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1. This work advances green chemistry by introducing SolECOs, a 
sustainable-by-design digital platform for solvent and solvent mixture 
selection, integrating predictive modelling and comprehensive 
sustainability assessment to support greener pharmaceutical 
manufacturing.

2. SolECOs predicts optimal single or binary solvents for 1,186 APIs using a 
database of 30,000+ solubility points for 30 solvents, ranked via 23 Life 
Cycle Assessment indicators and the GSK Environmental Assessment 
Framework. Predictions were experimentally validated for four APIs.

3. Greener performance could be achieved by expanding the database to 
include more bio-based solvents, adding renewable feedstock pathways 
in LCA, and integrating real-time process data for adaptive, in-process 
solvent design.
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Abstract

Solvent selection in pharmaceutical crystallization plays a pivotal role in determining 

overall manufacturing efficiency while also significantly impacting environmental 

performance and regulatory compliance. A data-driven solution for sustainable solvent 

selection, applicable to both single and binary solvent systems, was developed and 

integrated into SolECOs (Solution ECOsystems), a modular and user-friendly platform 

for Sustainable-by-Design solvent selection in pharmaceutical manufacturing. A 

comprehensive solubility database containing 1,186 active pharmaceutical ingredients 

(APIs) and 30 solvents was constructed and used in conjunction with 

thermodynamically informed machine learning models, including the Polynomial 

Regression Model-based Multi-Task Learning Network (PRMMT), the Point-Adjusted 

Prediction Network (PAPN), and the Modified Jouyban-Acree-based Neural Network 

(MJANN), to predict solubility profiles along with associated uncertainties. 

Sustainability assessment was performed using both midpoint and endpoint life cycle 

impact indicators (ReCiPe 2016) and industrial benchmarks such as the GSK 

sustainable solvent framework, enabling a multidimensional ranking of solvent 

candidates. Experimentally validated case studies involving APIs such as paracetamol, 

meloxicam, piroxicam, and cytarabine confirmed the approach’s robustness, 

adaptability to various crystallization conditions, and effectiveness in supporting single 

and binary solvent screening and design.

KEYWORDS: Solvent Selection, Pharmaceutical Crystallization, Machine Learning, 

Green Chemistry, Sustainability Assessment.
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1. Introduction

More than 80% of small-molecule pharmaceuticals are delivered in solid form 1, 2. 

As a fundamental step in solid-liquid phase transformation, crystallization is pivotal in 

pharmaceutical manufacturing, where solvent selection serves as a key determinant 

of process efficiency and product quality 3, 4. An appropriately chosen crystallization 

solvent affects solubility and supersaturation behavior, which in turn enables control 

over crystal properties and, more importantly, ensures high product yield 5, 6. With the 

growing adoption of Green Chemistry 7 and Quality by Design (QbD) 8 in 

pharmaceutical manufacturing, solvent selection has become central to addressing 

not only product quality and process efficiency but also sustainability, regulatory 

compliance, and life cycle assessment (LCA). This shift is reflected in guidelines such 

as ICH Q8-Q12 9, the REACH regulation 10, and initiatives including the Green 

Pharmacy Initiative and Pharmaceuticals in the Environment (PiE), which emphasize 

reduced volatile organic compounds (VOCs) emissions, lower carbon footprint, and 

improved atom economy 11-14.

On average, it takes approximately 12.5 years and up to £1.15 billion to bring a 

new drug to market 15. While many factors contribute to this painstaking and costly 

process, inefficiencies in crystallization solvent selection remain a persistent 

bottleneck, particularly in unit operations such as API synthesis, crystallization, liquid-

liquid extraction, wash-filtration, drying, and granulation 16. Despite decades of 

accumulated experience, solvent selection in crystallization continues to rely heavily 

on empirical rules and trial-and-error strategies 17-19. These approaches are time-

consuming, resource-intensive, and heavily reliant on expert judgment, which 

collectively limits efficiency and scalability in process development 20, 21.

Driven by these challenges, solvent selection is gradually transitioning from 
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traditional empiricism to data-driven intelligent screening and machine learning (ML)-

assisted design approaches 22-26. Technically, the objective of solvent selection aligns 

closely with solubility prediction, an area that has seen substantial progress in recent 

years 27-33. However, based on accurate characterization of solubility behavior, a 

critical differentiating step lies in effectively linking API dissolution behavior in a given 

solvent with its environmental footprints under variable real-world production 

conditions. 

Solvent selection approaches are developed to meet various single or multi-

objective targets, such as maximizing product yield, controlling crystal polymorphism, 

and enhancing solvent sustainability 34, 35. From an industrial standpoint, a key and 

often unavoidable goal is to reduce environmental impact while still achieving the 

desired product yield. Computer-Aided Molecular Design (CAMD) serves as a 

systematic approach to identify crystallization solvents 36-41. Karunanithi et al. 42 

developed a framework combining CAMD, database screening, and experiments, with 

attention to crystal morphology. Wang and Lakerveld 43 presented a systematic 

approach for the simultaneous optimization of process conditions and solvent 

selection for continuous crystallization including solvent recycling. Chai et al. 44 

introduced the Grand Product Design (GPD) model, incorporating technical, economic, 

and regulatory factors. Liu et al. 45 proposed an ML-integrated CAMD approach 

focused on solvent recovery. Oliver et al. 46 designed a CAMD-based method for 

optimal solvent blend selection in pharmaceutical crystallization, capable of 

simultaneously determining ideal process temperature, solvent and anti-solvent 

species, and their compositions.

To improve practical applicability, efforts have focused on user-friendly tools that 

integrate process needs, solvent properties, and environmental constraints 47-51. 
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Larsen et al. 52 developed a green solvent selection tool for printed electronics, 

organizing a wide range of solvents based on Hansen solubility parameters and 

sustainability indicators. Similarly, an interactive tool has been developed to support 

solvent selection by incorporating chemical functionality, physical properties, 

regulatory considerations, and Safety, Health, and Environmental (SHE) impacts 53.

Despite the emergence of various solvent design and selection frameworks in 

recent years, significant limitations remain. Firstly, the implementation complexity of 

many methods and models hinders their broader adoption. While computational 

methods demonstrate strong performance in specific case studies, they typically rely 

on intricate parameter settings and assumptions, making it difficult to generalize or 

directly apply the results in real-world scenarios. Without substantial expertise, users 

may struggle to navigate these tools effectively, thereby diminishing the cost and 

efficiency advantages of non-experimental approaches. Secondly, the “optimal” 

solvents identified by computational approaches sometime lack practical feasibility. 

These designed solvents may face challenges in industrial adoption due to high 

synthesis costs, limited commercial availability, supply chain constraints, or issues 

related to transportation and storage. Thirdly, existing methods often lack flexibility and 

consistency, particularly in sustainability assessment. Current industrial practices rely 

on diverse and sometimes inconsistent sustainability indicators, each emphasizing 

different aspects - such as carbon footprint, toxicity, biodegradability, or energy 

consumption during production. The absence of a unified evaluation framework makes 

it difficult to comprehensively assess and compare the environmental impacts of 

solvents or solvent mixtures.

To address these limitations, this study sets out three key objectives. First, to 

improve usability, we develop a computationally efficient and user-oriented platform 
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that enables solvent selection without requiring advanced modeling expertise or high-

performance computing. Second, to enhance practical relevance, the framework 

focuses on commonly used solvents and their binary combinations, avoiding 

hypothetical or industrially inaccessible candidates. Third, to accommodate diverse 

sustainability criteria, the methodology incorporates multiple assessment schemes, 

allowing engineers and experimentalists to select evaluation criteria aligned with 

specific environmental, health, or regulatory frameworks.
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2. Methodology

A computational framework with a sequential workflow was developed to 

streamline solvent selection and screening for APIs in both single and binary solvent 

systems. The process began with the construction of a comprehensive solubility 

database with over 30k data points for 1,183 APIs in organic solvent/water systems, 

covering both single and binary compositions. Additionally, the environmental impact 

of solvent usage was systematically assessed by evaluating the sustainability 

performance of 30 solvents and their mixtures. To enable quantitative solvent selection, 

the 3D molecular structures of APIs were characterized using 347 molecular 

descriptors. Key descriptors were identified through a combination of random forest 

modeling and Monte Carlo sensitivity analysis. 

Hybrid modeling approaches integrating ML and theoretical methods were 

developed. A Polynomial Regression Model-based Multi-Task Learning Network 

(PRMMT) was designed with multiple shared layers to accommodate different design 

requirements. The Point-Adjusted Prediction Network (PAPN) was developed for 

solubility prediction at specific temperatures, while the Modified Jouyban-Acree 

Model-based Neural Network (MJANN) was tailored to handle the complexities 

inherent to the design of binary solvent systems.

