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ersality of distance metrics in
laser-induced breakdown spectroscopy†

J. Vrábel, *ab E. Képeš,ab P. Nedělńık,a A. Záděra,c P. Poř́ızka*ab and J. Kaiserab

The ability to measure similarity between high-dimensional spectra is crucial for numerous data processing

tasks in spectroscopy. Many popular machine learning algorithms depend on, or directly implement, a form

of similarity or distance metric. Despite its profound influence on algorithm performance and sensitivity to

signal fluctuations, the selection of an appropriate metric remains often neglected within the spectroscopic

community. This work aims to shed light on the metric selection process in Laser-Induced Breakdown

Spectroscopy (LIBS) and study consequences for data analysis and analytical performance in selected

applications. We studied six relevant distance metrics: Euclidean, Manhattan, cosine, Siamese, fractional,

and mutual information. We assessed their response to changes in sample composition, additive noise,

and signal intensity. Our results show specific vulnerabilities of commonly used metrics, such as the

Euclidean metric's high sensitivity to additive noise and the cosine metric's sensitivity to spectral shifts.

The Siamese metric stood out in the majority of studied cases and outperformed others in a direct

comparison within the spectra classification task. This work provides basic guidelines for selecting

metrics in various contexts. The methodology is general and can be directly extended to other

spectroscopic techniques that possess comparable data properties.
1. Introduction

Laser-Induced Breakdown Spectroscopy (LIBS)1 is an analytical
technique based on optical emission spectroscopy, capable of
rapid and inexpensive elemental analysis. It uses a high-power,
pulsed laser source focused on the target to ablate the material
and produce radiative plasma. The plasma emission is collected
and guided to the spectrometer, where the spectra are recorded
using a camera.2,3 LIBS found broad applicability ranging from
industry,4,5 biology,6,7 geology,8–10 and space exploration,11

among others. The key features of LIBS are a high repetition rate
(up to kHz (ref. 12)), the possibility of remote analysis, and
minimal requirements for sample preparation.

The rapid advancement in instrumentation and growing
demands for the analytical capabilities of spectroscopic tech-
niques necessitated the broad adoption of machine learning
(ML) techniques,13,14 especially articial neural networks
(ANNs). This is particularly evident in LIBS, where large datasets
(∼millions of measurements) containing spectra with a strongly
non-linear signal response are common. Examples of
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tion (ESI) available. See DOI:

0, 1552–1565
prominent ML techniques successfully implemented in LIBS
include PCA,15,16 SOM,9,17 SVM,18,19 ANNs,20–23 CNNs,24,25

SIMCA,26 ICA,27 and PLS-DA.28,29 An equally substantial focus on
ML is present in complementary spectroscopic techniques; e.g.,
for Raman, some impactful studies are reported in ref. 30–32
and for IR spectroscopies, ref. 33–35.

Generally, a considerable portion of MLmodels use a form of
similarity‡ computation. In supervised learning, we may need
to compute the distance between unknown spectra and labeled
representatives to determine class correspondence. In unsu-
pervised learning, for example, a reconstruction error can be
considered (in autoencoders36 or RBM37,38). Prior to computing
the distance (or more generally, the similarity), a metric must be
selected.39 It is crucial to recognize that no single distance
metric is universally optimal for all types of data or analysis
objectives. Despite the widespread use of Euclidean distance in
spectroscopic applications, it oen proves inadequate for high-
dimensional, sparse datasets, where alternative metrics may
better capture domain-specic structures. Selecting the right
metric can markedly inuence a model's behavior and lead to
substantial performance gains, underscoring the need to tailor
distance measures to the characteristics of each problem.

The authors of ref. 40 proved that for high-dimensional
spaces and arbitrarily distributed data, the concept of
‡ For purposes of this work, we use terms distance and (dis-)similarity
interchangeably but we mention formal requirements for a proper distance
metric in Section 2.

This journal is © The Royal Society of Chemistry 2025

http://crossmark.crossref.org/dialog/?doi=10.1039/d4ja00377b&domain=pdf&date_stamp=2025-05-30
http://orcid.org/0000-0001-5629-3314
https://doi.org/10.1039/d4ja00377b
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ja00377b
https://pubs.rsc.org/en/journals/journal/JA
https://pubs.rsc.org/en/journals/journal/JA?issueid=JA040006


Paper JAAS

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
7/

20
25

 8
:0

6:
44

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
proximity between two points becomes less meaningful (when
using traditional distance metrics such as Euclidean or
Manhattan). This phenomenon is one of the aspects of the
curse of dimensionality (COD), which indicates that high-
dimensional spaces are inherently sparse.§ As a result, the
contrast diminishes because the ratio of distances between the
nearest and farthest points to a given reference tends to
approach one. In spectroscopy, the effects of the COD are
further amplied by the feature sparsity of the data, where only
a fraction of the whole spectra usually contains unique
information.38,41

Furthermore, from a spectroscopic perspective, the concept
of similarity between two distinct spectra is poorly dened or
entirely absent in the literature. It is worth questioning whether
a slight change in total spectral intensity or the removal of
a single spectral line makes two spectra more dissimilar. The
answer to such questions depends on the specic task being
addressed, which motivated us to study the behavior of selected
similarity metrics across various case scenarios that allowed us
to isolate individual effects on the metrics. Ultimately, we
introduce a novel similarity metric (in the context of LIBS),
based on Siamese networks, that outperforms other metrics in
the majority of studied tasks.

