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Solvent selection in pharmaceutical crystallization plays a pivotal role in determining overall manufacturing

efficiency while also significantly impacting environmental performance and regulatory compliance. A

data-driven solution for sustainable solvent selection, applicable to both single and binary solvent

systems, was developed and integrated into SolECOs (Solution ECOsystems), a modular and user-friendly

platform for Sustainable-by-Design solvent selection in pharmaceutical manufacturing. A comprehensive

solubility database containing 1186 active pharmaceutical ingredients (APIs) and 30 solvents was con-

structed and used in conjunction with thermodynamically informed machine learning models, including

the Polynomial Regression Model-based Multi-Task Learning Network (PRMMT), the Point-Adjusted

Prediction Network (PAPN), and the Modified Jouyban–Acree-based Neural Network (MJANN), to predict

solubility profiles along with associated uncertainties. Sustainability assessment was performed using both

midpoint and endpoint life cycle impact indicators (ReCiPe 2016) and industrial benchmarks such as the

GSK sustainable solvent framework, enabling a multidimensional ranking of solvent candidates.

Experimentally validated case studies involving APIs such as paracetamol, meloxicam, piroxicam, and

cytarabine confirmed the approach’s robustness, adaptability to various crystallization conditions, and

effectiveness in supporting single and binary solvent screening and design.

Green foundation
1. This work advances green chemistry by introducing SolECOs, a sustainable-by-design digital platform for solvent and solvent mixture selection, integrating
predictive modelling and comprehensive sustainability assessment to support greener pharmaceutical manufacturing.
2. SolECOs predicts optimal single or binary solvents for 1186 APIs using a database of 30 000 + solubility points for 30 solvents, ranked via 23 Life Cycle
Assessment indicators and the GSK Environmental Assessment Framework. Predictions were experimentally validated for four APIs.
3. Greener performance could be achieved by expanding the database to include more bio-based solvents, adding renewable feedstock pathways in LCA, and
integrating real-time process data for adaptive, in-process solvent design.

1. Introduction

More than 80% of small-molecule pharmaceuticals are deli-
vered in solid form.1,2 As a fundamental step in solid–liquid
phase transformation, crystallization is pivotal in pharma-
ceutical manufacturing, where solvent selection serves as a key
determinant of process efficiency and product quality.3,4 An
appropriately chosen crystallization solvent affects solubility
and supersaturation behavior, which in turn enables control

over crystal properties and, more importantly, ensures high
product yield.5,6 With the growing adoption of Green
Chemistry7 and Quality by Design (QbD)8 in pharmaceutical
manufacturing, solvent selection has become central to
addressing not only product quality and process efficiency but
also sustainability, regulatory compliance, and life cycle
assessment (LCA). This shift is reflected in guidelines such as
ICH Q8-Q12,9 the REACH regulation,10 and initiatives includ-
ing the Green Pharmacy Initiative and Pharmaceuticals in the
Environment (PiE), which emphasize reduced volatile organic
compounds (VOCs) emissions, lower carbon footprint, and
improved atom economy.11–14

On average, it takes approximately 12.5 years and up to
£1.15 billion to bring a new drug to market.15 While many
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factors contribute to this painstaking and costly process, ineffi-
ciencies in crystallization solvent selection remain a persistent
bottleneck, particularly in unit operations such as API syn-
thesis, crystallization, liquid–liquid extraction, wash-filtration,
drying, and granulation.16 Despite decades of accumulated
experience, solvent selection in crystallization continues to rely
heavily on empirical rules and trial-and-error strategies.17–19

These approaches are time-consuming, resource-intensive, and
heavily reliant on expert judgment, which collectively limits
efficiency and scalability in process development.20,21

Driven by these challenges, solvent selection is gradually
transitioning from traditional empiricism to data-driven intel-
ligent screening and machine learning (ML)-assisted design
approaches.22–26 Technically, the objective of solvent selection
aligns closely with solubility prediction, an area that has seen
substantial progress in recent years.27–33 However, based on
accurate characterization of solubility behavior, a critical
differentiating step lies in effectively linking API dissolution
behavior in a given solvent with its environmental footprints
under variable real-world production conditions.

Solvent selection approaches are developed to meet various
single or multi-objective targets, such as maximizing product
yield, controlling crystal polymorphism, and enhancing
solvent sustainability.34,35 From an industrial standpoint, a key
and often unavoidable goal is to reduce environmental impact
while still achieving the desired product yield. Computer-
Aided Molecular Design (CAMD) serves as a systematic
approach to identify crystallization solvents.36–41 Karunanithi
et al.42 developed a framework combining CAMD, database
screening, and experiments, with attention to crystal mor-
phology. Wang and Lakerveld43 presented a systematic
approach for the simultaneous optimization of process con-
ditions and solvent selection for continuous crystallization
including solvent recycling. Chai et al.44 introduced the Grand
Product Design (GPD) model, incorporating technical, econ-
omic, and regulatory factors. Liu et al.45 proposed an ML-inte-
grated CAMD approach focused on solvent recovery. Watson
et al.46 designed a CAMD-based method for optimal solvent
blend selection in pharmaceutical crystallization, capable of
simultaneously determining ideal process temperature, solvent
and anti-solvent species, and their compositions.

To improve practical applicability, efforts have focused on
user-friendly tools that integrate process needs, solvent pro-
perties, and environmental constraints.47–51 Larsen et al.52

developed a green solvent selection tool for printed elec-
tronics, organizing a wide range of solvents based on Hansen
solubility parameters and sustainability indicators. Similarly,
an interactive tool has been developed to support solvent selec-
tion by incorporating chemical functionality, physical pro-
perties, regulatory considerations, and Safety, Health, and
Environmental (SHE) impacts.53

Despite the emergence of various solvent design and selec-
tion frameworks in recent years, significant limitations
remain. Firstly, the implementation complexity of many
methods and models hinders their broader adoption. While
computational methods demonstrate strong performance in

specific case studies, they typically rely on intricate parameter
settings and assumptions, making it difficult to generalize or
directly apply the results in real-world scenarios. Without sub-
stantial expertise, users may struggle to navigate these tools
effectively, thereby diminishing the cost and efficiency advan-
tages of non-experimental approaches. Secondly, the “optimal”
solvents identified by computational approaches sometime
lack practical feasibility. These designed solvents may face
challenges in industrial adoption due to high synthesis costs,
limited commercial availability, supply chain constraints, or
issues related to transportation and storage. Thirdly, existing
methods often lack flexibility and consistency, particularly in
sustainability assessment. Current industrial practices rely on
diverse and sometimes inconsistent sustainability indicators,
each emphasizing different aspects – such as carbon footprint,
toxicity, biodegradability, or energy consumption during pro-
duction. The absence of a unified evaluation framework makes
it difficult to comprehensively assess and compare the environ-
mental impacts of solvents or solvent mixtures.

To address these limitations, this study sets out three key
objectives. First, to improve usability, we develop a computa-
tionally efficient and user-oriented platform that enables
solvent selection without requiring advanced modeling exper-
tise or high-performance computing. Second, to enhance prac-
tical relevance, the framework focuses on commonly used sol-
vents and their binary combinations, avoiding hypothetical or
industrially inaccessible candidates. Third, to accommodate
diverse sustainability criteria, the methodology incorporates
multiple assessment schemes, allowing engineers and experi-
mentalists to select evaluation criteria aligned with specific
environmental, health, or regulatory frameworks.

2. Methodology

A computational framework with a sequential workflow was
developed to streamline solvent selection and screening for
APIs in both single and binary solvent systems. The process
began with the construction of a comprehensive solubility
database with over 30k data points for 1183 APIs in organic
solvent/water systems, covering both single and binary compo-
sitions. Additionally, the environmental impact of solvent
usage was systematically assessed by evaluating the sustain-
ability performance of 30 solvents and their mixtures. To
enable quantitative solvent selection, the 3D molecular struc-
tures of APIs were characterized using 347 molecular descrip-
tors. Key descriptors were identified through a combination of
random forest modeling and Monte Carlo sensitivity analysis.

Hybrid modeling approaches integrating ML and theore-
tical methods were developed. A Polynomial Regression
Model-based Multi-Task Learning Network (PRMMT) was
designed with multiple shared layers to accommodate
different design requirements. The Point-Adjusted Prediction
Network (PAPN) was developed for solubility prediction at
specific temperatures, while the Modified Jouyban–Acree
Model-based Neural Network (MJANN) was tailored to handle
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the complexities inherent to the design of binary solvent
systems.

To enhance reliability, discrepancies between predicted and
actual solubility values in the validation set were quantified
and mapped to optimal probability distributions of prediction
residuals. By preserving probability variations across different
distribution values, a robust solvent selection framework was
established, ensuring reliable solvent recommendations. The
entire workflow has been integrated into the user-friendly
SolECOs platform, providing an efficient tool for solvent
screening and selection (Fig. 1).

2.1. Data collection

2.1.1. Database for solubility. To accommodate the diverse
range of potential model compounds involved in the crystalli-
zation process, the solubility database was curated based on
compound value and complexity, selecting a total of
1186 high-value compounds that are essential for the prepa-
ration and production of APIs approved by the World Health
Organization (WHO). The solubility data for these compounds
in 30 commonly used single solvents and binary solvent mix-
tures were systematically retrieved through comprehensive lit-
erature searches and database queries, including published
articles and Reaxys.54 Only data explicitly reporting the use of
pure solvents were included to ensure consistency and avoid
the influence of mixed-isomer or denatured solvents.