To enhance reliability, discrepancies between predicted and actual solubility 

values in the validation set were quantified and mapped to optimal probability 

distributions of prediction residuals. By preserving probability variations across 

different distribution values, a robust solvent selection framework was established, 

ensuring reliable solvent recommendations. The entire workflow has been integrated 

into the user-friendly SolECOs platform, providing an efficient tool for solvent 

screening and selection.
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Fig 1. Data-Driven Framework for Sustainable Solvent Selection in the SolECOs Platform
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2.1. Data Collection

2.1.1. Database for Solubility 

To accommodate the diverse range of potential model compounds involved in the 

crystallization process, the solubility database was curated based on compound value 

and complexity, selecting a total of 1,186 high-value compounds that are essential for 

the preparation and production of APIs approved by the World Health Organization 

(WHO). The solubility data for these compounds in 30 commonly used single solvents 

and binary solvent mixtures were systematically retrieved through comprehensive 

literature searches and database queries, including published articles and Reaxys 54. 

Only data explicitly reporting the use of pure solvents were included to ensure 

consistency and avoid the influence of mixed-isomer or denatured solvents.

To facilitate model development and validation, the entire dataset was divided into 

three independent subsets, each serving a specific purpose. Approximately 70% of 

the data was allocated to the training set for model development, while 30% was used 

as a validation set to fine-tune model performance. Additionally, a separate test set, 

consisting of data from 20 independent APIs, was reserved for final model evaluation.

2.1.2. Database for Solvent Environmental Categories and Impact Quantification

Thirty solvents widely used were selected for this study (Table S1). The selection 

process was meticulously designed to balance physicochemical diversity, industrial 

relevance, and environmental sustainability 55. Polar protic solvents such as methanol, 

ethanol, and water were included for their hydrogen-bonding capabilities, while non-

polar solvents like hexane and heptane represent low-dielectric environments. 

Industrial relevance guided the inclusion of widely used solvents such as chloroform, 

dichloromethane, acetone, and ethyl acetate. Additionally, solvents like acetic acid, 

pyridine, 1,4-dioxane, and cyclohexanone were incorporated for their roles in tuning 
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polarity and solubility in process-critical applications. Environmental considerations 

were also incorporated into the selection process. While solvents like chloroform and 

benzene were retained for benchmarking purposes despite known risks, greener 

alternatives such as DMSO, oxolane, and selected alcohols were included to promote 

more sustainable crystallization practices.

The environmental impact of solvents was quantitatively evaluated using SimaPro 

9.5 and the ReCiPe 2016 v1.1 method, based on the Ecoinvent 3 database, in 

accordance with ISO 14040-14043 standards 56. Both midpoint and endpoint 

indicators were considered to provide a comprehensive evaluation of environmental 

impact (Fig S1). The midpoint approach enabled a detailed examination of each 

solvent’s impact across different environmental categories, while the endpoint 

approach focused on the overall long-term environmental consequences. In addition 

to the sustainability indicators provided by the methodology, a weighted summation of 

impact factors (Eq. 1) was also considered, where higher a Sustainability Throughput 

Index (STI) values indicated a greater negative environmental impact.

To further strengthen the sustainability assessment, the platform also 

incorporated the solvent evaluation framework proposed by the regularly updated GSK 

Solvent Sustainability Guide 57, 58. This method categorizes solvents into ten distinct 

subcategories, which are subsequently aggregated into four major sustainability 

category scores and ultimately synthesized into a composite sustainability score (G), 

as described in Eqs. 2 to 5. All scores range from 1 to 10, where a low score indicates 

poor sustainability, while a high score reflects favorable environmental performance. 

Overall, the platform offers 23 different sustainability indicators for users to choose 

from.

1

N

i i
i

STI w I
=

= ×å (1)
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H HH EP= ´ (2)

S FE RS= ´ (3)

E Air Aqua= ´ (4)

4W I R BT VOC= ´ ´ ´ (5)

4G H S E W= ´ ´ ´ (6)

2.2. Descriptors Determination

The Molecular Operating Environment (MOE) software 59 was employed to 

calculate molecular descriptors, encompassing both 2D and 3D properties which 

include topological, geometric, and electronic properties. After computation, the 

descriptors were reviewed and exported for further analysis. To identify and select the 

most independent descriptors, a random forest model and Monte Carlo simulations 

based on random forest were utilized. More information can be found in the Supporting 

Information. 

2.3. Modeling

2.3.1. Thermodynamic and Empirical Modeling

Classical thermodynamic and empirical models provide an effective means to 

describe solubility variations with temperature in single solvents, and with both 

temperature and composition in binary mixtures. The proposed digital platform 

employs an empirical Polynomial Regression (PR) model to describe solubility 

variations with temperature in single-solvent systems. The general form of this model 

is provided in Eq. 7:

2
0 1 2

n
nS T T Ta a a a= + × + × + + ×L (7)

Where S is the solubility value, T is the temperature. αn are the model’s 

coefficients. Given that solubility often exhibits nonlinear behavior with temperature, 
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employing a quadratic function (n=2) can effectively capture this trend. 

The Jouyban-Acree (JA) model is widely utilized to correlate the solubility of 

solutes with both temperature and the initial composition of binary solvent mixtures. 

This model effectively captures the dependence of solution behavior on solvent 

composition and temperature in multi-solvent systems. One of the key advantages of 

the JA model is its simplified three-parameter structure, which significantly enhances 

computational efficiency and makes it well-suited for integration with ML frameworks 

60-62. The general form of the JA model is presented in Eq. 8.

0 0 0 0 0 0 0 0 20 1 2
1 2 1 2 3 1 3 2 3 2 3 2 3ln ( ) ln ( ) ln ( ) ( ( ) ( ) )x x x x x x x x x x x

T T T
b b b

= × + × + × × + - + - (8)
Where x1 is the mole fraction solubility of the solute; x2

0 and x3
0 are the initial mole 

fractions of two solvents in the solute-free, binary solvent mixtures, respectively; β0, β1 

and β2 are model parameters; and (x1)2 and (x1)3 refer to the corresponding mole 

percentage solubility of compound in two solvents. Thermodynamic model parameters 

were considered as target variables for ML modeling. Additional information is 

available in the Supporting Information.

2.3.2. ML Modeling 

The Polynomial Regression Model-based Multi-Task Learning Network (PRMMT) 

developed in this study adopts a shared-bottom architecture to predict the solubility-

temperature profiles of compounds across multiple solvents. This approach improves 

computational efficiency by enabling simultaneous predictions across 30 different 

tasks while leveraging shared representations. The model consists of a fully connected 

shared-bottom layer followed by task-specific branches. Each branch comprises two 

dense layers optimized through hyperparameter tuning, with dropout layers applied to 

mitigate overfitting. The model predicts three solubility-related outputs per task, 

leading to a total of 90 outputs. To ensure physically meaningful predictions, custom 
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loss constraints enforce non-negativity and monotonicity of solubility with respect to 

temperature. Hyperparameter tuning, including the number of units, dropout rates, and 

learning rates, is performed using Keras Tuner with a random search strategy across 

400 trials. The final model, trained for up to 1,000 epochs, adaptive optimizer is applied 

to minimize the Mean Absolute Error (MAE). Post-training, inverse transformation is 

applied to restore the standardized solubility predictions to their original scale. Model 

performance is evaluated based on the MAE across tasks. By comparing the predicted 

and actual solubility values across each task in the validation set, the uncertainty in 

each prediction is evaluated. This uncertainty reflects the variability inherent in the 

model’s predictions, and with the current scale of data, it represents the predictive 

uncertainty of the model. This uncertainty can be used to assess the reliability of the 

predictions, especially when extending the model to predict solubility for new 

compounds or solvents. 

A Point-Adjusted Prediction Network (PAPN) and the Modified Jouyban-Acree-

based Neural Network (MJANN) were also developed to predict the solubility of APIs 

in solvents at a single temperature point, as well as their solubility in binary mixed 

solvents. These models follow the same framework as previous studies 60, 63. The 

inputs and outputs of the models are presented in Tables 1 and S2, and the procedure 

for residual distribution fitting and probability estimation is detailed in the Supporting 

Information.

Table 1 
Summary of the key features of the proposed ML Models

Model 
Name

Polynomial Regression 
Model-based Multi-Task 

Learning Network 
(PRMMT)

Point-Adjusted 
Prediction Network 

(PAPN)

Modified Jouyban-Acree-
based Neural Network 

(MJANN)

Input Representative API 
molecular descriptors

Representative API and 
Solvent molecular 

descriptors

Representative API and 
Solvent molecular 

descriptors, Interaction 
between solvents, Pure 
Solvent Solubility Values
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Output PR model Parameters Solubility of API in 
Temperature T JA model Parameters

2.3.3. User Interface

The user interface is developed with PySide6 and provides an interactive and 

user-friendly platform that integrates data input, model execution and result 

visualization. It adopts a multi-tab layout that organizes solubility prediction, 

uncertainty analysis, single-point adjustment, binary solvent evaluation and 

sustainability assessment in a structured manner. Users can load and save files, 

configure model parameters and initiate computations through an intuitive graphical 

environment with real-time feedback using clickable buttons, progress indicators and 

status tracking. Matplotlib-based visualization supports scatter plots, uncertainty 

distributions and 3D representations of solubility trends and sustainability indicators. 

