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This study investigates the leaching behavior of metal elements from pyrolyzed battery black mass using a
combination of experimental and data analysis methods. A linear regression model, utilizing pH, conduc-
tivity, and temperature as input features, effectively predicted leaching states with an average prediction
error below 1.1%. Compared to calculating leaching states using the Arrhenius equation and traditional
kinetic models, the proposed approach demonstrated improved generalizability and accuracy. Kinetic
analysis using the shrinking core model indicated that the leaching of nickel and cobalt is primarily con-
trolled by diffusion after an initially chemically controlled reaction phase. This diffusion-controlled
mechanism explains the observed strong linear relationship between sensor data and the leaching states
of these metals. The calculated activation energies for nickel and cobalt are 29.8 kJ mol™ and 22.6 kJ
mol™, respectively. The rapid leaching kinetics of lithium and manganese are attributed to their unique
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physiochemical properties, likely influenced by the thermal treatment process.

1. This study proposes a new approach for predicting the leaching state using easily measurable online sensor data. Compared to leaching kinetic models,

this approach enhances model generalizability by considering the dynamic conditions of a new process and providing timely feedback for potential process

optimization.

2. The leaching state of Al, Fe, Ni, Co, Li, and Mn can be accurately predicted using a multiple linear regression model with pH, conductivity, and temperature

as input features. The model demonstrated an average adjusted R-squared score of 0.995 and an average prediction error of 1.1%.

3. The proposed method avoids the need for complex material characteristics and structural limitations and provides valuable insights for online process
monitoring by predicting leaching state using sensor data. Advanced methods such as machine learning can be applied to simply the process and address

more complex scenarios in future research.

1 Introduction

Hydrometallurgy is an extractive metallurgical technique and
has been widely used to recycle valuable components from
spent lithium-ion batteries (LIBs) with various aqueous solu-
tions." Leaching, frequently the initial step of hydrometallurgi-
cal processes, selectively dissolves target metals from solid
matrix into a liquid phase using a leaching agent. This process
is crucial for extracting valuable metals from both primary and
secondary materials. Inorganic acids, such as sulfuric acid and
hydrochloric acid, have been used to leach battery cathode
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materials, as hydrogen ions facilitate lithium extraction from
spent LIBs.> Organic acids, such as citric acid and ascorbic
acid, have less environmental impact and serve as alternative
leaching agents for battery recycling. Hydrogen peroxide
(H,0,) is commonly used as a reductant in black mass leach-
ing, and its influence has been investigated in many
studies.>”

Thermodynamics and kinetics are fundamental for under-
standing the leaching mechanisms. Thermodynamics analyzes
the directions, energies, products, and equilibrium conditions
of chemical reactions, but it does not consider the time factor.
Conversely, kinetics considers time changes and thus provides
a more realistic explanation of leaching phenomena.® The
chemical reaction rate, which describes the progress of a reac-
tion, can be expressed as a function of conversion. Kinetic
studies interpret reaction mechanisms by examining the influ-
ence of experimental conditions on the reaction rate. This
understanding is crucial for process control, optimization, and
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reactor design. As leaching is often the initial step in hydrome-
tallurgical processes, comprehending its mechanisms is essen-
tial.” Specifically, in battery recycling, the leaching kinetics of
critical metals (e.g. Ni, Mn, Co, and Li) from black mass is a
key consideration for industrial-scale recycling.®

Various mathematical models simplify kinetic investi-
gations of heterogeneous reactions.”'® Reuter et al. employed
a generalized neural-net kinetic rate equation to simulate a
metallurgical and mineral processing system and identify
optimal process conditions."" In leaching kinetic modeling,
the progressive conversion model (PCM) is a simple approach
used to predict leaching completion time. It assumes a con-
stant particle size and is applicable when the diffusion rate
through the particle’s pores is high. The shrinking core model
(SCM), which accounts for changes in solid material structure
and surface area, offers a more realistic representation of
solid-liquid reactions and is the most commonly used model
for leaching kinetics.® For homogeneous nucleation, the
Avrami model can also be applied.’*'* These models provide
simplified analytical solutions for complex reactions.®