We use LIBS as a representative spectroscopic technique due
to its ability to measure large datasets in a very short time and
the rich information contained in its spectra. However, the
presented methodology can be generalized to other spectro-
scopic techniques (e.g., Raman and FTIR), provided that the
data exhibit the relevant properties studied in our prior work,13

such as high dimensionality, sparsity, and redundancy. The
range of applicability is not strictly dened, but as a rule of
thumb, we consider spectra with dimensions larger than about
1000 channels to be sufficiently high-dimensional. This
heuristic is based on our preliminary experiments, which show
consistent behavior at 1024 channels, a common conguration
in single-channel Czerny–Turner spectrometers. Determining
an exact threshold is beyond the scope of this work. In this
study, we focus on broadband echelle spectra with dimensions
far exceeding the threshold.

The number of spectroscopically relevant features (spectral
lines) is just a fraction of the total wavelength variables, which
represents the sparsity. The redundancy property has two
forms; value redundancy, where a selected line is represented by
many mutually correlated wavelengths (variables), and line
redundancy, which stands for the possibility of having multiple
spectral lines representing the same physical property (e.g., the
presence of a chemical element).
1.1. Related work

To the best of our knowledge, there are no existing studies
within the LIBS literature that explicitly address the impact of
distance metric selection. Several alternative distance metrics
were successfully applied in the context of LIBS data processing,
§ By sparse in this context, we mean that data occupy only a tiny fraction of the
space, with most of it being effectively empty.

This journal is © The Royal Society of Chemistry 2025
e.g., cosine distance for database matching,42 or Mahalanobis
distance.43,44 Literature in other spectroscopic techniques covers
this topic more extensively.

Some of the most common metrics in spectroscopy include
Euclidean distance, Manhattan distance, Spectral AngleMapper
(SAM, equivalent to cosine similarity), Mahalanobis Distance
(MD), and the information-theoretic Spectral Information
Divergence (SID). In vis-NIR spectroscopy, the work reported in
ref. 45 compares Euclidean, MD, SAM, SID, and Principal
Component (PC)-based alternatives for soil spectra, with the
aim to relate the distance response to sample composition. This
study found MD to be the least effective, while PC-based
methods outperformed the rest. More recently, a similar
study46 (also in vis-NIR) utilized Euclidean, MD, SAM, and PC-
based alternatives, leading to Euclidean, SAM, and PC-MD
selected as almost-optimal. However, these results are not
directly transferable to LIBS due to the substantially different
nature of studied NIR spectra, which contained only a fraction
of spectroscopic features/lines in comparison to LIBS spectra
(with hundreds of spectral lines). Furthermore, a PC-based
transformation preserves the Euclidean distance and angles
in the original spectral space, unless too many higher compo-
nents are omitted. For LIBS spectra, keeping just 10 principal
components usually captures ∼99% of the dataset's variance.15

Because of this, the Euclidean distance is unaffected by such
transformation.

A comprehensive review of the similarity metrics relevant to
hyperspectral imaging was done in ref. 47. This included
Euclidean, Manhattan, fractional, cosine, and several more
exotic metrics with limited practical use cases. Similar to our
approach, they used both synthetic data (consisting of Gauss-
ians) and real and measured reectance spectra of pigment
patches. Despite the amount of studied details and effects (e.g.,
peak translation and peak intensity change) the study is
inconclusive for LIBS data due to the considerably lower
complexity of utilized spectra and missing quantitative
comparisons.

Siamese networks were recently used inmass spectrometry,48

but traditional metrics such as cosine similarity (referred to by
a different term in the original paper) were shown to outper-
form them. We extend the Siamese network architecture by
using the triplet loss and demonstrate that it can signicantly
outperform all standard metrics in most of the studied
scenarios. Unlike previous work, we directly compare selected
metrics in a classication task. Furthermore, we introduce
a novel LIBS distance dataset specically designed to study
metric sensitivity to changes in sample composition, marking
a unique contribution to the eld.

2. Methods and data
2.1. Distance metric

Let us consider each spectrum in the dataset as a point in m-
dimensional space. The number of dimensions is determined by
the spectrometer's resolution, which corresponds to the number
of discrete wavelengths (or other spectral variables) at which
measurements are performed. The coordinate along each
J. Anal. At. Spectrom., 2025, 40, 1552–1565 | 1553
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dimension is given by the intensity measured at the corre-
sponding wavelength. A metric space is a structure that contains
an ordered pair of a set X and a non-negative real function d(x, y),
where x and y are elements of the set, i.e. points. The function d(x,
y), called a metric, must fulll three basic conditions:

(a) d(x, y) = 0 if and only if x = y.
(b) Symmetry d(x, y) = d(y, x).
(c) Triangle inequality d(x, y) + d(y, z) $ d(x, z) (in certain

cases, a more general condition, such as the Schwarz inequality,
needs to be used37).