To facilitate model development and validation, the entire
dataset was divided into three independent subsets, each
serving a specific purpose. Approximately 70% of the data was
allocated to the training set for model development, while
30% was used as a validation set to fine-tune model perform-

ance. Additionally, a separate test set, consisting of data from
20 independent APIs, was reserved for final model evaluation.

2.1.2. Database for solvent environmental categories and
impact quantification. Thirty solvents widely used were
selected for this study (Table S1). The selection process was
meticulously designed to balance physicochemical diversity,
industrial relevance, and environmental sustainability.55 Polar
protic solvents such as methanol, ethanol, and water were
included for their hydrogen-bonding capabilities, while non-
polar solvents like hexane and heptane represent low-dielectric
environments. Industrial relevance guided the inclusion of
widely used solvents such as chloroform, dichloromethane,
acetone, and ethyl acetate. Additionally, solvents like acetic
acid, pyridine, 1,4-dioxane, and cyclohexanone were incorpor-
ated for their roles in tuning polarity and solubility in process-
critical applications. Environmental considerations were also
incorporated into the selection process. While solvents like
chloroform and benzene were retained for benchmarking pur-
poses despite known risks, greener alternatives such as DMSO,
oxolane, and selected alcohols were included to promote more
sustainable crystallization practices.

The environmental impact of solvents was quantitatively
evaluated using SimaPro 9.5 and the ReCiPe 2016
v1.1 method, based on the Ecoinvent 3 database, in accord-
ance with ISO 14040-14043 standards.56 Both midpoint and
endpoint indicators were considered to provide a comprehen-
sive evaluation of environmental impact (Fig. S1). The mid-
point approach enabled a detailed examination of each sol-
vent’s impact across different environmental categories, while
the endpoint approach focused on the overall long-term
environmental consequences. In addition to the sustainability
indicators provided by the methodology, a weighted sum-

Fig. 1 Data-driven framework for sustainable solvent selection in the SolECOs platform.
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mation of impact factors (eqn (1)) was also considered, where
higher a Sustainability Throughput Index (STI) values indi-
cated a greater negative environmental impact.

To further strengthen the sustainability assessment, the
platform also incorporated the solvent evaluation framework
proposed by the regularly updated GSK Solvent Sustainability
Guide.57,58 This method categorizes solvents into ten distinct
subcategories, which are subsequently aggregated into four
major sustainability category scores and ultimately synthesized
into a composite sustainability score (G), as described in eqn
(2)–(5). All scores range from 1 to 10, where a low score indi-
cates poor sustainability, while a high score reflects favorable
environmental performance. Overall, the platform offers 23
different sustainability indicators for users to choose from.

STI ¼
XN
i¼1

wi � Ii ð1Þ

H ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HH � EP

p ð2Þ

S ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FE� RS

p ð3Þ

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
air� aqua

p
ð4Þ

W ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I � R� BT� VOC

p ð5Þ

G ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H � S� E �W4

p ð6Þ

2.2. Descriptors determination

The Molecular Operating Environment (MOE) software59 was
employed to calculate molecular descriptors, encompassing
both 2D and 3D properties which include topological, geo-
metric, and electronic properties. After computation, the
descriptors were reviewed and exported for further analysis. To
identify and select the most independent descriptors, a
random forest model and Monte Carlo simulations based on
random forest were utilized. More information can be found
in the SI.

2.3. Modeling

2.3.1. Thermodynamic and empirical modeling. Classical
thermodynamic and empirical models provide an effective
means to describe solubility variations with temperature in
single solvents, and with both temperature and composition
in binary mixtures. The proposed digital platform employs an
empirical Polynomial Regression (PR) model to describe solu-
bility variations with temperature in single-solvent systems.
The general form of this model is provided in eqn (7):

S ¼ α0 þ α1 � T þ α2 � T2 þ � � � þ αn � Tn ð7Þ
where S is the solubility value, T is the temperature. αn are the
model’s coefficients. Given that solubility often exhibits non-
linear behavior with temperature, employing a quadratic func-
tion (n = 2) can effectively capture this trend.

The Jouyban–Acree (JA) model is widely utilized to correlate
the solubility of solutes with both temperature and the initial

composition of binary solvent mixtures. This model effectively
captures the dependence of solution behavior on solvent com-
position and temperature in multi-solvent systems. One of the
key advantages of the JA model is its simplified three-para-
meter structure, which significantly enhances computational
efficiency and makes it well-suited for integration with ML
frameworks.60–62 The general form of the JA model is pre-
sented in eqn (8).

lnðx1Þ ¼ x20 � lnðx1Þ2 þ x30 � lnðx1Þ3
þ x20 � x30 � β0

T
þ β1

T
ðx20 � x30Þ þ β2

T
ðx20 � x30Þ2

� � ð8Þ

where x1 is the mole fraction solubility of the solute; x2
0 and

x3
0 are the initial mole fractions of two solvents in the solute-

free, binary solvent mixtures, respectively; β0, β1 and β2 are
model parameters; and (x1)2 and (x1)3 refer to the corres-
ponding mole percentage solubility of compound in two sol-
vents. Thermodynamic model parameters were considered as
target variables for ML modeling. Additional information is
available in the SI.

2.3.2. ML modeling. The Polynomial Regression Model-
based Multi-Task Learning Network (PRMMT) developed in
this study adopts a shared-bottom architecture to predict the
solubility-temperature profiles of compounds across multiple
solvents. This approach improves computational efficiency by
enabling simultaneous predictions across 30 different tasks
while leveraging shared representations. The model consists of
a fully connected shared-bottom layer followed by task-specific
branches. Each branch comprises two dense layers optimized
through hyperparameter tuning, with dropout layers applied
to mitigate overfitting. The model predicts three solubility-
related outputs per task, leading to a total of 90 outputs. To
ensure physically meaningful predictions, custom loss con-
straints enforce non-negativity and monotonicity of solubility
with respect to temperature. Hyperparameter tuning, includ-
ing the number of units, dropout rates, and learning rates, is
performed using Keras Tuner with a random search strategy
across 400 trials. The final model, trained for up to 1000
epochs, adaptive optimizer is applied to minimize the Mean
Absolute Error (MAE). Post-training, inverse transformation is
applied to restore the standardized solubility predictions to
their original scale. Model performance is evaluated based on
the MAE across tasks. By comparing the predicted and actual
solubility values across each task in the validation set, the
uncertainty in each prediction is evaluated. This uncertainty
reflects the variability inherent in the model’s predictions, and
with the current scale of data, it represents the predictive
uncertainty of the model. This uncertainty can be used to
assess the reliability of the predictions, especially when extend-
ing the model to predict solubility for new compounds or
solvents.

A Point-Adjusted Prediction Network (PAPN) and the
Modified Jouyban–Acree-based Neural Network (MJANN) were
also developed to predict the solubility of APIs in solvents at a
single temperature point, as well as their solubility in binary
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mixed solvents. These models follow the same framework as
previous studies.60,63 The inputs and outputs of the models
are presented in Tables 1 and S2, and the procedure for
residual distribution fitting and probability estimation is
detailed in the SI.

2.3.3. User interface. The user interface is developed with
PySide6 and provides an interactive and user-friendly platform
that integrates data input, model execution and result visual-
ization. It adopts a multi-tab layout that organizes solubility
prediction, uncertainty analysis, single-point adjustment,
binary solvent evaluation and sustainability assessment in a
structured manner. Users can load and save files, configure
model parameters and initiate computations through an intui-
tive graphical environment with real-time feedback using click-
able buttons, progress indicators and status tracking.
Matplotlib-based visualization supports scatter plots, uncer-
tainty distributions and 3D representations of solubility trends
and sustainability indicators. The sustainability module cat-
egorizes solvents based on selected indicators and provides
graded recommendations using classification and radar
charts. To ensure efficiency and responsiveness, computational
tasks run in the background using QThread and QRunnable
for smooth multitasking.

2.4. Comparison: simulation and experimental solubility
determination

To assess the accuracy and reliability of the computational
framework, prediction results were systematically compared
with experimental data and widely used existing method-
ologies. Experimental solubility measurements were con-
ducted using the Crystalline instrument (Technobis,
Netherlands) to provide a direct comparison with predicted
results. Additionally, the solubility prediction module in PSE
gPROMS, a widely used commercial process simulation soft-
ware for pharmaceutical process modeling, was also employed
for comparison.

The predictive performance of the model was evaluated
using multiple statistical metrics, including MAE, Root Mean
Squared Error (RMSE), Root Mean Squared Log Error (RMSLE),
and the coefficient of determination (R2). Given the variability
in scale across thermodynamic and empirical parameters and
solubility values, there is a risk that solvents with lower solubi-
lity might be underestimated by the model, potentially leading
to biased exclusion in decision-making. To address this,
RMLSE was adopted as a key performance metric, as it
penalizes underprediction more strongly than conventional

metrics. Further details on the experimental procedures, com-
putational methodologies, and evaluation metrics can be
found in the SI.

3. Results and discussion
3.1. Data construction and determination of input
descriptors

3.1.1. Data curation. The types of solvents and their occur-
rence frequency in the solubility database, along with the dis-
tribution of solubility data, are illustrated in Fig. 2. While
most small-molecule pharmaceuticals operate within moder-
ate temperature ranges, we have comprehensively compiled
and visualized all available data capturing temperatures up to
250 °C to serve as a foundational database for potential
future studies. However, during the model construction
phase, we restricted our dataset to solubility data at tempera-
tures below 70 °C to align with practical pharmaceutical
conditions.

