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1. How does your work advance the field of green chemistry? 

Our research focuses on enhancing consumer PET plastic recycling through ionic liquidbased glycolysis. We employed data-
driven methodologies that guide catalyst selection and reaction optimization, minimizing the need for trial-and-error 
experimentation. 

 

2. Please can you describe your specific green chemistry achievement, either quantitatively or qualitatively? 

Compared to the data collected from the literature, our screened ionic liquid with optimized reaction conditions demonstrates 
improvements. On average, it achieves a 43% reduction in cost and 20% reduction in CO2 emissions compared to the top 60 
literature values. It also achieves a 29% cost reduction, and 2% CO2 emissions reduction compared to the average of the top 
10 literature values. 

 

3. How could your work be made greener and be elevated by further research? 

Future research should focus on specific types of metal-free ionic liquids with less toxicity, less energy and fewer steps to 
synthesize. This would minimize energy consumption and costs while also reducing pollution from the production process.
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Machine learning-guided optimization for ionic liquid-based 
polyethylene terephthalate waste recycling
Ji Gaoa†, Wenbo Penga†, Andres Galindoa, Ethan Slatonb, Jose Perez Martineza, Guanghui Lanc, 
Zhaohui Tonga*

Ionic liquid (IL)-catalyzed polyethylene terephthalate (PET) glycolysis has emerged as a promising method for recycling 
valuable monomers for high-quality polymer production. However, traditional approaches rely heavily on trial-and-error 
and time-consuming experiments to explore the large search space with multiple design factors. Here, we introduce a novel 
multi-objective optimization framework that integrates a graph neural network with process simulation for simultaneous IL 
design and reaction optimization toward unified economic and environmental metrics. We identified seven ILs unseen from 
the literature. Experimental validation demonstrates that approximately 47% of the optimized IL and reaction condition 
combinations outperform the best-reported literature values. This results in an average cost reduction of 29% and CO2e 
reduction of 2.6% compared to literature results. This work demonstrates the potential of machine learning to guide reaction 
optimization toward cost-effective and low-carbon targets for the PET recycling process.  

Introduction
Over eighty-two million tons of single-use polyethylene 
terephthalate (PET) are annually produced worldwide2 and its 
extensive use has led to a significant accumulation of plastic 
waste3. Increasing recycled content in products has become an 
important sustainability goal to mitigate plastic pollution and 
reduce dependence on petroleum-based resources4–7. Life-
cycle analysis demonstrates that solvolysis processes, including 
glycolysis, have a low CO2 footprint, making them 
environmentally favorable8. Glycolysis stands out for its 
technical feasibility, economic viability, and reduced 
environmental impact, making it a promising method for 
efficient PET waste management, which has already been 
applied industrially9–11. However, traditional salt-based 
catalysts for PET glycolysis present challenges, such as long 
reaction times, high reaction temperatures, and difficulties in 
separating the product12,13. Ionic liquid (IL)-based glycolysis has 
emerged as a promising alternative. ILs offer several 
advantages, including improved reaction times, temperatures, 
and yields, while their easy separation from the solid product 
further enhances the process's overall efficiency14,15.

Substantial progress has been made in utilizing ILs as 
effective catalysts for PET glycolysis since 2006 9,14,16. Exploring 
novel IL combinations has shown promise in increasing yields 

under less vigorous reaction conditions. Efforts have also been 
put into seeking ILs with reduced toxicity and lower 
environmental impact to mitigate environmental concerns16–18. 
Despite the progress in developing green processes for PET 
glycolysis, significant challenges still exist. First, identifying the 
optimal ILs from the vast pool of possible combinations of 
cations and anions remains a major hurdle19. Currently, the 
catalyst selection process relies heavily on time-consuming 
trial-and-error-based experiments, limiting its efficiency. 
Second, optimization of reaction conditions requires time-
consuming and expensive factorial design of experiments, 
which hinders the exploration of diverse ILs, especially under 
various reaction parameters. These parameters, often multi-
dimensional and inter-correlated (e.g., catalyst loading, solvent 
ratio, reaction time, temperature, etc.), pose a significant 
challenge for optimization due to the non-linear and potentially 
non-convex nature of the problem. Third, the lack of a 
comprehensive evaluation framework beyond yield and 
conversion assessment limits our understanding of the entire 
process. For instance, while high yield is crucial for process 
efficiency, it alone cannot capture the full picture, neglecting 
environmental impact, energy efficiency, and costs associated 
with reaction conditions. Thus, a comprehensive solution 
capable of tackling all these challenges has yet to be achieved, 
shaping the outlook since 201220. Therefore, it is essential to 
consider these interconnected factors from a more holistic 
perspective. This necessitates a comprehensive approach that 
seamlessly combines IL catalyst design and reaction parameter 
optimization with integrated performance measures to achieve 
economically feasible and environmentally friendly processes2.