On any set X containing at least two elements, we can dene
an arbitrary number of distance functions. Therefore, it is
essential to specify which metric is used when discussing the
distance between two points. Examples of metrics dened on
Rm, the m-dimensional real space, include:

(a) Minkowski metric is a broad class of metrics dened as:

dpðx; yÞ ¼
 Xm

k¼1

jyk � xkjp
!1

p

; (1)

for p ˛ <1,N). The Minkowski metric is a generalization of
several well-known distance measures, given by specic values
of p. Note that in physics, the term Minkowski metric refers to
an entirely different concept, describing the at spacetime
metric in four dimensions within the context of special
relativity.

(b) Manhattanmetric is a special case of eqn (1), where p= 1:

d1ðx; yÞ ¼
Xm
k¼1

jyk � xkj: (2)

(c) Euclidean metric is a special case of eqn (1), where p = 2:

d2ðx; yÞ ¼
 Xm

k¼1

ðyk � xkÞ2
!1

2

: (3)

The Euclidean metric represents the natural distance, which
corresponds to the shortest straight line between two points.
This is a consequence of the fact that in the classical limit, we
live in a 3-dimensional Euclidean space. An important lemma
for the Euclidean distance is that it is invariant to rotations of
the m-dimensional space.

In many applications, it is advantageous to relax one or more
of the metric conditions (e.g., the triangle inequality) and utilize
a pseudo-metric. Examples of pseudo-metrics are fractional
metrics (i.e., Minkowski with p ˛ (0,1)) or the cosine similarity.

(d) Cosine similarity is a pseudo-metric, which relies on the
dot product of two vectors. When considering a spectrum as
a point in n-dimensional space, connecting this point to the
origin yields a vector. Then a normalized dot product of two
vectors is

dCSðx; yÞ ¼
Pm
k¼1

xkyk�Pm
k¼1

xk
2

�1=2�Pm
k¼1

xk
2

�1=2
; (4)
1554 | J. Anal. At. Spectrom., 2025, 40, 1552–1565
Note that this is equivalent to a cosine of the angle between
the two vectors; therefore, dCS(x, y) = cos q. A complementary
quantity, the cosine distance is oen dened as 1 − dCS(x, y).

In the spectroscopic literature, several metrics equivalent to
cosine similarity (such as SAM, normalized correlation, etc.) are
commonly used, with no qualitative difference in perfor-
mance.45,46 A distinct property of the cosine similarity is its
invariance to a total spectral intensity change. This is excep-
tionally useful for dealing with laser energy uctuations in LIBS.

(e) Mutual information (MI) quanties the amount of
information that one distribution provides about another.49 The
formal denition of MI for discrete random variables is

MIðA; BÞ ¼
X
b˛B

X
a˛A

pða; bÞlog pða; bÞ
pðaÞpðbÞ ; (5)

where A and B are random variables (for our purpose, distri-
butions of spectral intensity values), p(,) is a joint probability
distribution, and p($) is a marginal probability distribution. It is
obvious that if the two probability distributions are indepen-
dent (i.e., the joint distribution is equal to the product of two
marginals), MI is equal to zero.

MI is closely related to the Shannon entropy. While the
entropy quanties the uncertainty within a single variable, MI
measures how the entropy of one variable is reduced by
knowing the other variable. If the variables are independent,
their shared information content is zero. In contrast, if they are
highly dependent, knowing one variable signicantly reduces
the uncertainty about the other.

We use a simplied approach to calculate MI based on an
image registration algorithm.50 In the rst step, a joint histo-
gram of both spectra and two individual histograms are
computed and normalized. Then, these are used as joint and
marginal probability distributions, respectively. Note that the
binning parameter in the histogram computation signicantly
affects the result and should be optimized for a given task (we
use 100 bins). MI is then directly computed using these quan-
tities and provided denitions.

(f) Siamese neural networks (SNNs) are versatile ANN-based
models designed for similarity comparison.51,52 SNNs consist
of two or more identical subnetworks that share parameters.
These subnetworks are trained to create an embedding that
minimizes the difference between similar inputs and maxi-
mizes the difference between dissimilar inputs. To enhance the
possibility of discriminating between similar and dissimilar
examples we used the triplet loss:

L ða; p; nÞ ¼ max
��

jf ðaÞ � f ðpÞj22 � jf ðaÞ � f ðnÞj22 þ a
�
; 0
�
:

(6)

The triplet loss consists of embeddings f($), where a is an
anchor, p a positive example (similar input to the anchor), and n
a negative example (dissimilar to the anchor). By minimizing
the triplet loss, the model learns to embed the positive example
closer to the anchor than the negative example, within a speci-
ed margin a. Details of how the Siamese network was trained
are provided below.
This journal is © The Royal Society of Chemistry 2025
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2.2. LIBS spectral modeling

For simplicity, we assumed the Local Thermodynamic Equi-
librium (LTE) condition to be valid and therefore the intensity
of spectral lines can be described by Boltzmann statistics.53,54