The density and size of the circles in Fig. 2(a) represent the
frequency of solubility data points across different solvent-
temperature combinations. A noticeable clustering of data is
observed in the solubility range of 10−6 to 101 mole percent
and within the temperature range of 0–50 °C, indicating that
most data falls within these conditions. Although some data
points exist at temperatures above 100 °C, predominantly in
the 1–10 mole percent solubility range, statistical analysis
reveals that these cases account for less than 2% of the total
dataset.

Compared to aqueous solubility data, solubility data
measured in organic solvents are relatively limited (Fig. 2b).
The 30 solvent-specific tasks defined in the PRMMT model
align with the most frequently occurring solvents in Fig. 2b
(see Table S1 for details). Analyzing the logarithmic solubility
values (log S) of the collected data indicates that water and
ethanol are the most extensively represented solvents, collec-
tively accounting for over 30% of the total dataset. In contrast,
solvents such as propyl acetate and 1,2-xylene appear far less
frequent, contributing to less than 5% of the dataset.

The solubility data in water exhibit a relatively narrow distri-
bution, primarily falling within the log S range of −4 to 4 (in
mole percent). Conversely, solvents like ethanol and Propan-2-
one show a broader solubility distribution, suggesting that
solubility variations are more pronounced across different
solutes. Importantly, even for solvents with lower data avail-

Table 1 Summary of the key features of the proposed ML models

Model
name

Polynomial regression model-based
multi-task learning network (PRMMT)

Point-adjusted prediction
network (PAPN) Modified Jouyban–Acree-based neural network (MJANN)

Input Representative API molecular
descriptors

Representative API and solvent
molecular descriptors

Representative API and solvent molecular descriptors,
interaction between solvents, pure solvent solubility
values

Output PR model parameters Solubility of API in
temperature T

JA model parameters
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ability, the dataset does not exhibit an overly concentrated dis-
tribution, maintaining a relatively diverse range of solubility
values. This diverse solubility distribution underscores the
effectiveness and representativeness of the dataset.

Ideally, for model training, a uniform distribution of log S
values across the entire dataset would be preferred. However,
due to practical limitations in data availability, no log S-based
pruning was applied to the organic solvent dataset. This
ensures that the dataset retains its inherent diversity, which is
crucial for robust model performance and generalizability.

3.1.2. Descriptor development. The descriptors consist of
two categories: quantitative characterization of solute/solvent
3D structures and temperature-dependent solubility curve. The
temperature-dependent solubility profiles of compounds in
single and binary solvent systems were parameterized using
the PR model and JA model, each defined by three fitted
parameters.

For single-solvent solubility prediction, since each solvent
prediction task was assigned to independent parallel tasks, expli-
cit solvent descriptors were not required. Instead, the selected
descriptors needed to comprehensively capture API molecular
characteristics. To determine the most relevant descriptors,
random forest modeling combined with Monte Carlo sensitivity
analysis and an independent random forest approach were
applied to assess descriptor importance. Tables S3 and S4 list
the top 25 molecular descriptors, along with their definitions.
Their importance rankings, after Unit Vector Normalization, are
visualized in Fig. 3. While some variations in ranking exist, most
high-ranking descriptors exhibit consistent trends.

Key descriptors include GCUT_SLOGP, which incorporates
both structural features (via graph cut) and hydrophobicity (via

log P), descriptors related to the heat of formation of the com-
pound, distance and adjacency matrices of heavy atoms, descrip-
tors describing mass distribution relative to the molecular
center of mass, and those characterizing molecular flexibility. To
minimize redundancy, a representative heat of formation
descriptor was selected, and a Pearson correlation analysis
(Fig. S2) was performed to ensure descriptor independence.

For binary solvent systems, additional considerations were
made for solvent importance and solvent–solvent interactions.
Key solvent descriptors included molecular weight,
AM1_dipole, and ASA (accessible surface area). The
AM1_dipole represents the dipole moment calculated using
the AM1 Hamiltonian, while ASA quantifies the solvent-acces-
sible surface area.

3.1.3. Solvent environmental assessment. The ReCiPe
method was employed to calculate midpoint and endpoint
indicators, serving as the sustainability assessment framework
in this study to quantitatively evaluate the environmental
impact of 30 solvents under the same usage conditions. The
results are presented in Fig. 4 and Table S5.

Under midpoint indicators, solvents such as pyridine,
propan-1-ol, and oxolane exhibit significant environmental
burdens across multiple impact categories, including global
warming potential, marine and freshwater ecotoxicity, and
ozone layer depletion. Furthermore, propan-1-ol and oxolane
demonstrate notable effects in human health-related cat-
egories, particularly in carcinogenic and non-carcinogenic tox-
icity. These solvents not only pose potential risks to workers
and end-users throughout their life cycle but also contribute to
long-term environmental degradation due to waste emissions
that impact ecosystems. In contrast, water and solvents such as

Fig. 2 Solubility and solvent frequency analysis. (a) Solubility distribution across different temperatures. The x-axis represents solubility values (log
scale), and the y-axis shows temperature (°C). Each bubble corresponds to a solubility data point, with bubble size representing the occurrence fre-
quency of solubility values and color intensity mapped to temperature, increasing with higher thermal conditions. (b) Combined violin and bar plots
for solvent frequency and solubility distribution. The violin plot shows solubility distributions for solvents with data frequency > 50, where width rep-
resents solubility range. The blue line marks the mean, while red and green dashed lines indicate the 25th and 75th percentiles. Below, the gray bar
chart displays solvent occurrence frequency. The right y-axis shows solubility on a log scale. Colors of the violin plots are assigned using the viridis
palette solely for distinguishing different solvents.
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toluene, and 1,2-xylene which exhibit relatively lower impact
values across most categories, may be more environmentally
sustainable options for API purification and production (Fig. 4a).

The endpoint indicators integrate the midpoint assessment
results, providing a more comprehensive evaluation of the
overall environmental impact (Fig. 4b). The endpoint analysis
reveals that propan-1-ol, acetonitrile, pyridine, and N-methyl-2-
pyrrolidone exhibit the most pronounced environmental
impacts across multiple categories, particularly concerning
human health and ecosystem damage. In contrast, solvents
such as water, heptane, hexane, and ethanol demonstrate rela-
tively lower overall environmental impact values, especially in
resource depletion categories, indicating potential advantages
in environmental sustainability.

A comparison between the ReCiPe method and the GSK
method (Table S1 and Fig. 4c) reveals both similarities and dis-
crepancies in solvent rankings. These differences primarily
arise from variations in evaluation frameworks, numerical pro-
cessing methodologies, and data sources. Although an attempt
was made to establish a correspondence between the GSK
classification and the Midpoint indicators in Fig. S1, complete
alignment remains challenging due to fundamental differ-
ences in category definitions. Moreover, numerical processing
methodologies differ between the two approaches. In Fig. 4a
and b, the ReCiPe method assigns equal weighting to all
Midpoint and Endpoint indicators, followed by a direct sum-
mation of impact scores, whereas the GSK method applies a
square-root transformation (eqn (6)) to normalize variations
across subcategories. Differences in data sources also contrib-
ute to the observed ranking discrepancies. The GSK Solvent

Sustainability Guide is based on industry-specific data accu-
mulated within GSK, using a simplified scoring system tailored
to manufacturing operations, whereas the ReCiPe method pro-
vides a broader environmental perspective but remains suscep-
tible to regional policy influences and assumptions embedded
in its methodological framework.

It is important to recognize that no single green assessment
method can fully address the inherent challenges of quantify-
ing qualitative sustainability attributes, and the prioritization
of solvent selection criteria may vary depending on the specific
application context. This study aims to establish a multifaceted
evaluation platform as a complementary approach to well-
established sustainability guidelines that are widely recognized
and trusted by users.

3.2. Model integration

The performance of the PRMMT, PAPN, and MJANN models
on the whole dataset and testing set is summarized in Tables
2, S6 and Fig. S3. The close agreement between the results on
the whole dataset and the independent test set demonstrates
that all three models achieve consistent predictive accuracy
across unseen data, effectively capturing the solubility behav-
ior of APIs in diverse solvents and showing no evidence of
overfitting. Since the predicted values correspond to model
parameters, achieving absolute numerical accuracy does not
necessarily indicate an improvement in predictive perform-
ance. The accuracy of single-temperature-point predictions is
generally higher than that of the overall solubility curve fitting,
as evidenced by the superior accuracy demonstrated by the
PAPN model compared to the other two models.

Fig. 3 Statistical analysis of descriptor importance values determined by combined random forest model and monte carlo vs. random forest model.
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To further evaluate prediction reliability, the differences
between predicted and real values were analyzed to determine
the error distribution shown in Fig. 5. The probability value

(p-value) was used as an indicator of the confidence in the
accuracy of the model’s description. The error distribution fit
for all tasks within the PRMMT model resulted in p-values pre-
dominantly concentrated between 0.8 and 1, with an average
exceeding 0.6, indicating a high degree of accuracy in describ-
ing prediction errors. The t-distribution was observed most fre-
quently, suggesting that the statistical treatment of errors
places greater emphasis on the tail regions, allowing for a
more flexible and conservative estimation by accommodating
variations in the degrees of freedom across different tasks. By
mapping the error distribution to specific tasks, it is possible
to determine the probability distribution of the predicted
values within ±x intervals. Theoretically, restricting the range

Fig. 4 The environmental impact of solvents analyzed using: (a) the ReCiPe midpoint method, (b) the ReCiPe endpoint method, and (c) the GSK
solvent sustainability guide.