Computational approaches, such as the Conductor-like 
Screening Model for Realistic Solvents (COSMO-RS), molecular 
dynamics, and quantum chemical computations, are common 
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screening techniques for IL applications 21–23. However, their 
use in reactive systems such as IL-catalyzed PET glycolysis may 
face limitations. COSMO-RS is efficient for solubility prediction 
tasks, but may struggle with dynamic polymer-IL interactions 
and catalytic modeling due to their parameterization 
dependence. Molecular dynamics simulations, while suited for 
non-reactive dissolution, are faced with computational 
limitations and force field inaccuracies when used in large, 
reactive systems. While quantum chemistry can handle 
reactivity, it requires accurate mechanistic insights and 
becomes computationally expensive for complex polymer 
systems. One common drawback of these physics-based 
methods is that they rely on simplified models (like polymer 
fragments) and mechanistic databases absent in this context 24. 
Data-driven approaches have advantages in this case: they 
avoid the need for force field estimation, reaction mechanisms, 
or physical parameters by learning patterns directly from 
experimental data, making them well-suited for addressing this 
challenge.

Machine learning (ML) has become a powerful tool in 
molecular and reaction science25,26. Researchers have predicted 
reaction yield under different reaction conditions for PET 
recycling using ML27,28. Existing studies in the field of ILs 
primarily utilize ML for predicting physical properties like 
density and viscosity29,30. However, the application of ML to IL-
based reactions lags, specifically for PET glycolysis reactions 
when a large pool of various ILs exists. The adoption of Graph 
Neural Networks (GNNs) 31 offers a promising tool to bridge this 
gap. GNN is a type of neural network that is useful when 
working with data structured as graphs. In chemistry, molecules 
are often represented as graphs: atoms as the nodes (or 
vertices) of the graph, with features such as their atomic 
number, charge, and bonds between atoms as the edges that 
connect the nodes. GNNs are designed to work on these graphs 
by learning how each atom's environment affects its properties 
by considering both the atom's features and its neighbours. 
GNNs excel at efficiently representing molecules, making them 
effective for tasks like reaction prediction and catalyst design in 
various fields32,33. Introducing GNNs in IL-catalyst molecular 
design presents a significant opportunity to push the 
boundaries and explore their potential for complex tasks, such 
as simultaneous catalyst design and optimization of the IL-
catalyzed PET glycolysis reaction.

In this study (Fig. 1), we develop a GNN model that predicts 
reaction yield according to not only different reaction 
parameters but also IL molecular structures based on 
approximately four hundred data points from the literature. 
This information is then incorporated into a process model to 
estimate the cost and carbon emissions associated with the 
entire PET glycolysis process. We identify the ideal 
combinations of IL catalysts and reaction conditions for a more 
efficient, economic, and eco-friendly glycolysis process, guided 
by the combined economic and environmental performance 
indicators. The experimental validation results show that these 
new ILs and reaction conditions demonstrate significantly 
better PET glycolysis performance compared with the literature 
values in terms of cost and CO2 emission. Our GNN-based ML 

model allows for simultaneous catalyst design and reaction 
condition optimization that eliminates the need for individual 
adjustment of each reaction parameter. Through optimization 
towards tailored performance indicators, our integrated model 
enables a smooth transition from lab to process for an 
industrial-oriented design.

Results and discussion
Development of GNN ML model for PET glycolysis yield prediction

To initiate our data-driven prediction and catalyst design, we 
developed a GNN-based model for BHET yield prediction in PET 
glycolysis reaction, schematically illustrated in Fig. 2A. The GNN 
model harnesses the rich IL structural information, encoding it 
into a compact vector to featurize its molecular information. 
These vectors were concatenated with other PET degradation 
reaction conditions and fed into a fully connected layer of the 
regression problem for predicting the yield of BHET, the main 
product of PET glycolysis. To train our model effectively, we 
compiled a dataset of approximately four hundred 
experimental data points from diverse literature sources (Data 
S1), focused on the IL-catalyzed glycolysis of PET. Each data 
point captures the essential reaction parameters, including the 
quantity of IL, solvent (EG), and PET, the source and size of PET, 
and the reaction temperature and time. To gauge the 
performance of each reaction, we chose to use the yield of BHET 
as a key indicator. This metric (Equation (1)) encompasses both 
selectivity, which measures the preferred formation of the 
desired product (BHET) over undesired byproducts, and 
conversion, which reflects the overall extent of PET consumed 
in the reaction. To make this equation valid, we make two 
assumptions. First, we assume the major depolymerization 
product is BHET, with minimal intermediate oligomers in the 
final mixture. This is supported by NMR analysis (Fig. 5A), which 
shows clear peaks corresponding to high-purity BHET. Second, 
we assume the reaction is irreversible under the selected 
conditions. The re-polymerization of BHET into oligomers is 
thermodynamically possible, especially at high BHET 
concentrations and lower temperatures. However, this process 
generally requires much higher temperatures (e.g., 280°C) than 
those used here 34. The resulting dataset comprises 68 distinct 
types of ILs, featuring 14 cations and 37 anions, which form the 
basis for learning an informative model from existing research.

