
JAAS

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
5 

12
:3

3:
33

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
TrCSL: a transfer
aState Key Laboratory of Pulsed Power La

Defense Technology, Hefei 230037, People's

nudt.edu.cn; skl_hyh@163.com
bKey Laboratory of Electronic Restriction o

Defense Technology, Hefei 230037, People's
cAdvanced Laser Technology Laboratory of

Defense Technology, Hefei 230037, People's
dHefei GStar Intelligent Control Technical Co

China

† Electronic supplementary informa
https://doi.org/10.1039/d4ja00459k

Cite this: J. Anal. At. Spectrom., 2025,
40, 1810

Received 16th December 2024
Accepted 14th May 2025

DOI: 10.1039/d4ja00459k

rsc.li/jaas

1810 | J. Anal. At. Spectrom., 2025, 4
red CNN-SE-LSTMmodel for high-
accuracy quantitative analysis of laser-induced
breakdown spectroscopy with small samples†

Shengjie Ma, abc Shilong Xu,*abc Congyuan Pan,d Jiajie Fang,abc Fei Han,abc

Yuhao Xia,abc Wanying Ding,abc Youlong Chen abc and Yihua Hu*abc

When utilizing the laser-induced breakdown spectroscopy (LIBS) technology for high-precision quantitative

analysis, a substantial number of samples are typically required to construct an accurate prediction model.

However, in many practical applications, obtaining sufficient samples often faces challenges. The scarcity of

samples not only reduces the reliability of experiments but also limits the potential and flexibility of LIBS

technology in a broader range of applications. In this study, we introduced a transferred convolutional

neural network-squeeze and excitation-long short-term memory (TrCSL) model, aimed at achieving high-

precision quantitative analysis even with small samples. The TrCSL model combines the strengths of

transfer learning, convolutional neural networks (CNN), squeeze and excitation (SE) block mechanisms, and

long short-term memory (LSTM) networks to enhance feature extraction and learning capabilities. We

trained on 100 sets of steel slag samples to obtain the pre-training model, which was then transferred to

the small samples and underwent fine-tuning of its parameters. Compared to the traditional partial least

squares regression (PLSR) and support vector regression (SVR) algorithms, the TrCSL model shows an

improvement of about 0.4 in the R2 value for quantitative analysis results on 20 carbon steel samples. In

addition, the experimental results also show that the quantitative analysis accuracy of the TrCSL model on

only 20 samples is close to that of traditional PLSR and SVR algorithms on 80 samples. The TrCSL model

proposed in this paper possesses enhanced universality and superior prediction accuracy, offering a novel

approach to improving LIBS quantitative analysis precision with small samples.
1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is an advanced
analytical technique that uses spectral emissions from plasma
generated by a laser to determine the element composition and
detailed information of materials.1–4 Known for its rapidity,
sensitivity, and uncomplex sample preparation, LIBS is widely
acknowledged as an analytical technique with signicant
potential for a broad range of applications. As the technology
advances, LIBS has been successfully applied across various
critical elds, including materials science,5,6 environmental
monitoring,7,8 and archaeological research.9,10
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LIBS quantitative analysis includes univariate andmultivariate
analysis,11 with the purpose of establishing a linear correlation
between sample element concentration and the intensity of
characteristic spectral lines. Although univariate analysis is
simple to operate, it is susceptible to matrix effects, which will
severely inuence the accuracy. To enhance the quantitative
analysis accuracy, multivariate analysis methods have been widely
applied, where principal component regression (PCR) and partial
least squares regression (PLSR) are the two most commonly used
techniques.12–15 However, when the relationship between element
concentration and spectral intensity is nonlinear, the effective-
ness of these models may be limited. Therefore, some nonlinear
models, such as support vector regression (SVR),16,17 random
forest (RF),18,19 decision tree (DT),20 extreme learning machine
(ELM),21,22 and deep learning,23–27 have been developed and
applied to the quantitative analysis of LIBS spectra.

In recent years, some deep learning and neural network
models have been widely applied in quantitative analysis for
LIBS spectra. Li et al. proposed a multi-component quantitative
analysis method for LIBS based on a deep convolutional neural
network (CNN).25 They trained the model using more than 1400
LIBS spectra. The results were compared with the back-
propagation neural network (BPNN) and PLSR, and they
This journal is © The Royal Society of Chemistry 2025
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concluded that the CNN-based method is a promising LIBS
quantitative analysis tool with good accuracy and high effi-
ciency. Song et al. introduced a spectral knowledge-based
regression (SKR) model, which integrates the advantages of
knowledge-driven linear models and data-driven nonlinear
models to enhance the quantitative analysis accuracy.28 The
results demonstrate that the SKR model inherits the high
precision of nonlinear models as well as the simplicity and
interpretability of linear models. Consequently, it can signi-
cantly improve the accuracy and reliability of LIBS quantitative
analysis. Ding et al. used the variable importance-based long
short-term memory (LSTM) model to conduct quantitative
analysis of Ca in infant formula powder,27 which could obtain
higher quantitative analysis accuracy with fewer samples.

