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1. Introduction

Machine learning-assisted laser-induced
breakdown spectroscopy for estimating substrate
surface temperaturesy

Haoyu Dong,? Xi Huang, @ 2 Luke Wadle,® Lanh Trinh, ©° Peizi Li,?
Jean-Francois Silvain,® Bai Cui® and Yongfeng Lu ® *2

Laser-Induced Breakdown Spectroscopy (LIBS) has been widely used across industries, medical
applications, and environmental monitoring for elemental identification and concentration analysis due
to its high accuracy, speed, and efficiency. Beyond elemental identification and concentration analysis,
many studies suggest that LIBS signal intensities are influenced by sample surface temperatures,
presenting an opportunity for temperature monitoring in processes such as three-dimensional additive
manufacturing. In such applications, accurately detecting local temperatures at printing spots of interest
is critical, specifically in ceramic printing, where phase transitions require temperatures exceeding one
thousand degrees Celsius. Due to the dynamic nature of plasma emissions and experimental variability,
there are few reports on the use of LIBS for monitoring sample surface temperatures. The direct use of
absolute LIBS intensities is challenging for this purpose. Instead, this study explored the use of intensity
ratios for surface temperature estimation. A series of LIBS spectra over wavelengths from 430.96 to
438.99 nm were collected from zirconium carbide (ZrC) at temperatures ranging from 350 to 600 °C.
Intensity ratios, including atomic-to-atomic, ionization-to-ionization, and atomic-to-ionization line
ratios, were evaluated. These ratios demonstrated significant exponential correlations with surface
temperatures. Among the regression models, the highest R-squared (R?) value of 0.976 was observed for
the intensity ratio of Zr Il 435.974 nm to Zr | 434.789 nm. Additionally, machine learning algorithms were
applied for full LIBS spectrum analysis, enabling comprehensive classification and prediction of sample
surface temperatures without relying solely on a single intensity ratio. This strategy has demonstrated the
potential of machine learning-assisted LIBS for real-time detection of sample surface temperatures in
complex and dynamic environments.

quantitatively determine the elemental composition of the
sample, with a limit of detection (LoD) as low as a few parts per

Laser-induced breakdown spectroscopy (LIBS) has been widely
used across various industries,"* medical applications,*® and
environmental monitoring®™* for elemental identification and
concentration analysis due to its high accuracy, speed, and
efficiency. In LIBS, a pulsed laser beam is focused onto a sample
surface, locally ablating the surface and generating plasma from
the breakdown of the ablated material. The optical emission
spectra of the laser-induced plasma are analyzed to semi-
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million (ppm). LIBS offers significant advantages, including
real-time, in situ analysis, minimal destructiveness, multi-
element detection, and remote sensing capabilities.”**

In addition to LIBS’ well-established applications in elemental
identification and concentration analysis, it is also reported that
LIBS signal intensities can be influenced by sample surface
temperature variations during laser ablation.””** This phenom-
enon is particularly relevant in scenarios such as real-time
temperature monitoring during three-dimensional (3D) additive
manufacturing processes. Moreover, remote temperature
monitoring/estimation at printing spots of interest is a critical
challenge in these complex and dynamic environments, partic-
ularly when printing ceramic materials, which requires laser
melting or sintering at temperatures exceeding one thousand
degrees Celsius due to phase transitions.*** Temperature varia-
tions at printing points can significantly affect the flow, bonding,
and solidification behavior of materials in 3D printing, poten-
tially leading to unexpected defects.”»* Moreover, physical
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contact measurement methods, such as thermocouples, are
impractical due to their short lifetime at extreme temperatures.
Additionally, the dusty environment may affect the performance
of infrared thermography. LIBS serves as an active measurement
probe directly at the printing point, and with proper laser probe
adjustments and appropriate engineering designs, the impact
from dusty environments is expected to be minimized.

However, this relationship remains unclear due to the
dynamic nature of plasma emissions and variations in actual
experimental setups. The quality of LIBS spectra collected using
a high-resolution spectrometer is highly dependent on factors
such as sample conditions, signal collection efficiency, laser
powers, focus conditions, and other related parameters. Even
minor changes in an experimental setup can significantly affect
the LIBS spectra, particularly the absolute peak intensities.
These challenges make it difficult to use LIBS as a direct and
reliable tool for temperature estimation.