Correlation analysis is a valuable tool in experimental
research. It helps identify and quantify the relationship
between variables, providing insight into the strength and
direction of the data relationship.'* Correlation analysis
efficiently determines linear and monotonic relationships,
serving as a fundamental step in developing forecasting
models. By examining the potential to predict one variable
with another, research can gain valuable insights.'>™"”
Correlation analysis can also be used for validation purposes
by assessing the agreement between two measurement
methods."® The coefficient of determination (R*) quantifies the
difference between predicted and experimental data, and is
widely used to evaluate the performance of regression
models."*>' However, relying solely on correlation coefficient
is insufficient and can cause misinterpretation. It is essential
to employ additional analysis methods that highlight differ-
ences between pairs of observations.>” Correlation analysis is
frequently combined with kinetics analysis to optimize experi-
mental conditions. By evaluating the correlation between
process parameters and outcomes, researchers can identify
optimal settings. Furthermore, correlation and statistical ana-
lyses are crucial for selecting and assessing suitable kinetic
models.

Table 1 summarizes related studies that have employed
kinetic modeling and correlation analysis in leaching pro-
cesses. For rotating disk electrode experiments, mechanistic
kinetic models were developed to study the rate-controlling
steps and to estimate the rate of gold dissolution. Correlation
analysis revealed that the gold dissolution rate is proportional
to temperature and the concentration of either cupric or ferric
ions, depending on whether cupric chloride or ferric chloride
was used as the leaching agent.”>?* The leaching kinetics of
copper extraction from waste printed circuit boards (WPCBs)
can be effectively described using the Avrami model. Multiple
linear regression (MLR) analysis was employed to investigate
the correlation between experimental conditions and copper

This journal is © The Royal Society of Chemistry 2025

View Article Online

Paper

leaching efficiency. The results indicated that temperature (T),
solid-liquid ratio, and H,0, concentration exert significant
effects on the copper leaching efficiency.”® In the context of
scrap magnet recycling, the shrinking core model was utilized
to model the kinetics of neodymium dissolution. The overall
leaching process was determined to be governed by surface
chemical control, with the dissolution rate of neodymium pri-
marily influenced by temperature and acetic acid
concentration.>®

The SCM is also frequently applied to describe the leaching
kinetics of spent lithium-ion batteries. Kinetic modeling of
cobalt recovery from cathodic powder using nitric acid revealed
that the process is controlled by product layer diffusion,
whereas cobalt leaching with citric acid is chemically con-
trolled. Notably, temperature and solvent concentration are key
parameters  significantly influencing cobalt leaching
efficiency.””?® When leaching battery cathode materials using
hydrochloride acid, the dissolution of nickel, manganese, and
cobalt (NMC) is controlled by chemical reaction. The dis-
solution rate of lithium is faster than that of the transition
metals. Cathode materials with higher nickel content exhibit
faster dissolution rates compared to those with lower nickel
content. Both the SCM and a first-order rate law were
employed to calculate the time required for complete diges-
tion.”® A rapid leaching method was developed by using a
mixture of hydrochloric acid and ascorbic acid. The SCM,
Avrami model, and parabolic product layer diffusion control
models were used to interpret the reaction mechanisms. The
Pearson’s correlation coefficient was employed to quantify the
correlations of both reagents to leaching rates.*® In the sulfuric
acid leaching system, ferrous ions serve as an essential redu-
cing agent for cobalt in the recycling of spent LIBs. Iron scrap
can be utilized as a cost-effective source of ferrous ions during
leaching to enhance cobalt recovery. Kinetic analysis using the
SCM indicated that the addition of ferrous ions accelerates
metal transfer by mitigating the formation of the ash layer.
The results of MLR demonstrated that the pH of the reagent
has the most significant impact on the leaching efficiency of
lithium and cobalt, followed by ferrous concentration, temp-
erature, and agitation.>* In addition to iron scrap, industrial
black liquor, a by-product of the Kraft pulping process in
papermaking, can also be employed as a renewable reducing
agent for the leaching of battery black mass with sulfuric acid.
A linear correlation was observed between black liquor concen-
tration and the leaching efficiency of manganese. Based on the
better fit of diffusion control models and high activation ener-
gies, the reaction mechanism for cobalt, nickel, and manga-
nese appears to be a mixed diffusion-reaction process.*?

