
Green Chemistry

PAPER

Cite this: Green Chem., 2025, 27,
7357

Received 21st April 2025,
Accepted 16th May 2025

DOI: 10.1039/d5gc01998b

rsc.li/greenchem

Machine learning-guided optimization for ionic
liquid-based polyethylene terephthalate waste
recycling†

Ji Gao,‡a Wenbo Peng,‡a Andres Galindo,a Ethan Slaton,b Jose Perez Martinez,a

Guanghui Lanc and Zhaohui Tong *a

Ionic liquid (IL)-catalyzed polyethylene terephthalate (PET) glycolysis has emerged as a promising method

for recycling valuable monomers for high-quality polymer production. However, traditional approaches

rely heavily on trial-and-error and time-consuming experiments to explore the large search space with

multiple design factors. Here, we introduce a novel multi-objective optimization framework that inte-

grates a graph neural network with process simulation for simultaneous IL design and reaction optimiz-

ation towards unified economic and environmental metrics. We identified seven ILs unseen in the litera-

ture. Experimental validation demonstrates that approximately 47% of the optimized IL and reaction con-

dition combinations outperform the best-reported literature values. This results in an average cost

reduction of 29% and CO2 emissions reduction of 2.6% compared to the literature results. This work

demonstrates the potential of machine learning to guide reaction optimization towards cost-effective and

low-carbon targets for the PET recycling process.

Green foundation
1. Our research focuses on enhancing consumer PET plastic recycling through ionic liquid-based glycolysis. We employed data-driven methodologies that
guide catalyst selection and reaction optimization, minimizing the need for trial-and-error experimentation.
2. Compared to the data collected from the literature, our screened ionic liquid under optimized reaction conditions demonstrates improvements. On
average, it achieves a 43% reduction in cost and a 20% reduction in CO2 emissions compared to the top 60 literature values. It also achieves a 29% cost
reduction and a 2% CO2 emission reduction compared to the average of the top 10 literature values.
3. Future research should focus on specific types of metal-free ionic liquids with reduced toxicity, and processes requiring less energy and fewer steps in their
synthesis. This would minimize energy consumption and costs while also reducing pollution from the production process.

Introduction

Over eighty-two million tons of single-use polyethylene tere-
phthalate (PET) are annually produced worldwide1 and its
extensive use has led to a significant accumulation of plastic
waste.2 Increasing recycled content in products has become an
important sustainability goal to mitigate plastic pollution and
reduce dependence on petroleum-based resources.3–6 Life-

cycle analysis demonstrates that solvolysis processes, including
glycolysis, have a low CO2 footprint, making them environmen-
tally favorable.7 Glycolysis stands out for its technical feasi-
bility, economic viability, and reduced environmental impact,
making it a promising method for efficient PET waste manage-
ment, which has already been applied industrially.8–10

However, traditional salt-based catalysts for PET glycolysis
present challenges, such as long reaction times, high reaction
temperatures, and difficulties in separating the product.11,12

Ionic liquid (IL)-based glycolysis has emerged as a promising
alternative. ILs offer several advantages, including improved
reaction times, temperatures, and yields, while their easy sep-
aration from the solid product further enhances the overall
efficiency of the process.13,14

Substantial progress has been made in utilizing ILs as
effective catalysts for PET glycolysis since 2006.8,13,15 Exploring
novel IL combinations has shown promise in increasing yields
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under less vigorous reaction conditions. Efforts have also been
put into seeking ILs with reduced toxicity and lower environ-
mental impact to mitigate environmental concerns.15–17

Despite the progress in developing green processes for PET gly-
colysis, significant challenges still exist. First, identifying
optimal ILs from the vast pool of possible combinations of
cations and anions remains a major hurdle.18 Currently, the
catalyst selection process relies heavily on time-consuming,
trial-and-error-based experiments, limiting its efficiency.
Second, optimization of reaction conditions requires time-con-
suming and expensive factorial design of experiments, which
hinders the exploration of diverse ILs, especially under various
reaction parameters. These parameters, often multi-dimen-
sional and inter-correlated (e.g., catalyst loading, solvent ratio,
reaction time, temperature, etc.), pose a significant challenge
for optimization due to the non-linear and potentially non-
convex nature of the problem. Third, the lack of a comprehen-
sive evaluation framework beyond yield and conversion assess-
ment limits our understanding of the entire process. For
instance, while high yield is crucial for process efficiency, it
alone cannot capture the full picture, neglecting environ-
mental impact, energy efficiency, and costs associated with
reaction conditions. Thus, a comprehensive solution capable
of tackling all these challenges has yet to be achieved, shaping
the outlook since 2012.19 Therefore, it is essential to consider
these interconnected factors from a more holistic perspective.
This necessitates a comprehensive approach that seamlessly
combines IL catalyst design and reaction parameter optimiz-
ation with integrated performance measures to achieve econ-
omically feasible and environmentally friendly processes.1