To address this issue, we explored the use of intensity ratios
rather than absolute peak intensities to enhance the under-
standing of the correlation between LIBS spectra and sample
surface temperatures. A series of LIBS spectra over wavelengths
from 430.96 to 438.99 nm were collected from zirconium
carbide (ZrC) surfaces at temperatures ranging from 350 to 600 ©
C. The absolute peak intensities, with and without signal-to-
noise ratio (SNR) corrections, were analyzed, revealing correla-
tions between sample surface temperatures and peak intensi-
ties. For example, surface temperatures showed a positive
influence on the C I 437.138 nm peak intensity and a negative
influence on the Zr I 434.789 nm peak intensity. However,
a reliable mathematical relationship between the surface
temperatures and peak intensities could not be established. To
further analyze the data, intensity ratios including atomic-to-
atomic, ionization-to-ionization, and atomic-to-ionization line
ratios were evaluated. These ratios show significant exponential
relationships with the surface temperatures. Among all the fit
curves, the highest R? value, 0.976, was observed for the inten-
sity ratio of Zr IT 435.974 nm to Zr I 434.789 nm.

Additionally, multivariate analysis, which has been widely
applied in spectroscopy for decades to develop calibration models
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for classification, pattern recognition, clustering, regression, and
other predictive tasks,””® was integrated into this work. By
leveraging multivariate analysis as a classification and prediction
tool, machine learning-assisted LIBS was demonstrated as
a potential strategy for surface temperature monitoring.

2. Experimental methods
2.1 Test sample preparation

Zirconium carbide (ZrC)*?° is a critical high-temperature
structural material known for its high melting point, excep-
tional strength, and corrosion resistance. It possesses excellent
visible light absorption, infrared reflection, and efficient heat
storage capabilities, making it highly suitable for advancing 3D
printing in fields such as aviation, aerospace, metal ceramics,
and advanced thermal insulation and temperature control
composites. Therefore, ZrC was selected as the test material for
this study.

ZrC powder (CAS: 12070-14-3) with a purity of 99.5% was
purchased from Alfa Aesar. The powder was sintered into discs
with a diameter of 20 mm and a thickness of approximately
5 mm using a spark plasma sintering (SPS) system (Model 10-4,
Thermal Technologies). The sintering process was performed at
a maximum temperature of 2000 °C, with an isothermal hold of
10 min under a pressure of 30 MPa in a vacuum of 2 x 10 >
Torr. The heating and cooling rates were both set at 100 ©
C min "2 After sintering, the samples were polished using
a heavy-duty grinding and polishing machine (UNIPOL-820,
MTI) with silicon carbide discs (Electron Microscopy Sciences)
of sequential grit sizes: 60, 120, 400, 600, and 800. The polished
samples underwent ultrasonic cleaning with ethanol (EX0290-1,
Sigma-Aldrich) and were subsequently dried in an oven at 60 °C.
A representative sample was analyzed using a ZYGO surface
profiler system to assess surface roughness, with an S, value of
0.176 pum, an S, value of 0.248 um, and an S, value of 8.976 um.

2.2 LIBS setup

Fig. 1a shows the schematic of the LIBS system used in this
study. A Q-switched Nd:YAG laser (DRL, Quantel) with
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(a) Schematic of the LIBS experimental setup and (b) typical LIBS spectra obtained from the ZrC surface at room temperature and 350 °C.
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a wavelength of 532 nm was used as the probe laser source
(energy per pulse = 45 m]) to induce plasmas on the sample
surfaces via a focusing lens (f= 150 mm). To simulate 3D laser
printing conditions, an unfocused CO, laser beam (STS 1000T,
PRCLASER) was used as the heating laser source. The laser
spots of the LIBS probe and the heating laser were carefully
aligned to overlap, ensuring that the induced plasma was
generated inside the heating zones. The local surface temper-
ature was monitored using a pyrometer (0S3750, Omega Engi-
neering) as a reference. Due to the non-uniform heating of the
sample using the CO, laser beam, the pyrometer was specifically
aimed at the focused LIBS probe laser spot to ensure accurate
temperature measurement at the location of interest. Emissions
from the laser-induced plasma were coupled into an optical
fiber through a lens system and recorded using a high-
resolution spectrometer (SR-500i-C-R, Andor) equipped with
an intensified charge-coupled device (ICCD) system (DH334T-
18U-E3, Andor). A 2400 L mm™ " grating (for highest spectral
resolution) centered at 435 nm in the spectrometer (covering
from 430.96 to 438.99 nm) was used for all the LIBS measure-
ments. A gate delay of 1 pus and a gate width of 1 ps were chosen.
Synchronization between the Nd:YAG laser and the spectrom-
eter was achieved using a digital delay generator (DG535,
Stanford Research Systems).