Synthetic spectra were generated for selected elements,
temperature, and electron density. This required a database
with spectral lines and corresponding parameters (energy
levels, degeneracy factors, Einstein coefficients, and partition
functions). We used the NIST database and NIST LIBS tool to
generate spectra.55 The following parameters were used for
spectral generation: kBT = 1 eV; ne = 1 × 1017 cm−3 (Boltzmann
constant, temperature, and electron density, respectively).
2.3. Samples

(a) Fe–Co certied distance set. The set contains 11 samples,
with compositions ranging from pure iron (Fe) to pure cobalt
(Co) in 10% incremental changes (see Fig. 1). Possible devia-
tions from the exact 10% increment are only negligible in the
context of this study (less than 0.5 wt%). Some minor elements,
such as manganese (Mn) and lead (Pb), may be present in
concentrations below 0.2 wt%. The exact composition and
further details are provided in ref. 56.

(b) Fe & Al standards: nine samples from three different manu-
facturers were used: SPL LABMAT (CZ), Bundesanstalt für Materi-
alforschung und prüfung (BAM, DE), and ERM Certied Reference
Materials (BE). Among these, six samples were steel standards with
varying compositions of minor elements and three samples were
aluminum alloys. The samples and their compositions are listed in
Table 1. We specically selected Fe and Al-dominated matrices due
to their distinct differences in spectral signals.
2.4. LIBS experiment

For both sample sets, the LIBS Discovery instrument, developed
at the Central European Institute of Technology, Brno
Fig. 1 Composition diagram of the certified distance sample set.

Table 1 List of samples (standards) with information about the manufac
provided. Elemental concentrations are rounded to two decimal places

Producer ID Alloy Fe Al C

SPL 19/6 Steel 81.02 0.01 0.03
SPL 20/6 Steel 70.95 — 0.04
SPL 21/6 Steel 96.99 0.02 0.36
ERM EB313 Al 0.39 94.73 —
ERM EB316 Al 0.11 87.39 —
BAM 310 Al 0.07 98.81 —
BAM C2 Steel 78.06 — 0.01
BAM C3 Steel 74.01 — 0.03
BAM C8 Steel 69.87 — 0.14

This journal is © The Royal Society of Chemistry 2025
University of Technology (Czech Republic), was used. A laser
source, Q-switched Nd:YAG laser Quantel CFR Ultra (532 nm, 10
ns, 20 Hz), was focused on the sample surface using a VIS-
graded triplet lens with a focal length of 24.5 mm forming
a spot size of 100 microns. The emission of the plasma was
collected using wide-angle optics (45 degrees) and guided using
an optical ber to an echelle spectrometer (EMU-65, Catalina
Scientic). Plasma emission was detected using a gated EMCCD
camera. Samples were analyzed in an air atmosphere. The result
of such a measurement was a spectrum with 40 002 values,
representing intensity at a corresponding wavelength starting at
200 nm with an equidistant step of 0.02 nm. The system
parameters were chosen according to prior experience with LIBS
experiments; the gate delay of the camera was 1 ms and the gate
width was 50 ms (minimum for the camera used). 20 mJ ablation
energy was used for the Fe–Co sample set and three energies
(10, 20, and 30 mJ) for Fe & Al standards.
2.5. Data

(a) The Fe–Comeasured dataset (available at ref. 56) contains 11
samples with 50 spectra per sample. Spectra were measured
from the certied standards (see Section 2.3).

(b) The Fe–Co generated dataset contains simulated spectra
replicating the composition of their measured counterparts.
The raw spectra were then modied by adding noise drawn
from normal distributions N(0,0.012), N(0,0.022), and N(0,0.052).
We use the notation N(m,s2), where m is mean s2 variance, and s

standard deviation. The standard deviations are scaled relative
to the maximum value in the corresponding dataset.

(c) The Fe & Al dataset consists of 27 sub-categories, each
dened by a combination of sample and experimental setup.
These sub-categories can be distinguished either by class, based
on the predominant composition (e.g., steel, and Al alloy), or by
experimental conditions (such as the three laser energy levels).
Each sample/setup includes 50 available spectra. It is important
to note that Fe and Al matrices were chosen due to their
fundamental differences in the number of spectral lines: Fe
spectra are characterized by a large number of lines, whereas Al
spectra have relatively few. The signal intensity is inuenced by
the laser energy.

(d) An LIBS benchmark classication dataset (available at
ref. 57) was originally designed for the challenging out-of-
turer, ID, matrix, and composition in wt%. Only selected elements are
and do not reflect the uncertainty of provided values

Cr Co Mn Mo Ni Si

13.08 0.02 0.66 0.44 3.91 0.6
18.26 0.15 1.43 0.27 7.93 0.38
0.08 — 1.21 0.01 0.02 1.26
0.12 — 0.5 0 — 0.36
0.01 — 0.2 — 0.02 11.98
0 — 0 — 0 0.08

14.72 — 0.69 0.01 6.12 0.37
11.89 — 0.72 0.03 12.85 0.46
17.96 0.02 1.7 — 8.9 1.41