Kinetic investigations of leaching can be challenging due to
the complexities of data collection and kinetic modeling.
Experimental data, particularly leachate concentrations, must
be collected over time and analyzed using precise analytical
techniques. To facilitate the selection of an appropriate kinetic
model, it is essential to characterize the material’s structure
both before and after leaching operation. Techniques such as
transmission electron microscopy (TEM), scanning electron
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Table 1 Leaching kinetic models and correlation analysis
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Target

Material ~ Solvent Kinetic models Key parameters elements Correlation analysis References
Gold Cupric chloride Mechanistic kinetic T, cupric ion concentration Au Visual inspection Lampinen

model et al>
Gold Ferric chloride Mechanistic kinetic T, ferric ion concentration, Au Visual inspection Seisko

model chloride concentration et al**
WPCBs Sulfuric acid Avrami model T, solid-liquid ratio, H,0,  Cu Visual inspection, Hao et al.*

concentration MLR

Scrap Acetic acid SCM T, solvent concentration Nd Visual inspection Behera
magnet et al.”®
Spent Citric acid SCM T, solvent concentration Co, Ni Visual inspection Yuliusman
LIBs et al.*®
Spent Hydrochloric acid ~ SCM, first-order rate law T, type of NMC cathode Li, Co, Ni,  Visual inspection Xuan et al.*®
LIBs material Mn
Spent Hydrochloric acid SCM, Avrami model, T, solid-liquid ratio, Li, Co, Ni,  Visual inspection, Xing et al.*®
LIBs & ascorbic acid parabolic product layer solvent concentration Mn Pearson’s correlation

diffusion control coefficient
Spent Sulfuric acid SCM PH, ferrous concentration, Li, Co Visual inspection, Ghassa
LIBs T, agitation MLR et al®
Spent Sulfuric acid SCM T, solvent type and Co, Ni, Mn  Visual inspection Carreira
LIBs concentration, reductant et al.*?

concentration

microscopy (SEM), and Brunauer-Emmett-Teller (BET) ana-
lysis are commonly employed for this purpose.>** Once a
kinetic model is developed, it can be used to predict the leach-
ing behavior in subsequent experiments. This prediction is
achieved by applying equations that incorporate previously
determined kinetic parameters and the specific conditions of
the new experiment. However, existing theoretical models and
correlation analyses often rely on fixed values for experimental
conditions. Consequently, due to the inherent complexity of
real-world systems, which frequently involve heterogeneous
materials and phase changes, predictions made without con-
sidering the dynamic nature of the process may exhibit devi-
ations from actual observed values.**

To address the need to consider process dynamics and
improve prediction accuracy, in-line sensors can be utilized to
capture process parameters during leaching. pH is mathemat-
ically defined as the negative logarithm of the hydrogen ion
activity. In dilute solutions, the hydrogen ion activity can be
simplified and approximated by its concentration, which is
influenced by factors such as temperature, dissolved CO,
levels, and the completion of reactions within the solution.?”
Redox potential indicates a solution’s capability for electron
transfer. Similar to pH, it represents the ratio of the activities
of oxidizing and reducing species within the solution.*®
During acid leaching, alkaline cathode metal oxides react with
hydrogen ions, forming soluble metal salts. The change in
hydrogen ion concentration within the solution is reflected by
pH measurements, while redox potential quantifies the oxi-
dation and reduction activities. Conductivity is mathematically
defined as the product of conductance and the cell constant of
the measurement cell. A solution’s conductivity is dependent
on the concentration and electrochemical properties of all dis-
solved ions. It is also strongly influenced by temperature.
Increasing temperature enhances ion mobility, leading to
increased conductivity. In binary solutions containing only

9580 | Green Chem., 2025, 27, 9578-9596

one electrolyte and water, conductivity can be used as a surro-
gate for concentration.®® However, due to the presence of mul-
tiple electrolytes in the pregnant leach solution (PLS) derived
from battery black mass, conductivity cannot be directly used
as a substitution for concentration. Nevertheless, monitoring
conductivity can provide valuable real-time insights into the
progression of the leaching process and the ion concentrations
within the solution. These parameters can be utilized as fea-
tures of chemical reactions.

