## **Green Chemistry**



## **CORRECTION**

View Article Online



## Correction: A dynamic sulfur-rich network from silicone industry waste

Cite this: DOI: 10.1039/d5gc90203g

Zixiao Wang,†<sup>a</sup> Yuanyuan Qiu,†<sup>a</sup> Zheju Cheng,<sup>a</sup> Honglu Huang,<sup>a</sup> Yang Sui,<sup>b</sup> Xin Liu,<sup>a</sup> Yijie Yang,<sup>a,c</sup> Yue Lu,<sup>a</sup> Huie Zhu,<sup>c</sup> Qingqing Ji\*<sup>a</sup> and Jiajun Yan\*<sup>a</sup>

DOI: 10.1039/d5gc90203g

rsc.li/greenchem

Correction for 'A dynamic sulfur-rich network from silicone industry waste' by Zixiao Wang et al., Green Chem., 2025, 27, 13089–13098, https://doi.org/10.1039/D5GC02864G.

The authors regret that the scale bars in Fig. 4b and Fig. S18a were incorrect. The corrected Fig. 4 is shown here. The supplementary information has also been updated to include a corrected version of Fig. S18.

<sup>&</sup>lt;sup>a</sup>School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China. E-mail: jiqq@shanghaitech.edu.cn, yanjj@shanghaitech.edu.cn

<sup>&</sup>lt;sup>b</sup>School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China

<sup>&</sup>lt;sup>c</sup>Zhangjiang Laboratory, Shanghai 201210, P. R. China

<sup>†</sup>These authors contributed equally to this work.

Correction



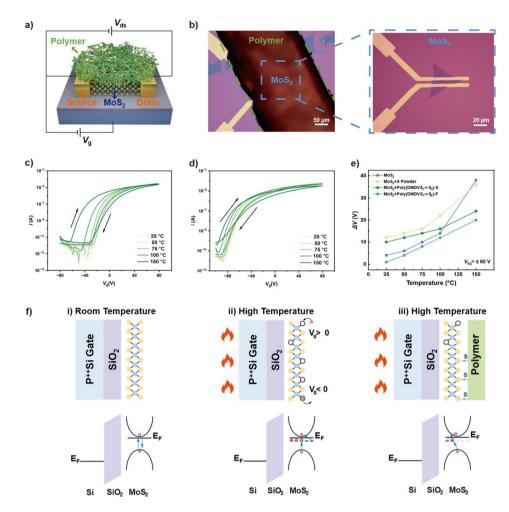



Fig. 4 Electrical characteristics of the MoS<sub>2</sub>/poly(DMDVS<sub>1</sub>-r-S<sub>9</sub>)-F device. (a) Scheme and (b) optical micrograph of the MoS<sub>2</sub>/poly(DMDVS<sub>1</sub>-r-S<sub>9</sub>)-F device. MoS<sub>2</sub> and poly(DMDVS<sub>1</sub>-r-S<sub>9</sub>)-F were outlined by the blue and green dashed lines, respectively. Transfer curves of the MoS<sub>2</sub> FETs (c) without and (d) with poly(DMDVS<sub>1</sub>-r-S<sub>9</sub>)-F measured across varying temperatures under vacuum.  $V_{\rm q}$  from -100 to 80 V back and forth at  $V_{\rm ds}$  = 1 V. (e) Extracted hysteresis window as a function of temperature incorporating various sulfur-containing materials. (f) Proposed mechanisms for hysteresis alongside the corresponding band diagrams: thermally activated SVs act as electron trapping/de-trapping centers in MoS<sub>2</sub>, whereas sulfur moieties in the polymer partially passivate these SVs, thereby suppressing the hysteresis window at elevated temperatures.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.