Table 2 Prediction performance of PRMMT, PAPN and MJANN Models
on the testing set

Average evaluation
metrics

PRMMT
model

PAPN
model

MJANN
model

MAE 0.584 0.472 0.994
RMSE 0.963 0.821 1.391
RMSLE 0.268 0.380 0.351
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of output parameters could reduce the prediction uncertainty.
However, the objective of this study is to establish a predictive
framework that provides a broader range of possibilities rather
than aiming for extreme precision. This aligns with the prin-
ciple in pharmaceutical solvent selection, where R&D depart-
ments aim to avoid overlooking potential solvents or solvent
combinations. Consequently, the PRMMT model outputs three
parameters, accompanied by error distributions incorporating
t-distribution, Cauchy distribution, Beta distribution, log–
normal distribution, and logistic distribution. Similar error
distributions are established for the PAPN and MJANN
models. However, to optimize computational efficiency, only
the uncertainty range from the PRMMT model is considered
in subsequent applications.

To enhance robustness, a predictive framework was devel-
oped by integrating the three models. Given the PAPN model’s
superior accuracy in single-point temperature predictions, the
framework prioritizes its predictions. The PRMMT model
serves as the foundation, providing initial predictions along
with corresponding uncertainty estimates. The PAPN model is
then used to refine the predictions at specific temperature
points, acting as correction anchors. A tolerance value (Tv) is
introduced to ensure that the solubility curve predicted by the
PRMMT model falls within the confidence interval of the
PAPN model’s single-temperature predictions. Tv represents a
user-defined error margin, which can be adjusted based on
the prediction confidence of the PAPN models. For example, if

PAPN predictions are considered highly reliable, a lower T
value can be set to enforce stricter constraints. Alternatively,
an approximate predictive error of 10% (Tv = 0.1) can be used
as a default tolerance for correction in the platform. The influ-
ence of different T values on predictive performance is further
explored in case studies. The computational precision (step
size) is defined by the number of Monte Carlo simulation
samples, with 106 samples chosen to balance accuracy and
computational efficiency.

For binary solvent mixtures, the PAPN-corrected single-
point predictions serve as curve endpoints in the MJANN
model. In real-world applications, solubility values may vary
depending on measurement methodologies. This study
accounts for this variability by offering users the flexibility to
manually define correction points, Tv, and error distributions.
In this scenario, correction points can be derived from experi-
mental data, and the predictive error distribution is replaced
by actual experimental error.

Based on the selected 30 pure solvents, a theoretical total of
435 binary solvent combinations is possible. However, due to
partial or complete immiscibility of certain solvent pairs at
specific temperatures, some binary mixtures were excluded
from this study, and the final selection of binary solvent
systems is provided in Fig. S4. The computational step size for
binary solvent mixtures is another critical parameter. Given
that APIs may exhibit limited solubility in mixed solvents, a
step size of 0.1 (i.e., solvent fraction increments of 0.05) was

Fig. 5 Optimal fit of error distributions and frequency-p-value analysis of various distributions: (a) frequency and p-value distribution of 90
outputs; (b)–(d) best fit of the error distribution for task 1 output alpha 1 to output alpha 3.
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chosen to accurately capture potential extreme solubility
points. More precise calculations, such as a step size of 0.01,
are feasible but would require significantly greater compu-
tational resources. In most cases, the endpoint solubility
values for binary mixtures are obtained from model predic-
tions. However, since some users may prefer to input their
own solubility data, the framework also allows for the manual
definition of binary solvent system endpoints, providing
greater flexibility in practical applications.

3.3. Case study

Four APIs were selected to validate the robustness of the meth-
odology, considering structural diversity and relevance to crys-
tallization processes. Paracetamol (N-acetyl-para-aminophenol,
APAP) was included due to the extensive literature data and
research experience available for comparison. Meloxicam
(MLX) and Piroxicam (PXC) can also get historical results from
published papers for consideration and these two API exhibit a
certain degree of similarity in chemical structure. In contrast,
Cytarabine (AraC), with its relatively complex structure and
limited literature reports, was selected to facilitate comparative
analysis and provide insights into alternative solvent choices
and experimentally verified. The study examined variations in
cooling temperature ranges and different sustainability con-
siderations. These variables are detailed in Table 3.

3.3.1. Accuracy assessment with established data. The crys-
tallization process considered in APAP case a1 involved cooling
from 40 °C to 15 °C. The first step was to predict the thermo-
dynamic solubility of the API in target solvents over a broad
temperature range. Fig. 6 and Table S7 present solubility pre-
dictions using different models, where subfigures (a)–(h) illus-
trate the performance of the PRMMT and PAPN models in
pure solvents, and subfigures (e)–(l) demonstrate the MJANN
model’s performance in binary solvent mixtures. A key insight
derived from the RMSLE result is that the PRMMT model,
after PAPN correction, retained competitive predictive accu-
racy. However, in specific cases, the corrected model exhibited
enhanced capability in capturing absolute solubility variations
at discrete temperature intervals. Noteworthy discrepancies
were observed between the PRMMT model and single-point
PAPN corrections, particularly in predicting APAP solubility in
toluene, where deviations arose due to intrinsic model differ-
ences and sensitivity to tolerance thresholds. Despite these
variations, the general solubility-temperature trend was effec-

tively captured, indicating that the corrected solubility devi-
ations at individual temperature points remained within an
acceptable range. In contrast, the SAFT-γ Mie GC method
exhibited substantial deviations from experimental data in
over half of the evaluated cases, failing to reliably reproduce
the monotonic increase in solubility with temperature in
single-solvent systems. For binary solvent systems, solubility
predictions were inherently dependent on the accuracy of end-
point solubility estimations, with the models in this study
effectively capturing both monotonic solubility trends and
potential co-solvent effects.

Subsequent analyses were conducted to evaluate green
solvent selection for API crystallization. In case a1, the ReCiPe
method Midpoint indicators were employed, where individual
indicators were aggregated using an equal-weight summation
approach to compute the STI, assigning equal weights to all
parameters. The objective was to identify solvent systems with
the lowest possible environmental impact. To systematically
assess the sustainability of both single and mixed solvents, the
sustainability rankings were categorized into ten distinct
grades, with higher grades indicating superior environmental
performance.

The APAP screening results, presented in Fig. 7, illustrate
the classifications through an interactive computational inter-
face. The left panel presents a 2D visualization, where prob-
ability and STI values are plotted against the count across
different grades for each combination. Concurrently, the
middle and right panels exhibit potential single-solvent and
binary-solvent selections. In Grades 1 to 3, oxolane, aceto-
nitrile, propan-1-ol, 1,4-dioxane, and N,N-dimethylformamide
were identified as predominant solvents. These solvents are
well-documented for their superior solubility performance and
extensive industrial applicability; however, they are frequently
associated with suboptimal green chemistry attributes. As sus-
tainability rankings increased, solvents such as pentan-1-ol,
butyl acetate, acetic acid, and methylsulfinylmethane were
more frequently observed. At the highest sustainability levels
(Grades 8 to 10), solvents including dichloromethane, metha-
nol, benzene, water, heptane, toluene, hexane, and ethanol
became dominant. Notably, water and ethanol emerged as par-
ticularly competitive due to their low environmental impact
and high biodegradability. A holistic approach to solvent selec-
tion necessitates a multifaceted evaluation beyond solubility
and environmental attributes alone. Rather than evaluating

Table 3 Summary of API cooling temperature ranges and sustainability considerations

API name Molecular formula Temperature range Sustainability considerations

Paracetamol (APAP) C8H9NO2 a1: 40 °C–15 °C a1: midpoint, weighted sum STI
Meloxicam (MLX) C14H13N3O4S2 b1: 50 °C–10 °C b1: midpoint, human carcinogenic toxicity

b2: 30 °C–5 °C b2: midpoint, human carcinogenic toxicity
Piroxicam (PXC) C15H13N3O4S c1: 30 °C–10 °C c1: endpoint, resources

c2: 30 °C–10 °C c2: GSK methodology
Cytarabine (AraC) C9H13N3O5 d1: 50 °C–5 °C d1: endpoint, human health

d2: 40 °C–15 °C d2: endpoint, human health
d3: 40 °C–15 °C d3: GSK methodology

Paper Green Chemistry

12630 | Green Chem., 2025, 27, 12621–12641 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 7
:3

9:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g


solubility or sustainability in isolation, an optimal solvent or
solvent mixture should be selected based on minimizing
environmental burden while maintaining adequate solubility
within a target temperature range. For instance, while N,N-di-
methylformamide exhibited the highest solubility potential, its
substantial environmental impact relegated it to lower sustain-
ability grades.

In consideration of binary solvent system, in Grade 1 to
Grade 3, solvents such as oxolane, propan-1-ol, and pentan-1-
ol remained dominant components. However, at intermediate
sustainability levels, the nonlinear thermodynamic behavior of
binary solvent mixtures resulted in the emergence of pentan-1-
ol, hexane, benzene, and acetonitrile across multiple grades,
each exhibiting relatively high probability values. At higher
sustainability grades, binary solvent mixtures predominantly

incorporated solvents previously identified in top-ranked
single-solvent selections, such as water, ethanol, and dichloro-
methane. The probability distributions across different sus-
tainability grades also exhibited some fluctuations, as these
values were influenced by the accuracy of the ML model pre-
dictions. In this case study, lower sustainability-grade mixtures
generally displayed higher probability values, indicating poten-
tial uncertainties in model predictions at different sustainabil-
ity levels.