Numerous studies have indicated that the quantitative analysis
accuracy of data-driven models depends on the number of
samples. In general, to improve the precision and robustness of
the model, researchers tend to select a large number of samples
for training. Some models with outstanding performance even
require hundreds to thousands of samples. For instance, in ref.
29, Zhang selected 550 samples for carbon, ash and caloric value
prediction. Hou et al. established a PLSR prediction model using
189 coal samples.30 Li et al. constructed a principal component
analysis-partial least squares (PCA-PLS) regression prediction
model based on 100 sets of standard air-dried base coal samples.31

Hou et al. built a prediction model for coal using 77 samples, and
the error is less than 1%.32 Zhang et al. conducted a partial least
squares regression model with 101 coal samples, and the root
mean square error (RMSE) of the volatiles prediction results was
reduced to less than 1%.33 The aforementioned results indicate
that when the number of samples is sufficient, the accuracy and
reliability of LIBS quantitative analysis can be signicantly
enhanced. However, when faced with small samples (less than 20
samples31), although it can reduce the calculation burden,
a smaller number of samples also means that we can obtain less
information, and it may even be insufficient to support model
training, leading to poor interpretability and quantitative analysis
accuracy. Therefore, improving the accuracy of LIBS quantitative
analysis under small sample conditions is an important challenge
in this eld, which urgently requires in-depth investigation.

For LIBS quantitative analysis with small samples, Ma et al.
proposed a three-layer stacking model for Al–Cu–Mg–Fe–Ni
alloys.34 For 15 alloy samples, the recognition accuracy of the
stacking model reached 96.47%, which greatly exceeded the
71.76% accuracy of the Random Forest algorithm. The model
has achieved good results in qualitative analysis, but its appli-
cability to LIBS quantitative analysis has not been discussed.
Liu et al. developed an articial neural network (ANN) model
trained using the Gaussian negative log-likelihood (GLL) func-
tion.35 This method achieved quantitative accuracies of 0.9877,
0.9939, 0.9876, and 0.9899 for four elements (Mn, Mo, Cr, and
Cu) in only six stainless steel samples. However, the problem of
model overtting that may arise from such a small number of
samples is not discussed. Li et al. proposed a small-sample
model for high-precision quantitative analysis of coal.31 They
only extract partial spectra of the samples for model training
instead of calculating the average spectra, which allows for the
This journal is © The Royal Society of Chemistry 2025
repeated extraction of random data from the samples. In this
way they can form a rich batch of training data to prevent model
overtting. When the number of samples was 15, the average
relative error (ARE) of carbon element prediction results using
the new model was less than 4%. The aforementioned methods
can effectively prevent model overtting, but their applicability
for samples with different matrices has not been discussed.

In recent years, with the rapid development of deep learning,
transfer learning has shown tremendous potential and advantages
in dealing with small-sample problems.36 By referring to models
that have been pre-trained on large-scale datasets, it is possible to
construct high-performance models even in situations where data
are scarce. Compared to traditional machine learning methods,
the transfer learning method can signicantly reduce the depen-
dence on large amounts of data. This method not only improves
the generalization ability of the model but also accelerates the
training process and signicantly reduces the risk of overtting.
This advantage is particularly evident in elds where data acqui-
sition is challenging, ensuring that the model can be effectively
applied in these demanding environments. Transfer learning is
currently being successfully applied in various domains, including
text sentiment analysis,37 image classication,38 human activity
recognition,39 and so on. Those successful applications provide
a potential possibility for the use of transfer learning in high-
precision quantitative analysis of LIBS with small samples.

In this paper, we combine the multiple advantages of transfer
learning, CNN, the squeeze-and-excitation (SE) attention mecha-
nism and LSTM and propose a transferred CNN-SE-LSTM (TrCSL)
model to achieve high-precision quantitative analysis of LIBS with
small samples.We initially trained on 100 sets of steel slag samples
to construct the source model. During this process, the previous
layers of the source model were able to capture more universal
features, which is crucial for enhancing the overall performance of
the transfer learning model. Subsequently, we transferred the
source model to the target dataset and ne-tuned the parameters.
Finally, we analysed the performance of the proposed TrCSLmodel
and discussed the impact of model hyperparameters, spectra
baseline, and spectral uctuations on the quantitative analysis
results. In addition, we compared it with traditional methods, and
the experimental results showed that the TrCSL model, with only
20 sets of carbon steel samples, can achieve quantitative analysis
results comparable to the traditional PLSR and PSO-SVR algo-
rithms on 80 sets of samples. This comparison not only highlights
the superior performance of the TrCSL model in handling small-
sample data but also demonstrates its great potential in the eld
of quantitative analysis. The signicant advantage of the TrCSL
model undoubtedly provides a new solution for quantitative anal-
ysis under small-sample conditions.
2. Experimental setup and model
establishment
2.1 The TrCSL model for small samples

In this paper, we concentrate on enhancing the LIBS quantita-
tive analysis accuracy with small samples. The main challenge
is the potential insufficiency of sample numbers to meet the
J. Anal. At. Spectrom., 2025, 40, 1810–1820 | 1811
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training requirements, which may affect the robustness and
reliability of the model. To overcome this challenge, we
proposed the TrCSL model to enhance the quantitative analysis
accuracy with small samples. We selected 100 sets of steel slag
samples as the source data to build the CNN-SE-LSTM pre-
training model. Subsequently, we transferred the model to the
target data (carbon steel samples) and ne-tuned the model
parameters using the target data. Finally, we conducted the
performance evaluation of the TrCSL model. As shown in Fig. 1,
the process of using the TrCSL model for LIBS quantitative
analysis with small samples mainly includes four steps: data
preparation, pre-training of the CNN-SE-LSTM model, model
transfer, and performance evaluation.

