentially complex cases such as MoP, PbCrO4, Ti82.5–
Mo10–Mn2.5 and Co10–Cu90, under 1.65 MeV proton irradia-
tion, different cases can be observed.

In the case of low energy X-rays, namely P-K, Mo-L and Pb-M,
no meaningful secondary uorescence corrections are
observed; the most intense case is Mo-Lb1

that shows a 1.86%
increase under irradiation of a bulk Ti82.5–Mo10–Mn2.5
sample. The difference in energy between Pb L lines and the Cr–
K absorption edge results in a photo-electric absorption cross
section that is too low for a signicant effect to be observable in
PbCrO4.

In the Co10–Cu90 case, a different situation applies and
secondary uorescence corrections for Co Ka lines from 18% to
30% are found. The effect visible in the Co Ka peak height, for
a proton irradiation at 1.65 MeV, is shown in Fig. 5.
Table 4 Equation selection table for the sum I1 + I2 + I3 (primary
emission point located before the layer half-thickness) for the case of
homogeneous half-thick layer targets

d # t/2 jg−j jg−j$d mAa
$d g− Equation

>10−5 >10−5 — >10−5 g− > 0 Eqn (95)
g− < 0 Eqn (96)

#10−5 g− < 0 Eqn (99)
#10−5 — >10−5 — Eqn (97)

#10−5 — 0
#10−5 >10−5 >10−5 >10−5 — Eqn (98)

#10−5 g− < 0 Eqn (100)
#10−5 — — 0

#10−5 — — — 0

This journal is © The Royal Society of Chemistry 2025
6.1.2 The half-thick target case. In the case of the half-thick
targets, as shown in Section 3.3, calculations are a bit more
complex, and so is their implementation. The selection of
equations for this case is summarized in Tables 4 and 5, since
two different sets of integral sums must be dealt with.

Applying these to the simulation of the most intense case
shown in the previous section, namely the cobalt copper alloy, it
can be seen that the secondary uorescence correction in thin
targets is not zero, but it decreases signicantly with thickness
as well as with ion beam energy.

In Fig. 6 it can be seen that the secondary uorescence
correction increases as a function of beam energy (as already
observed for thick targets) as well as the target thickness.

Although not shown in the graph, He ions at 2500 keV are
fully stopped in 3.2 and 6.4 mg cm−2 targets, and the same
applies to He 5000 keV and proton 1100 keV beams in the
6.4 mg cm−2 target. Still, out of these four cases, only for the He
2500 keV beam in the 6.4 mg cm−2 target is the secondary
uorescence correction identical to that of the thick target.

This results from the fact that secondary uorescence effects
that take place beyond the ion beam range, still affect the
overall spectra.
6.2 Layered targets

If the target is not thick enough but composed of more than
a single homogeneous layer, secondary uorescence may be
J. Anal. At. Spectrom., 2025, 40, 2507–2525 | 2523
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Fig. 8 Spectra of a 0.8 mg cm−2 MoP film on top of a 0.8 mg cm−2

Co10–Cu90 film, a Co10–Cu90 film on top of a MoP film and
a multilayer sequence of 3 pairs of MoP/Co10–Cu90 films. The
differences can be observed to be very significant, as expected.

Fig. 7 Simulation of a 1.6 mg cm−2
film of 10 wt% cobalt alloy in

copper placed on top of a bulk MoP substrate.
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induced in the same region or in regions different from the one
where the primary X-rays are emitted.

As presented in the previous section, the complexity of the
case requires that in the second case, the integrals involved
must be solved numerically.

The rst of these cases, which involves calculating secondary
uorescence effects taking place in the same physical layer as
the primary X-rays emission, is handled using eqn (118) and
apart from the absorption term and the shi in the penetration
value relative to the layer surface, nothing is changed relative to
the homogeneous half-thick layer target case.

The second of these two conditions involves the emission of
secondary uorescence X-rays from layers different from that
emitting the primary X-rays.

In this case, two conditions can arise, namely either the layer
emitting secondary X-rays is deeper than that emitting the
primary X-rays, or vice versa.

In each of these situations, eqn (132) applies and the only
numerical extreme issue that must be overcome is the occur-
rence of vanishing cosine values, which is resolved by setting an
ad hoc cut-off as mentioned in Table 2.

Although this extreme value problem is minor in this case, it
is still necessary to take into account and overcome a large
number of embedded sums, which must be managed to ensure
proper implementation of the general case calculation.

In order to illustrate these types of conditions, simulations
were run for a combination of layers and substrate materials,
2524 | J. Anal. At. Spectrom., 2025, 40, 2507–2525
specically MoP and Co10–Cu90 alloy. As shown, in the case of
MoP bulk, secondary uorescence induced in P by Mo-L lines is
small relative to the direct primary induction of P X-rays. If
a lm of Co10–Cu90 alloy is set on top of it, not much difference
is observed even though the secondary uorescence in P
increases to roughly 11%. In Fig. 7 the effect of a 1.6 mg cm−2

lm of Co10–Cu90 placed on top of a bulk MoP substrate is
shown.

Still, if the order of the materials is exchanged, a different
image can be found. In Fig. 8 the change of the effect observable
as a function of top layer thickness is presented for both the
MoP layer on top and the other way around; the gure also
includes a comparison of the simulated spectra for a multilayer
sequence of 0.8 mg cm−2 MoP and Co10–Cu90 lms starting
with MoP, using three times less charge.

It can be seen that important differences are observed. A
systematic validation of these results is necessary to ensure that
both theoretical work and soware implementation are working
properly, before the results presented here can be used
systematically. Still, the report of this validation will be pre-
sented in part II.
7 Conclusions

Simulation of PIXE spectra is a useful tool for various purposes,
ranging from the simplest task of teaching PIXE without access
to an accelerator to its unavoidable use for analysis of data from
Total-IBA15 experiments.

PIXE spectral reproduction is available through a few
computer codes described in the literature, such as GUPIX,24

GeoPIXE9 or LibCPIXE25 but to the best of author's knowledge,
up until the present paper, no available computer code was able
to deal with simulation and secondary uorescence corrections
of multilayer samples where the same chemical element may be
present in more than one layer.

As far as the author is aware, a general and global theory
presented here to deal with X-ray induced secondary X-ray
uorescence in PIXE experiments under such general condi-
tions was not previously available in standard and easily
accessible literature before this work.

The present algorithms are implemented in the new version
of the DT2 code (DT2F_0v9_98), therefore corresponding to
a major upgrade of its prior versions.16,19
Data availability

The data used in the present work are entirely generated by the
revised version of the DT2 computer code mentioned in the
Conclusions section. At the present moment, the generated
data used in this work are available just upon request to the
author. Still, in the near future a repository will be created for it
and the possibility of making the simulation soware available
as freeware is under evaluation. In the event of a positive
response to this evaluation, the freeware version of the execut-
able and the usage conditions will be made available in the
same repository.
This journal is © The Royal Society of Chemistry 2025
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