Fig 1. Schematic for simultaneous IL catalyst design and reaction optimization towards 
integrated economic and environmental metrics. 
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Yield = Conversion × Selectivity 
= Depolymerized PET (mol)

Inital PET (mol) × BHET (mol)
Depolymerized PET (mol) (1)

We implemented a three-stage validation strategy to 
evaluate the effectiveness of our GNN model. First, we 
employed cross-validation to assess the model's performance 
(Fig. 2D). Next, we utilized model explanation techniques on ILs 
(Fig. 2B) and reaction conditions (Fig. 2C) to gain deeper insight 
into the model's decision-making process. By comparing the ML 

results with existing literature results, we confirmed the 
alignment with established findings. Finally, we validated the 
ML model's predictions against actual experimental outcomes, 
which serve as a holdout testing set (in the Experimental 
validation and performance section), providing a critical test of 
its real-world applicability.

To gauge the predictive power of our GNN model, we focus 
on three key performance metrics: R², which captures the 
proportion of variance explained, root mean squared error 
(RMSE), which measures the residual prediction error with 
stronger weighting on large errors, and mean absolute error 
(MAE), which measures the residual prediction error with equal 
weighting on all data. We carried out hyperparameter 
optimization with Optuna35 for eight parameters including 
batch size, number of GNN layers, GNN output size (size of 
vector to embed one IL), fully connected layer dimensions, GNN 
dropout rate, fully connected layer dropout rate, optimizer 
learning rate, optimizer weight decay, and whether to use 

scheduler, with details shown in Supplementary Materials. The 
tuned model demonstrated an average validation R² of 0.64, an 
MAE of 0.12, and an RMSE of 0.16 on a stratified 10-fold cross-
validation. The stratification criterion was based on reaction 
yield, dividing the data into intervals of (0, 20, 40, 60, 80, 100) 
to ensure balanced representation across different yield ranges. 
We carried out a bias/variance analysis on the training and 
validation loss curves to analyze the potential model overfitting 
with limited training data (Supplementary Materials). We found 

that through a combination of strong regularization: a large 
dropout35 value of 70% applied to the GNN part of the model, 
5% dropout applied to each fully connected layer, optimizer 
regularization, and early stopping, the overfitting was 
effectively controlled. The aggregated results of cross-
validation testing datasets are shown in Fig. 2D. It can be seen 
that there exist regions of overestimation and underestimation. 
This is represented by the larger RMSE compared to MAE. While 
the R² and RMSE values are not perfect, they align with the 
anticipated challenges associated with the literature data, 
characterized by a scarcity of training data, heterogeneity in 
experimental conditions, and the complex interplay of 
molecular and reaction variables. Considering these challenges, 
we can conclude that the attained metrics are acceptable and 
indicative of the model's practical utility for guiding 
experimental efforts. Finally, we used the tuned parameters to 
train the model on the entire dataset for the prediction and 
testing of unseen cases.

Fig 2. GNN-based model for PET glycolysis yield prediction. (A) Schematic of the GNN model structure. Each IL molecule is represented as a graph, with atoms 
serving as nodes and bonds as edges. This graph captures a suite of atomic and bonding features, including atomic numbers, chirality, degrees, formal 
charges, connected hydrogens, hybridization states, aromaticity, molecular weights, bond types, isomerism, and conjugation. (B) Atom-level explanation of 
the input IL molecules towards the prediction results. Red color is used for anion and blue is used for cation. The darker color indicates a higher importance 
of the atom for enhancing the reaction yield. (C) SHAP analysis on the reaction condition inputs. Higher SHAP values indicate a more positive contribution to 
the predicted yield. (D) Comparison of experimental and predicted yield for the testing dataset from collected literature data. The plot aggregates the 4 
separate testing datasets from a 4-fold cross-validation process.
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To gain further insights into the molecular structural 
significance and contribution of the ILs, we utilized 
GNNExplainer36, which allowed us to compare the atomic-level 
contribution with established reaction mechanisms 
documented in the literature, serving as a valuable validation 
step. The GNNExplainer aggregates the node and edge 
importance scores onto each atom. In this way, we were able to 
pinpoint the comparative contribution of each atom to the final 
yield prediction. We observed that anions have a much higher 
contribution, which aligns with experimental findings 37. But this 
makes the relatively weaker contribution of the cation atoms 
less visible. To improve visualization, we normalized the 
contributions of cation and anion atoms separately and 
enhanced clarity by using different colors for cation (red) and 
anion (blue). Fig. 2B showcases an example involving choline 
formate, where the model recognizes the roles of the negatively 
charged oxygen atoms and the positively charged nitrogen 
atom in the cleavage of the ester bonds between PET 
monomers. Our GNN model's explanation graphs, when 
compared to the established reaction mechanisms38, showed a 
certain degree of alignment (Fig. S1). However, we must note 
that the explanation graph only illustrates the comparative 
importance of different atoms to yield prediction, providing 
hints regarding potential mechanistic insights rather than direct 
mechanistic implications.  This alignment suggests that the GNN 
model may be a potential tool for comparing different ILs in 
glycolysis reactions. To further explain the model, the feature 
representations learned by GNN are analyzed. We applied t-
distributed stochastic neighbour embedding (t-SNE) to the 
GNN-featurized IL outputs (GNN output before fully connected 
layer) followed by a cluster analysis with Density-Based Spatial 
Clustering of Applications (DBSCAN)39 to study the clusters and 
outliers (Supplementary Materials). We observed that specific 
groups of ILs form distinct clusters (Fig. S24 and Fig. S26), 
reinforcing the model’s ability to capture meaningful molecular 
features. 