Step 1: data preparation. Initially, we collect LIBS spectral
data for the steel slag (the source data) and carbon steel (the
target data) samples. Considering the possible inuence of the
matrix effect between these two types of samples, we perform
baseline correction on the LIBS spectra to minimize the inu-
ence of baseline on model performance. Subsequently, the
baseline corrected spectral data for both steel slag and carbon
steel samples are randomly divided into the training and test
sets with a ratio of 7 : 3.

Step 2: construction of the CNN-SE-LSTM pre-training
model. CNN-SE-LSTM is a deep learning model that integrates
the CNN, the SE block, and LSTM. In the hybrid model, the CNN
extracts the feature from the input data, the SE block enhances
the expressiveness of these features, and the LSTM receives the
serialized features to ultimately predict the element concen-
tration. The detailed information about the CNN-SE-LSTM
model is provided in Section 2.3.

Step 3: model transfer. When the structure of the pre-trained
model is determined, we inherit the network structure and
parameters of the source model into the target model and ne-
tune the model using the training set of the target data. In this
way, the target model can not only inherit the rich knowledge
and experience of the source model in feature extraction but
Fig. 1 Procedure of the TrCSL model for LIBS quantitative analysis
with a small sample.

1812 | J. Anal. At. Spectrom., 2025, 40, 1810–1820
also adapt to the specic requirements of the target task
through ne-tuning.

Step 4: performance evaluation. In the nal step, it is
necessary to evaluate the quantitative analysis accuracy of the
TrCSL model and compare it with traditional machine learning
methods to demonstrate its superiority in small-sample quan-
titative analysis.

2.2 Sample preparation and spectra collection

The powder samples we used in this paper are shown in
Fig. S1(a).† Laser irradiation on powder samples tends to cause
sample splashing, which is not conducive for testing. Therefore,
it is necessary to rst pelletize the samples. The pellet press is
shown in Fig. S1(b),† which is produced by Shanghai Xinnuo
Instrument Equipment Co. Ltd, and the instrument number is
ZYP-40TS. During the pelletizing process, we rst took 5 g of the
sample and 9 g of boric acid and placed them into the mold.
Then, we pressed them under a pressure of 30 tons for one
minute and nally demolded them to obtain circular samples
with a diameter of about 40 mm and a thickness of about 5 mm,
as shown in Fig. S1(c).† It should be noted that each time the
samples are prepared, the mold must be cleaned with alcohol to
reduce the residual interference between different samples.

Subsequently, we conducted tests on the pelletized samples.
All LIBS spectral data used in this paper were provided by Hefei
GStar Intelligent Control Technical Co., Ltd. In our experi-
ments, a three-channel spectrometer was used, and a total of 16
375 spectral data points were collected for each sample in the
range from 216 nm to 942 nm. To reduce the potential impact of
sample surface heterogeneity on the experimental results, we
placed each sample on an electric rotating 3D stage to allow the
laser to irradiate different areas of the sample and generate
plasma. In this way, we collected 300 sets of independent
spectral data for each sample. More information about the
experimental equipment can be found on the website at https://
www.goldstar-china.com/.

2.3 The CNN-SE-LSTM pre-training model

As shown in Fig. 2, the CNN-SE-LSTM model is primarily
composed of four components: the input part, the data pro-
cessing part, the feature extraction part, and the output part. We
take the LIBS spectral data as input of the model, which then
undergoes preliminary data processing before feature extrac-
tion. In the data processing part, different operations are per-
formed based on the input dimensions. For one-dimensional
LIBS spectral data, we conduct variable selection to reduce its
dimensionality. For two-dimensional LIBS spectral data, we
perform a conversion from 1D to 2D. The feature extraction part
is constituted by a hybrid model of CNN, SE, and LSTM, and
here we only display the feature extraction part of 2D CNN-SE-
LSTM. The output part is composed of a dropout layer and
two fully connected (FC) layers.

2.3.1 The data processing part. First, the original LIBS
spectra should be normalized so that the spectral intensity is in
the range of [0,1]. Considering the concentration differences
among samples and the inuence of matrix effects, we chose
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 The structure of the CNN-SE-LSTM pre-training model.

Fig. 4 The feature extraction part of the CNN-SE-LSTM model.
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the min–max normalization method40 to normalize each spec-
trum separately, and the principle of this method can be
expressed by eqn (1)

In ¼ Iraw � Imin

Imax � Imin

; (1)

where In is the normalized spectra, Iraw is the raw spectra, and
Imax and Imin are the maximum and minimum intensity on the
spectra. Aer the normalization of raw LIBS data, we perform
different preprocessing operations according to the input
dimension.