The sustainability module categorizes solvents based on selected indicators and 

provides graded recommendations using classification and radar charts. To ensure 

efficiency and responsiveness, computational tasks run in the background using 

QThread and QRunnable for smooth multitasking.

2.4. Comparison: Simulation and Experimental Solubility Determination

To assess the accuracy and reliability of the computational framework, prediction 

results were systematically compared with experimental data and widely used existing 

methodologies. Experimental solubility measurements were conducted using the 

Crystalline instrument (Technobis, Netherlands) to provide a direct comparison with 

predicted results. Additionally, the solubility prediction module in PSE gPROMS, a 

widely used commercial process simulation software for pharmaceutical process 

modeling, was also employed for comparison.

The predictive performance of the model was evaluated using multiple statistical 
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metrics, including MAE, Root Mean Squared Error (RMSE), Root Mean Squared Log 

Error (RMSLE), and the coefficient of determination (R2). Given the variability in scale 

across thermodynamic and empirical parameters and solubility values, there is a risk 

that solvents with lower solubility might be underestimated by the model, potentially 

leading to biased exclusion in decision-making. To address this, RMLSE was adopted 

as a key performance metric, as it penalizes underprediction more strongly than 

conventional metrics. Further details on the experimental procedures, computational 

methodologies, and evaluation metrics can be found in the Supporting Information.

3. Results and Discussion

3.1. Data Construction and Determination of Input Descriptors

3.1.1. Data Curation

The types of solvents and their occurrence frequency in the solubility database, 

along with the distribution of solubility data, are illustrated in Fig 2. While most small-

molecule pharmaceuticals operate within moderate temperature ranges, we have 

comprehensively compiled and visualized all available data capturing temperatures up 

to 250°C to serve as a foundational database for potential future studies. However, 

during the model construction phase, we restricted our dataset to solubility data at 

temperatures below 70°C to align with practical pharmaceutical conditions.

The density and size of the circles in Fig 2(a) represent the frequency of solubility 

data points across different solvent-temperature combinations. A noticeable clustering 

of data is observed in the solubility range of 10-6 to 101 mole percent and within the 

temperature range of 0-50°C, indicating that most data falls within these conditions. 

Although some data points exist at temperatures above 100°C, predominantly in the 

1-10 mole percent solubility range, statistical analysis reveals that these cases 

account for less than 2% of the total dataset.
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Compared to aqueous solubility data, solubility data measured in organic solvents 

are relatively limited (Fig 2b). The 30 solvent-specific tasks defined in the PRMMT 

model align with the most frequently occurring solvents in Fig 2b (see Table S1 for 

details). Analyzing the logarithmic solubility values (LogS) of the collected data 

indicates that water and ethanol are the most extensively represented solvents, 

collectively accounting for over 30% of the total dataset. In contrast, solvents such as 

propyl acetate and 1,2-xylene appear far less frequent, contributing to less than 5% of 

the dataset.

The solubility data in water exhibit a relatively narrow distribution, primarily falling 

within the LogS range of -4 to 4 (in mole percent). Conversely, solvents like ethanol 

and Propan-2-one show a broader solubility distribution, suggesting that solubility 

variations are more pronounced across different solutes. Importantly, even for solvents 

with lower data availability, the dataset does not exhibit an overly concentrated 

distribution, maintaining a relatively diverse range of solubility values. This diverse 

solubility distribution underscores the effectiveness and representativeness of the 

dataset.

Ideally, for model training, a uniform distribution of LogS values across the entire 

dataset would be preferred. However, due to practical limitations in data availability, 

no LogS-based pruning was applied to the organic solvent dataset. This ensures that 

the dataset retains its inherent diversity, which is crucial for robust model performance 

and generalizability.
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Fig 2. Solubility and Solvent Frequency Analysis. (a) Solubility distribution across different temperatures. The x-axis represents solubility values (log scale), and the y-
axis shows temperature (°C). Each bubble corresponds to a solubility data point, with bubble size representing the occurrence frequency of solubility values and color 

intensity mapped to temperature, increasing with higher thermal conditions. (b) Combined violin and bar plots for solvent frequency and solubility distribution. The 
violin plot shows solubility distributions for solvents with data frequency > 50, where width represents solubility range. The blue line marks the mean, while red and 
green dashed lines indicate the 25th and 75th percentiles. Below, the gray bar chart displays solvent occurrence frequency. The right y-axis shows solubility on a log 

scale. Colors of the violin plots are assigned using the viridis palette solely for distinguishing different solvents.
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3.1.2. Descriptor Development

The descriptors consist of two categories: quantitative characterization of 

solute/solvent 3D structures and temperature-dependent solubility curve. The 

temperature-dependent solubility profiles of compounds in single and binary solvent 

systems were parameterized using the PR model and JA model, each defined by three 

fitted parameters.

For single-solvent solubility prediction, since each solvent prediction task was 

assigned to independent parallel tasks, explicit solvent descriptors were not required. 

Instead, the selected descriptors needed to comprehensively capture API molecular 

characteristics. To determine the most relevant descriptors, random forest modeling 

combined with Monte Carlo sensitivity analysis and an independent random forest 

approach were applied to assess descriptor importance. Tables S3 and S4 list the top 

25 molecular descriptors, along with their definitions. Their importance rankings, after 

Unit Vector Normalization, are visualized in Fig 3. While some variations in ranking 

exist, most high-ranking descriptors exhibit consistent trends.

Key descriptors include GCUT_SLOGP, which incorporates both structural 

features (via graph cut) and hydrophobicity (via logP), descriptors related to the heat 

of formation of the compound, distance and adjacency matrices of heavy atoms, 

descriptors describing mass distribution relative to the molecular center of mass, and 

those characterizing molecular flexibility. To minimize redundancy, a representative 

heat of formation descriptor was selected, and a Pearson correlation analysis (Fig S2) 

was performed to ensure descriptor independence.

For binary solvent systems, additional considerations were made for solvent 

importance and solvent-solvent interactions. Key solvent descriptors included 

molecular weight, AM1_dipole, and ASA (accessible surface area). The AM1_dipole 
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represents the dipole moment calculated using the AM1 Hamiltonian, while ASA 

quantifies the solvent-accessible surface area.

Fig 3. Statistical Analysis of Descriptor Importance Values Determined by Combined Random 
Forest Model and Monte Carlo vs Random Forest Model

3.1.3. Solvent Environmental Assessment

The ReCiPe method was employed to calculate midpoint and endpoint indicators, 

serving as the sustainability assessment framework in this study to quantitatively 

evaluate the environmental impact of 30 solvents under the same usage conditions. 

The results are presented in Fig. 4 and Table S5.

Under midpoint indicators, solvents such as pyridine, propan-1-ol, and oxolane 

exhibit significant environmental burdens across multiple impact categories, including 

global warming potential, marine and freshwater ecotoxicity, and ozone layer depletion. 
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Furthermore, propan-1-ol and oxolane demonstrate notable effects in human health-

related categories, particularly in carcinogenic and non-carcinogenic toxicity. These 

solvents not only pose potential risks to workers and end-users throughout their life 

cycle but also contribute to long-term environmental degradation due to waste 

emissions that impact ecosystems. In contrast, water and solvents such as toluene, 

and 1,2-xylene which exhibit relatively lower impact values across most categories, 

may be more environmentally sustainable options for API purification and production 

(Fig. 4a).

The endpoint indicators integrate the midpoint assessment results, providing a 

more comprehensive evaluation of the overall environmental impact (Fig. 4b). The 

endpoint analysis reveals that propan-1-ol, acetonitrile, pyridine, and N-methyl-2-

pyrrolidone exhibit the most pronounced environmental impacts across multiple 

categories, particularly concerning human health and ecosystem damage. In contrast, 

solvents such as water, heptane, hexane, and ethanol demonstrate relatively lower 

overall environmental impact values, especially in resource depletion categories, 

indicating potential advantages in environmental sustainability.

A comparison between the ReCiPe method and the GSK method (Table S1 and 

Fig 4c) reveals both similarities and discrepancies in solvent rankings. These 

differences primarily arise from variations in evaluation frameworks, numerical 

processing methodologies, and data sources. Although an attempt was made to 

establish a correspondence between the GSK classification and the Midpoint 

indicators in Fig S1, complete alignment remains challenging due to fundamental 

differences in category definitions. Moreover, numerical processing methodologies 

differ between the two approaches. In Figs 4a and 4b, the ReCiPe method assigns 

equal weighting to all Midpoint and Endpoint indicators, followed by a direct summation 

Page 21 of 53 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
1/

20
25

 1
1:

59
:1

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5GC04176G

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g


of impact scores, whereas the GSK method applies a square-root transformation (Eq. 

6) to normalize variations across subcategories. Differences in data sources also 

contribute to the observed ranking discrepancies. The GSK Solvent Sustainability 

Guide is based on industry-specific data accumulated within GSK, using a simplified 

scoring system tailored to manufacturing operations, whereas the ReCiPe method 

provides a broader environmental perspective but remains susceptible to regional 

policy influences and assumptions embedded in its methodological framework.