J. Anal. At. Spectrom., 2025, 40, 1552–1565 | 1555
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sample classication of LIBS spectra. The dataset contains
spectra from 138 soil samples (500 spectra per sample for
training and 20 000 spectra for test in total), which are grouped
into 12 distinct classes. The dataset was introduced for the
EMSLIBS 2019 contest and serves as a benchmark for
comparing classication algorithms in the LIBS community.
Elemental compositions of samples are provided in metadata.
2.6. Siamese network training

We trained the Siamese network using the training subset of the
LIBS benchmark classication dataset, consisting of 10 000
labeled spectra (100 per sample). Spectra were normalized by
the total emissivity of the plasma, estimated by summing all
intensity values in the spectra. Triplets were constructed based
on class correspondence, with positive examples from the same
class and negatives from randomly selected distinct classes. The
model was selected through heuristic pseudo-optimization,
informed by prior experience with ANN-based models in spec-
troscopy. The input size of the model is 40 000. It has two
convolutional layers with kernel sizes of 50 and 10, strides of 2
and 2, and paddings of 1, each producing 50 output channels.
Aer the rst convolutional layer, a max-pooling layer with
a kernel size 7 and stride 3 is applied. Each convolutional layer
is followed by a ReLU activation function. The output is at-
tened and processed using a fully connected layer with 256
hidden units, followed by an output with 10 units. The model is
trained for 50 epochs with a batch size of 128 and a learning rate
of 1 × 10−4. The predictions of the model (embeddings) are
compared using the L2 norm.
Fig. 2 Example spectra from the Fe–Comeasured dataset (right). Details
but nonlinear dependence on composition.

Fig. 3 Example of a spectrum from the measured Fe–Co dataset, and i
medium N(0,0.022), and high N(0,0.052), related to the max. intensity valu
of interest with majority of lines.

1556 | J. Anal. At. Spectrom., 2025, 40, 1552–1565
The models were trained using cloud GPU services (Azure
and Google Colab), while predictions, which require consider-
ably less computational power, were performed locally on
a CPU. It is important to note that simulated spectra were
resampled to match the model's input resolution before
applying the Siamese metric.
2.7. Data visualization and processing

The dependence of the signal on composition is evident in
Fig. 2. The intensity of relevant lines evolves non-linearly in
response to changes in composition. The number of relevant
features (i.e., spectral lines) is comparable for both matrices.

The magnitude of additive noise in measured spectra is
depicted in Fig. 3. For low and medium noise, the majority of
relevant lines remain detectable, either by a trained expert or an
appropriate algorithm. For high noise, a substantial number of
lines become indistinguishable from noise. A similar
phenomenon is visible in Fig. 4, for simulated spectra. The
discrepancies between simulated and measured spectra origi-
nate from multiple factors (non-ideal model, non-complete
database of transitions, atmospheric conditions, calibration of
the spectrometer, etc.).

Unless indicated otherwise, spectra were normalized by the
total emissivity prior to distance computations. For measured
spectra, no intensity calibration or background subtraction was
performed, apart from dark image subtraction. The simulated
spectra were multiplied by an efficiency function to suppress
intensity in the UV region. This was done to better match the
measured spectra, as UV wavelengths are strongly absorbed by
of a selected spectral range. Themeasured signal exhibits a monotonic

ts noise-augmented alternatives. Used noise levels are low N(0,0.012),
e. Note that this is a truncated version of the spectra showing a region

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Example of a spectrum from the simulated Fe–Co dataset, and its noise-augmented alternatives. Used noise levels are low N(0,0.012),
medium N(0,0.022), and high N(0,0.052), related to the max. intensity value. Note that only a selected spectral range is plotted for better
readability.
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the atmosphere. In the classication task, spectra were
normalized by their maximal value.

3. Results and discussion

This section presents our ndings on the behavior of different
distance metrics in spectroscopically relevant scenarios. We
begin by analyzing how metrics respond to continuous changes
in sample composition, followed by the effects of varying noise
levels. Next, we study the impact of changes in total signal
intensity, and nally, we compare the classication perfor-
mance of K-Nearest Neighbors (KNNs) using various distance
metrics.

3.1. Distance vs. composition

First, we show how distance metrics evolve in response to
changes in sample composition, utilizing Fe–Co datasets 2.5.1
Fig. 5 Distance heatmaps for (samplemean) spectra from the Fe–Come
represent samples, starting from index 0 (pure Fe) to index 10 (pure Co) in
samples, with darker colors indicating smaller distances and lighter colo

This journal is © The Royal Society of Chemistry 2025
and 2.5.2 (measured and simulated). Distances between spectra
from all composition combinations were computed and visu-
alized as distance heatmaps. For measured spectra (Fig. 5), the
mean of 50 spectra was taken for each sample. The Euclidean
distance exhibited an almost linear response w.r.t. sample
composition change. Other metrics from the Minkowski
metrics family (Manhattan and fractional) behaved similarly to
the Euclidean metric in a qualitative manner and varied only in
absolute values. The cosine distance exhibited a gradual
increase with changes in composition, in contrast to the mutual
information distance, which showed the opposite behavior.
While all metrics had a broken symmetry about the secondary
diagonal, the effect was particularly evident for the Siamese
metric. This property could be explained by the variations in the
information content within the selected reference spectrum.