The multilayer perceptron part of the GNN model 
(prediction layer) offers valuable insights into understanding 
the reaction parameters. Specifically, we employed the Shapley 
additive explanation (SHAP)40 analysis to decouple the 
intercorrelated reaction conditions, revealing their underlying 
effects on the prediction results, shown in Fig. 2C. Among these 
features, temperature emerges as the most important factor 
because temperature has the greatest effect on the reaction 
rate. Other factors, such as reaction time, catalyst loading, and 
the solvation effect of EG, were also found to significantly affect 
the predicted yield. PET source (bottle, powder, or pellet) is 
another important factor due to the distinct properties 
exhibited by different types of PET, potentially leading to 
different reaction rates. 

Finally, the performance of our GNN model was assessed 
through multiple sets of testing experiments that varied 
reaction conditions and catalyst types. These experiments 
yielded a compelling result, with the model achieving an MAE 
of 0.08 and RMSE of 0.12, which is aligned with the k-fold cross-
validation results. This confirms the effectiveness of our 

approach in guiding the molecular design of IL catalysts and the 
optimization of PET glycolysis reactions.

ML-based simulation for the PET glycolysis process

To facilitate the design of sustainable glycolysis processes, we 
developed an integrated model that combines the GNN with 
process simulation using BioSteam41 (Fig. 3). Our focus was on 
the reactor section, as the preprocessing and finishing stages 
are similar across different catalysts and reaction conditions. 
The process model includes a heat exchanger, a solvent 
recovery evaporator (with a 90% recycling rate), pumps, and a 
glycolysis reactor that accounts for heat loss to the 
environment. A stoichiometric reactor simulator was employed, 
allowing us to focus solely on mass and energy balances without 
the need for dynamic reaction simulation. The reactor model is 
governed by yield, with yield predictions inferred from the GNN 
model based on the quantities of reactants, temperature, and 
reaction time. The feed stream and process operating time are 
set to achieve an annual BHET production of one thousand tons 
for comparison. BioSteam is used to solve mass and energy 
balances while estimating key process metrics, such as profit, 
raw material and utility costs, and carbon emissions. This setup 
enables a comparison of trade-offs in parameters like reactant 
quantities, reaction temperature, and yield.

For the economic evaluation, we gathered pricing data for 
ILs and utilities from futures markets data and wholesale 
vendors (Supplementary Materials), along with carbon emission 
factors sourced from the EPA42 and EU legislation43 
(Supplementary Materials). During the development of our 
model, we adopted a simplified approach by assuming uniform 
carbon emission values for all ILs. This approximation stems 
from the scarcity of carbon emission data for the ILs, making it 
challenging to integrate precise values.  Our process model 
remains a valuable resource, offering insights for informed 
decision-making. This integrated approach empowers us to 
move beyond traditional yield or conversion optimization. 
Instead, it prioritizes both economic and environmental 
considerations for the development of eco-friendly and 
commercially viable glycolysis processes.