It is important to recognize that no single green assessment method can fully 

address the inherent challenges of quantifying qualitative sustainability attributes, and 

the prioritization of solvent selection criteria may vary depending on the specific 

application context. This study aims to establish a multifaceted evaluation platform as 

a complementary approach to well-established sustainability guidelines that are widely 

recognized and trusted by users. 
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Fig. 4 The Environmental Impact of Solvents Analyzed Using: (a) the ReCiPe Midpoint Method, 
(b) the ReCiPe Endpoint Method, and (c) the GSK Solvent Sustainability Guide

3.2. Model Integration

The performance of the PRMMT, PAPN, and MJANN models on the whole 

dataset and testing set is summarized in Tables 2 and S6, Fig S3. The close 

agreement between the results on the whole dataset and the independent test set 

demonstrates that all three models achieve consistent predictive accuracy across 

unseen data, effectively capturing the solubility behavior of APIs in diverse solvents 

and showing no evidence of overfitting. Since the predicted values correspond to 
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model parameters, achieving absolute numerical accuracy does not necessarily 

indicate an improvement in predictive performance. The accuracy of single-

temperature-point predictions is generally higher than that of the overall solubility 

curve fitting, as evidenced by the superior accuracy demonstrated by the PAPN model 

compared to the other two models.

To further evaluate prediction reliability, the differences between predicted and 

real values were analyzed to determine the error distribution shown in Fig 5. The 

probability value (p-value) was used as an indicator of the confidence in the accuracy 

of the model's description. The error distribution fit for all tasks within the PRMMT 

model resulted in p-values predominantly concentrated between 0.8 and 1, with an 

average exceeding 0.6, indicating a high degree of accuracy in describing prediction 

errors. The t-distribution was observed most frequently, suggesting that the statistical 

treatment of errors places greater emphasis on the tail regions, allowing for a more 

flexible and conservative estimation by accommodating variations in the degrees of 

freedom across different tasks. By mapping the error distribution to specific tasks, it is 

possible to determine the probability distribution of the predicted values within ±x 

intervals. Theoretically, restricting the range of output parameters could reduce the 

prediction uncertainty. However, the objective of this study is to establish a predictive 

framework that provides a broader range of possibilities rather than aiming for extreme 

precision. This aligns with the principle in pharmaceutical solvent selection, where 

R&D departments aim to avoid overlooking potential solvents or solvent combinations. 

Consequently, the PRMMT model outputs three parameters, accompanied by error 

distributions incorporating t-distribution, Cauchy distribution, Beta distribution, log-

normal distribution, and logistic distribution. Similar error distributions are established 

for the PAPN and MJANN models. However, to optimize computational efficiency, only 
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the uncertainty range from the PRMMT model is considered in subsequent 

applications.

To enhance robustness, a predictive framework was developed by integrating the 

three models. Given the PAPN model’s superior accuracy in single-point temperature 

predictions, the framework prioritizes its predictions. The PRMMT model serves as the 

foundation, providing initial predictions along with corresponding uncertainty estimates. 

The PAPN model is then used to refine the predictions at specific temperature points, 

acting as correction anchors. A tolerance value (Tv) is introduced to ensure that the 

solubility curve predicted by the PRMMT model falls within the confidence interval of 

the PAPN model’s single-temperature predictions. Tv represents a user-defined error 

margin, which can be adjusted based on the prediction confidence of the PAPN 

models. For example, if PAPN predictions are considered highly reliable, a lower T 

value can be set to enforce stricter constraints. Alternatively, an approximate 

predictive error of 10% (Tv = 0.1) can be used as a default tolerance for correction in 

the platform. The influence of different T values on predictive performance is further 

explored in case studies. The computational precision (step size) is defined by the 

number of Monte Carlo simulation samples, with 106 samples chosen to balance 

accuracy and computational efficiency.

For binary solvent mixtures, the PAPN-corrected single-point predictions serve as 

curve endpoints in the MJANN model. In real-world applications, solubility values may 

vary depending on measurement methodologies. This study accounts for this 

variability by offering users the flexibility to manually define correction points, Tv, and 

error distributions. In this scenario, correction points can be derived from experimental 

data, and the predictive error distribution is replaced by actual experimental error.

Based on the selected 30 pure solvents, a theoretical total of 435 binary solvent 
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combinations is possible. However, due to partial or complete immiscibility of certain 

solvent pairs at specific temperatures, some binary mixtures were excluded from this 

study, and the final selection of binary solvent systems is provided in Fig S4. The 

computational step size for binary solvent mixtures is another critical parameter. Given 

that APIs may exhibit limited solubility in mixed solvents, a step size of 0.1 (i.e., solvent 

fraction increments of 0.05) was chosen to accurately capture potential extreme 

solubility points. More precise calculations, such as a step size of 0.01, are feasible 

but would require significantly greater computational resources. In most cases, the 

endpoint solubility values for binary mixtures are obtained from model predictions. 

However, since some users may prefer to input their own solubility data, the framework 

also allows for the manual definition of binary solvent system endpoints, providing 

greater flexibility in practical applications.

Table 2 
Prediction Performance of PRMMT, PAPN and MJANN Models on the Testing Set
Average Evaluation Metrics PRMMT Model PAPN Model MJANN Model

MAE 0.584 0.472 0.994
RMSE 0.963 0.821 1.391

RMSLE 0.268 0.380 0.351
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Fig 5. Optimal Fit of Error Distributions and Frequency-p-value Analysis of Various Distributions: 
(a) Frequency and p-value distribution of 90 outputs; (b) to (d) Best fit of the error distribution for 

Task 1 Output Alpha 1 to Output Alpha 3.
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3.3. Case Study

Four APIs were selected to validate the robustness of the methodology, 

considering structural diversity and relevance to crystallization processes. 

Paracetamol (N-acetyl-para-aminophenol, APAP) was included due to the extensive 

literature data and research experience available for comparison. Meloxicam (MLX) 

and Piroxicam (PXC) can also get historical results from published papers for 

consideration and these two API exhibit a certain degree of similarity in chemical 

structure. In contrast, Cytarabine (AraC), with its relatively complex structure and 

limited literature reports, was selected to facilitate comparative analysis and provide 

insights into alternative solvent choices and experimentally verified. The study 

examined variations in cooling temperature ranges and different sustainability 

considerations. These variables are detailed in Table 3.

Table 3 
Summary of API Cooling Temperature Ranges and Sustainability Considerations

API Name Molecular 
Formula

Temperature 
Range Sustainability Considerations

Paracetamol
(APAP)

C8H9NO2 a1: 40°C -15°C a1: Midpoint, Weighted Sum STI

Meloxicam
(MLX)

C14H13N3O4S2
b1: 50°C -10°C
b2: 30°C -5°C

b1: Midpoint, Human carcinogenic toxicity
b2: Midpoint, Human carcinogenic toxicity

Piroxicam
(PXC)

C15H13N3O4S
c1: 30°C -10°C
c2: 30°C -10°C

c1: Endpoint, Resources
c2: GSK Methodology

Cytarabine
(AraC)

C9H13N3O5

d1: 50°C -5°C
d2: 40°C -15°C
d3: 40°C -15°C

d1: Endpoint, Human Health
d2: Endpoint, Human Health

d3: GSK Methodology

3.3.1. Accuracy Assessment with Established Data

The crystallization process considered in APAP case a1 involved cooling from 

40°C to 15°C. The first step was to predict the thermodynamic solubility of the API in 

target solvents over a broad temperature range. Fig 6 and Table S7 present solubility 

predictions using different models, where subfigures (a)-(h) illustrate the performance 
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of the PRMMT and PAPN models in pure solvents, and subfigures (e)-(l) demonstrate 

the MJANN model’s performance in binary solvent mixtures. A key insight derived from 

the RMSLE result is that the PRMMT model, after PAPN correction, retained 

competitive predictive accuracy. However, in specific cases, the corrected model 

exhibited enhanced capability in capturing absolute solubility variations at discrete 

temperature intervals. Noteworthy discrepancies were observed between the PRMMT 

model and single-point PAPN corrections, particularly in predicting APAP solubility in 

toluene, where deviations arose due to intrinsic model differences and sensitivity to 

tolerance thresholds. Despite these variations, the general solubility-temperature 

trend was effectively captured, indicating that the corrected solubility deviations at 

individual temperature points remained within an acceptable range. In contrast, the 

SAFT-γ Mie GC method exhibited substantial deviations from experimental data in 

over half of the evaluated cases, failing to reliably reproduce the monotonic increase 

in solubility with temperature in single-solvent systems. For binary solvent systems, 

solubility predictions were inherently dependent on the accuracy of endpoint solubility 

estimations, with the models in this study effectively capturing both monotonic 

solubility trends and potential co-solvent effects.

Subsequent analyses were conducted to evaluate green solvent selection for API 

crystallization. In case a1, the ReCiPe method Midpoint indicators were employed, 

where individual indicators were aggregated using an equal-weight summation 

approach to compute the STI, assigning equal weights to all parameters. The objective 

was to identify solvent systems with the lowest possible environmental impact. To 

systematically assess the sustainability of both single and mixed solvents, the 

sustainability rankings were categorized into ten distinct grades, with higher grades 

indicating superior environmental performance.