For 1D LIBS spectra, we collected a total of 16 375 sampling
points in the wavelength range from 216.589 nm to 942.568 nm.
Utilizing the entire unprocessed LIBS spectral data as input
poses a signicant challenge for both model training and
computational performance. Therefore, to reduce the
complexity and expedite the training process for 1D LIBS data, it
is necessary to perform variable selection and dimensionality
reduction on the original data before feature extraction. The
common dimensionality reduction method is the PCA method.
In this study, by integrating the elemental and concentration
information shown in Tables S1 and S2† and referencing the
atomic spectrum database of the National Institute of Stan-
dards and Technology (NIST), we have selected the character-
istic spectral lines shown in Table S3† along with 5 data points
surrounding each feature spectral line as the input of the 1D
CNN-SE-LSTM model.

For 2D LIBS spectra, we perform a conversion from 1D to 2D.
As depicted in Fig. 3, we reorganize the 16 375 sampling points
into a new 125× 131 matrix, forming a new LIBS spectra matrix,
which serves as the input for the CNN-SE-LSTM model.

2.3.2 The feature extraction part. Taking 2D CNN-SE-LSTM
as an example, as shown in Fig. 4, the feature extraction part
mainly consists of three components: the CNN, the SE block,
Fig. 3 The conversion of 1D LIBS spectra to 2D.

This journal is © The Royal Society of Chemistry 2025
and the LSTM, where the CNN is responsible for extracting
features from the input data, the SE module further enhances
the expressiveness of these features, and the LSTM receives
these serialized features to make accurate predictions of the
element concentration.

2.3.2.1 CNN. CNN was proposed by Yann LeCun from New
York University in 1998 and is essentially a type of multi-layer
perceptron.41 By employing local connections and weight
sharing, CNN signicantly reduces the number of weights,
which in turn lowers the complexity of the model. This
approach not only mitigates the risk of overtting but also
makes the network more amenable to optimization. A notable
feature and advantage of CNN is their ability to deeply extract
features through convolutional kernels, while pooling layers
further assist the neural network in quickly extracting feature
values, effectively reducing computational requirements. As
a result, CNN has a signicant advantage in the eld of image
processing. Here, we take the 2D CNN as an example to further
introduce its principle and application.

2.3.2.1.1 Convolutional layer. The convolutional layer is the
cornerstone of CNN, where feature extraction is achieved
through convolutional operations. These operations involve the
interaction between two matrices: one representing the input
data and the other being the lter matrix for feature extraction,
known as the convolutional kernel. These small-sized convo-
lution kernels slide sequentially over the input data, extracting
local features through dot product operations. The principle of
convolution calculation is shown in Fig. 5(a). If the input size of
CNN isWin × Hin × Din, the convolution kernel size is w× h, the
number is k, the stride is s, and the padding is p, then the output
size of CNN is
Fig. 5 (a) The convolution layer and (b) the max pooling layer.

J. Anal. At. Spectrom., 2025, 40, 1810–1820 | 1813
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Wout ¼ ðWin þ 2p� wÞ=sþ 1

Hout ¼ ðHin þ 2p� hÞ=sþ 1;
Wout ¼ k

(2)

Thus, the outcome of the convolutional operation is related to
the size and the number of convolutional kernels, as well as the
stride and padding. More information about these parameters
can be found in the ESI.†

2.3.2.1.2 Pooling layer. The convolutional layer is followed
by a pooling layer, whose function is to further reduce the size of
the feature matrix and the number of parameters, while
retaining the main information to reduce the risk of overtting.
Common pooling methods include max pooling and average
pooling. Taking the max pooling as an example, as shown in
Fig. 5(b), when performing max pooling on a 2 × 2 feature
matrix, only the maximum value within the matrix is retained.
The size of the result is reduced to a quarter of its original
dimensions. On the one hand, the pooling operation can lter
out unnecessary information; on the other hand, it can effec-
tively reduce the dimension of the feature matrix and speed up
the training of the model. However, we should also note that for
a larger feature matrix, pooling operations can result in a sharp
reduction in size and sometimes even the loss of some impor-
tant information.

2.3.2.2 The SE block. To further extract features from LIBS
spectra and enhance the accuracy of quantitative analysis, we
have introduced the SE block aer each “convolution + pooling”
structure. The introduction of this mechanism adds a channel
attention function, which assigns differentiated weights to
different feature channels to enhance or suppress the features,
thereby more efficiently extracting useful information and
optimizing the performance of the model. The process of the SE
block includes two main steps: squeeze and excitation. The
structure of the SE block is shown in Fig. 6.

2.3.2.2.1 Squeeze. During the operation of the SE block, we
rst employ global average pooling to compress the spatial
dimensions of each channel's feature map, thereby generating
a global feature vector. This vector is capable of accurately
extracting the global information across channels. The
construction of such a global feature vector provides crucial
global awareness for the subsequent optimization of the
network, thereby enhancing the understanding and represen-
tation of overall features.

2.3.2.2.2 Excitation.We utilize two FC layers to calculate the
weights for each channel. The rst FC layer is dedicated to
Fig. 6 The structure of the SE block.