The LIBS probe laser pulses ablated polished ZrC surfaces,
generating plasma and inevitably creating laser-induced
craters, typically on a micrometer scale. To mitigate the
impact of crater formation during the LIBS measurements,
more than 1000 laser pulses were applied prior to recording the
LIBS spectra. Moreover, to mitigate the impact of local grain
differences in ceramic samples, an off-focus strategy was
applied, utilizing a larger laser spot (an ellipse with a major
diameter of ~1000 pm and a minor diameter of ~800 um) to
obtain an averaged measurement from the sample surfaces.
The wavelength range of the LIBS spectra, ranging from 430.96
to 438.99 nm, was chosen for a balance between the detection of
C and Zr peaks, as shown in Fig. 1b. Within this chosen range,
four Zr peaks, including two Zr I (434.789 and 436.645 nm) and
Zr 11 peaks (435.974 and 437.978 nm), and four C peaks,
including one C1(437.138 nm) and three C II (431.726, 432.310,
and 437.428 nm), were used for further analyses. The detailed
atomic spectral transitions of these lines can be found in the
National Institute of Standards and Technology (NIST) LIBS
database.®” During the heating with the CO, laser, a range of
local ZrC surface temperatures were measured using the
pyrometer as references, and LIBS measurements were con-
ducted immediately at each temperature. The recorded
temperatures included 350, 362, 373, 382, 394, 414, 425, 438,
454, 477, 501, 526, 546, 563, 576, 588, and 600 °C.

The frequency of the LIBS probe laser was set to 30 Hz to
enable rapid recording of plasma emissions during the heating
process. For each temperature, plasma emissions from over 50
consecutive laser pulses were recorded. To evaluate the corre-
lation between intensity, intensity ratios, and sample tempera-
tures, the LIBS spectra were averaged over every 5 laser pulses,
resulting in a total of 10 LIBS spectra obtained at each
temperature.

This journal is © The Royal Society of Chemistry 2025
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3. Results and discussion

3.1 Absolute peak intensities with and without SNR
corrections

An emission line intensity (I;;) of an atomic transition between
i™ and j™ levels can be represented by the following equation:
I = heNogiAj eka_}, (1)
AmA; Z(T)
where 4 is Planck's constant, ¢ is the speed of light, N, is the
total number of atoms, g; is the statistical weight of the i™ level,
Ay is the transition probability, 4; is the transition wavelength,
Z(T) is the partition function, T is the plasma temperature, E; is
the excitation energy of the /™ level, and k is the Boltzmann
constant. Here, N, is influenced by experimental factors and
elemental concentration. However, since the ZrC samples are
homogeneous and LIBS measurements were conducted under
the same experimental conditions, N, can be treated as
a constant in this study.

Fig. 2a shows the measured absolute peak intensities of C I
437.138 nm and Zr I 434.789 nm as functions of local sample
surface temperatures. The intensity of the C I peak demon-
strates an upward trend, increasing from 10 844 to 12 208, while
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Fig.2 Absolute peak intensities of C1437.138 nmand Zr 1 434.789 nm
(a) with and (b) without SNR corrections.
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the Zr I peak shows a downward trend, decreasing from 6354 to
5231. All these peak intensities were recorded with both a 1 ps
gate delay and gate width, showing a temperature-dependent
relationship. However, despite the apparent correlation
between sample temperatures and peak intensities, it remains
challenging to establish a reliable mathematical relationship
due to certain unresolved influencing factors. The intensity
curve alone is insufficient to serve as a reliable indicator of
sample temperature.

Fig. 2b shows the measured peak intensities of C I
437.138 nm and Zr 1 434.789 nm after SNR corrections. The SNR
of C 1 437.138 nm decreases from 143.93 to 123.24, while the
SNR of Zr 1 434.789 nm decreases from 84.31 to 52.79. The SNR
here is defined as the ratio of peak intensities to the continuum
backgrounds. Interestingly, the intensity trends of C I
437.138 nm with and without SNR corrections show opposite
behaviours. Several factors influence the SNRs, including
continuum background emission and the ionization states of
the plasma. Therefore, it is possible that the trends could be
read oppositely due to different continuum background emis-
sion levels caused by different surface temperatures. Sample
surface temperature could impact the ionization states of the
plasma generated during LIBS. At higher sample temperatures,
the laser-induced plasma tends to have more atoms in ionized
states, indicating a warmer plasma.'”*®*** As a result, the
proportion of neutral atoms decreases in the plasma, leading to
a decrease in the intensity of atomic lines. Therefore, it is
reasonable that the peak intensities of C I 437.138 nm and Zr I
434.789 nm after SNR corrections show the same downward
trends as functions of surface temperatures. This observation
suggests the potential of using the intensity ratios, rather than
the absolute peak intensities, as more reliable indicators for
sample surface temperature estimation.