Computational approaches, such as the conductor-like
screening model for realistic solvents (COSMO-RS), molecular
dynamics, and quantum chemical computations, are common
screening techniques for IL applications.20–22 However, their
use in reactive systems such as IL-catalyzed PET glycolysis may
face limitations. COSMO-RS is efficient for solubility predic-
tion tasks, but may struggle with dynamic polymer–IL inter-
actions and catalytic modeling due to their parameterization
dependence. Molecular dynamics simulations, while suited for
non-reactive dissolution, are faced with computational limit-
ations and force field inaccuracies when used in large, reactive
systems. While quantum chemistry can handle reactivity, it
requires accurate mechanistic insights and becomes computa-
tionally expensive for complex polymer systems. One common
drawback of these physics-based methods is that they rely on
simplified models (like polymer fragments) and mechanistic
databases absent in this context.23 Data-driven approaches
have advantages in this case: they avoid the need for force field
estimation, reaction mechanisms, or physical parameters by
learning patterns directly from experimental data, making
them well-suited for addressing this challenge.

Machine learning (ML) has become a powerful tool in mole-
cular and reaction science.24,25 Researchers have predicted
reaction yield under different reaction conditions for PET re-
cycling using ML.26,27 Existing studies in the field of ILs pri-
marily utilize ML for predicting physical properties like

density and viscosity.28,29 However, the application of ML to
IL-based reactions lags, specifically for PET glycolysis reactions
when a large pool of various ILs exists. The adoption of graph
neural networks (GNNs)30 offers a promising tool to bridge
this gap. A GNN is a type of neural network that is useful when
working with data structured as graphs. In chemistry, mole-
cules are often represented as graphs: atoms as the nodes (or
vertices) of the graph, with features such as their atomic
number, charge, and bonds between atoms as the edges that
connect the nodes. GNNs are designed to work on these
graphs by learning how each atom’s environment affects its
properties by considering both the atom’s features and its
neighbors. GNNs excel at efficiently representing molecules,
making them effective for tasks like reaction prediction and
catalyst design in various fields.31,32 Introducing GNNs in IL-
catalyst molecular design presents a significant opportunity to
push the boundaries and explore their potential for complex
tasks, such as simultaneous catalyst design and optimization
of the IL-catalyzed PET glycolysis reaction.

In this study (Fig. 1), we develop a GNN model that predicts
reaction yield according to not only different reaction para-
meters but also IL molecular structures based on approxi-
mately four hundred data points from the literature. This
information is then incorporated into a process model to esti-
mate the cost and carbon emissions associated with the entire
PET glycolysis process. We identify the ideal combinations of
IL catalysts and reaction conditions for a more efficient, econ-
omic, and eco-friendly glycolysis process, guided by the com-
bined economic and environmental performance indicators.
The experimental validation results show that these new ILs
and reaction conditions demonstrate significantly better PET
glycolysis performance compared with the literature values in
terms of cost and CO2 emission. Our GNN-based ML model
allows for simultaneous catalyst design and reaction condition
optimization that eliminates the need for individual adjust-
ment of each reaction parameter. Through optimization
towards tailored performance indicators, our integrated model
enables a smooth transition from laboratory to process for an
industrial-oriented design.

Fig. 1 Schematic representation for simultaneous IL catalyst design and
reaction optimization towards integrated economic and environmental
metrics.
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Results and discussion
Development of a GNN ML model for PET glycolysis yield
prediction

To initiate our data-driven prediction and catalyst design, we
developed a GNN-based model for yield prediction of BHET
(bis(2-hydroxyethyl) terephthalate) in the PET glycolysis reac-
tion, which is schematically illustrated in Fig. 2A. The GNN
model harnesses the rich structural information about the IL,
encoding it into a compact vector to featurize its molecular
information. These vectors were concatenated with other PET
degradation reaction conditions and fed into a fully connected
layer of the regression problem for predicting the yield of
BHET, the main product of PET glycolysis. To train our model
effectively, we compiled a dataset of approximately four
hundred experimental data points from diverse literature
sources (Data S1†), focused on the IL-catalyzed glycolysis of
PET. Each data point captures the essential reaction para-
meters, including the quantity of IL, solvent (EG), and PET,
the source and size of PET, and the reaction temperature and
time. To gauge the performance of each reaction, we chose to
use the yield of BHET as a key indicator. This metric (eqn (1))
encompasses both selectivity, which measures the preferred
formation of the desired product (BHET) over undesired bypro-