1814 | J. Anal. At. Spectrom., 2025, 40, 1810–1820
dimensionality reduction of the feature vector to extract the
main features. Subsequently, the second FC layer maps these
features back to the original number of channels. During this
process, the rectied linear unit (ReLU) activation function is
rst employed to introduce nonlinearity, followed by the
sigmoid function, which generates weight values between 0 and
1. These weights quantify the contribution of each channel to
the nal task.

Through these two steps, the SE block is able to adaptively
adjust the contribution of each channel in the network, thereby
enhancing the model's ability to extract the main information.

2.3.2.3 LSTM. LSTM has been innovatively improved upon
the foundation of recurrent neural networks (RNN), effectively
addressing the common issue of gradient explosion in RNN. By
incorporating a special type of memory cell, LSTM is capable of
processing sequential data more efficiently without losing long-
term dependencies. As shown in Fig. S2,† the structure of LSTM
is relatively simple and straightforward compared to the
complex architecture of CNN. A detailed description of the
LSTM module can be found in the ESI.†

2.3.3 The output module. The output module is composed
of a dropout layer and two fully connected layers. As shown in
Fig. 2, we have added a dropout layer aer the feature extraction
part, which is a regularization technique proposed to prevent
overtting. During the forward propagation of the network's
training stage, the dropout layer randomly sets the output of
certain neurons to 0 with a certain probability p. This mecha-
nism reduces the interdependencies between neurons and
introduces regularization mechanisms, thereby reducing the
risk of overtting.

The fully connected layer typically resides at the end of
a neural network model and is responsible for transforming all
feature matrices from the dropout layer into a 1D feature vector.
In this layer, each neuron is connected to all neurons, achieving
comprehensive information integration. However, in cases
where the amount of data is small, the fully connected layer may
also lead to overtting. To enhance the model's generalization
ability, we combine the fully connected layer with the dropout
technique in this paper.

Finally, according to the previous introduction, there are
numerous parameters that need to be set in advance in the
CNN-SE-LSTM model, which will largely determine the predic-
tion performance. The parameters related to the neural network
itself include the convolutional kernel size and number, the
activation function, the type of pooling, the layer structure and
number, the number of hidden layers, and the Dropout rate.
The parameters related to neural network training are batch
size, learning rate, epoch, etc.Details of these parameters can be
found in the ESI,† and the effects of different parameters on the
model performance are analysed in detail in Section 3.2.
2.4 Model transfer

Subsequently, we transferred the pre-trained CNN-SE-LSTM
model to the target dataset and ne-tuned it. The overall
strategy for model transfer is shown in Fig. 7. We rst froze the
parameters and weights of the feature extraction layers and
This journal is © The Royal Society of Chemistry 2025
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Fig. 7 The process of model transfer. Fig. 8 Normalized spectra intensity of the first 5 steel slag and carbon
steel samples. (a) The raw LIBS spectra of steel slag samples; (b) the raw
LIBS spectra of carbon steel samples; (c) the baseline corrected LIBS
spectra of steel slag samples; (d) the baseline corrected LIBS spectra of
steel slag samples.
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Dropout layers of the pre-trained CNN-SE-LSTM model and
transferred them to the target samples. Then, we trained the
transferred model with 20 sets of carbon steel samples, during
which only the parameters in the fully connected layers were
ne-tuned, and ultimately obtained the structure and parame-
ters of the TrCSL model.

2.5 Performance evaluation

In order to better evaluate the prediction performance of the
TrCSL model, the RMSE and the correlation coefficient (R2) are
used to evaluate the prediction accuracy. R2 represents the
linear relationship between the actual and prediction values.
RMSE is used to measure the deviation between the actual value
and the predicted value and is to evaluate the performance of
the model from the perspective of statistics.

R2 ¼ 1�
PN
i¼1

ðyi � ŷiÞ2

PN
i¼1

ðyi � yiÞ2
; (3)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN
i¼1

ðyi � ŷiÞ2

N

vuuut
; (4)

where yi is the actual value, ŷi is the predicted value, and �yi is the
mean of yi. N is the number of samples.

The relative standard deviation (RSD) is used to evaluate the
stability of the LIBS spectra.

RSDð%Þ ¼ S

y
� 100% ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi � yÞ2

n� 1

vuut

y
� 100%; (5)

where S is the standard deviation and n = 300 is the number of
measurements.

3. Results and discussion
3.1 LIBS spectra and preprocessing results

In this study, we utilized the experiment system described in
Section 2.1 to collect LIBS spectral data from 100 steel slag
samples and 20 carbon steel samples. Fig. 8(a) and (b) display
the normalized spectra intensity of the rst 5 sets of steel slag
and carbon steel samples. It was observed that the LIBS lines of
This journal is © The Royal Society of Chemistry 2025
slag samples were essentially uniformly distributed across the
300–700 nm wavelength band. In contrast, the LIBS lines of the
carbon steel samples were more concentrated in the 300–
450 nm and 500–600 nm bands. Furthermore, the slag samples
exhibited a distinct “arch-shaped” feature in the 600–650 nm
band, whereas the carbon steel samples had continuous back-
ground interference in the 500–600 nm band. The presence of
these baselines may lead to an overestimation of the intensity
for the characteristic lines for some elements, thereby affecting
the accuracy of model training. To address this issue, we
employed the adaptive iteratively reweighted penalty least
squares algorithm42 for baseline correction, with a balance
parameter l set to 104 and the number of iterations set to 50.
The baseline corrected spectra are shown in Fig. 8(c) and (d).
Aer baseline correction, the base of the spectra is much atter,
and the “arch-shaped” feature present in the spectra of the two
types of samples mentioned above has also been essentially
eliminated. The above results show that the baseline correction
can signicantly improve the background stability of the
spectra for both slag and carbon steel samples, effectively
mitigating the adverse effects of matrix effects.
3.2 Training of the TrCSL model