3.2 Intensity ratio as a function of sample temperatures
The emission line intensity ratios can be calculated as follows:

I[/ _ giAijAngZ(T)
Imn gmAmn/\i/'ZI(T)

En—E;

i @

For atomic-to-atomic and ionization-to-ionization ratios (at
the same energy levels), the partition function Z(T) is identical
and canceled out. For ionization-to-atomic ratios, the variation
in sample temperatures within a range of 250 °C could be
considered to cause only minor changes in plasma tempera-
tures, since typical plasma temperatures®* reach thousands of
degrees Celsius. As a result, the partition functions are nearly
identical, and the ratio of the two partition functions can be
treated as a constant. Since plasma temperature tends to
increase with sample temperature,”'®** a simple linear math-
ematical relationship is assumed to link sample surface
temperature to the plasma temperature. Based on this
assumption, the regression expression for the data can be
formulated as follows:

= q exte. 3)
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Fig. 3 Atomic-to-atomic and ionization-to-ionization ratios of the
same element. Peak intensity ratio of (@) C Il 432.310 nm/C I
431.726 nm and (b) Zr | 436.645 nm/Zr | 434.789 nm.

Fig. 3a shows the change in the intensity ratio of C II
432.310 nm to C II 431.726 nm as the surface temperature
increases. When the sample temperature increases from 350 to
600 °C, the intensity ratio decreases from 0.53 to 0.49, with
a faster decline observed between 350 °C and 400 °C compared
to the range from 400 to 600 °C. The excitation energy E; of the
432.310 nm peak is 209552.39 cm ™', which is slightly lower than
the E; of the 431.726 nm peak (209622.32 cm ™). Therefore, the
intensity ratio of both peaks decreases following an exponential
trend. Fig. 3b presents the intensity ratio of Zr I 436.645 nm to
Zr 1 434.789 nm, which exhibits an upward trend as the surface
temperature increases, increasing from 0.59 to 0.68.

Fig. 4 shows the ionization-to-atomic ratios and their corre-
sponding fitting curves. The intensity ratio of C I1 431.726 nm to
C1437.138 nm is shown in Fig. 4a, indicating an upward trend
as the sample temperature increases, increasing from 0.59 to
0.68. The excitation energy E; of C II 431.726 nm is 209
632.22 cm ', while that of C I 437.138 nm is 84 851.47 cm ™ .
Since the excitation energy for ionization is significantly higher
than that for atomic transitions, the ionization-to-atomic
intensity ratio consistently exhibits an upward trend. These
observations align with our previous discussion that surface

This journal is © The Royal Society of Chemistry 2025
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temperatures can influence the ionization states of the plasma
generated during LIBS. As the surface temperature increases,
the proportion of neutral atoms in the plasma decreases,
leading to a decrease in the intensity of atomic lines. Simulta-
neously, the number of ionized atoms in the plasma increases,
resulting in a corresponding increase in the intensity of ioni-
zation lines. Similarly, upward trends were observed in the
ratios of Zr II 435.974 nm to Zr I 434.789 nm and Zr II
437.978 nm to Zr I 434.789 nm, as shown in Fig. 4b and ¢,
respectively.

The regression parameters for the peak intensity ratios are
summarized in Table 1. The R” value for the fit of the C II
437.138 nm to C II 432.310 nm ratio is 0.889, which is signifi-
cantly higher than that for the fit of the C II 437.138 nm to C I
431.726 nm ratio (0.688). This difference suggests that as the
gap in excitation energy between peaks increases, the parameter
b in the regression equation becomes larger, thereby mini-
mizing the impact of temperature fluctuations on the intensity
ratios.

Notably, the R” value for the fit of the Zr IT 435.974 nm to Zr I
434.789 nm ratio is 0.976 and that for the fit of the Zr II
437.978 nm to Zr I 434.789 nm is 0.968, both indicating a reli-
able fitting correlation. However, despite the high R?, these ratio
curves are still difficult to use directly for surface temperature
estimation based on the fitting curves.