Fig 3. GNN-based process simulation model. The process model consists of a heat 
exchanger, solvent recovery evaporator (90% recycling rate), pumps, and a glycolysis 
reactor with heat loss to the environment. BioSteam is used for the estimation of profit, 
raw material cost, utility cost, and carbon emissions of the process.
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Process and reaction optimization

The effectiveness or optimized performance of a chemical 
reaction is determined by many factors in practice. However, 
the current literature is predominantly fixated on yield (or 
conversion and selectivity) as the sole performance metric. 
These approaches overlook a crucial aspect of the chemical 
reaction process: a high yield achieved with an expensive 
catalyst and harsh reaction conditions may cripple the process's 
economic viability and increase carbon emissions. This can be 
attributed to the lack of methods integrating the process and its 
economic and environmental impact indicators. Thus, in 
contrast, our goal is to optimize production while 
simultaneously optimizing reaction temperature, time, catalyst, 
and solvent usage. These criteria are ultimately simplified to 
two key factors, including production cost and environmental 
impact. In this work, equipped with the ability to estimate both 
cost and carbon emissions, we formulate an optimization 
problem using a weighted sum method stated in Equation (2). 
By varying reaction conditions (𝑝), we aim to minimize a 
weighted sum of cost (𝑐) and carbon emissions (𝑒) for solvent, 
catalyst, and utilities (𝑖). These costs and emissions can be 
efficiently calculated using our ML-based process model (𝑓). 
The objective function assigns weights to the cost (𝑤𝑐) and 
emission (𝑤𝑒) components, reflecting their relative importance 
in the process subject to customizable needs.

min
𝑝

∑𝑖 𝑤𝑐,𝑖𝑐𝑖(𝑝) + 𝑤𝑒,𝑖𝑒𝑖(𝑝),    s.t.    𝑐𝑖,𝑒𝑖 = 𝑓(𝑝),    
∑𝑖 𝑤𝑒,𝑖 + 𝑤𝑐,𝑖 = 1,    𝑤𝑒,𝑖,𝑤𝑐,𝑖 ∈ [0,1] (2)

In this study, we assumed no specific preferences and 
assigned equal weights to the costs and emissions. We 
conducted around 3.8 × 105 simulations with data 
enumerated from various ILs and reaction conditions 
(Supplementary Materials), yielding a ranked list of candidate 
combinations (with a full distribution plot shown in Fig. S2). We 
first carried out the analysis by visualizing the objective function 
for the top 105 performance cases from Fig. 4A. Clearly, an 
optimization target is located on the lower left corner of the 
plot, where both cost and carbon emissions are minimized. We 
observed an overall correlated relationship between cost and 

carbon emissions, suggesting that good combinations of 
catalyst and reaction conditions could help reduce the 
performance indicators synergistically. Near the optimum at the 
bottom left corner of the plot, a convex Pareto front can be 
observed, showing the trade-offs between costs and carbon 
emissions. 

We acknowledge the inherent uncertainty associated with 
the yield predictions from the GNN-based ML model and 
performance estimation by the process simulation model. 
These uncertainties indicate that the absolute ranking within 
the entire dataset may not be definitive, and solving the 
optimization problem directly is not applicable. Therefore, we 
recommend focusing on the top-ranked combination cases of 
ILs and reaction conditions, where the most promising 
candidates reside. We narrowed down the observation to the 
top 104 (around top 2.6%) cases (shown in Data S1), which have 
been calculated from the best combinations of the production 
cost and environmental impact, including the factors 
considered in Equation (2). Different from the experimental 
screening methods targeting only an optimal yield, our model 
considers a balance between a moderately high yield 
(approximately 60%~70%) coupled with a shortened reaction 
time and elevated temperature for optimized economic and 
environmental performance (Fig. 4B). Thus, the cost and carbon 
emission incurred by reaction (temperature, time, catalyst, 
solvent, yield), and process (reactor, solvent recycle, energy, 
utilities) can be considered synergistically.
 From the cost breakdown analysis in Fig. 4C, we identify that 
even with a recycling unit in place, solvent remains the major 
expense, which is consistent with the analysis presented in the 
literature44. This is because a high amount of EG is needed to 
immerse and dissolve the original PET, and more solvent 
directly translates to increased energy demand for heating and 
catalyst addition. The breakdown of carbon emissions is not 
shown here since more than 99% of the total emissions are from 
utilities. This result supports that our simplification and 
assumption of using constant catalyst carbon emissions for 
catalysts is reasonable.

Experimental validation and performance

Fig 4. Process performance analysis. (A) Distribution plot of CO2e and cost values for the top 105 performance cases from high throughput analysis from PET bottles shredded 
to 5mm. (B) Probability distribution plots for yield, temperature, and reaction time of top 104 performance cases. (C) Probability distribution plots of cost breakdown of 
catalyst, solvent, and utilities of top 104 performance cases.
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We successfully identified optimal reaction conditions and 
screened new IL catalysts for PET glycolysis, by combining our 
process simulation model with the GNN reaction model. To 
validate the accuracy and effectiveness of the integrated GNN-
simulation model in predicting reaction performance, we 
conducted PET glycolysis reactions using seven combinations of 

newly screened ILs and reaction conditions from the top 
rankings with representative cations (imidazolium, 
tetraalkylammonium, guanidinium, and choline), and anions 
(metal-based chlorozincate). These combinations were chosen 
based on their predicted economic and emission benefits and 
have not been previously reported in the literature for PET 
glycolysis. The selected ILs include tetramethylamine 
trichlorozincate ([N1111][ZnCl3]), tetramethylamine 
tetrachlorozincate ([N1111]2[ZnCl4]), 1,1,3,3-tetra-
methylguanidinium tetrachlorozincate ([TMG]2[ZnCl4]), choline 
trichlorozincate ([Ch][ZnCl3]), choline tetrachlorozincate 
([Ch]2[ZnCl4]), 1-ethyl-3-methylimidazolium trichlorozincate 