Page 29 of 53 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
1/

20
25

 1
1:

59
:1

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5GC04176G

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g


The APAP screening results, presented in Fig 7, illustrate the classifications 

through an interactive computational interface. The left panel presents a 2D 

visualization, where probability and STI values are plotted against the count across 

different grades for each combination. Concurrently, the middle and right panels 

exhibit potential single-solvent and binary-solvent selections. In Grades 1 to 3, oxolane, 

acetonitrile, propan-1-ol, 1,4-dioxane, and N,N-dimethylformamide were identified as 

predominant solvents. These solvents are well-documented for their superior solubility 

performance and extensive industrial applicability; however, they are frequently 

associated with suboptimal green chemistry attributes. As sustainability rankings 

increased, solvents such as pentan-1-ol, butyl acetate, acetic acid, and 

methylsulfinylmethane were more frequently observed. At the highest sustainability 

levels (Grades 8 to 10), solvents including dichloromethane, methanol, benzene, water, 

heptane, toluene, hexane, and ethanol became dominant. Notably, water and ethanol 

emerged as particularly competitive due to their low environmental impact and high 

biodegradability. A holistic approach to solvent selection necessitates a multifaceted 

evaluation beyond solubility and environmental attributes alone. Rather than 

evaluating solubility or sustainability in isolation, an optimal solvent or solvent mixture 

should be selected based on minimizing environmental burden while maintaining 

adequate solubility within a target temperature range. For instance, while N,N-

dimethylformamide exhibited the highest solubility potential, its substantial 

environmental impact relegated it to lower sustainability grades.

In consideration of binary solvent system, in Grade 1 to Grade 3, solvents such 

as oxolane, propan-1-ol, and pentan-1-ol remained dominant components. However, 

at intermediate sustainability levels, the nonlinear thermodynamic behavior of binary 

solvent mixtures resulted in the emergence of pentan-1-ol, hexane, benzene, and 
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acetonitrile across multiple grades, each exhibiting relatively high probability values. 

At higher sustainability grades, binary solvent mixtures predominantly incorporated 

solvents previously identified in top-ranked single-solvent selections, such as water, 

ethanol, and dichloromethane. The probability distributions across different 

sustainability grades also exhibited some fluctuations, as these values were influenced 

by the accuracy of the ML model predictions. In this case study, lower sustainability-

grade mixtures generally displayed higher probability values, indicating potential 

uncertainties in model predictions at different sustainability levels.

Compared to existing literature, the solvent systems identified by our framework 

follow consistent trends. For instance, solvents such as ethanol, methanol, and 

Propan-2-one, defined in Grades 7 to 10, have been widely reported as effective 

crystallization media, particularly for obtaining the stable and metastable polymorph 

64-66. Ethanol, in particular, is widely used in APAP crystallization system for its strong 

solvating power and industrial applicability, and it also ranks as the top-performing 

single solvent in our framework 64, 67. Green solvents such as water and isopropanol, 

which were highlighted at intermediate to high sustainability grades, are also 

commonly employed in the literature for polymorphic control and crystallization kinetics 

optimization 68. Furthermore, binary solvent systems, including water-alcohol 

combinations identified in our results (Table S8), have shown favorable performance 

in modulating solubility and directing polymorphic outcomes, in agreement with 

previous experimental studies 69, 70.
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Fig 6. Comparison of Solubility Predictions for Various Single (a) to (h) and Binary Solvents (i) to (l) Using PRMMT, PAPN, and MJANN Models Across Temperature 
(T/K) and Mole Fraction (x1) Conditions. Subfigures (a) to (h) show PRMMT model prediction curves along with the top three PAPN-adjusted predictions ranked by 

probability of accuracy compared to actual values, with RMSLE as the measure of prediction error in parentheses. Each subfigure includes scatter points representing 
actual solubility data, PAPN predictions, and values calculated using the SAFT-γ Mie group-contribution (GC) method. Subfigures (i) to (l) display three solubility 

prediction curves generated by the MJANN model along with scatter points indicating actual solubility data.
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Fig 7. SolECOs Interface - APAP Case Study Screenshot. The interface displays the classification of single and binary solvents by sustainability grade, 
including solvent identity, composition, and probability. The right panel shows radar plots of the top six binary solvent combinations with the highest 

probabilities, where each axis represents one of 18 midpoint indicators normalized to a 0–1 scale.
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3.3.2. Temperature Sensitivity in Solvent Selection

Although the predicted thermodynamic solubility-temperature profile of the API 

remains unchanged across different temperature gradient settings, variations in 

temperature conditions directly influence the theoretical solubility differentials, which 

in turn affect the required solvent volume for API production. Consequently, this may 

lead to variations in solvent grading. The single-solvent grade classification and binary 

solvent selection results for MLX cases b1 and b2 are presented in Table 4. The 

single-solvent classification for MLX demonstrated a high degree of consistency 

across different conditions. Specifically, when the temperature gradient was changed 

from a cooling range of 50°C to 10°C to a narrower range of 30°C to 5°C, propyl 

acetate was no longer present in Grade 2, while heptane disappeared from Grade 10. 

This exclusion serves as a direct reflection of the model’s stability mechanisms.

To ensure the reliability of the predictive outcomes, a critical threshold was 

established in this study, where a solvent was classified as "uncertain" if its grade 

ranking fell outside the top P% of solvents ranked by probability (set at 10% in this 

case). This approach accounts for potential classification uncertainty, acknowledging 

that while a solvent can be numerically assigned to a specific grade, its classification 

may still be subject to variability due to probabilistic ranking constraints.

The comparative analysis between MLX b1 (50-10 °C) and MLX b2 (30-5 °C), 

both evaluated using the same sustainability indicator, reveals a high degree of 

consistency in the classification of single solvents across Grades 1 to 10. Only minor 

differences were observed, such as the inclusion of propyl acetate in Grade 2 under 

MLX b1. For binary solvent selection, both cases identified highly similar solvent pairs 

within corresponding grade levels, with slight variations in the optimal composition 

ratios. Notably, the predicted probabilities for the top binary combinations were 
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marginally higher under the lower temperature gradient in MLX b2, suggesting 

improved predictive confidence under a narrower cooling range. These results confirm 

that, within the proposed framework, when the sustainability evaluation method is held 

constant, the influence of temperature on solvent classification is limited. However, 

temperature can still affect the fine-tuning of binary solvent compositions and the 

associated selection probabilities.

The final solvent screening results for the MLX cases underscore the practical 

relevance and industrial compatibility of the proposed framework (Tables S9 and S10). 

Ethanol and methanol, ranked in Grades 10 and 9 respectively, have been 

experimentally validated for meloxicam dissolution and crystallization 71, 72. Notably, 

ethanol-water mixtures (Grade 10) are highlighted in patent EP‑1462451A1 as 

preferred media for Form I crystallization, offering controlled polarity and enhanced 

purity 73. Such alcohol-water co-solvent systems are widely used in industrial 

crystallization processes, where temperature control enables high yield, polymorphic 

stability, and improved solid properties 74. These examples confirm that high-grade 

solvents identified by the framework are not only environmentally favorable but also 

well-aligned with established industrial practices. 

3.3.3. Sustainability Metrics and Method-Driven Variability

A comparison of the solvent grading results obtained using the ReCiPe method 

Endpoint indicator (Resources, PLX c1) and the GSK method (PLX c2) reveals 

significant discrepancies in solvent classification and prioritization. One of the most 

significant differences is observed in the classification of lower-grade solvents. In PLX 

c1, solvents such as pyridine, acetonitrile, and propan-1-ol are categorized within 

Grade 1, whereas in PLX c2, chloroform, 1,4-dioxane, benzene, hexane, and oxolane 

are assigned to the same category. This distinction suggests that the Endpoint 
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indicator primarily evaluates solvents based on resource consumption and 

environmental toxicity, quantifying their sustainability through environmental impact 

scores. In contrast, the GSK method can give a more industry-oriented vision, 

incorporating additional considerations such as process compatibility, regulatory 

compliance, and environmental, health, and safety factors.

Significant differences also emerge in the classification of mid-tier solvents. In 

PLX c1, Grade 5 includes benzene, 1-methylpyrrolidin-2-one, and butan-2-one, 

whereas in PLX c2, Grade 5 consists of propan-2-one, acetonitrile, and methanol. 

Notably, benzene is assigned a relatively high grade in the Endpoint indicator but is 

ranked significantly lower in the GSK method, suggesting differences in risk perception 

between the two methodologies. Both methods, however, classify DMSO at a 

relatively high grade, reflecting its recognition as an environmentally preferable solvent 

due to its low toxicity and high biodegradability.