ducts, and conversion, which reflects the overall extent of PET
consumed in the reaction. To make this equation valid, we
make two assumptions. First, we assume that the major depo-
lymerization product is BHET, with minimal intermediate oli-
gomers in the final mixture. This is supported by NMR ana-
lysis (Fig. 5A), which shows clear peaks corresponding to high-
purity BHET. Second, we assume that the reaction is irrevers-
ible under the selected conditions. The re-polymerization of
BHET into oligomers is thermodynamically possible, especially
at high BHET concentrations and lower temperatures.
However, this process generally requires much higher tempera-
tures (e.g., 280 °C) than those used here.33 The resulting
dataset comprises 68 distinct types of ILs, featuring 14 cations
and 37 anions, which form the basis for learning an informa-
tive model from existing research.

Yield ¼ conversion� selectivity

¼ depolymerized PET ðmolÞ
inital PET ðmolÞ � BHET ðmolÞ

depolymerized PET ðmolÞ
ð1Þ

We implemented a three-stage validation strategy to evalu-
ate the effectiveness of our GNN model. First, we employed
cross-validation to assess the model’s performance (Fig. 2D).

Fig. 2 GNN-based model for PET glycolysis yield prediction. (A) Schematic of the GNN model structure. Each IL molecule is represented as a graph,
with atoms serving as nodes and bonds as edges. This graph captures a suite of atomic and bonding features, including atomic numbers, chirality,
degrees, formal charges, connected hydrogens, hybridization states, aromaticity, molecular weights, bond types, isomerism, and conjugation. (B)
Atom-level explanation of the input IL molecules towards the prediction results. Red coloration is used for the anion and blue is used for the cation.
The darker coloration indicates an atom having greater importance for enhancing the reaction yield. (C) SHAP analysis on the reaction condition
inputs. Higher SHAP values indicate a more positive contribution to the predicted yield. (D) Comparison of experimental and predicted yield for the
testing dataset from collected literature data. The plot aggregates the 4 separate testing datasets from a 4-fold cross-validation process.
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Next, we utilized model explanation techniques on ILs
(Fig. 2B) and reaction conditions (Fig. 2C) to gain deeper
insight into the model’s decision-making process. By compar-
ing the ML results with existing literature results, we con-
firmed the alignment with established findings. Finally, we
validated the ML model’s predictions against actual experi-
mental outcomes, which serve as a holdout testing set (in the
Experimental validation and performance section), providing a
critical test of its real-world applicability.

To gauge the predictive power of our GNN model, we focus
on three key performance metrics: R2, which captures the pro-
portion of variance explained; root mean squared error
(RMSE), which measures the residual prediction error with
stronger weighting on large errors; and mean absolute error
(MAE), which measures the residual prediction error with
equal weighting on all data. We carried out hyperparameter
optimization with Optuna34 for nine parameters including
batch size, number of GNN layers, GNN output size (size of
vector to embed one IL), fully connected layer dimensions,
GNN dropout rate, fully connected layer dropout rate, optimi-
zer learning rate, optimizer weight decay, and whether to use a
scheduler, with details shown in the ESI.† The tuned model
demonstrated an average validation R2 of 0.64, an MAE of 0.12,
and an RMSE of 0.16 on a stratified 10-fold cross-validation.
The stratification criterion was based on reaction yield, divid-
ing the data according to yield intervals between 0, 20, 40, 60,
80, and 100 to ensure balanced representation across different
yield ranges. We carried out a bias/variance analysis on the
training and validation loss curves to analyze the potential
model overfitting with limited training data (ESI†). We found
that through a combination of strong regularization (a large
dropout35 value of 70% applied to the GNN part of the model,
5% dropout applied to each fully connected layer, and optimi-
zer regularization) and early stopping, the overfitting was effec-
tively controlled. The aggregated results of the cross-validation
testing of datasets are shown in Fig. 2D. It can be seen that
there exist regions of overestimation and underestimation.
This is represented by the larger RMSE compared to MAE.
While the R2 and RMSE values are not perfect, they align with
the anticipated challenges associated with the literature data,
characterized by a scarcity of training data, heterogeneity in
experimental conditions, and the complex interplay of mole-
cular and reaction variables. Considering these challenges, we
can conclude that the attained metrics are acceptable and
indicative of the model’s practical utility for guiding experi-
mental efforts. Finally, we used the tuned parameters to train
the model on the entire dataset for the prediction and testing
of unseen cases.