3.3 Machine learning-assisted LIBS for sample temperature
estimation

Although atomic-to-atomic, ionization-to-ionization, and
ionization-to-atomic ratios show strong correlations with

sample surface temperatures, relying on a single relationship
for surface temperature estimation remains challenging.

Table 1 Regression fitting for peak intensity ratios

Therefore, machine learning-assisted LIBS was applied for full
LIBS spectrum analyses, enabling a comprehensive
classification/prediction between the LIBS spectra and sample
temperatures instead of relying on a single intensity ratio. To
apply machine learning, the dataset of plasma emissions
recorded was utilized without the averaging process described
in the experimental section. Therefore, for each surface
temperature, more than 50 individual LIBS spectra were avail-
able for machine learning, resulting in a total of 915 LIBS
spectra collected across various temperatures (350, 362, 373,
382, 394, 414, 425, 438, 454, 477, 501, 526, 546, 563, 576, 588,
and 600 °C) for analyses in this study. R 4.4.2 software was used
to perform the following machine learning algorithms. All the
algorithms shown below were optimized for the best overall
results.

Principal component and discriminant function analysis
(PC-DFA) was applied. PC-DFA has been proven to be efficient
for spectroscopy analyses to establish classification models in
our previous studies.>*” In this study, LIBS spectra obtained at
different sample temperatures were classified by PC-DFA to
establish a classification model via cross-validation approach.
LIBS spectra in the wavelength range of 430.96 to 438.99 nm
were used for the PC-DFA analyses.

In PC-DFA, principal component analysis (PCA) was first
performed on the LIBS spectra to reduce the original data
dimensions (wavelengths in a spectrum) into a smaller number
of principal components (PCs), which were then used as inputs
for discriminant function analysis (DFA). The raw LIBS spectra,
initially consisting of 1024 data dimensions, were reduced to 5
PCs through PCA, capturing 71.9% of the dataset's most
significant information. This dimensionality reduction simpli-
fied the analysis by condensing the spectral information into 5

Peak 1 Peak 2 a b c R*

C1II 432.310 nm C II 431.726 nm 0.498 1.082 —334.307 0.698
C 11 437.138 nm C1431.726 nm 0.576 —29.908 —161.779 0.889
Zr 11 435.974 nm Zr 1434.789 nm 4.910 —456.195 293.350 0.976
Zr 1436.645 nm Zr 1434.789 nm 35.715 —26116.506 6001.716 0.929
Zr 11 437.978 nm Zr 1434.789 nm 5.730 —656.087 443.246 0.968

This journal is © The Royal Society of Chemistry 2025
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600 °C

350 °C

Fig.5 A PCA plot as a function of PC1, PC2, and PC3, with data points
color-coded to represent temperatures ranging from 350 °C to 600 °
C. PCA reduces the LIBS data dimensions from 1024 (wavelengths) to 5
PCs. Each dot in this figure indicates a single LIBS spectrum obtained
from different sample temperatures.

PCs while retaining the majority of the dataset's variance. Fig. 5
shows a PCA plot of the dataset as a function of PC1, PC2, and
PC3, with data points color-coded to represent temperatures
ranging from 350 °C to 600 °C. In this model, PC1 explains the
largest portion of the dataset's variance, accounting for 48.46%,
while PC2 and PC3 contribute 13.02% and 6.15%, respectively.
Through PCA, the dimensionality of the LIBS spectra was
effectively reduced from 1024 variables to 5 PCs.

PC scores for each PC represent the transformed values of
the original data after applying PCA. Therefore, the PC scores of
the 5 PCs were input into DFA using two approaches, Linear
Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA), for cross-validation classification. Fig. 6 shows
the classification results by LDA and QDA, respectively. The
direct classification accuracy of the LDA and QDA methods was
62.2% and 72.3%, respectively. Notably, most of the mis-
classified spectra fell into neighbouring groups, approximately
+15 °C from the correct temperature. This is attributed to
variations in the LIBS spectra during the measurement process.
Therefore, by allowing for a reasonable tolerance—for instance,
considering linked neighbouring groups as correct—the modi-
fied classification accuracies for LDA and QDA improve to
94.6% and 95.0%, respectively. These results highlight a strong
correlation between the LIBS spectra and sample surface
temperatures, demonstrating the potential of this classification
approach for reliable surface temperature estimation.