We initially conducted a thorough analysis of the parameters
for the CNN. In the SE block, the parameters for the two FC
layers were xed at 16 and 64, respectively, to optimize the
extraction and transformation of features. For the LSTM, we
congured a two-layer network structure with 128 hidden units
in each layer to ensure that the model can extract the complex
dynamics within time-series data. In terms of the optimization
algorithm, we chose the adaptive moment estimation (Adam),
a gradient descent method based on adaptive estimates, widely
used in deep learning for its high efficiency.

First, we compared the inuence of the network structure on
the prediction performance of 1D and 2D CNN-SE-LSTM
models. Here, we dene a combination of one convolutional
layer, one max pooling layer, and one SE block as one ‘conv’
unit, and the convolution kernel size is uniformly set to 5 × 5.
Taking the Mn element as an example, Fig. 9(a) illustrates the
inuence of different numbers of conv units on model
J. Anal. At. Spectrom., 2025, 40, 1810–1820 | 1815
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Fig. 9 Influence of different parameters on the performance of the
CNN-SE-LSTM model. (a) The network structure, (b) the kernel size,
and (c) the kernel number.

Fig. 10 The distribution of spectral lines of Mn element in different
wavebands. (a–c) The carbon steel samples and (d–f) the steel slag
samples.
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performance. It is clear the 1D CNN-SE-LSTM model has an
advantage in prediction accuracy over the 2D CNN-SE-LSTM
model. As the number of conv units increased from 1 to 5, the
RMSE of the 1D CNN-SE-LSTM model decreased by 1.9935,
0.1594, 0.1076, 0.0303, and 0.1392 compared to 2D CNN-SE-
LSTM, while the R2 value increased by 0.2169, 0.0104, 0.0413,
0.0176, and 0.0360, respectively. Additionally, we found that
when the number of conv units is 3, the 1D CNN-SE-LSTM
model can achieve optimal performance, and for the 2D CNN-
SE-LSTM model, 4 conv units are required. However, as the
number of conv units further increases, the prediction perfor-
mance declines. This may be because as the number of network
layers increases, so do the model parameters, making the
optimization process more complex and more prone to
overtting.

Next, we analysed the impact of the convolutional kernel size
and number on the performance. As shown in Fig. 9(b), the
effect of different kernel sizes on model performance is clearly
demonstrated. When the kernel size is 3, both the 1D and 2D
CNN-SE-LSTM models can achieve the best predictive perfor-
mance, with the R2 reaching 0.9974 and 0.9985, respectively.
Fig. 9(c) illustrates the impact of the convolutional kernel
number on the model's prediction performance. We nd that
themodel performs best when the kernel number is set to 32. As
the number continues to increase, the prediction performance
of the model shows a declining trend. The reason may be that
an excessive number of convolutional kernels may lead to
parameter redundancy, thereby affecting the model's
convergence.

Based on the aforementioned result, the 1D CNN-SE-LSTM
model appears to outperform the 2D CNN-SE-LSTM model,
and this superiority may stem from the following aspects:

(1) The input for the 2D CNN-SE-LSTMmodel is not an image
in the traditional sense. As shown in Fig. 3, when constructing
2D LIBS images, we simply spliced the spectral intensities of
different bands together. This approach may lead to some
1816 | J. Anal. At. Spectrom., 2025, 40, 1810–1820
discontinuities in the 2D LIBS images, affecting the overall
image quality. Moreover, in the resulting LIBS images, the
wavelength information of the original data is reected in the
spatial positions of the LIBS images.

(2) Before inputting the LIBS spectra into the 1D CNN-SE-
LSTM model, we manually selected characteristic spectral
lines for different elements according to the NIST database,
effectively ltering out a large amount of irrelevant information.
In contrast, the input of the 2D model is only to convert the 1D
data into a 2D form, and the data itself are not ltered.
Compared to the 2D CNN-SE-LSTM model, the 1D model
signicantly reduces the scale of the input data, and it is easier
to train. The 1Dmodel only takes 12 s, while the 2Dmodel takes
10 min. Besides, the results of the 2D CNN-SE-LSTM model are
greatly inuenced by the model parameters, thus requiring
more effort to adjust model parameters.