To gain further insights into the molecular structural sig-
nificance and contribution of the ILs, we utilized
GNNExplainer,36 which allowed us to compare the atomic-level
contribution with established reaction mechanisms documen-
ted in the literature, serving as a valuable validation step. The
GNNExplainer aggregates the node and edge importance
scores onto each atom. In this way, we were able to pinpoint
the comparative contribution of each atom to the final yield

prediction. We observed that anions provide a much higher
contribution, which aligns with experimental findings.37 But
this makes the relatively weaker contribution of the cation
atoms less visible. To improve visualization, we normalized the
contributions of cation and anion atoms separately and
enhanced clarity by using different colors for cations (red) and
anions (blue). Fig. 2B showcases an example involving choline
formate, where the model recognizes the roles of the negatively
charged oxygen atoms and the positively charged nitrogen
atom in the cleavage of the ester bonds between PET mono-
mers. Our GNN model’s explanation graphs, when compared
to the established reaction mechanisms,38 showed a certain
degree of alignment (Fig. S1†). However, we must note that the
explanation graph only illustrates the comparative importance
of different atoms to yield prediction, providing hints regard-
ing potential mechanistic insights rather than direct mechan-
istic implications. This alignment suggests that the GNN
model may be a potential tool for comparing different ILs in
glycolysis reactions. To further explain the model, the feature
representations learned by the GNN are analyzed. We applied
t-distributed stochastic neighbor embedding (t-SNE) to the
GNN-featurized IL outputs (the GNN output before the fully
connected layer), followed by a cluster analysis with density-
based spatial clustering of applications (DBSCAN)39 to study
the clusters and outliers (ESI†). We observed that specific
groups of ILs form distinct clusters (Fig. S24 and S26†), rein-
forcing the model’s ability to capture meaningful molecular
features.

The multilayer perceptron part of the GNN model (predic-
tion layer) offers valuable insights into understanding the reac-
tion parameters. Specifically, we employed the Shapley additive
explanation (SHAP)40 analysis to decouple the intercorrelated
reaction conditions, revealing their underlying effects on the
prediction results, as shown in Fig. 2C. Among these features,
temperature emerges as the most important factor because
temperature has the greatest effect on the reaction rate. Other
factors, such as the reaction time, catalyst loading, and the sol-
vation effect of EG, were also found to significantly affect the
predicted yield. PET source (bottle, powder, or pellet) is
another important factor due to the distinct properties exhibi-
ted by different types of PET, potentially leading to different
reaction rates.

Finally, the performance of our GNN model was assessed
through multiple sets of testing experiments that varied reac-
tion conditions and catalyst types. These experiments yielded a
compelling result, with the model achieving an MAE of 0.08
and RMSE of 0.12, which is aligned with the k-fold cross-vali-
dation results. This confirms the effectiveness of our approach
in guiding the molecular design of IL catalysts and the optim-
ization of PET glycolysis reactions.

ML-based simulation for the PET glycolysis process

To facilitate the design of sustainable glycolysis processes, we
developed an integrated model that combines the GNN with
process simulation using BioSteam41 (Fig. 3). Our focus was
on the reactor section, as the preprocessing and finishing
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stages are similar across different catalysts and reaction con-
ditions. The process model includes a heat exchanger, a
solvent recovery evaporator (with a 90% recycling rate), pumps,
and a glycolysis reactor that accounts for heat loss to the
environment. A stoichiometric reactor simulator was
employed, allowing us to focus solely on mass and energy bal-
ances without the need for dynamic reaction simulation. The
reactor model is governed by yield, with yield predictions
inferred from the GNN model based on the quantities of reac-
tants, temperature, and reaction time. The feed stream and
process operating time are set to achieve an annual BHET pro-
duction of one thousand tons for comparison. BioSteam is
used to solve mass and energy balances while estimating key
process metrics, such as profit, raw material and utility costs,
and carbon emissions. This setup enables a comparison of
trade-offs in parameters like reactant quantities, reaction
temperature, and yield.

For the economic evaluation, we gathered pricing data for
ILs and utilities from futures markets and wholesale vendors
(ESI†), along with carbon emission factors sourced from the
EPA42 and EU legislation43 (ESI†). During the development of
our model, we adopted a simplified approach by assuming
uniform carbon emission values for all ILs. This approxi-
mation stems from the scarcity of carbon emission data for the
ILs, making it challenging to integrate precise values. Our
process model remains a valuable resource, offering insights
for informed decision-making. This integrated approach
empowers us to move beyond traditional yield or conversion
optimization. Instead, it prioritizes both economic and
environmental considerations for the development of eco-
friendly and commercially viable glycolysis processes.