In biotechnology, the correlation between redox potential
and state variables was investigated during ornithine pro-
duction. The ornithine concentration can be estimated using
online data of redox potential.*® To study the leaching kinetics
of pyrite, May et al. developed an experimental technique for
on-line redox potential measurement. The relationship
between the ferric leach rate of pyrite and measured redox
potential was studied qualitatively.”’ In electronic waste re-
cycling, an Arduino program was developed to monitor and
control pH and potential within a constant range. This control
was implemented to ensure successful leaching of copper,
lead, and silver using nitric acid. Furthermore, response
surface methodology (RSM) was employed to determine the
optimal stirring speed and solid-liquid ratio for maximizing
copper leaching efficiency.*” In battery recycling, researchers
monitored pH, potential, and dissolved oxygen concentration
during leaching processes to elucidate the fundamental dis-
solution mechanisms of cathode materials from spent LIBs.
The results indicated that the progressive delithiation of the
materials is associated with an increase in operating
potentials.>>*

However, previous studies investigating process behaviors
predominantly relied on visual inspection to infer relation-
ships between measured parameters, rather than applying rig-
orous quantitative correlation analysis.** Furthermore, the
potential of sensor-derived parameters as reliable indicators of

This journal is © The Royal Society of Chemistry 2025
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process progression has not been systematically explored.
While techniques such as RSM are widely used for optimizing
experimental conditions and guiding design, they are not
inherently suited for exploring underlaying data relationships.
In contrast, methods like correlation analysis and linear
regression offer robust tools for quantifying associations
between continuous variables.'*?> The absence of such quanti-
tative analytical approaches in the context of process monitor-
ing and modeling represents a relevant research gap.

This study aims to effectively track and predict metal leach-
ing states during the sulfuric acid leaching of pyrolyzed battery
black mass using online sensor data. Unlike previous work
that relied on visual inspection without quantitative corre-
lation analysis, this research employs statistical methods and
kinetic models to investigate the relationships between sensor
data and metal dissolution.

In this study, pyrolyzed battery black mass was leached with
sulfuric acid at varying temperatures. Multiple samples were col-
lected during the leaching process to track the dissolution pro-
gress of metal elements. pH, temperature, electrode potential,
and conductivity of the leaching solution were monitored continu-
ously. Both sensor data and leaching state are non-fixed variables.
The strength and direction of the relationships between these
variables were initially investigated through correlation analysis.
Subsequently, linear regression models were developed to esti-
mate leaching states based on the online sensor data. The per-
formance of the models was statistically evaluated. The observed
linear relationships between online sensor data and metal leach-
ing states were explained by combining kinetic analysis with SCM
theory. The activation energies for nickel and cobalt were calcu-
lated using the Arrhenius equation. These values were sub-
sequently used, in conjunction with the SCM conversion
equations, to determine their respective leaching states. Finally,
the morphology and crystal structure of the materials before and
after leaching were characterized to support the kinetic analysis.

2 Experimental
2.1 Materials

A commercially vacuum thermally treated black mass (BM)
derived from lithium-ion batteries was utilized in this study.
The holding temperature during the thermal treatment ranged
from 500 to 550 °C. Further details regarding the thermal treat-
ment are proprietary and not disclosed by the company.
However, according to the inductively coupled plasma optical
emission spectroscopy (ICP-OES) elemental analysis and com-
bustion analysis, the black mass consists of 4.6% aluminum,
1.2% iron, 14.2% nickel, 10.8% cobalt, 4.2% lithium, 9.5%
manganese, 2.2% copper, and 27% carbon, as presented in
Table 2. The chemical composition suggests that the black
mass originated from a blend of various NMC battery cells.