Compared to existing literature, the solvent systems identi-
fied by our framework follow consistent trends. For instance,
solvents such as ethanol, methanol, and Propan-2-one,
defined in Grades 7 to 10, have been widely reported as
effective crystallization media, particularly for obtaining the
stable and metastable polymorph.64–66 Ethanol, in particular,

Fig. 6 Comparison of solubility predictions for various single (a)–(h) and binary solvents (i)–(l) using PRMMT, PAPN, and MJANN models across
temperature (T/K) and mole fraction (x1) conditions. Subfigures (a)–(h) show PRMMT model prediction curves along with the top three PAPN-
adjusted predictions ranked by probability of accuracy compared to actual values, with RMSLE as the measure of prediction error in parentheses.
Each subfigure includes scatter points representing actual solubility data, PAPN predictions, and values calculated using the SAFT-γ Mie group-con-
tribution (GC) method. Subfigures (i)–(l) display three solubility prediction curves generated by the MJANN model along with scatter points indicat-
ing actual solubility data.
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is widely used in APAP crystallization system for its strong sol-
vating power and industrial applicability, and it also ranks as
the top-performing single solvent in our framework.64,67 Green
solvents such as water and isopropanol, which were high-
lighted at intermediate to high sustainability grades, are also
commonly employed in the literature for polymorphic control
and crystallization kinetics optimization.68 Furthermore,
binary solvent systems, including water-alcohol combinations
identified in our results (Table S8), have shown favorable
performance in modulating solubility and directing poly-
morphic outcomes, in agreement with previous experimental
studies.69,70

3.3.2. Temperature sensitivity in solvent selection.
Although the predicted thermodynamic solubility-temperature
profile of the API remains unchanged across different tempera-
ture gradient settings, variations in temperature conditions
directly influence the theoretical solubility differentials, which
in turn affect the required solvent volume for API production.
Consequently, this may lead to variations in solvent grading.
The single-solvent grade classification and binary solvent
selection results for MLX cases b1 and b2 are presented in
Table 4. The single-solvent classification for MLX demon-
strated a high degree of consistency across different con-
ditions. Specifically, when the temperature gradient was
changed from a cooling range of 50 °C to 10 °C to a narrower
range of 30 °C to 5 °C, propyl acetate was no longer present in

Grade 2, while heptane disappeared from Grade 10. This exclu-
sion serves as a direct reflection of the model’s stability
mechanisms.

To ensure the reliability of the predictive outcomes, a criti-
cal threshold was established in this study, where a solvent
was classified as “uncertain” if its grade ranking fell outside
the top P% of solvents ranked by probability (set at 10% in
this case). This approach accounts for potential classification
uncertainty, acknowledging that while a solvent can be
numerically assigned to a specific grade, its classification may
still be subject to variability due to probabilistic ranking
constraints.

The comparative analysis between MLX b1 (50–10 °C) and
MLX b2 (30–5 °C), both evaluated using the same sustainabil-
ity indicator, reveals a high degree of consistency in the classi-
fication of single solvents across Grades 1 to 10. Only minor
differences were observed, such as the inclusion of propyl
acetate in Grade 2 under MLX b1. For binary solvent selection,
both cases identified highly similar solvent pairs within corres-
ponding grade levels, with slight variations in the optimal
composition ratios. Notably, the predicted probabilities for the
top binary combinations were marginally higher under the
lower temperature gradient in MLX b2, suggesting improved
predictive confidence under a narrower cooling range. These
results confirm that, within the proposed framework, when
the sustainability evaluation method is held constant, the

Fig. 7 SolECOs interface – APAP case study screenshot. The interface displays the classification of single and binary solvents by sustainability grade,
including solvent identity, composition, and probability. The right panel shows radar plots of the top six binary solvent combinations with the
highest probabilities, where each axis represents one of 18 midpoint indicators normalized to a 0–1 scale.

Paper Green Chemistry

12632 | Green Chem., 2025, 27, 12621–12641 This journal is © The Royal Society of Chemistry 2025

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 7
:3

9:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g


T
ab

le
4

Si
n
g
le
-s
o
lv
e
n
t
g
ra
d
in
g
an

d
p
ro
b
ab

le
g
re
e
n
b
in
ar
y
m
ix
tu
re
s
u
n
d
e
r
ca

se
st
u
d
y
sc
e
n
ar
io
s

C
as
e

Si
n
gl
e
so
lv
en

t
To

p-
ra
n
ke

d
bi
n
ar
y
so
lv
en

t
co
m
bi
n
at
io
n
s
w
it
h
pr
ed

ic
te
d
pr
ob

ab
il
it
ie
s
(i
n
‱

)

G
ra
de

n
um

So
lv
en

t
n
am

e
R
an

k
So

lv
en

t
co
m
bi
n
at
io
n

A
PA

P
a1

G
ra
de

1
O
xo
la
n
e,

ac
et
on

it
ri
le
,p

ro
pa

n
-1
-o
l

1
W
at
er

(S
ol
ve
n
t
1:

0.
7)

pe
n
ta
n
-1
-o
l(
So

lv
en

t
2:

0.
3)
,p

ro
ba

bi
li
ty
:0

.0
05

65
G
ra
de

2
1-
M
et
h
yl
py

rr
ol
id
in
-2
-o
n
e,

ch
lo
ro
fo
rm

2
W
at
er

(S
ol
ve
n
t
1:

0.
75

)
pe

n
ta
n
-1
-o
l(
So

lv
en

t
2:

0.
25

),
pr
ob

ab
il
it
y:
0.
00

47
1

G
ra
de

3
1,
4-
D
io
xa
n
e,

N
,N
-d
im

et
h
yl
fo
rm

am
id
e

3
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
2)

to
lu
en

e
(S
ol
ve
n
t
2:

0.
8)
,p

ro
ba

bi
li
ty
:0

.0
03

77
G
ra
de

4
C
yc
lo
h
ex
an

on
e,

bu
ta
n
-1
-o
l

4
W
at
er

(S
ol
ve
n
t
1:

0.
8)

pe
n
ta
n
-1
-o
l(
So

lv
en

t
2:

0.
2)
,p

ro
ba

bi
li
ty
:0

.0
03

77
G
ra
de

5
Pe

n
ta
n
-1
-o
l,
bu

ty
la

ce
ta
te
,b

ut
an

-2
-o
n
e,

ac
et
ic

ac
id
,e

th
yl

ac
et
at
e

5
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
15

)
to
lu
en

e
(S
ol
ve
n
t
2:

0.
85

),
pr
ob

ab
il
it
y:
0.
00

28
3

G
ra
de

6
2-
M
et
h
yl
pr
op

an
-1
-o
lp

ro
pa

n
-2
-o
l

6
W
at
er

(S
ol
ve
n
t
1:

0.
85

)
pe

n
ta
n
-1
-o
l(
So

lv
en

t
2:

0.
15

),
pr
ob

ab
il
it
y:
0.
00

28
3

G
ra
de

7
M
et
h
yl
su

lf
in
yl
m
et
h
an

e
7

Pe
n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
1)

to
lu
en

e
(S
ol
ve
n
t
2:

0.
9)
,p

ro
ba

bi
li
ty
:0

.0
01

89
G
ra
de

8
D
ic
h
lo
ro
m
et
h
an

e,
pr
op

an
-2
-o
n
e

8
W
at
er

(S
ol
ve
n
t
1:

0.
9)

pe
n
ta
n
-1
-o
l(
So

lv
en

t
2:

0.
1)
,p

ro
ba

bi
li
ty
:0

.0
01

89
G
ra
de

9
M
et
h
an

ol
,b

en
ze
n
e

9
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
1)

et
h
an

ol
(S
ol
ve
n
t
2:

0.
9)
,p

ro
ba

bi
li
ty
:0

.0
01

88
G
ra
de

10
W
at
er
,h

ep
ta
n
e,

to
lu
en

e,
h
ex
an

e,
et
h
an

ol
10

O
xo
la
n
e
(S
ol
ve
n
t
1:

0.
1)

w
at
er

(S
ol
ve
n
t
2:

0.
9)
,p

ro
ba

bi
li
ty
:0

.0
01

10
M
LX

b1
G
ra
de

1
Py

ri
di
n
e,

ox
ol
an

e,
pr
op

an
-1
-o
l

1
W
at
er

(S
ol
ve
n
t
1:

0.
55

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
45

),
pr
ob

ab
il
it
y:
0.
00

06
4

G
ra
de

2
1-
M
et
h
yl
py

rr
ol
id
in
-2
-o
n
e,

ch
lo
ro
fo
rm

,p
ro
py

la
ce
ta
te
,a

ce
to
n
it
ri
le

2
W
at
er

(S
ol
ve
n
t
1:

0.
6)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
4)
,p

ro
ba

bi
li
ty
:0

.0
00

57
G
ra
de

3
1,
4-
D
io
xa
n
e,

N
,N
-d
im

et
h
yl
fo
rm

am
id
e

3
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
35

)
to
lu
en

e
(S
ol
ve
n
t
2:

0.
65

),
pr
ob

ab
il
it
y:
0.
00

05
0

G
ra
de

4
B
ut
an

-1
-o
l

4
W
at
er

(S
ol
ve
n
t
1:

0.
65

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
35

),
pr
ob

ab
il
it
y:
0.
00

05
0

G
ra
de

5
Pe

n
ta
n
-1
-o
l,
bu

ty
la

ce
ta
te
,b

ut
an

-2
-o
n
e,

ac
et
ic

ac
id
,e

th
yl

ac
et
at
e

5
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
3)

et
h
an

ol
(S
ol
ve
n
t
2:

0.
7)
,p

ro
ba

bi
li
ty
:0

.0
00

48
G
ra
de

6
O
ct
an

-1
-o
l

6
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
3)

1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
7)
,p

ro
ba

bi
li
ty
:0

.0
00

44
G
ra
de

7
D
ic
h
lo
ro
m
et
h
an

e,
2-
m
et
h
yl
pr
op

an
-1
-o
l,
cy
cl
oh

ex
an

on
e

7
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
3)

to
lu
en

e
(S
ol
ve
n
t
2:

0.
7)
,p

ro
ba

bi
li
ty
:0

.0
00

43
G
ra
de

8
Pr
op

an
-2
-o
l,
m
et
h
yl
su

lf
in
yl
m
et
h
an

e
8

W
at
er

(S
ol
ve
n
t
1:

0.
7)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
3)
,p

ro
ba

bi
li
ty
:0

.0
00

43
G
ra
de

9
Pr
op

an
-2
-o
n
e,

m
et
h
an

ol
9

D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
25

)
et
h
an

ol
(S
ol
ve
n
t
2:

0.
75

),
pr
ob

ab
il
it
y:
0.
00

04
1

G
ra
de

10
W
at
er
,h

ep
ta
n
e,

1,
2-
xy
le
n
e,

be
n
ze
n
e,

to
lu
en

e,
h
ex
an

e,
et
h
an

ol
10

D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
25

)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
75

),
pr
ob

ab
il
it
y:
0.
00

03
7

M
LX

b2
G
ra
d
e
1

Py
ri
di
n
e,

ox
ol
an

e,
pr
op

an
-1
-o
l

1
W
at
er

(S
ol
ve
n
t
1:

0.
55

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
45

),
pr
ob

ab
il
it
y:
0.
00

06
5

G
ra
d
e
2

1-
M
et
h
yl
py

rr
ol
id
in
-2
-o
n
e,

ch
lo
ro
fo
rm

,a
ce
to
n
it
ri
le

2
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
4)

to
lu
en

e
(S
ol
ve
n
t
2:

0.
6)
,p

ro
ba

bi
li
ty
:0

.0
00

58
G
ra
d
e
3

1,
4-
D
io
xa
n
e,

N
,N
-d
im

et
h
yl
fo
rm

am
id
e

3
W
at
er

(S
ol
ve
n
t
1:

0.
6)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
4)
,p

ro
ba

bi
li
ty
:0

.0
00

58
G
ra
de

4
B
ut
an

-1
-o
l

4
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
35

)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
65

),
pr
ob

ab
il
it
y:
0.
00

05
2

G
ra
de

5
Pe

n
ta
n
-1
-o
l,
bu

ty
la

ce
ta
te
,b

ut
an

-2
-o
n
e,

ac
et
ic

ac
id
,e

th
yl

ac
et
at
e

5
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
35

)
to
lu
en

e
(S
ol
ve
n
t
2:

0.
65

),
pr
ob

ab
il
it
y:
0.
00

05
1

G
ra
de

6
O
ct
an

-1
-o
l

6
W
at
er

(S
ol
ve
n
t
1:

0.
65

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
35

),
pr
ob

ab
il
it
y:
0.
00

05
1

G
ra
de

7
D
ic
h
lo
ro
m
et
h
an

e,
2-
m
et
h
yl
pr
op

an
-1
-o
l,
cy
cl
oh

ex
an

on
e

7
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
3)

et
h
an

ol
(S
ol
ve
n
t
2:

0.
7)
,p

ro
ba

bi
li
ty
:0

.0
00

48
G
ra
de

8
Pr
op

an
-2
-o
l,
m
et
h
yl
su

lf
in
yl
m
et
h
an

e
8

D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
3)

1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
7)
,p

ro
ba

bi
li
ty
:0

.0
00

45
G
ra
de

9
Pr
op

an
-2
-o
n
e,

m
et
h
an

ol
9

D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
3)

to
lu
en

e
(S
ol
ve
n
t
2:

0.
7)
,p

ro
ba

bi
li
ty
:0

.0
00

43
G
ra
de

10
W
at
er
,1

,2
-x
yl
en

e,
be

n
ze
n
e,

to
lu
en

e,
h
ex
an

e
,e

th
an

ol
10

W
at
er

(S
ol
ve
n
t
1:

0.
7)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
3)
,p

ro
ba

bi
li
ty
:0

.0
00

43
PL

X
c1

G
ra
de

1
Py

ri
di
n
e,

ac
et
on

it
ri
le
,p

ro
pa

n
-1
-o
l

1
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
95

)
m
et
h
yl
su

lf
in
yl
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
05

),
pr
ob

ab
il
it
y:
0.
00

66
3

G
ra
de

2
2-
M
et
h
yl
pr
op

an
-1
-o
l,
ox
ol
an

e,
pr
op

an
-2
-o
l,
bu

ta
n
-1
-o
l

2
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
95

)
et
h
an

ol
(S
ol
ve
n
t
2:

0.
05

),
pr
ob

ab
il
it
y:
0.
00

66
1

G
ra
de

3
1,
4-
D
io
xa
n
e,

pe
n
ta
n
-1
-o
l,
m
et
h
an

ol
3

C
h
lo
ro
fo
rm

(S
ol
ve
n
t
1:

0.
05

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
95

),
pr
ob

ab
il
it
y:
0.
00

66
0

G
ra
de

4
N
,N
-D
im

et
h
yl
fo
rm

am
id
e,

cy
cl
oh

ex
an

on
e

4
W
at
er

(S
ol
ve
n
t
1:

0.
05

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
95

),
pr
ob

ab
il
it
y:
0.
00

66
0

G
ra
de

5
B
en

ze
n
e,

1-
M
et
h
yl
py

rr
ol
id
in
-2
-o
n
e,

bu
ta
n
-2
-o
n
e

5
O
ct
an

-1
-o
l(
So

lv
en

t
1:

0.
05

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
95

),
pr
ob

ab
il
it
y:
0.
00

66
0

G
ra
de

6
A
ce
ti
c
ac
id
,e

th
yl

ac
et
at
e

6
D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
9)

et
h
an

ol
(S
ol
ve
n
t
2:

0.
1)
,p

ro
ba

bi
li
ty
:0

.0
06

26
G
ra
de

7
B
ut
yl

ac
et
at
e,

to
lu
en

e,
1,
2-
xy
le
n
e

7
C
h
lo
ro
fo
rm

(S
ol
ve
n
t
1:

0.
1)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
9)
,p

ro
ba

bi
li
ty
:0

.0
06

26
G
ra
de

8
H
ex
an

e,
h
ep

ta
n
e,

pr
op

an
-2
-o
n
e

8
W
at
er

(S
ol
ve
n
t
1:

0.
1)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
9)
,p

ro
ba

bi
li
ty
:0

.0
06

25
G
ra
de

9
M
et
h
yl
su

lf
in
yl
m
et
h
an

e
9

O
ct
an

-1
-o
l(
So

lv
en

t
1:

0.
1)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
9)
,p

ro
ba

bi
li
ty
:0

.0
06

25
G
ra
de

10
W
at
er
,c

h
lo
ro
fo
rm

,d
ic
h
lo
ro
m
et
h
an

e,
oc
ta
n
-1
-o
l,
et
h
an

ol
10

D
ic
h
lo
ro
m
et
h
an

e
(S
ol
ve
n
t
1:

0.
85

)
E
th
an

ol
(S
ol
ve
n
t
2:

0.
15

),
pr
ob

ab
il
it
y:
0.
00

59
2

PL
X
c2

G
ra
de

1
C
h
lo
ro
fo
rm

,1
,4
-d
io
xa
n
e,

be
n
ze
n
e,

h
ex
an

e,
ox
ol
an

e
1

Pe
n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
6)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
4)
,p

ro
ba

bi
li
ty
:0

.0
02

78
G
ra
de

2
D
ic
h
lo
ro
m
et
h
an

e,
py

ri
di
n
e,

N
,N
-d
im

et
h
yl
fo
rm

am
id
e

2
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
65

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
35

),
pr
ob

ab
il
it
y:
0.
00

24
3

G
ra
de

3
1-
m
et
h
yl
py

rr
ol
id
in
-2
-o
n
e

3
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
7)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
3)
,p

ro
ba

bi
li
ty
:0

.0
02

09
G
ra
de

4
A
ce
ti
c
ac
id
,h

ep
ta
n
e

4
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
75

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
25

),
pr
ob

ab
il
it
y:
0.
00

17
4

G
ra
de

5
Pr
op

an
-2
-o
n
e,

ac
et
on

it
ri
le
,m

et
h
an

ol
5

W
at
er

(S
ol
ve
n
t
1:

0.
8)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
2)
,p

ro
ba

bi
li
ty
:0

.0
01

39
G
ra
de

6
1,
2-
X
yl
en

e,
bu

ty
la

ce
ta
te
,b

ut
an

-2
-o
n
e,

to
lu
en

e,
cy
cl
oh

ex
an

on
e

6
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
8)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
2)
,p

ro
ba

bi
li
ty
:0

.0
01

39
G
ra
de

7
N
/A

7
O
ct
an

-1
-o
l(
So

lv
en

t
1:

0.
8)

di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
2)
,p

ro
ba

bi
li
ty
:0

.0
01

39
G
ra
de

8
Pr
op

an
-2
-o
l,
m
et
h
yl
su

lf
in
yl
m
et
h
an

e
8

W
at
er

(S
ol
ve
n
t
1:

0.
85

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
15

),
pr
ob

ab
il
it
y:
0.
00

10
4

G
ra
de

9
E
th
yl

ac
et
at
e,

bu
ta
n
-1
-o
l,
et
h
an

ol
,p

ro
pa

n
-1
-o
l

9
Pe

n
ta
n
-1
-o
l(
So

lv
en

t
1:

0.
85

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
15

),
pr
ob

ab
il
it
y:
0.
00

10
4

G
ra
de

10
2-
M
et
h
yl
pr
op

an
-1
-o
l,
w
at
er
,p

en
ta
n
-1
-o
l,
oc
ta
n
-1
-o
l

10
O
ct
an

-1
-o
l(
So

lv
en

t
1:

0.
85

)
di
ch

lo
ro
m
et
h
an

e
(S
ol
ve
n
t
2:

0.
15

),
pr
ob

ab
il
it
y:
0.
00

10
4

A
ra
C
d1

G
ra
de

1
A
ce
to
n
it
ri
le
,p

ro
pa

n
-1
-o
l

1
W
at
er

(S
ol
ve
n
t
1:

0.
60

)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
40

),
pr
ob

ab
il
it
y:
0.
00

63
7

G
ra
de

2
2-
M
et
h
yl
pr
op

an
-1
-o
l,
ox
ol
an

e,
pr
op

an
-2
-o
l,
bu

ta
n
-1
-o
l

2
1,
2-
X
yl
en

e
(S
ol
ve
n
t
1:

0.
35

0)
et
h
an

ol
(S
ol
ve
n
t
2:

0.
65

0)
,p

ro
ba

bi
li
ty
:0

.0
05

81
G
ra
de

3
1,
4-
D
io
xa
n
e,

pe
n
ta
n
-1
-o
l,
m
et
h
an

ol
3

W
at
er

(S
ol
ve
n
t
1:

0.
65

0)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
35

0)
,p

ro
ba

bi
li
ty
:0

.0
05

58
G
ra
de

4
N
,N
-D
im

et
h
yl
fo
rm

am
id
e

4
1,
2-
X
yl
en

e
(S
ol
ve
n
t
1:

0.
30

0)
et
h
an

ol
(S
ol
ve
n
t
2:

0.
70

0)
,p

ro
ba

bi
li
ty
:0

.0
05

04
G
ra
d
e
5

B
en

ze
n
e,

1-
m
et
h
yl
py

rr
ol
id
in
-2
-o
n
e,

bu
ta
n
-2
-o
n
e,

cy
cl
oh

ex
an

on
e

5
W
at
er

(S
ol
ve
n
t
1:

0.
70

0)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
30

0)
,p

ro
ba

bi
li
ty
:0

.0
04

79
G
ra
de

6
A
ce
ti
c
ac
id
,e

th
yl

ac
et
at
e

6
1,
2-
X
yl
en

e
(S
ol
ve
n
t
1:

0.
25

0)
et
h
an

ol
(S
ol
ve
n
t
2:

0.
75

0)
,p

ro
ba

bi
li
ty
:0

.0
04

27
G
ra
de

7
B
ut
yl

ac
et
at
e,

pr
op

an
-2
-o
n
e,

to
lu
en

e,
1,
2-
xy
le
n
e

7
W
at
er

(S
ol
ve
n
t
1:

0.
75

0)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
25

0)
,p

ro
ba

bi
li
ty
:0

.0
04

01
G
ra
de

8
H
ex
an

e,
m
et
h
yl
su

lf
in
yl
m
et
h
an

e
8

1,
2-
X
yl
en

e
(S
ol
ve
n
t
1:

0.
20

0)
et
h
an

ol
(S
ol
ve
n
t
2:

0.
80

0)
,p

ro
ba

bi
li
ty
:0

.0
03

50
G
ra
de

9
D
ic
h
lo
ro
m
et
h
an

e
9

W
at
er

(S
ol
ve
n
t
1:

0.
80

0)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
20

0)
,p

ro
ba

bi
li
ty
:0

.0
03

22
G
ra
de

10
W
at
er
,c

h
lo
ro
fo
rm

,o
ct
an

-1
-o
l,
et
h
an

ol
10

O
ct
an

-1
-o
l(
So

lv
en

t
1:

0.
80

0)
1,
2-
xy
le
n
e
(S
ol
ve
n
t
2:

0.
20

0)
,p

ro
ba

bi
li
ty
:0

.0
03

21

Green Chemistry Paper

This journal is © The Royal Society of Chemistry 2025 Green Chem., 2025, 27, 12621–12641 | 12633

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

1/
8/

20
25

 7
:3

9:
20

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g


i- nfluence of temperature on solvent classification is limited.
However, temperature can still affect the fine-tuning of binary
solvent compositions and the associated selection
probabilities.

The final solvent screening results for the MLX cases under-
score the practical relevance and industrial compatibility of
the proposed framework (Tables S9 and S10). Ethanol and
methanol, ranked in Grades 10 and 9 respectively, have been
experimentally validated for meloxicam dissolution and
crystallization.71,72 Notably, ethanol-water mixtures (Grade 10)
are highlighted in patent EP-1462451A1 as preferred media for
Form I crystallization, offering controlled polarity and
enhanced purity.73 Such alcohol-water co-solvent systems are
widely used in industrial crystallization processes, where temp-
erature control enables high yield, polymorphic stability, and
improved solid properties.74 These examples confirm that
high-grade solvents identified by the framework are not only
environmentally favorable but also well-aligned with estab-
lished industrial practices.

3.3.3. Sustainability metrics and method-driven variability.
A comparison of the solvent grading results obtained using
the ReCiPe method Endpoint indicator (Resources, PLX c1)
and the GSK method (PLX c2) reveals significant discrepancies
in solvent classification and prioritization. One of the most
significant differences is observed in the classification of
lower-grade solvents. In PLX c1, solvents such as pyridine,
acetonitrile, and propan-1-ol are categorized within Grade 1,
whereas in PLX c2, chloroform, 1,4-dioxane, benzene, hexane,
and oxolane are assigned to the same category. This distinc-
tion suggests that the Endpoint indicator primarily evaluates
solvents based on resource consumption and environmental
toxicity, quantifying their sustainability through environ-
mental impact scores. In contrast, the GSK method can give a
more industry-oriented vision, incorporating additional con-
siderations such as process compatibility, regulatory compli-
ance, and environmental, health, and safety factors.

Significant differences also emerge in the classification of
mid-tier solvents. In PLX c1, Grade 5 includes benzene,
1-methylpyrrolidin-2-one, and butan-2-one, whereas in PLX c2,
Grade 5 consists of propan-2-one, acetonitrile, and methanol.
Notably, benzene is assigned a relatively high grade in the
Endpoint indicator but is ranked significantly lower in the
GSK method, suggesting differences in risk perception
between the two methodologies. Both methods, however, clas-
sify DMSO at a relatively high grade, reflecting its recognition
as an environmentally preferable solvent due to its low toxicity
and high biodegradability.

Water, widely regarded as a green solvent, is consistently
assigned Grade 10 in both methods, reinforcing its high pri-
ority for sustainability. However, notable discrepancies exist in
the classification of chlorinated solvents. In PLX c1, chloro-
form and dichloromethane are also categorized as Grade 10,
whereas in PLX c2, dichloromethane is assigned a significantly
lower ranking at Grade 2, likely due to the stricter regulatory
constraints imposed on chlorinated solvents within the GSK
framework.T
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The binary solvent selection results further emphasize the
methodological divergence between the two approaches. In
PLX c1, the top-ranked binary solvent combinations are predo-
minantly characterized by a high proportion of dichloro-
methane mixed with small amounts of other solvents. In con-
trast, PLX c2 follows a different ranking trend, where pentan-1-
ol and dichloromethane mixtures dominate, and solvent ratios
vary more significantly.

From a probability distribution perspective, the binary
solvent combination probabilities calculated in PLX c1 are
notably higher than those in PLX c2 (PLX c1 maximum:

0.00663 vs. PLX c2 maximum: 0.00278). This suggests that the
Endpoint indicator is more likely to identify high-probability
solvent combinations, whereas the GSK method, due to its
broader consideration of multiple influencing factors and
smaller numerical differentials across criteria, results in lower
overall probability variations among binary solvent combi-
nations. Fig. 8 illustrates the distribution of binary solvent
combinations within Grade 10 for PLX c1 (a) and PLX c2 (b).
In PLX c1, a limited number of combinations, particularly
those involving dichloromethane, show markedly higher prob-
abilities. This indicates a strong preference for dichloro-

Fig. 8 Statistical analysis of occurrence probabilities for solvent combinations and corresponding dominant constituents in Grade 10 in Case c1 (a)
and Case c2 (b).
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methane-based mixtures under the ReCiPe Endpoint indicator.
In contrast, PLX c2 displays a more balanced probability distri-
bution across several solvent systems. Although dichloro-
methane remains among the top candidates, the wider spread
suggests that the GSK method allows greater flexibility and
supports more diverse solvent selection strategies. When
focusing on traditional green solvents such as water or ethanol
as one component in binary mixtures, the Endpoint indicator
(PLX c1) yields not only more concentrated high-probability
combinations but also a greater number of qualifying binary
systems within Grade 10. In contrast, the GSK-based method
(PLX c2) identifies fewer combinations but distributes prob-
ability more evenly. See Tables S11 and S12 for detailed
listings.