Process and reaction optimization

The effectiveness or optimized performance of a chemical reac-
tion is determined by many factors in practice. However, the
current literature is predominantly focused on yield (or conver-
sion and selectivity) as the sole performance metric. These
approaches overlook a crucial aspect of the chemical reaction
process: a high yield achieved with an expensive catalyst and
under harsh reaction conditions may impair the economic via-

bility of the process and increase carbon emissions. This can
be attributed to the lack of methods integrating the process
and its economic and environmental impact indicators. Thus,
in contrast, our goal is to optimize production while simul-
taneously optimizing reaction temperature, time, catalyst, and
solvent usage. These criteria are ultimately simplified to two
key factors: production cost and environmental impact. In this
work, equipped with the ability to estimate both cost and
carbon emissions, we formulate an optimization problem
using a weighted sum method, as stated in eqn (2). By varying
reaction conditions (p), we aim to minimize a weighted sum of
cost (c) and carbon emissions (e) for solvent, catalyst, and utili-
ties (i). These costs and emissions can be efficiently calculated
using our ML-based process model ( f ). The objective function
assigns weights to the cost (wc) and emission (we) components,
reflecting their relative importance in the process subject to
customizable needs:

min
p

X

i

wc;iciðpÞ þ we;ieiðpÞ; s:t: ci; ei ¼ f ðpÞ;
X

i

we;i þ wc;i ¼ 1; we;i;wc;i [ 0; 1½ �
ð2Þ

In this study, we assumed no specific preferences and
assigned equal weights to the costs and emissions. We con-
ducted around 3.8 × 105 simulations with data enumerated
from various ILs and reaction conditions (ESI†), yielding a
ranked list of candidate combinations (with a full distribution
plot shown in Fig. S2†). We first carried out the analysis by
visualizing the objective function for the top 105 performance
cases, as shown in Fig. 4A. Clearly, an optimization target is
located on the lower left corner of the plot, where both cost
and carbon emissions are minimized. We observed an overall
correlated relationship between cost and carbon emissions,
suggesting that good combinations of catalyst and reaction
conditions could help reduce the performance indicators
synergistically. Near the optimum at the bottom left corner of
the plot, a convex Pareto front can be observed, showing the
trade-offs between costs and carbon emissions.

We acknowledge the inherent uncertainty associated with
the yield predictions from the GNN-based ML model and per-
formance estimation by the process simulation model. These
uncertainties indicate that the absolute ranking within the
entire dataset may not be definitive, and solving the optimiz-
ation problem directly is not applicable. Therefore, we rec-
ommend focusing on the top-ranked combination cases of ILs
and reaction conditions, where the most promising candidates
reside. We narrowed down the observation to the top 104

(around the top 2.6%) cases (shown in Data S1†), which have
been calculated from the best combinations of the production
cost and environmental impact, including the factors con-
sidered in eqn (2). Differing from the experimental screening
methods targeting only an optimal yield, our model considers
a balance between a moderately high yield (approximately
60%–70%) coupled with a shortened reaction time and elev-
ated temperature for optimized economic and environmental
performance (Fig. 4B). Thus, the cost and carbon emission

Fig. 3 GNN-based process simulation model. The process model con-
sists of a heat exchanger, solvent recovery evaporator (90% recycling
rate), pumps, and a glycolysis reactor with heat loss to the environment.
BioSteam is used for the estimation of profit, raw material cost, utility
cost, and carbon emissions of the process.
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incurred by the reaction (temperature, time, catalyst, solvent,
and yield), and process (reactor, solvent recycling, energy, and
utilities) can be considered synergistically.

From the cost breakdown analysis shown in Fig. 4C, we
identify that even with a recycling unit in place, solvent
remains the major expense, which is consistent with the ana-
lysis presented in the literature.44 This is because a high
amount of EG is needed to immerse and dissolve the original
PET, and more solvent directly translates into increased energy
demand for heating and catalyst addition. The breakdown of
carbon emissions is not shown here since more than 99% of
the total emissions are from utilities. This result supports that
our simplification and assumption of using constant catalyst
carbon emissions for catalysts is reasonable.