([Emim][ZnCl3]), and 1-ethyl-3-methylimidazolium 
tetrachlorozincate ([Emim]2[ZnCl4])). These ILs are synthesized 
in our lab with details shown in the Method section (Synthesis 
of New ILs). Their chemical structures were characterized and 
confirmed by both NMR and UV-Vis spectra, shown in Fig. S5 - 
S23). 

We then selected the reaction conditions according to the 
model prediction results. Our model suggests a 90-minute 
reaction time, and an IL loading (the mass ratio of IL to PET) of 
2% to achieve the top performance and simultaneously 
consider the trade-off between BHET yield and cost45. In the 
validation experiments, the solvent-to-PET ratio was set at 4:1, 
which ensures sufficient immersion of the shredded PET 
substrate while maintaining minimum production costs using a 
lower solvent volume. This moderate solvent amount also 
ensures mixture fluidity and facilitates mixing46. Fig. 5B 
compares these model-selected reaction conditions with the 
optimized conditions reported in the literature. The maximum 

Fig 5. Experimental results. (A) Photos of raw materials and product of the PET glycolysis reaction, and the NMR spectrum of BHET. (B) Comparison of optimized reaction 
condition and the literature data. The shaded regions indicate the distribution of the literature-reported reaction conditions. The vertical orange lines indicate the reaction 
conditions selected in our study. (C and D) Comparison between experimental and prediction results of BHET yield for PET bottle and powder, individually. Error bars for 
experimental results are the standard deviations of repeating experiments. Error bars for predicted values are model MAE. A scattered plot showing the same comparison 
is shown in Fig. S3. (E) Performance comparison between the top 60 literature-reported reaction conditions and ILs versus experimental results of optimized reaction 
conditions and ILs. The data used with detailed information is shown in Data S1.
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temperature was constrained to 190°C, which is sufficiently 
high to promote glycolysis but still below the boiling point of EG 
(196°C)47. Our model emphasizes reducing solvent usage, 
reaction time, and catalyst loading. However, it offsets this by 
using higher temperatures to achieve better overall 
performance in terms of cost and CO2 emissions. By utilizing 
these model-predicted reaction conditions, we compared the 
experimental results with the predictions from our GNN model 
(Fig. 5C). Using shredded consumer plastic bottles with a 
particle size of around 5 mm for PET glycolysis experiments, we 
observed an average deviation of only 4% between the 
predicted and experimental values. All data points fell within 
overlapping error bars. This agreement validates the GNN 
model's ability to predict reaction yield. The NMR 
characterization of the product BHET from PET glycolysis proves 
a high purity of BHET monomer from the PET glycolysis using 
the screened ILs and under the selected reaction conditions 
(Fig. 5A and Fig. S14). The peak at 𝛿 8.19 ppm signifies the 
presence of the four aromatic protons in the benzene ring. The 
multiple peaks range from 𝛿 4.12-3.92 ppm and 𝛿 3.59-3.43 
ppm, corresponding to the methylene protons of COO−CH2 and 
CH2−OH, respectively.

Additionally, we consider the validation of a crucial but 
often overlooked factor, the original PET material type, and its 
impact on PET glycolysis performance. Our collected dataset 
indicates that the size and physical properties of the starting 
PET material significantly influence PET glycolysis performance. 
Fig. 2C demonstrates that the PET type is a significant factor 
besides temperature, which may affect the accuracy of model 
prediction. Therefore, instead of shredded PET bottles, we 
conducted glycolysis experiments using PET powders with a 
much finer average particle size of 0.075 mm (Fig. 5D) for 
validation. The model predictions deviated slightly more from 
the experimental results, with an average difference of 12%. 
The experimental yield was higher for shredded PET bottles 
than for the PET powder. One plausible explanation for this 
phenomenon could be attributed to the differences in their 
crystallinity. Higher crystallinity leads to lower BHET yield due 
to the decreased free volume in PET flakes, which impedes the 
diffusion of solvent and IL to the ester's active sites, thereby 
affecting the efficiency of the depolymerization process48. With 
relatively higher crystallinity, the conversion and BHET yield of 
PET powder with almost all ILs were 18% lower on average than 
that of the PET bottle, confirming our speculation. In addition, 
it was observed that PET powder tended to aggregate at the 
bottom of the flask, even under stirring. This aggregation 
impeded efficient heat transfer and restricted the interaction 
between the reactants and the inner PET molecules. 
Furthermore, it was noted that PET bottle slices typically took 
around 30 minutes to melt completely under the provided 
reaction conditions. In contrast, PET powder required 
approximately 50-60 minutes for full melting. Therefore, 
despite the larger surface area of PET powder compared to PET 
slices, the glycolysis process was conducted at a slower rate for 
the former under identical experimental conditions.