Water, widely regarded as a green solvent, is consistently assigned Grade 10 in 

both methods, reinforcing its high priority for sustainability. However, notable 

discrepancies exist in the classification of chlorinated solvents. In PLX c1, chloroform 

and dichloromethane are also categorized as Grade 10, whereas in PLX c2, 

dichloromethane is assigned a significantly lower ranking at Grade 2, likely due to the 

stricter regulatory constraints imposed on chlorinated solvents within the GSK 

framework.

The binary solvent selection results further emphasize the methodological 

divergence between the two approaches. In PLX c1, the top-ranked binary solvent 

combinations are predominantly characterized by a high proportion of 

dichloromethane mixed with small amounts of other solvents. In contrast, PLX c2 

follows a different ranking trend, where pentan-1-ol and dichloromethane mixtures 
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dominate, and solvent ratios vary more significantly.

From a probability distribution perspective, the binary solvent combination 

probabilities calculated in PLX c1 are notably higher than those in PLX c2 (PLX c1 

maximum: 0.00663 vs. PLX c2 maximum: 0.00278). This suggests that the Endpoint 

indicator is more likely to identify high-probability solvent combinations, whereas the 

GSK method, due to its broader consideration of multiple influencing factors and 

smaller numerical differentials across criteria, results in lower overall probability 

variations among binary solvent combinations. Fig 8 illustrates the distribution of 

binary solvent combinations within Grade 10 for PLX c1 (a) and PLX c2 (b). In PLX 

c1, a limited number of combinations, particularly those involving dichloromethane, 

show markedly higher probabilities. This indicates a strong preference for 

dichloromethane-based mixtures under the ReCiPe Endpoint indicator. In contrast, 

PLX c2 displays a more balanced probability distribution across several solvent 

systems. Although dichloromethane remains among the top candidates, the wider 

spread suggests that the GSK method allows greater flexibility and supports more 

diverse solvent selection strategies. When focusing on traditional green solvents such 

as water or ethanol as one component in binary mixtures, the Endpoint indicator (PLX 

c1) yields not only more concentrated high-probability combinations but also a greater 

number of qualifying binary systems within Grade 10. In contrast, the GSK-based 

method (PLX c2) identifies fewer combinations but distributes probability more evenly. 

See Tables S11 and S12 for detailed listings.
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Fig 8 Statistical Analysis of Occurrence Probabilities for Solvent Combinations and 
Corresponding Dominant Constituents in Grade 10 in Case c1 (a) and Case c2 (b)

3.3.4. Experimental Validation in Under-Explored Systems 

The AraC case study evaluated single- and binary-solvent grading under two 

temperature gradients and two distinct sustainability criteria. The results suggest that, 

particularly in the present case, temperature is not the primary determinant of solvent 

classification. Under the Endpoint Human Health evaluation, despite cases d1 and d2 

employing different temperature ranges, the overall solvent grading trends remained 
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consistent. Solvents such as acetonitrile, 1-methylpyrrolidin-2-one, and 1,4-dioxane 

were consistently ranked in lower grades, whereas water, ethanol, and methanol, 

widely recognized as green solvents, were consistently assigned higher grades. While 

temperature settings can help refine solvent classification, the key consideration 

remains the sustainability focus of the evaluation methodology. By contrast, the 

differences between solvent evaluation methods were more pronounced. In AraC d1 

and 2, benzene, 1,4-dioxane, and N,N-dimethylformamide were categorized within 

Grade 3-5, whereas in AraC d3 these solvents were assigned lower rankings, falling 

into Grade 1 or 2. 

Fig. 9 compares the Grade 10 binary solvent systems with water as a fixed 

component under AraC d1 and AraC d3. While both methods identify common co-

solvents such as 1,2-xylene and acetone, AraC d1 includes less sustainable options 

like dichloromethane, whereas AraC d3 favors greener solvents such as 2-

methylpropan-1-ol. This reflects the broader tolerance of Endpoint-based screening 

versus the stricter sustainability constraints of the GSK metric. Compositionally, AraC 

d1 allows wider water ratio ranges, indicating greater flexibility, while AraC d3 yields 

narrow, sharply defined optima, suggesting higher selectivity. Both methods 

consistently rank water + 1,2-xylene highest, though optimal ratios differ. Systems like 

water + ethanol show lower probabilities and narrower ranges, reflecting limited 

suitability. These observations are consistent with the trend discussed in Section 3.3.3, 

where the GSK indicator led to a more selective and compositionally constrained 

solvent space compared to the more inclusive Endpoint approach. A detailed statistical 

summary of Grade 10 binary solvent systems containing water or ethanol as one 

component is provided in the Supporting Information (Tables S13 and S14).

To further validate the predictive accuracy, experimental verification was 
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conducted, with results shown in Fig. 10. The model demonstrated a high level of 

predictive performance. In the binary solvent combination design, the Grade 10 

combination of dichloromethane (Solvent 1: 0.05) and 1,2-xylene (Solvent 2: 0.95) (D-

X combination) exhibited the highest probability, but this does not imply that it is the 

most sustainable choice. In subfigures (e-h) the D-X combination exhibited higher 

environmental impacts in categories such as ozone formation, global warming, and 

fossil resource scarcity compared to water-ethanol combinations at any ratio. This 

underscores the fact that although Endpoint 1 Human Health was selected as the 

evaluation criterion, it does not mean that all binary solvent combinations within the 

same grade exhibit identical environmental impacts. The solvent selection process 

should be tailored to the user’s specific sustainability priorities, ensuring a balance 

between high predictive robustness (probability) and optimal sustainability impact 

within the selected evaluation framework.

Fig 9. Compositional distributions of water-containing binary solvent systems identified in grade 
10 for case d1 (a) and case d3 (b). Each subplot presents binary solvent systems comprising 

water and a co-solvent, selected under Grade 10 criteria for two cases. The x-axis represents the 
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water fraction in the binary mixture, and the y-axis lists the corresponding solvent combinations. 
Orange bars indicate compositions included in Grade 10, with darker shades representing higher 

occurrence probabilities. Gray bars denote excluded compositions. Red circles mark the most 
probable composition for each combination.

Fig 10. Solubility behavior and environmental impact assessment of water-ethanol binary solvent 
systems. (a-c) illustrate the solubility of AraC in water and ethanol, comparing experimental data 

with model predictions. (d-i) present the environmental impact assessment for producing an 
equivalent amount of AraC using binary water-ethanol mixtures at solvent ratios of 0.00-1.00, 

shown as radar plots of 18 midpoint environmental impact indicators normalized to a 0-1 scale. 
The black dashed line represents the baseline (highest-probability solvent system), while the red 

solid lines correspond to the sustainability assessment results for the current study's ethanol-
water compositions.
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Table 4 
Single-Solvent Grading and Probable Green Binary Mixtures under Case Study Scenarios

Single Solvent Top-Ranked Binary Solvent Combinations with Predicted Probabilities (in ‱)
Case

Grade Num Solvent Name Rank Solvent Combination

Grade 1 Oxolane, Acetonitrile, Propan-1-Ol 1 Water (Solvent1: 0.7) Pentan-1-ol (Solvent2: 0.3), Probability: 0.00565

Grade 2 1-Methylpyrrolidin-2-One, Chloroform 2 Water (Solvent1: 0.75) Pentan-1-ol (Solvent2: 0.25), Probability: 0.00471

Grade 3 1,4-Dioxane, N,N-Dimethylformamide 3 Pentan-1-ol (Solvent1: 0.2) Toluene (Solvent2: 0.8), Probability: 0.00377

Grade 4 Cyclohexanone, Butan-1-Ol 4 Water (Solvent1: 0.8) Pentan-1-ol (Solvent2: 0.2), Probability: 0.00377

Grade 5 Pentan-1-Ol, Butyl Acetate, Butan-2-One, Acetic Acid, Ethyl Acetate 5 Pentan-1-ol (Solvent1: 0.15) Toluene (Solvent2: 0.85), Probability: 0.00283

Grade 6 2-Methylpropan-1-Ol Propan-2-Ol 6 Water (Solvent1: 0.85) Pentan-1-ol (Solvent2: 0.15), Probability: 0.00283

Grade 7 Methylsulfinylmethane 7 Pentan-1-ol (Solvent1: 0.1) Toluene (Solvent2: 0.9), Probability: 0.00189

Grade 8 Dichloromethane, Propan-2-One 8 Water (Solvent1: 0.9) Pentan-1-ol (Solvent2: 0.1), Probability: 0.00189

Grade 9 Methanol, Benzene 9 Pentan-1-ol (Solvent1: 0.1) Ethanol (Solvent2: 0.9), Probability: 0.00188

APAP a1

Grade 10 Water, Heptane, Toluene, Hexane, Ethanol 10 Oxolane (Solvent1: 0.1) Water (Solvent2: 0.9), Probability: 0.00110

Grade 1 Pyridine, Oxolane, Propan-1-Ol 1 Water (Solvent1: 0.55) Dichloromethane (Solvent2: 0.45), Probability: 0.00064

Grade 2 1-Methylpyrrolidin-2-One, Chloroform, Propyl Acetate, Acetonitrile 2 Water (Solvent1: 0.6) Dichloromethane (Solvent2: 0.4), Probability: 0.00057