Experimental validation and performance

We successfully identified optimal reaction conditions and
screened new IL catalysts for PET glycolysis by combining our
process simulation model with the GNN reaction model. To
validate the accuracy and effectiveness of the integrated GNN-
simulation model in predicting reaction performance, we con-
ducted PET glycolysis reactions using seven combinations of
newly screened ILs and reaction conditions from the top rank-
ings with representative cations (imidazolium, tetraalkylam-
monium, guanidinium, and choline) and anions (metal-based
chlorozincate). These combinations were chosen based on
their predicted economic and emission benefits and have not
been previously reported in the literature for PET glycolysis.
The selected ILs include tetramethylamine trichlorozincate
([N1111][ZnCl3]), tetramethylamine tetrachlorozincate
([N1111]2[ZnCl4]), 1,1,3,3-tetra-methylguanidinium tetrachloro-
zincate ([TMG]2[ZnCl4]), choline trichlorozincate ([Ch][ZnCl3]),
choline tetrachlorozincate ([Ch]2[ZnCl4]), 1-ethyl-3-methyl-
imidazolium trichlorozincate ([Emim][ZnCl3]), and 1-ethyl-3-
methylimidazolium tetrachlorozincate ([Emim]2[ZnCl4]). These
ILs are synthesized in our laboratory, and the details are
shown in the Experimental section (synthesis of new ILs).

Their chemical structures were characterized and confirmed
by both NMR and UV-Vis spectra, as shown in Fig. S5–S23†.

We then selected the reaction conditions according to the
model prediction results. Our model suggests a 90 minute
reaction time, and an IL loading (the mass ratio of IL to PET)
of 2% to achieve the top performance while simultaneously
considering the trade-off between BHET yield and cost.45 In
the validation experiments, the solvent-to-PET ratio was set at
4 : 1, which ensures sufficient immersion of the shredded PET
substrate while maintaining minimum production costs using
a lower solvent volume. This moderate solvent amount also
ensures mixture fluidity and facilitates mixing.46 Fig. 5B compares
these model-selected reaction conditions with the optimized con-
ditions reported in the literature. The maximum temperature was
constrained to 190 °C, which is sufficiently high to promote gly-
colysis but still below the boiling point of EG (196 °C).47 Our
model emphasizes reducing solvent usage, reaction time, and
catalyst loading. However, it offsets this by using higher tempera-
tures to achieve better overall performance in terms of cost and
CO2 emissions. By utilizing these model-predicted reaction con-
ditions, we compared the experimental results with the predic-
tions from our GNN model (Fig. 5C). Using shredded consumer
plastic bottles with a particle size of around 5 mm for PET gly-
colysis experiments, we observed an average deviation of only 4%
between the predicted and experimental values. All data points
fell within overlapping error bars. This agreement validates the
GNN model’s ability to predict reaction yield. The NMR character-
ization of the BHET product from PET glycolysis proves the high
purity of the BHET monomer from the PET glycolysis using the
screened ILs and under the selected reaction conditions (Fig. 5A
and Fig. S14†). The peak at δ 8.19 ppm signifies the presence of
the four aromatic protons in the benzene ring. The multiple
peaks range from δ 4.12 to 3.92 ppm and from δ 3.59 to
3.43 ppm, corresponding to the methylene protons of COO–CH2

and CH2–OH, respectively.
Additionally, we consider the validation of a crucial but

often overlooked factor, the original PET material type, and its

Fig. 4 Process performance analysis. (A) Distribution plot of CO2e and cost values for the top 105 performance cases from high throughput analysis
from PET bottles shredded to 5 mm. (B) Probability distribution plots for yield, temperature, and reaction time of the top 104 performance cases. (C)
Probability distribution plots of cost breakdown of catalyst, solvent, and utilities of the top 104 performance cases.
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impact on PET glycolysis performance. Our collected dataset
indicates that the size and physical properties of the starting
PET material significantly influence PET glycolysis perform-
ance. Fig. 2C demonstrates that the PET type is a significant
factor besides temperature, which may affect the accuracy of
model prediction. Therefore, instead of shredded PET bottles,
we conducted glycolysis experiments using PET powders with
a much finer average particle size of 0.075 mm (Fig. 5D) for
validation. The model predictions deviated slightly more from
the experimental results, with an average difference of 12%.
The experimental yield was higher for shredded PET bottles
than for the PET powder. One plausible explanation for this
phenomenon could be attributed to the differences in their
crystallinity. Higher crystallinity leads to lower BHET yield due
to the decreased free volume in PET flakes, which impedes the
diffusion of solvent and IL to the ester’s active sites, thereby

affecting the efficiency of the depolymerization process.48 With
relatively higher crystallinity, the conversion and BHET yield
values from PET powder with almost all ILs were 18% lower on
average than those of shredded PET bottles, confirming our
speculation. In addition, it was observed that PET powder
tended to aggregate at the bottom of the flask, even under stir-
ring conditions. This aggregation impeded efficient heat trans-
fer and restricted the interaction between the reactants and
the inner PET molecules. Furthermore, it was noted that PET
bottle slices typically took around 30 minutes to melt comple-
tely under the provided reaction conditions. In contrast, PET
powder required approximately 50–60 minutes for full melting.
Therefore, despite the larger surface area of PET powder com-
pared to PET slices, the glycolysis process was conducted at a
slower rate for the former under identical experimental
conditions.