The experimental validation data also confirms that the 
combinations of new ILs and reaction conditions identified by 

the model significantly enhance both economic and 
environmental performance compared to literature 
benchmarks. As depicted in Fig. 5E, employing the screened ILs 
with optimized conditions results in an average decrease of 43% 
in cost and 20% in CO2 emissions compared to the top 60 
literature values. Notably, our optimized PET glycolysis 
processes achieved a 29% cost reduction and 2% CO2 emissions 
reduction compared to the mean of the top 10 literature values. 
Moreover, approximately 47% (19 out of 40 experiments) of the 
selected combinations surpass the best-reported literature 
values in both cost and emission reduction. These findings 
underscore the outstanding prediction accuracy of our model 
and its significant potential for optimizing industrial PET 
glycolysis processes, thereby delivering substantial economic 
and environmental benefits.

Conclusions
In this study, we integrated a graph neural network (GNN) 
prediction model with a process simulation model to identify 
cost-effective and low-carbon catalysts for optimized IL-based 
PET glycolysis. We combined catalyst selection, reaction 
conditions, conversion, and yield into industry-aware 
performance indicators (cost and CO2 emissions), which 
facilitate industrial-oriented design beyond lab-scale 
experiments. The GNN model demonstrates robust predictive 
capabilities on PET glycolysis yield, leading to the discovery of 
seven promising new ILs for PET glycolysis, considering both 
economic and environmental impacts. 

However, limitations exist mainly due to the quantity and 
quality of data. Unlike direct property predictions for ILs such as 
CO2 solubility49, which can utilize a relatively large database 
with more than ten thousand data points, the IL-based 
glycolysis reaction data is limited (on the scale of hundreds). 
This prevents us from exploring broader systems and 
conditions. This study only considered a single ionic liquid (IL) 
system without including other factors like co-solvents, 
supports, or external stimuli such as microwave heating, which 
are the current state-of-the-art study. The small quantity of 
non-uniform data from various literature and labs also 
introduces more uncertainty in prediction, and can propagate 
through our framework to downstream estimations. 

The limitation in data availability also limits the potential for 
GNN applications and generalizability. While GNNs can be 
applied to ILs with new cations and anions, in this study, we 
restrict our analysis to combinations of existing cations and 
anions from the collected data. Constructing sufficient and 
diverse experimental datasets would enable the GNN to be 
leveraged for the prediction of completely new ILs. Another way 
to address the data limitation is through incorporating 
mechanistic or computational data augmentation, such as 
density functional theory, kinetics study, and fluid mechanics 
simulation via hybrid modeling and training approaches50,51. 
Integrating such computational approaches in future studies 
could bridge the gap between empirical data and mechanistic 
insights, resulting in more generalizable models, and improving 
their predictive capabilities.
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We implemented a simplified process model to simulate 
real-world production scenarios for cost and emission 
estimation. Although this simplified model offers valuable 
insights, it may still diverge significantly from actual industrial 
processes.  Hence, it is only appropriate for the use of an 
industrial aware guidance for lab-scale discovery of IL and 
glycolysis reaction optimization. Process scale-up or application 
on the real process is complicated and process-specific that 
requires detailed process design and techno-economic analysis, 
which is not a direct objective of our study. Nevertheless, the 
importance of this work is that our new framework is highly 
customizable, allowing users to integrate more detailed process 
simulation models and data to optimize catalyst design and 
reaction conditions for PET glycolysis.

Experimental
GNN Model

Multi-head attention-based graph convolution52,53 is applied to 
the GNN model using PyTorch Geometric54 package. The output 
for each head at each GNN layer is computed as:

ℎ′𝑖 = 𝛼𝑖,𝑖𝑊𝑠ℎ𝑖 +
𝑗∈𝑁(𝑖)

𝛼𝑖,𝑗𝑊𝑡ℎ𝑗 .