However, it is worth noting that although there is little
difference in performance between the 1D and 2D models, the
former is much more complex in data preprocessing. If opting
for the 1D CNN-SE-LSTM model, prior variable selection must
be conducted for different samples, and the characteristic
spectral lines selected for each type of sample may be different.
As shown in Fig. 10(b) and (e), the spectral line of the Mn
element at 441.488 nm in both carbon steel and slag samples
exhibits a distinct peak and is essentially unaffected by the
continuous background and noise, with no interference from
the characteristic spectral lines of other elements around it,
thus making it suitable as input for the 1D CNN-SE-LSTM
This journal is © The Royal Society of Chemistry 2025
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Fig. 11 Performance of the TrCSL model without/with baseline
correction.
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model. For carbon steel samples, the characteristic spectral
lines of the Mn element at 383.386 nm and 384.108 nm, along
with their surrounding ve sampling points, can serve as input
for the CNN-SE-LSTM model (Fig. 10(a)), whereas for the slag
samples, these lines are signicantly inuenced by the
surrounding characteristic spectral lines of other elements and
are not suitable as model input (Fig. 10(d)). Similarly, slag
samples have prominent characteristic spectral lines at
475.404 nm and 476.153 nm (Fig. 10(f)), while the correspond-
ing lines in carbon steel samples are obscured by the contin-
uous background (Fig. 10(c)). Considering the model's
versatility, we ultimately chose the 2D CNN-SE-LSTM model as
the pre-training model.

Subsequently, we determined the parameters for the SE
block and the LSTM. Fig. S3† illustrates the impact of the
parameters of FC in the SE block on the prediction perfor-
mance. As the number of hidden layer parameters gradually
increases, the model's RMSE rst decreases and then increases,
achieving the best solution when the hidden layer parameters
are set to 16. Similar observations occurred in the LSTM
module. As shown in Fig. S4,† the model performed best when
the number of hidden layer parameters was set to 32.

Additionally, some other hyperparameters of the model may
also affect the results of quantitative analysis, such as the
Dropout rate, the activation function and so on. We have con-
ducted a detailed analysis of the impact of these parameters on
model performance in the ESI le (Fig. S5 and S6),† and based
on these results, we set the Dropout rate to 0.2 and the activa-
tion function to the ReLU function.

Finally, following the method illustrated in Fig. 7, we trans-
ferred the CNN-SE-LSTM pre-training model to the target
samples and ne-tuned the parameters of the fully connected
layers. The nal parameters of the TrCSL model are shown in
Table 1.
3.3 Performance of the TrCSL model for small samples

First, we analyzed the inuence of baseline correction on model
performance. Based on the results shown in Fig. 11, it is not
Table 1 Parameters of the TrCSL model

Detail parameters

Input layer 125 × 131
CNN module Number of layers: 4

Size of kernels: 3 × 3
Number of kernels: 32

Pooling layer Average pooling
Dropout rate 0.2
Activation function ReLU
SE block Hidden layer parameter: 16
LSTM module Hidden layer parameter: 32
FC layer 128
Optimizer Adam optimizer
Loss function MSE loss
Initial learning rate 0.01
Learning rate attenuation rate 0.1 for every 100 epochs
Epoch 800

This journal is © The Royal Society of Chemistry 2025
difficult to nd that aer baseline correction, the R2 value of the
prediction results for the TrCSL model increased by about 0.14.
The reason may be that the matrix effect between different
samples may seriously affect the training effectiveness. Aer
baseline correction, it can effectively reduce the impact of the
matrix effect, thereby enhancing the model performance.

Subsequently, we utilized the TrCSL model to conduct
quantitative analysis on 20 sets of carbon steel samples and
carried out ablation experiments to explore the importance of
each component in the TrCSL model. Fig. 12 presents the
prediction results of the four models on the test set, where the
TrCNN model refers to the CNN model aer transfer learning,
which does not include the SE and LSTM modules. Similarly,
the TrCNN-SE and TrCNN-LSTM models denote the absence of
the LSTM and SE modules, respectively. Taking the prediction
results of the Mn element as an example, the R2 of the TrCNN
model is only 0.7370. When the SE and LSTM modules are
added separately, the R2 increases by 0.1921 and 0.1745,
respectively. When both the SE and LSTM modules were added
simultaneously, the R2 increased by 0.2471. The results validate
the necessity of the SE and LSTM modules in the TrCSL model,
which can effectively enhance model performance. In addition,
we also nd that the SE block slightly outperforms the LSTM
module in enhancing model performance, with a difference in
Fig. 12 The results of the ablation experiment. (a) The C element, (b)
the Cu element, (c) the Mn element, and (d) the Cr element.
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Fig. 14 The influence of sample numbers on quantitative analysis
results.
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R2 of approximately 2% when either is added alone. As we dis-
cussed in Section 2.2, each component in the TrCSL model is
indispensable. The CNN extracts features from the input data,
the SE block enhances the expressiveness of these features, and
the LSTM processes the serialized features to ultimately predict
the element concentration.