Grade 3 1,4-Dioxane, N,N-Dimethylformamide 3 Dichloromethane (Solvent1: 0.35) Toluene (Solvent2: 0.65), Probability: 0.00050

Grade 4 Butan-1-Ol 4 Water (Solvent1: 0.65) Dichloromethane (Solvent2: 0.35), Probability: 0.00050

Grade 5 Pentan-1-Ol, Butyl Acetate, Butan-2-One, Acetic Acid, Ethyl Acetate 5 Dichloromethane (Solvent1: 0.3) Ethanol (Solvent2: 0.7), Probability: 0.00048

Grade 6 Octan-1-Ol 6 Dichloromethane (Solvent1: 0.3) 1,2-Xylene (Solvent2: 0.7), Probability: 0.00044

Grade 7 Dichloromethane, 2-Methylpropan-1-Ol, Cyclohexanone 7 Dichloromethane (Solvent1: 0.3) Toluene (Solvent2: 0.7), Probability: 0.00043

Grade 8 Propan-2-Ol, Methylsulfinylmethane 8 Water (Solvent1: 0.7) Dichloromethane (Solvent2: 0.3), Probability: 0.00043

Grade 9 Propan-2-One, Methanol 9 Dichloromethane (Solvent1: 0.25) Ethanol (Solvent2: 0.75), Probability: 0.00041

MLX b1

Grade 10 Water, Heptane, 1,2-Xylene, Benzene, Toluene, Hexane, Ethanol 10 Dichloromethane (Solvent1: 0.25) 1,2-Xylene (Solvent2: 0.75), Probability: 0.00037

Grade 1 Pyridine, Oxolane, Propan-1-Ol 1 Water (Solvent1: 0.55) Dichloromethane (Solvent2: 0.45), Probability: 0.00065

Grade 2 1-Methylpyrrolidin-2-One, Chloroform, Acetonitrile 2 Dichloromethane (Solvent1: 0.4) Toluene (Solvent2: 0.6), Probability: 0.00058

Grade 3 1,4-Dioxane, N,N-Dimethylformamide 3 Water (Solvent1: 0.6) Dichloromethane (Solvent2: 0.4), Probability: 0.00058

Grade 4 Butan-1-Ol 4 Dichloromethane (Solvent1: 0.35) 1,2-Xylene (Solvent2: 0.65), Probability: 0.00052

Grade 5 Pentan-1-Ol, Butyl Acetate, Butan-2-One, Acetic Acid, Ethyl Acetate 5 Dichloromethane (Solvent1: 0.35) Toluene (Solvent2: 0.65), Probability: 0.00051

Grade 6 Octan-1-Ol 6 Water (Solvent1: 0.65) Dichloromethane (Solvent2: 0.35), Probability: 0.00051

Grade 7 Dichloromethane, 2-Methylpropan-1-Ol, Cyclohexanone 7 Dichloromethane (Solvent1: 0.3) Ethanol (Solvent2: 0.7), Probability: 0.00048

MLX b2

Grade 8 Propan-2-Ol, Methylsulfinylmethane 8 Dichloromethane (Solvent1: 0.3) 1,2-Xylene (Solvent2: 0.7), Probability: 0.00045

Page 42 of 53Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
1/

20
25

 1
1:

59
:1

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5GC04176G

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g


Grade 9 Propan-2-One, Methanol 9 Dichloromethane (Solvent1: 0.3) Toluene (Solvent2: 0.7), Probability: 0.00043

Grade 10 Water, 1,2-Xylene, Benzene, Toluene, Hexane ,Ethanol 10 Water (Solvent1: 0.7) Dichloromethane (Solvent2: 0.3), Probability: 0.00043

Grade 1 Pyridine, Acetonitrile, Propan-1-Ol 1 Dichloromethane (Solvent1: 0.95) Methylsulfinylmethane (Solvent2: 0.05), Probability: 0.00663

Grade 2 2-Methylpropan-1-Ol, Oxolane, Propan-2-Ol, Butan-1-Ol 2 Dichloromethane (Solvent1: 0.95) Ethanol (Solvent2: 0.05), Probability: 0.00661

Grade 3 1,4-Dioxane, Pentan-1-Ol, Methanol 3 Chloroform (Solvent1: 0.05) Dichloromethane (Solvent2: 0.95), Probability: 0.00660

Grade 4 N,N-Dimethylformamide, Cyclohexanone 4 Water (Solvent1: 0.05) Dichloromethane (Solvent2: 0.95), Probability: 0.00660

Grade 5 Benzene, 1-Methylpyrrolidin-2-One, Butan-2-One 5 Octan-1-ol (Solvent1: 0.05) Dichloromethane (Solvent2: 0.95), Probability: 0.00660

Grade 6 Acetic Acid, Ethyl Acetate 6 Dichloromethane (Solvent1: 0.9) Ethanol (Solvent2: 0.1), Probability: 0.00626

Grade 7 Butyl Acetate, Toluene, 1,2-Xylene 7 Chloroform (Solvent1: 0.1) Dichloromethane (Solvent2: 0.9), Probability: 0.00626

Grade 8 Hexane, Heptane, Propan-2-One 8 Water (Solvent1: 0.1) Dichloromethane (Solvent2: 0.9), Probability: 0.00625

Grade 9 Methylsulfinylmethane 9 Octan-1-ol (Solvent1: 0.1) Dichloromethane (Solvent2: 0.9), Probability: 0.00625

PLX c1

Grade 10 Water, Chloroform, Dichloromethane, Octan-1-Ol, Ethanol 10 Dichloromethane (Solvent1: 0.85) Ethanol (Solvent2: 0.15), Probability: 0.00592

Grade 1 Chloroform, 1,4-Dioxane, Benzene, Hexane, Oxolane 1 Pentan-1-ol (Solvent1: 0.6) Dichloromethane (Solvent2: 0.4), Probability: 0.00278

Grade 2 Dichloromethane, Pyridine, N,N-Dimethylformamide 2 Pentan-1-ol (Solvent1: 0.65) Dichloromethane (Solvent2: 0.35), Probability: 0.00243

Grade 3 1-Methylpyrrolidin-2-One 3 Pentan-1-ol (Solvent1: 0.7) Dichloromethane (Solvent2: 0.3), Probability: 0.00209

Grade 4 Acetic Acid, Heptane 4 Pentan-1-ol (Solvent1: 0.75) Dichloromethane (Solvent2: 0.25), Probability: 0.00174

Grade 5 Propan-2-One, Acetonitrile, Methanol 5 Water (Solvent1: 0.8) Dichloromethane (Solvent2: 0.2), Probability: 0.00139

Grade 6 1,2-Xylene, Butyl Acetate, Butan-2-One, Toluene, Cyclohexanone 6 Pentan-1-ol (Solvent1: 0.8) Dichloromethane (Solvent2: 0.2), Probability: 0.00139

Grade 7 N/A 7 Octan-1-ol (Solvent1: 0.8) Dichloromethane (Solvent2: 0.2), Probability: 0.00139

Grade 8 Propan-2-Ol, Methylsulfinylmethane 8 Water (Solvent1: 0.85) Dichloromethane (Solvent2: 0.15), Probability: 0.00104

Grade 9 Ethyl Acetate, Butan-1-Ol, Ethanol, Propan-1-Ol 9 Pentan-1-ol (Solvent1: 0.85) Dichloromethane (Solvent2: 0.15), Probability: 0.00104

PLX c2

Grade 10 2-Methylpropan-1-Ol, Water, Pentan-1-Ol, Octan-1-Ol 10 Octan-1-ol (Solvent1: 0.85) Dichloromethane (Solvent2: 0.15), Probability: 0.00104

Grade 1 Acetonitrile, Propan-1-Ol 1 Water (Solvent1: 0.60) 1,2-Xylene (Solvent2: 0.40), Probability: 0.00637

Grade 2 2-Methylpropan-1-Ol, Oxolane, Propan-2-Ol, Butan-1-Ol 2 1,2-Xylene (Solvent1: 0.350) Ethanol (Solvent2: 0.650), Probability: 0.00581

Grade 3 1,4-Dioxane, Pentan-1-Ol, Methanol 3 Water (Solvent1: 0.650) 1,2-Xylene (Solvent2: 0.350), Probability: 0.00558

Grade 4 N,N-Dimethylformamide 4 1,2-Xylene (Solvent1: 0.300) Ethanol (Solvent2: 0.700), Probability: 0.00504

Grade 5 Benzene, 1-Methylpyrrolidin-2-One, Butan-2-One, Cyclohexanone 5 Water (Solvent1: 0.700) 1,2-Xylene (Solvent2: 0.300), Probability: 0.00479

Grade 6 Acetic Acid, Ethyl Acetate 6 1,2-Xylene (Solvent1: 0.250) Ethanol (Solvent2: 0.750), Probability: 0.00427

Grade 7 Butyl Acetate, Propan-2-One, Toluene, 1,2-Xylene 7 Water (Solvent1: 0.750) 1,2-Xylene (Solvent2: 0.250), Probability: 0.00401