For generated spectra, only a single spectrum per composi-
tion was used. Distance matrices are presented in Fig. 6. Despite
asured dataset. Eachmetric is normalized by themax value. The indices
10% increments. Each cell shows the normalized distance between two
rs indicating larger distances.
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Fig. 6 Distance heatmaps for spectra from the Fe–Co simulated dataset. Each metric is normalized by the max value. The indices represent
samples, starting from index 0 (pure Fe) to index 10 (pure Co) in 10% increments. The trends in distances are consistent with the measured data,
except for the Siamese metric, which was trained on a substantially different dataset (see discussion in Section 2.6).
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the simplicity of the employed spectrum generation algorithm,
the results from simulated data are qualitatively comparable to
those frommeasured data. Discrepancies could be attributed to
the absence of noise in the simulated spectra. Simulated spectra
enabled a more controlled study of similarity, as they omitted
signal contributions from minor elements (that are always
present in measurements) and experimental noise. This fact
was subsequently used to isolate the effect of the additive noise.

To examine ner details, a reference spectrum (pure Fe) was
selected and used to calculate pairwise distances between the
reference and all remaining compositions in the Fe–Co dataset
(Fig. 7). This essentially is a line plot of the rst column in each
heatmap. The analysis further supports the claim that the
Euclidean metric exhibits an almost linear response to
composition changes. While Manhattan and fractional
Fig. 7 Distance curves. Distances between the reference spectrum (pur

1558 | J. Anal. At. Spectrom., 2025, 40, 1552–1565
distances showed slight deviations from linearity in the case of
simulated spectra, they closely aligned with the Euclidean
metric for measured spectra. The non-smoothness of the frac-
tional distance can be attributed to experimental noise and
numerical errors stemming from the algorithm instability. Both
the cosine and Siamese distances exhibited similar trends and,
for simulated data, resembled a sigmoid function. In contrast,
mutual information showed a sharp increase toward higher
dissimilarity, followed by an almost linear progression. This
behavior is likely due to the additional entropy introduced by
new spectral lines from mixed composition samples, which
were absent in the pure Fe spectrum. These trends in metric
behavior are crucial for the discussion on classication
performance in the following sections. While the Euclidean
metric is the most human-interpretable metric (due to
e Fe) and mixed Fe–Co spectra.

This journal is © The Royal Society of Chemistry 2025
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correlation with compositional change), it may not necessarily
be optimal for a classication algorithm. In contrast, for clas-
sication tasks, it is advantageous to overlook minor composi-
tional changes corresponding to intra-class spectral variability.
3.2. Noise sensitivity

Analogically to the previous case, we studied measured and
simulated spectra from Fe–Co datasets 2.5.1 and 2.5.2 that were
altered by additive noise. Noisy spectra of pure Fe were selected
as the reference for distance calculations. The noise was nor-
mally distributed around zero mean m with a specied variance
s2, or standard deviation s, and was taken in the absolute value
to prevent unphysical negative intensity values. Three noise
levels were considered: low N(0,0.012), medium N(0,0.022), and
high N(0,0.052). Standard deviations were related to the
maximal intensity observed in spectra.

In measured spectra (see Fig. 8), the mutual information
metric was signicantly compromised even by low noise. This is
attributable to the employed algorithm for mutual information
estimation, which relies on histograms. Given that the noise
distribution remained consistent in all spectra, a considerable
fraction of the information was washed out. The remaining
lines of higher intensity were not sufficient to provide the
necessary contrast. Minkowski metrics with lower p parameters
were more prone to the noise-related performance decrease.
While the Manhattan metric was still usable for low-noise
setup, its effectiveness decreased for medium noise. The
Euclidean metric lost the majority of its contrast in the high
noise setups. The cosine metric demonstrated resilience to
small and medium noises but started to fail for high noise. The
Fig. 8 Distance curves. Distances between the referencemeasured spec
N(0,0.012), medium N(0,0.022), and high N(0,0.052), related to the maxim

Fig. 9 Distance curves. Distances between the reference simulated spec
N(0,0.012), medium N(0,0.022), and high N(0,0.052), related to the maxim

This journal is © The Royal Society of Chemistry 2025
Siamese metric proved resilient to all tested noise levels. This
remarkable property was most likely a consequence of the
utilized architecture of the Siamese neural network, where the
dimensionality reduction at the output layer served as
a denoising function.

For simulated spectra (see Fig. 9), themajority of results were
analogical to measured spectra, except the Siamese metric. The
response curve of the Siamese metric was non-smooth and
discontinuous at certain concentrations. This is a consequence
of the fundamental differences in simulated and measured
data, as the Siamese network model was trained solely on
measured data. To enable the use of the Siamese metric, the
simulated spectra were resampled to match the dimensionality
and resolution of the measured spectra, which consist of 40 002
points spanning from 200 nm in 0.02 nm increments. Such
resampling cannot correct for differences in spectral intensities
or the vastly different number of spectroscopic features present
in real measurements. This limiting factor of the Siamese
metric can be potentially treated either by ne-tuning the model
on the target task or by more advanced spectra transfer
approaches that can correct signal discrepancies (see 58,59).