According to Fig. 12, we further observed that the TrCSL
model's prediction results for Mn and Cr elements have the
highest values of R2, while the R2 value of Cu element is the
lowest. This discrepancy may be associated with spectral uc-
tuations, which has been further conrmed and thoroughly
discussed in ref. 43 and 44. Taking sample no. 1 as an example,
we selected a total of 8 characteristic spectral lines: C:
414.626 nm, C: 426.902 nm, Cu: 316.420 nm, Cu: 386.046 nm,
Mn: 404.136 nm, Mn: 407.028 nm, Cr: 363.146 nm, and Cr:
399.112 nm. Fig. S7† shows the intensity uctuation degree, and
it is not difficult to nd that the two characteristic spectral lines
of Cu element exhibit the most signicant uctuations, while
those of Cr and Mn elements show the least uctuations.
Furthermore, we calculated the RSD for these 8 characteristic
spectral lines in Fig. 13. Among them, the Mn and Cr elements
have the lowest RSD, which is close to 6%, and Cu element has
the highest RSD. In conjunction with the results, we can
conclude that spectral uctuations may reduce the prediction
accuracy of the TrCSL model.

Then, we contrasted the TrCSL model with traditional
methods. We randomly selected different numbers of samples
from 100 sets of steel slag samples and performed quantitative
analysis using the PLSR and PSO-SVR algorithms. The number
of samples we selected increased from 10 to 100 in increments
of 10, and the samples were divided into a 70% training set and
a 30% test set. Taking the Mn element as an example, the
relationship between the LIBS quantitative analysis results and
the sample numbers is shown in Fig. 14. It is not difficult to nd
that when the number of samples is small (number <20), the R2

values of both PLSR and PSO-SVR algorithms are less than 0.6,
mainly due to the insufficient model training. In comparison,
the TrCSL model can achieve an R2 of 0.98 on 20 sets of carbon
steel samples, which represents a performance improvement
close to 0.4. As the number of samples gradually increases, the
Fig. 13 The RSD values of Cr: 399.12 nm, Cr: 363.146 nm, Cu:
386.046 nm, Cu: 316.420 nm, Mn: 407.028 nm, Mn: 404.136 nm, C:
426.902 nm, and C: 414.626 nm for sample no. 1.

1818 | J. Anal. At. Spectrom., 2025, 40, 1810–1820
quantitative analysis result signicantly improves. When the
number of samples reaches 40, the R2 value has risen to 0.9.
When the number of samples further increases to 90, the R2

reaches 0.99, where the model is already able to achieve satis-
factory quantitative analysis results. Furthermore, by
comparing the data in Fig. 12 and 14, we found that our
proposed TrCSL model, with only 20 sets of carbon steel
samples, can achieve the quantitative analysis results compa-
rable to the PLSR and SVR algorithms on 80 sets of samples.
This comparison not only highlights the excellent performance
of the TrCSL model in handling small-sample data but also
demonstrates its great potential in the eld of quantitative
analysis.

Finally, we compared the TrCSL model's performance with
the PCA-PLS and GLL methods in ref. 31 and 35. Fig. 15 shows
the R2 of the quantitative analysis results for the three methods.
The TrCSL model demonstrated superior performance, with R2

values exceeding those of both PCA-PLS and GLL. Moreover, the
R2 values of TrCSL and GLL were signicantly higher than PCA-
PLS, underscoring deep learning's effectiveness in feature
extraction from small samples. When the sample size was 20,
the performance of the TrCSL and GLLmodels was comparable.
However, when the sample size was reduced to 10, the TrCSL
model exhibited a signicantly greater improvement in R2,
which highlights the TrCSL model's superior adaptability and
robustness when dealing with small-sample data.
Fig. 15 Comparison of three models on small samples.

This journal is © The Royal Society of Chemistry 2025
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The TrCSL model has achieved satisfactory results, mainly
due to two reasons: (1) the introduction of the SE block mech-
anism into the model has signicantly enhanced its ability to
extract features from input LIBS images, which allows the
model to understand the data more deeply; (2) when dealing
with small samples, any unusual uctuation in the data can
have a signicant impact on the overall analysis results, and the
TrCSL model can effectively alleviate this interference through
transfer learning, which can ensure the stability and reliability
of prediction results. Furthermore, the TrCSL model has
a broad applicability. For the input LIBS spectral data, there is
no need for complex spectral line selection; it is only necessary
to convert one-dimensional LIBS spectral data into a two-
dimensional form. This simplied data processing procedure
not only avoids cumbersome steps but also signicantly
improves the efficiency of data analysis.
4. Conclusion

In this paper, we proposed the TrCSL model, aimed at
improving the accuracy of LIBS quantitative analysis with small
samples. The model integrates the advantages of transfer
learning, CNN, attention mechanisms, and LSTM. We trans-
ferred the pre-trainedmodel obtained from 100 sets of steel slag
data to 20 sets of carbon steel data and ne-tuned the model. At
the same time, we also analyze the inuence of model hyper-
parameters, spectra baseline correction results, spectral uc-
tuations and other factors on the performance of the model.
The results demonstrate that the TrCSLmodel, with only 20 sets
of carbon steel samples, can achieve the performance of the
traditional PLSR and PSO-SVR algorithms when applied to
a larger dataset of 80 samples. The TrCSL model we proposed
has higher quantitative analysis accuracy and better universality
ability for small samples, and this method is expected to
improve the accuracy of LIBS quantitative analysis when the
samples are not sufficient.
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