Fig. 5 Experimental results. (A) Photographs of raw materials and the product of the PET glycolysis reaction, and the NMR spectrum of BHET. (B)
Comparison of optimized reaction conditions and the literature data. The shaded regions indicate the distribution of the literature-reported reaction
conditions. The vertical orange lines indicate the reaction conditions selected in our study. (C and D) Comparison between experimental and predic-
tion results of BHET yield for PET bottle and powder, respectively. Error bars for experimental results are the standard deviations of repeated experi-
ments. Error bars for predicted values are model MAE. A scatter plot showing the same comparison is shown in Fig. S3.† (E) Performance comparison
between the top 60 literature-reported reaction conditions and ILs versus experimental results of optimized reaction conditions and ILs. The data
used with detailed information are shown in Data S1.†
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The experimental validation data also confirm that the
combinations of new ILs and reaction conditions identified by
the model significantly enhance both economic and environ-
mental performance compared to literature benchmarks. As
depicted in Fig. 5E, employing the screened ILs under opti-
mized conditions results in an average decrease of 43% in cost
and 20% in CO2 emissions compared to the top 60 literature
values. Notably, our optimized PET glycolysis processes
achieved a 29% cost reduction and 2% CO2 emissions
reduction compared to the mean of the top 10 literature
values. Moreover, the performance of approximately 47% (19
out of 40 experiments) of the selected combinations surpasses
that of the best-reported literature values in both cost and
emission reduction. These findings underscore the outstand-
ing prediction accuracy of our model and its significant poten-
tial for optimizing industrial PET glycolysis processes, thereby
delivering substantial economic and environmental benefits.

Conclusions

In this study, we integrated a graph neural network (GNN) pre-
diction model with a process simulation model to identify
cost-effective and low-carbon catalysts for optimized IL-based
PET glycolysis. We combined catalyst selection, reaction con-
ditions, conversion, and yield into industry-aware performance
indicators (cost and CO2 emissions), which facilitate indus-
trial-oriented design beyond laboratory-scale experiments. The
GNN model demonstrates robust predictive capabilities on
PET glycolysis yield, leading to the discovery of seven promis-
ing new ILs for PET glycolysis, considering both economic and
environmental impacts.

However, limitations exist mainly due to the quantity and
quality of data. Unlike direct property predictions for ILs such
as CO2 solubility,

49 which can utilize a relatively large database
with more than ten thousand data points, the IL-based glycoly-
sis reaction data are limited (on the scale of hundreds). This
prevents us from exploring broader systems and conditions.
This study only considered a single ionic liquid (IL) system
without including other factors like co-solvents, supports, or
external stimuli such as microwave heating, which are used in
the current state-of-the-art study. The small quantity of non-
uniform data from various literature studies and laboratories
also introduces more uncertainty in prediction, and can propa-
gate through our framework to downstream estimations.

The limitation in data availability also limits the potential
for GNN applications and generalizability. While GNNs can be
applied to ILs with new cations and anions, in this study, we
restricted our analysis to combinations of existing cations and
anions from the collected data. Constructing sufficient and
diverse experimental datasets would enable the GNN to be
leveraged for the prediction of completely new ILs. Another
way to address the data limitation is through incorporating
mechanistic or computational data augmentation, such as
density functional theory, kinetics study, and fluid mechanics
simulation via hybrid modeling and training approaches.50,51

Integrating such computational approaches in future studies
could bridge the gap between empirical data and mechanistic
insights, resulting in more generalizable models, and improv-
ing their predictive capabilities.

We implemented a simplified process model to simulate
real-world production scenarios for cost and emissions esti-
mation. Although this simplified model offers valuable
insights, it may still diverge significantly from actual industrial
processes. Hence, it is only appropriate for the use of process-
informed guidance for laboratory-scale discovery of ILs and
glycolysis reaction optimization. Process scale-up or appli-
cation on the real process is complicated and process-specific.
It requires detailed process design and techno-economic ana-
lysis, which is not a direct objective of our study. Nevertheless,
the importance of this work is that our new framework is
highly customizable, allowing users to integrate more detailed
process simulation models and data to optimize catalyst
design and reaction conditions for PET glycolysis.