The noise sensitivity study revealed that Minkowski family
metrics are highly susceptible to noise. Therefore, we dropped
them from further studies and kept only Euclidean as the best-
performing representative. Note that we also provide additional
distance heatmaps for noisy spectra in the ESI.†
3.3. Signal intensity dependence

The total emissivity of LIBS plasma is indirectly inuenced by
the energy of the incident laser (since higher-energy pulses
trum (noisy Fe) andmixed Fe–Co noisy spectra. The noise levels are low
al intensity value in the dataset.

trum (noisy Fe) andmixed Fe–Co noisy spectra. The noise levels are low
al intensity value in the dataset.
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ablate more material, producing a hotter, denser plasma and
increasing overall emission), leading to variations in intensities
of measured spectra. Here, we used the Fe & Al dataset,
measured on three distinct energies, to demonstrate the effect
of total intensity change. The rst spectrum in the dataset (steel
sample, laser energy 10 mJ) was selected as a reference point.
The simplicity of the dataset (consisting of only two matrices
with signicantly different spectra) allows us to clearly
demonstrate the non-universality of the Euclidean metric.

Distances between the reference spectrum and each of the
remaining spectra were computed individually using the
selected metrics. For brevity, we present only the Euclidean,
cosine, mutual information, and Siamese metrics; the remain-
ing Minkowski-family metrics performed worse than Euclidean,
as detailed in the ESI.†

Fig. 10 schematically shows how these pairwise distances
were computed: the reference spectrum is compared to subse-
quent spectra from three samples, each measured at three
energies, yielding 50 spectra per sample-energy combination.
Error bars in the following gures represent standard devia-
tions across repeated acquisitions for each condition.
Fig. 10 The distance diagram showing how pairwise distances were
computed. The first (reference) spectrum, from the steel sample at 10
mJ, is compared to subsequent spectra from three samples, each
measured at three energies, yielding 50 spectra per sample-energy
combination. Error bars in the following figures represent standard
deviations across repeated acquisitions for each condition.

Fig. 11 Euclidean distances between the reference spectrum (steel sam
dataset. The red dashed ellipses highlight cases where distances betwee
illustrating the counterintuitive behavior of the Euclidean metric in this s

1560 | J. Anal. At. Spectrom., 2025, 40, 1552–1565
Computed distances based on the diagram (Fig. 10) for the
Euclidean metric are shown in Fig. 11. The outcome is counter-
intuitive, as demonstrated by marked distances in Fig. 11 (red
dashed ellipses). The Euclidean distance between the reference
spectrum (steel sample, laser energy 10 mJ) and certain other
steel spectra (measured at higher laser energies) was greater
than the distance between the reference and marked Al alloy
spectra. This could potentially lead to misclassication in
a distance-based classication algorithm. While this behavior
can be mitigated through proper spectral normalization (as
detailed in the ESI†), preserving the original shape of spectra is
sometimes necessary for specic applications (e.g., imaging) to
retain spatial information.

Distances obtained from the cosine metric are shown in
Fig. 12. In contrast to the Euclidean metric, spectra from the
steel matrix were clearly separable from those of the Al alloys.
Moreover, this separation was not affected by changes in laser
energy and the corresponding changes in intensity. This is
a consequence of the intrinsic data normalization in the cosine
metric (as discussed in Section 2.1).

The mutual information-based metric was capable of sepa-
rating matrices without normalizing the data, owing to its
scaling invariance (see Fig. 13). However, the contrast between
steel and Al alloy matrices was lower than that for the cosine
metric. Note that the mutual information is natively a similarity
metric, so the distance was computed as 1 −MI. The advantage
of MI is its capability to compare spectra with non-matching
resolution or intensity levels (as it depends only on histo-
grams). A considerably higher error bar of the rst bin was
caused by the presence of the reference spectrum in the spec-
trum batch corresponding to the rst sample/energy bin. The
presence of an identical spectrum maximized the MI, which
biased the mean and standard deviation values of the bin.

The highest contrast was achieved using the Siamese metric
(Fig. 14). This result underlined the validity of utilizing alter-
native metrics. Note that the employed Siamese network model
ple, laser energy 10 mJ) and corresponding spectra from the Fe & Al
n two steel spectra exceed those between steel and Al alloy spectra,
etup.

This journal is © The Royal Society of Chemistry 2025
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Fig. 12 Cosine distances between the reference spectrum (steel sample, laser energy 10 mJ) and corresponding spectra from the Fe & Al
dataset.
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was trained on a different dataset (originally designed for the
classication of soil spectra) but performed well on metal
spectra.
3.4. Classication performance

To move beyond qualitative metric comparisons and case
studies, we provide a direct quantitative evaluation in the form
of classication accuracy performance. We employed KNNs as
a straightforward and interpretable distance-based classier to
isolate the effect of different metrics. This classication task
was based on the EMSLIBS 2019 contest21 and the LIBS
benchmark classication dataset.57 In the contest, the winning
team achieved classication accuracy exceeding 90%. This
result was made possible through the use of more complex data
processing algorithms, including a human-in-the-loop strategy.
Standalone classication algorithms (e.g., ANNs, SVM, KNNs,
etc.) typically achieved accuracy below 70%. The primary
Fig. 13 MI distances between the reference spectrum (steel sample, las

This journal is © The Royal Society of Chemistry 2025
objective was not to surpass baseline or state-of-the-art algo-
rithms for the benchmark dataset, but rather to study the effect
of distance metrics.