Here, ℎ ∈ ℝ𝑑 denotes the 𝑑 dimensional hidden information 
for nodes (𝑁) within the graphs; 𝑒 ∈ ℝ𝑑𝑒 denotes the 𝑑𝑒 
dimensional edge features between the nodes; 𝑊 ∈ ℝ𝑑′×𝑑 is 
the shared weighting to be trained; and 𝛼 denotes the 
normalized attention coefficients. The normalized attention 
coefficients between nodes are calculated as:

𝛼𝑖,𝑗 =
exp(𝑎𝑇𝜎(𝑊𝑠ℎ𝑖 + 𝑊𝑡ℎ𝑗 + 𝑊𝑒𝑒𝑖,𝑗))

∑
𝑘∈𝑁(𝑖)∪{𝑖} exp(𝑎𝑇𝜎(𝑊𝑠ℎ𝑖 + 𝑊𝑡ℎ𝑘 + 𝑊𝑒𝑒𝑖,𝑘))

.

Function 𝜎 is the Leaky Rectified Linear Unit activation 
function:

𝜎(𝑥) = max(0.2𝑥,𝑥).
Global mean pool is used to construct graph-level outputs 

by computing the average of node features. To avoid overfitting 
with the limited amount of data, we applied a large dropout of 
70% at the penultimate graph neural network layer, and 5% for 
each intermediate layer of the fully connected network. The 
implementation details of the featurization layer (GNN) and the 
prediction layer (fully connected network) can be found in the 
Supplementary Materials. The training and testing metrics for 
the cross-validation process are shown in Fig. S4.  

Materials

The PET powder was purchased from Guangyuan Inc. in China. 
PET beverage bottles were purchased from a local supermarket 
(Publix). The bottles were washed, dried, and cut into 
approximately 0.5 cm by 0.5 cm slices for degradation 
experiments. All the chemicals for validation experiments were 
purchased from Fisher Scientific International, Inc.

Experimental procedures

The synthesis of the ILs closely followed the previous works on 
the synthesis of ILs which contained either the cation or the 
anion of the screened ILs55–59. The experimental procedure 
adhered to the guidelines outlined in the reference57,60. NMR 
and UV-Vis spectrometry were utilized to characterize the 
synthesized ILs, confirming the presence of the specified cations 
and anions as reported in prior studies60. The yield of BHET was 
calculated by determining the molar ratio of BHET to PET 
monomers. A comprehensive analysis of the reaction outcomes 
was achieved through these methods. Additionally, BHET was 
further characterized by NMR to verify its high purity. This 
experimental validation process enabled us to assess the 
accuracy and reliability of ML models in predicting reaction 
yields, thereby validating their potential applicability and 
performance in future predictive tasks.

All NMR analysis was performed with a Bruker AVIII-400 
5mm broadband probe. Chemical shifts for 1H NMR were 
reported in ppm on the 𝛿 scale. All UV–Vis characterizations 
were conducted with a Cary 5000 UV-Vis-NIR 
Spectrophotometer. The deuterium light source was used in all 
experiments. Measurements were carried out at ambient 
conditions using quartz one UV cuvette with a 1 cm path length.

Synthesis of new ILs

To synthesize the desired ionic liquids, a general procedure 
was followed. A specific amount of the corresponding halide 
salt ([N1111][Cl], [TMG][Cl], [Ch][Cl], or [Emim][Cl]) was 
dissolved in a minimal amount of water, and then a 
stoichiometric amount of ZnCl2 dissolved in water with a few 
drops of concentrated HCl was added slowly. The mixture was 
then heated to 60°C-70°C under vigorous stirring for 4 hours to 
ensure complete reaction. The resulting solution was dried in a 
vacuum oven overnight to remove any residual solvent and 
obtain the desired ionic liquid product. The detailed synthesis 
procedure for each IL in the study can be found in the 
Supplementary Materials.

Glycolysis of PET powder

In a 150 mL Erlenmeyer flask, about 4 g of PET powder, 14.4 mL 
(~16 g) EG, and ~0.08 g of catalyst was mixed and heated to 
190°C for 90 mins. After that, the mixture was cooled to about 
70°C, filtered and the solid was washed with about 100 mL of DI 
water. The precipitate was collected, dried in the vacuum oven, 
and weighed to obtain the mass of unreacted PET. The filtrate 
was then concentrated to around 30 mL by heating and put into 
the fridge overnight. After that, the product, BHET was 
precipitated and collected by filtration. It was then dried and 
weighed to obtain the dry mass. 

Glycolysis of shredded PET bottles

In a 150 mL Erlenmeyer flask, about 2 g of PET slices from a 
disposable water bottle (with the dimension of around 0.5 cm 
by 0.5 cm), 7.2 mL (~8 g) EG, and ~0.04 g of catalyst were mixed 
and heated to 190°C for 90 min. The following steps were the 
same as those for the PET powder.
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The database generated from literature, experimental results, prediction results, and 
screening results of this study are available within Data S1. The price and simulation data 
are available in Supplementary materials. The source code of the models is available on 
Github: https://github.com/TongSustainabilityGroup/gnn_ionic_liquid. 
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