Experimental
GNN model

Multi-head attention-based graph convolution52,53 is applied to
the GNN model using the PyTorch Geometric54 package. The
output for each head at each GNN layer is computed as follows:

h′i ¼ αi;iWshi þ
X

j[NðiÞ
αi;jWthj:

Here, h [d denotes the d dimensional hidden information
for nodes (N) within the graphs; e [de denotes the de dimen-
sional edge features between the nodes; W [d′�d is the shared
weighting to be trained; and α denotes the normalized atten-
tion coefficients. The normalized attention coefficients
between nodes are calculated as follows:

αi;j ¼ expðaTσðWshi þWthj þWeei;jÞÞP

k[NðiÞ< if g
expðaTσðWshi þWthk þWeei;kÞÞ :

Function σ is the leaky rectified linear unit activation func-
tion:

σðxÞ ¼ maxð0:2x; xÞ:
The global mean pool is used to construct graph-level

outputs by computing the average of node features. To avoid
overfitting with the limited amount of data, we applied a large
dropout of 70% at the penultimate graph neural network layer,
and 5% for each intermediate layer of the fully connected
network. The implementation details of the featurization layer
(GNN) and the prediction layer (fully connected network) can
be found in the ESI†. The training and testing metrics for the
cross-validation process are shown in Fig. S4.†

Materials

The PET powder was purchased from Guangyuan Inc. in
China. PET beverage bottles were purchased from a local
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supermarket (Publix). The bottles were washed, dried, and cut
into approximately 0.5 cm by 0.5 cm slices for degradation
experiments. All the chemicals for validation experiments were
purchased from Fisher Scientific International, Inc.

Experimental procedures

The synthesis of the ILs closely followed the previous works on
the synthesis of ILs, which contained either the cation or the
anion of the screened ILs.55–59 The experimental procedure
adhered to the guidelines outlined in previous studies.57,60

NMR and UV-Vis spectrometry were utilized to characterize the
synthesized ILs, confirming the presence of the specified
cations and anions as reported in prior studies.60 The yield of
BHET was calculated by determining the molar ratio of BHET
to PET monomers. A comprehensive analysis of the reaction
outcomes was achieved through these methods. Additionally,
BHET was further characterized by NMR to verify its high
purity. This experimental validation process enabled us to
assess the accuracy and reliability of ML models in predicting
reaction yields, thereby validating their potential applicability
and performance in future predictive tasks.

All NMR analysis was performed with a Bruker AVIII-400
5 mm broadband probe. Chemical shifts for 1H NMR were
reported in ppm on a δ scale. All UV-Vis characterization
studies were conducted with a Cary 5000 UV-Vis-NIR spectro-
photometer. A deuterium light source was used in all experi-
ments. Measurements were carried out under ambient con-
ditions using a quartz UV cuvette with a 1 cm path length.

Synthesis of new ILs

To synthesize the desired ionic liquids, a general procedure
was followed. A specific amount of the corresponding halide
salt ([N1111][Cl], [TMG][Cl], [Ch][Cl], or [Emim][Cl]) was dis-
solved in a minimal amount of water, and then a stoichio-
metric amount of ZnCl2 dissolved in water with a few drops of
concentrated HCl was added slowly. The mixture was then
heated to 60 °C–70 °C under vigorous stirring for 4 hours to
ensure complete reaction. The resulting solution was dried in
a vacuum oven overnight to remove any residual solvent and
obtain the desired ionic liquid product. The detailed synthesis
procedure for each IL in the study can be found in the ESI.†

Glycolysis of PET powder

In a 150 mL Erlenmeyer flask, about 4 g of PET powder,
14.4 mL (∼16 g) of EG, and ∼0.08 g of catalyst were mixed and
heated to 190 °C for 90 min. After that, the mixture was cooled
to about 70 °C and filtered, and the solid was washed with
about 100 mL of DI water. The precipitate was collected, dried
in a vacuum oven, and weighed to obtain the mass of
unreacted PET. The filtrate was then concentrated to around
30 mL by heating and placed in the fridge overnight. After
that, the product, BHET, was precipitated and collected by fil-
tration. It was then dried and weighed to obtain the dry mass.

Glycolysis of shredded PET bottles

In a 150 mL Erlenmeyer flask, about 2 g of PET slices from a
disposable water bottle (with dimensions of around 0.5 cm by
0.5 cm), 7.2 mL (∼8 g) of EG, and ∼0.04 g of catalyst were
mixed and heated to 190 °C for 90 min. The subsequent steps
were the same as those for the PET powder.
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