To further evaluate the prediction capability of the machine
learning models, the dataset was randomly divided into two
groups: a training group and a testing group. The training group
comprised 90% of the dataset and was used to build the clas-
sification model, while the remaining 10% served as the testing
group, containing spectra unknown to the model, for external
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Fig. 6 The classification results by (a) LDA and (b) QDA, respectively.
The direct classification accuracies for LDA and QDA were 62.2% and
72.3%, respectively. Notably, most of the misclassified spectra were
assigned to neighbouring groups. By allowing a reasonable toler-
ance—for example, considering linked neighbouring groups as
correct—the modified classification accuracies for LDA and QDA
increased to 94.6% and 95.0%, respectively.

validation in the PC-DFA process. The training group was used
for the classification model and the testing group was used as
testing spectra (unknown to the model) for external validation
in PC-DFA. This cycle was repeated for 30 rounds to ensure
reliability and robustness. The direct prediction accuracies are
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Fig. 7 Direct prediction accuracies for the testing group performed
using LDA, QDA, SVMs, and ANNs over 30 rounds. In each round, 90%
of the LIBS data was randomly assigned to the training group, while the
remaining 10% was used as the testing group.
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summarized in Fig. 7, which demonstrate the robustness of the
PC-DFA method in achieving consistent direct prediction
accuracies across multiple iterations of random dataset
grouping. Moreover, we also tested two additional machine
learning approaches, Support Vector Machines (SVMs) and
Artificial Neural Networks (ANNs), as alternative prediction
tools to evaluate their performance in comparison to PC-DFA.
QDA, LDA, SVMs, and ANNs demonstrated varying levels
of performance, achieving average direct prediction
accuracies of 60.2% =+ 6.4%, 58.9% =+ 6.0%, 53.3% =+ 5.8%, and
51.3% =+ 6.7%, respectively.

4. Conclusions

This study explored the use of intensity ratios for surface
temperature estimation. A series of LIBS spectra over wave-
lengths from 430.96 to 438.99 nm were collected from ZrC at
temperatures ranging from 350 to 600 °C. Intensity ratios,
including atomic-to-atomic, ionization-to-ionization, and
atomic-to-ionization line ratios, were evaluated. These ratios
demonstrated significant exponential correlations with surface
temperatures. Among the regression models, the highest R*
value of 0.976 was observed for the intensity ratio of Zr II
435.974 nm to Zr I 434.789 nm. Additionally, machine learning
algorithms were applied for full LIBS spectrum analysis,
enabling comprehensive classification and prediction of sample
surface temperatures without relying solely on a single intensity
ratio. The modified classification accuracies (counting neighbor
as correct) of PC-LDA via LDA and QDA methods were 94.6%
and 95.0%, respectively. These preliminary results demon-
strated the potential of machine learning-assisted LIBS for
sample surface temperature estimation in complex environ-
ments. In this study, we selected a temperature range of 350 to
600 °C for surface temperature estimation to test our hypothesis
that LIBS signal ratios in open air (while also avoiding oxidation
at higher temperatures over 600 °C), with the assistance of
machine learning algorithms, can be used for local and
temporal surface temperature estimations. Future research will
focus on extending machine learning-assisted LIBS to higher
temperature ranges, such as those exceeding 1000 °C, and
investigating the underlying physics driving the observed rela-
tionships between LIBS spectra and surface temperature. Of
note, extending the application to higher temperatures would
require a significantly different experimental setup, eliminating
open-air exposure. For example, LIBS would need to be con-
ducted in a highly controlled chamber system filled with noble
gases to prevent possible oxidation. At the same time, the
widespread applications***' of machine learning and artificial
intelligence techniques to LIBS have significantly advanced the
field, transforming it from semi-quantitative into fully quanti-
tative analysis and from manual interpretation into full auto-
mation. A recent study demonstrates the use of artificial
intelligence to simultaneously analyze plasma fast images and
spectra, enabling accurate prediction of key physical parame-
ters of LIBS plasmas, including plasma density, plasma
temperature, electron density, and other critical factors.”
Therefore, exploring new ML models for interpreting LIBS in
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surface temperature estimation is a promising direction. The
advantage of LIBS elemental and concentrate analysis is also
expected to be integrated with surface temperature evaluation.
Therefore, machine-learning assisted LIBS could fully demon-
strate its unique advantage for monitoring and controlling
during 3D additive manufacturing.
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