Grade 8 Hexane, Methylsulfinylmethane 8 1,2-Xylene (Solvent1: 0.200) Ethanol (Solvent2: 0.800), Probability: 0.00350

Grade 9 Dichloromethane 9 Water (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00322

AraC d1

Grade 10 Water, Chloroform, Octan-1-Ol, Ethanol 10 Octan-1-ol (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00321
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Grade 1 Acetonitrile, Propan-1-Ol 1 Water (Solvent1: 0.60) 1,2-Xylene (Solvent2: 0.40), Probability: 0.00637

Grade 2 2-Methylpropan-1-Ol, Oxolane, Propan-2-Ol, Butan-1-Ol 2 1,2-Xylene (Solvent1: 0.350) Ethanol (Solvent2: 0.650), Probability: 0.00581

Grade 3 1,4-Dioxane, Pentan-1-Ol, Methanol 3 Water (Solvent1: 0.650) 1,2-Xylene (Solvent2: 0.350), Probability: 0.00558

Grade 4 N,N-Dimethylformamide 4 1,2-Xylene (Solvent1: 0.300) Ethanol (Solvent2: 0.700), Probability: 0.00504

Grade 5 Benzene, 1-Methylpyrrolidin-2-One, Butan-2-One, Cyclohexanone 5 Water (Solvent1: 0.700) 1,2-Xylene (Solvent2: 0.300), Probability: 0.00479

Grade 6 Acetic Acid, Ethyl Acetate 6 1,2-Xylene (Solvent1: 0.250) Ethanol (Solvent2: 0.750), Probability: 0.00427

Grade 7 Butyl Acetate, Propan-2-One, Toluene, 1,2-Xylene 7 Water (Solvent1: 0.750) 1,2-Xylene (Solvent2: 0.250), Probability: 0.00401

Grade 8 Hexane, Methylsulfinylmethane 8 1,2-Xylene (Solvent1: 0.200) Ethanol (Solvent2: 0.800), Probability: 0.00350

Grade 9 Dichloromethane 9 Water (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00322

AraC d2

Grade 10 Water, Chloroform, Octan-1-Ol, Ethanol 10 Octan-1-ol (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00321

Grade 1 Benzene, 1,4-Dioxane, Chloroform 1 Pentan-1-ol (Solvent1: 0.500) 1,2-Xylene (Solvent2: 0.500), Probability: 0.00803

Grade 2 Dichloromethane, Hexane, N,N-Dimethylformamide 2 Pentan-1-ol (Solvent1: 0.550) 1,2-Xylene (Solvent2: 0.450), Probability: 0.00725

Grade 3 1-Methylpyrrolidin-2-One 3 Pentan-1-ol (Solvent1: 0.600) 1,2-Xylene (Solvent2: 0.400), Probability: 0.00647

Grade 4 Acetic Acid 4 Pentan-1-ol (Solvent1: 0.650) 1,2-Xylene (Solvent2: 0.350), Probability: 0.00569

Grade 5 Propan-2-One, Acetonitrile, Methanol 5 Pentan-1-ol (Solvent1: 0.700) 1,2-Xylene (Solvent2: 0.300), Probability: 0.00491

Grade 6 1,2-Xylene, Butyl Acetate, Butan-2-One 6 Pentan-1-ol (Solvent1: 0.750) 1,2-Xylene (Solvent2: 0.250), Probability: 0.00414

Grade 7 N/A 7 Octan-1-ol (Solvent1: 0.750) 1,2-Xylene (Solvent2: 0.250), Probability: 0.00399

Grade 8 Propan-2-Ol, Methylsulfinylmethane 8 Pentan-1-ol (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00336

Grade 9 2-Methylpropan-1-Ol, Butan-1-Ol, Propan-1-Ol 9 Water (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00322

AraC d3

Grade 10 Water, Pentan-1-Ol, Octan-1-Ol 10 Octan-1-ol (Solvent1: 0.800) 1,2-Xylene (Solvent2: 0.200), Probability: 0.00321
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3.4. Future Developments and Current Limitations

Prediction accuracy is a decisive factor influencing solvent selection and design. 

In this study, the developed platform allows users to customize key parameters, such 

as correction tolerance, and provides the capability to manually incorporate prior 

thermodynamic knowledge of specific systems, enabling tailored adjustments to 

prediction outcomes. In addition to these user-defined parameters, factors such as the 

reliability of thermodynamic databases, the availability of experimental data, and the 

structure of machine learning models also impact model performance and the final 

solvent classification results. However, in designing an efficient and user-friendly 

ecosystem, the platform aims to provide an intuitive and accessible interface, ensuring 

that users can achieve solvent screening and optimization without requiring in-depth 

knowledge of complex model hyperparameters. By allowing adjustments to critical 

variables while maintaining an optimized structural framework, the platform balances 

flexibility and usability, enabling users to focus on the practical application of single 

and binary solvent selection for a given API, rather than engaging in intricate model 

tuning.

Despite the robustness demonstrated by the developed methodology, the most 

reliable solvent selection and optimization strategy still necessitates experimental 

calibration to refine predictive accuracy. Pre-calibrated experimental data help control 

error margins, mitigating the risk of cumulative inaccuracies arising from model 

approximations and prediction errors. Furthermore, while machine learning-based 

solvent screening has demonstrated strong predictive capabilities, its accuracy 

remains inherently constrained by the quality and diversity of training data. Expanding 

high-quality experimental datasets will be critical for further enhancing the predictive 

reliability of the model.
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Additionally, the choice of sustainability assessment methodologies significantly 

influences the final solvent rankings and recommendations. Different evaluation 

frameworks and solvent-specific sustainability priorities, such as toxicity concerns, 

resource consumption, or process safety considerations, may yield varying rankings 

for the same solvents. Future research will focus on integrating commonly used 

sustainability assessment frameworks into the platform and exploring multi-objective 

optimization approaches. By incorporating a broader set of sustainability indicators, 

the solvent evaluation framework can be expanded to ensure that solvent selection 

accounts for both industrial applicability and environmental impact.

Building upon the platform developed in this study, future research will further 

focus on the digitalization of solid-liquid separation processes, integrating prediction, 

design, and optimization into the comprehensive, intelligent solvent selection and 

process optimization SolECOs platform. This development will not only enhance 

solvent selection efficiency but also improve the overall effectiveness of crystallization 

and separation processes. By incorporating real-time process monitoring and adaptive 

optimization, the platform will evolve into a data-driven intelligent tool, offering more 

precise, efficient, and sustainable solutions for pharmaceutical and chemical process 

design.
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4. Conclusion

This study presents the solvent design and selection module of SolECOs, a 

comprehensive data-driven platform for sustainable pharmaceutical manufacturing. 

SolECOs integrates a curated solubility database of over 30,000 data points covering 

1,186 APIs and 30 solvent systems with thermodynamically informed machine 

learning models to support solvent-related decision-making in crystallization 

processes. 

The modeling framework includes a polynomial regression-based multi-task 

learning network (PRMMT) for temperature-dependent solubility profiling, a point-

adjusted prediction network (PAPN) for single-temperature correction, and a modified 

Jouyban-Acree neural network (MJANN) for binary solvent prediction. These models 

enable interpretable and uncertainty-aware predictions across a wide range of 

crystallization conditions. To further support environmentally informed decision-

making, SolECOs incorporates comprehensive sustainability evaluations based on 

both the ReCiPe 2016 life cycle impact framework and the GSK Solvent Sustainability 

Guide, allowing users to balance solubility performance with environmental priorities.

The entire workflow is implemented in an interactive graphical interface, 

facilitating user-friendly data input, model execution, and visualization of solubility 

curves, confidence intervals, and sustainability indicators. Case studies involving 

representative APIs, including paracetamol, meloxicam, piroxicam, and cytarabine, 

validate the robustness and applicability of this module across varying crystallization 

scenarios. As a foundational part of the broader SolECOs platform, this module 

demonstrates how data-driven modeling and sustainability metrics can be integrated 

to guide solvent selection in early-stage pharmaceutical process development. 
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List of abbreviations and acronyms

APAP: Paracetamol
AraC: Cytarabine
CAMD: Computer-Aided Molecular Design
JA Model: Jouyban-Acree Model
MJANN: Modified Jouyban-Acree-based Neural Network
MAE: Mean Absolute Error
ML: Machine Learning
MLX: Meloxicam
MSE: Mean Squared Error
PR Model: Polynomial Regression (PR) Model
PRMMT: Polynomial Regression Model-based Multi-Task Learning Network
PXC: Piroxicam
R2: Coefficient of Determination
RMSE: Root Mean Square Error
RMSLE: Root Mean Squared Logarithmic Error
STI: Sustainability Throughput Index
p-value: Probability value (confidence level of predictive error distribution fitting)
Tv: Tolerance value
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author upon reasonable request.

Page 53 of 53 Green Chemistry

G
re

en
C

he
m

is
tr

y
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 9

/2
1/

20
25

 1
1:

59
:1

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5GC04176G

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5gc04176g