3.3.4. Experimental validation in under-explored systems.
The AraC case study evaluated single- and binary-solvent
grading under two temperature gradients and two distinct sus-
tainability criteria. The results suggest that, particularly in the
present case, temperature is not the primary determinant of
solvent classification. Under the Endpoint Human Health
evaluation, despite cases d1 and d2 employing different temp-
erature ranges, the overall solvent grading trends remained
consistent. Solvents such as acetonitrile, 1-methylpyrrolidin-2-
one, and 1,4-dioxane were consistently ranked in lower grades,

whereas water, ethanol, and methanol, widely recognized as
green solvents, were consistently assigned higher grades.
While temperature settings can help refine solvent classifi-
cation, the key consideration remains the sustainability focus
of the evaluation methodology. By contrast, the differences
between solvent evaluation methods were more pronounced.
In AraC d1 and 2, benzene, 1,4-dioxane, and N,N-dimethyl-
formamide were categorized within Grade 3–5, whereas in
AraC d3 these solvents were assigned lower rankings, falling
into Grade 1 or 2.

Fig. 9 compares the Grade 10 binary solvent systems with
water as a fixed component under AraC d1 and AraC d3. While
both methods identify common co-solvents such as 1,2-xylene
and acetone, AraC d1 includes less sustainable options like di-
chloromethane, whereas AraC d3 favors greener solvents such
as 2-methylpropan-1-ol. This reflects the broader tolerance of
Endpoint-based screening versus the stricter sustainability con-
straints of the GSK metric. Compositionally, AraC d1 allows
wider water ratio ranges, indicating greater flexibility, while
AraC d3 yields narrow, sharply defined optima, suggesting
higher selectivity. Both methods consistently rank water + 1,2-
xylene highest, though optimal ratios differ. Systems like water
+ ethanol show lower probabilities and narrower ranges,
reflecting limited suitability. These observations are consistent

Fig. 9 Compositional distributions of water-containing binary solvent systems identified in grade 10 for case d1 (a) and case d3 (b). Each subplot
presents binary solvent systems comprising water and a co-solvent, selected under Grade 10 criteria for two cases. The x-axis represents the water
fraction in the binary mixture, and the y-axis lists the corresponding solvent combinations. Orange bars indicate compositions included in Grade 10,
with darker shades representing higher occurrence probabilities. Gray bars denote excluded compositions. Red circles mark the most probable com-
position for each combination.
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with the trend discussed in Section 3.3.3, where the GSK indi-
cator led to a more selective and compositionally constrained
solvent space compared to the more inclusive Endpoint
approach. A detailed statistical summary of Grade 10 binary
solvent systems containing water or ethanol as one component
is provided in the SI (Tables S13 and S14).

To further validate the predictive accuracy, experimental
verification was conducted, with results shown in Fig. 10. The
model demonstrated a high level of predictive performance. In
the binary solvent combination design, the Grade 10 combi-
nation of dichloromethane (Solvent 1: 0.05) and 1,2-xylene
(Solvent 2: 0.95) (D–X combination) exhibited the highest prob-
ability, but this does not imply that it is the most sustainable
choice. In subfigures (e–h) the D–X combination exhibited
higher environmental impacts in categories such as ozone for-
mation, global warming, and fossil resource scarcity compared
to water–ethanol combinations at any ratio. This underscores
the fact that although Endpoint 1 Human Health was selected

as the evaluation criterion, it does not mean that all binary
solvent combinations within the same grade exhibit identical
environmental impacts. The solvent selection process should
be tailored to the user’s specific sustainability priorities,
ensuring a balance between high predictive robustness (prob-
ability) and optimal sustainability impact within the selected
evaluation framework.

3.4. Future developments and current limitations

Prediction accuracy is a decisive factor influencing solvent
selection and design. In this study, the developed platform
allows users to customize key parameters, such as correction
tolerance, and provides the capability to manually incorporate
prior thermodynamic knowledge of specific systems, enabling
tailored adjustments to prediction outcomes. In addition to
these user-defined parameters, factors such as the reliability of
thermodynamic databases, the availability of experimental
data, and the structure of machine learning models also

Fig. 10 Solubility behavior and environmental impact assessment of water–ethanol binary solvent systems. (a–c) illustrate the solubility of AraC in
water and ethanol, comparing experimental data with model predictions. (d–i) present the environmental impact assessment for producing an equi-
valent amount of AraC using binary water–ethanol mixtures at solvent ratios of 0.00–1.00, shown as radar plots of 18 midpoint environmental
impact indicators normalized to a 0–1 scale. The black dashed line represents the baseline (highest-probability solvent system), while the red solid
lines correspond to the sustainability assessment results for the current study’s ethanol-water compositions.
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impact model performance and the final solvent classification
results. However, in designing an efficient and user-friendly
ecosystem, the platform aims to provide an intuitive and acces-
sible interface, ensuring that users can achieve solvent screen-
ing and optimization without requiring in-depth knowledge of
complex model hyperparameters. By allowing adjustments to
critical variables while maintaining an optimized structural
framework, the platform balances flexibility and usability,
enabling users to focus on the practical application of single
and binary solvent selection for a given API, rather than enga-
ging in intricate model tuning.

Despite the robustness demonstrated by the developed
methodology, the most reliable solvent selection and optimiz-
ation strategy still necessitates experimental calibration to
refine predictive accuracy. Pre-calibrated experimental data
help control error margins, mitigating the risk of cumulative
inaccuracies arising from model approximations and predic-
tion errors. Furthermore, while machine learning-based
solvent screening has demonstrated strong predictive capabili-
ties, its accuracy remains inherently constrained by the quality
and diversity of training data. Expanding high-quality experi-
mental datasets will be critical for further enhancing the pre-
dictive reliability of the model.

Additionally, the choice of sustainability assessment meth-
odologies significantly influences the final solvent rankings
and recommendations. Different evaluation frameworks and
solvent-specific sustainability priorities, such as toxicity con-
cerns, resource consumption, or process safety considerations,
may yield varying rankings for the same solvents. Future
research will focus on integrating commonly used sustainabil-
ity assessment frameworks into the platform and exploring
multi-objective optimization approaches. By incorporating a
broader set of sustainability indicators, the solvent evaluation
framework can be expanded to ensure that solvent selection
accounts for both industrial applicability and environmental
impact.

Building upon the platform developed in this study, future
research will further focus on the digitalization of solid–liquid
separation processes, integrating prediction, design, and
optimization into the comprehensive, intelligent solvent selec-
tion and process optimization SolECOs platform. This develop-
ment will not only enhance solvent selection efficiency but
also improve the overall effectiveness of crystallization and sep-
aration processes. By incorporating real-time process monitor-
ing and adaptive optimization, the platform will evolve into a
data-driven intelligent tool, offering more precise, efficient,
and sustainable solutions for pharmaceutical and chemical
process design.

4. Conclusion

This study presents the solvent design and selection module of
SolECOs, a comprehensive data-driven platform for sustainable
pharmaceutical manufacturing. SolECOs integrates a curated
solubility database of over 30 000 data points covering 1186

APIs and 30 solvent systems with thermodynamically informed
machine learning models to support solvent-related decision-
making in crystallization processes.

The modeling framework includes a polynomial regression-
based multi-task learning network (PRMMT) for temperature-
dependent solubility profiling, a point-adjusted prediction
network (PAPN) for single-temperature correction, and a modi-
fied Jouyban–Acree neural network (MJANN) for binary solvent
prediction. These models enable interpretable and uncer-
tainty-aware predictions across a wide range of crystallization
conditions. To further support environmentally informed
decision-making, SolECOs incorporates comprehensive sus-
tainability evaluations based on both the ReCiPe 2016 life
cycle impact framework and the GSK Solvent Sustainability
Guide, allowing users to balance solubility performance with
environmental priorities.

The entire workflow is implemented in an interactive
graphical interface, facilitating user-friendly data input, model
execution, and visualization of solubility curves, confidence
intervals, and sustainability indicators. Case studies involving
representative APIs, including paracetamol, meloxicam, piroxi-
cam, and cytarabine, validate the robustness and applicability
of this module across varying crystallization scenarios. As a
foundational part of the broader SolECOs platform, this
module demonstrates how data-driven modeling and sustain-
ability metrics can be integrated to guide solvent selection in
early-stage pharmaceutical process development.
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Abbreviations

APAP Paracetamol
AraC Cytarabine
CAMD Computer-aided molecular design
JA Model Jouyban–Acree model
MJANN Modified Jouyban–Acree-based neural network
MAE Mean absolute error
ML Machine learning
MLX Meloxicam
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MSE Mean squared error
PR Model Polynomial regression (PR) model
PRMMT Polynomial regression model-based multi-task

learning network
PXC Piroxicam
R2 Coefficient of determination
RMSE Root mean square error
RMSLE Root mean squared logarithmic error
STI Sustainability throughput index
p-Value Probability value (confidence level of predictive

error distribution fitting)
Tv Tolerance value
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tions of the model development methodology, case study con-
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tables and figures. See DOI: https://doi.org/10.1039/d5gc04176g.
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