The KNN model was trained on the training data subset (50
spectra per sample, 5000 in total) and was later used to predict
the test data (20 000 spectra). Optimal values for the k parameter
were determined on the validation data from values (2, 5, 10, 15,
20, 30,., 90, 100, 150, 200, 250, and 300) for each metric. In
Table 2, we compared validation and test performances for
selected metrics. Note that we omitted the Manhattan and
fractional metrics as they achieved signicantly worse perfor-
mance during the preliminary validation evaluation. The
mutual information metric was also excluded due to the
extremely high computational cost of calculating the Gram
matrix for KNNs and because it was outperformed by other
metrics during validation. The Siamese metric performed best,
particularly when a higher number of neighbors k was consid-
ered, compared to lower k values for standard metrics. Notably,
er energy 10 mJ) and corresponding spectra from the Fe & Al dataset.
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Fig. 14 Siamese distances between the reference spectrum (steel sample, laser energy 10 mJ) and corresponding spectra from the Fe & Al
dataset.

Table 2 Classification results for k-means on the LIBS benchmark dataset. Where indicated, the test and validation spectra are randomly shifted.
The shift interval is <−3,3>. For shifted data, we use the same k values as those for unshifted (respectively) to ensure comparability of results

Metric Euclidean Cosine Siamese Eucl. + shi Cos. + shi Siam. + shi

Validation acc. (%) 83.6 86.9 95.4 70.1 71.9 72.0
Test acc. (%) 59.2 61.0 64.7 53.8 53.3 54.0
Best k valid 5 5 7 — — —
Best k test 9 10 40 — — —
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for the Siamese metric, comparable test performance was ach-
ieved across a range of k values (up to k= 200), though we report
only the lowest k value. This raises new questions to be explored
in future research.

To study the impact of spectral shis, validation, and test
spectra were randomly shied by s pixels within the range of−3
to 3. The drop in classication performance due to these shis
was less pronounced in the test data, likely due to the inherent
complexity of the (out-of-distribution) classication task. While
the Siamese metric still outperformed other metrics, the gap
was signicantly smaller for shied spectra. The largest
performance drop due to the shi was observed for the Siamese
metric, followed by the cosine metric. It is worth noting that the
Siamese network architecture used in this study was not opti-
mized to handle spectral shis. This limitation could poten-
tially be mitigated by incorporating additional convolutional
and max-pooling layers, which will be explored in future work.

4. Conclusion

We studied the importance of distance metric selection for
various tasks in spectroscopic data processing. Our extensive
analysis underlines the absence of a universal distance metric
for (LIBS) spectroscopic data across all tasks of interest. The
selection of an appropriate metric depends on three critical
factors: human interpretability, computational cost, and task-
dependent performance. Metrics such as Euclidean and
1562 | J. Anal. At. Spectrom., 2025, 40, 1552–1565
Manhattan, despite their simplicity and ease of interpretation,
fall short in robustness across varying noise levels and laser
energies. The cosine metric is a more robust alternative when
data normalization is critical but is sensitive to spectral shis.
The computationally expensive mutual information offers scale
invariance but struggles with additive noise. The Siamese
network-based metric stands out for its all-round performance
and resilience to noise and intensity changes but requires
substantial computational resources and data to build the
model. Its effectiveness is also determined by the specic
architecture of the neural network, suggesting the possibility of
task-specic tuning for optimal results.

Future research could address the task optimization of
metrics based on Siamese networks or the development of
a more advanced, task-universal metric based on a foundation
model.

Data availability

Fe–Co measured dataset: this dataset contains spectra from 11
samples with 50 spectra per sample, measured from certied
standards. It is available at https://doi.org/10.6084/
m9.gshare.21984989.v1. Fe–Co generated data: the
parameters to generate these data are described in the main
text and the code will be available upon request. LIBS
benchmark classication dataset: this dataset comprises
spectra from 138 soil samples grouped into 12 distinct
This journal is © The Royal Society of Chemistry 2025
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classes, originally designed for out-of-sample classication
challenges in LIBS spectra. Available at Figshare: https://
doi.org/10.6084/m9.gshare.c.4768790.
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J. Kaiser, Machine Learning in the Context of Laser-Induced
Breakdown Spectroscopy, in Laser Induced Breakdown
Spectroscopy (LIBS), John Wiley & Sons, Ltd, 2023, pp. , pp.
305–330, available from: https://onlinelibrary.wiley.com/
doi/abs/10.1002/9781119758396.ch15.
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J. Kaiser, Interpreting convolutional neural network
classiers applied to laser-induced breakdown optical
emission spectra, Talanta, 2024, 266, 124946, https://
www.sciencedirect.com/science/article/pii/
S0039914023006975.
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