2.2 Leaching experiments

Leaching experiments were conducted using 1 molar sulfuric
acid. A charge of 150 grams of pyrolyzed black mass was intro-

This journal is © The Royal Society of Chemistry 2025

View Article Online

Paper

Table 2 Chemical composition of the utilized battery black mass

Element Al Fe Ni Co Li Mn Cu C

gper100gBM 4.6 1.2 10.8 42 95 22 27

duced into a 2-liter double-wall batch reactor and leached for
60 minutes. A solid-liquid ratio of 100 g L™ was maintained
throughout experiments. Following the leaching period, the
mixture was separated into the undissolved solid residue and
the pregnant leach solution by filtration using a paper filter
and a vacuum pump.

To ensure the stability of the experimental data and mini-
mize operational errors, temperature was maintained as the
sole variable during the leaching process. Furthermore, to
reduce operator-induced variability across experiments, no
reducing agents, such as hydrogen peroxide, were employed.
This methodology ensured consistency in the results and
eliminated potential confounding factors. Eight leaching
experiments were conducted, varying the temperature from
25 °C to 75 °C. The temperature was manually set and main-
tained constant throughout the experiment by a double-wall
reactor connected to an external thermostat. During each
leaching experiment, 7 mL liquid samples were collected at
regular intervals of five minutes using a pipette. For sub-
sequent analysis, solid-liquid separation of these samples was
achieved through centrifugation followed by filtration using a
syringe filter. Samples collected at 5, 10, 15, 30, and
60 minutes were selected for analysis. Prior to analysis, all col-
lected samples were acidified with HNO; and diluted with dis-
tilled water at a ratio of 1:10. The elemental composition of
the diluted samples was then determined using ICP-OES.

In all experiments, a single pH sensor (InPro4260i) and one
inductive conductivity sensor (InPro7250), both from Mettler-
Toledo GmbH, were used to continuously monitor pH, tempera-
ture, electrode potential, and conductivity. The pH sensor pro-
vided measurements of pH, temperature, and electrode potential
(mvV), while the conductivity sensor monitored conductivity.
Calibration of the pH sensor was performed using a two-point
method with buffer solutions at pH 4 and pH 7. The conduc-
tivity sensor was calibrated using a zero-point calibration pro-
cedure. The specified measurement accuracies for these para-
meters were +0.02 pH, +0.25 °C, +1 mV, and +1%, respectively.
Sensor signals were processed by dedicated transmitters before
being collected by a datalogger. Data were subsequently trans-
mitted to a measurement laptop via serial communication. A
custom data acquisition program was developed to visualize and
record the sensor data. The complete experimental setup and
the measurement devices are illustrated in Fig. 1.

3 Methodology

3.1 Correlation analysis

Current hydrometallurgical battery recycling processes often
rely on studies conducted under static conditions. This is

Green Chem., 2025, 27, 9578-9596 | 9581
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Fig. 1 Experimental setup and measurement devices.

largely due to the inherent complexity of the chemical reac-
tions involved and the typical delay in obtaining comprehen-
sive information about the process state through offline ana-
lysis. Online process monitoring, however, offers significant
advantages by capturing transient process states, thereby
enhancing process transparency and providing deeper insights
into underlaying leaching mechanisms. Furthermore, online
monitoring facilitates more dynamic and adaptive process
control strategies, which can lead to notable advancements in
process optimization and innovation.*’

Given that correlations may exist between parameters such
as pH, temperature, electrode potential, and conductivity and
the actual leaching states, these online sensor data have poten-
tial for estimating leaching progression in real-time. To investi-
gate this potential, a systematic correlation analysis was
performed.

As a preliminary step in correlation analysis, the relation-
ships between the metal leaching state and the continuously
monitored parameters were visually inspected. An initial focus
was placed on the relationship between pH and the leaching
state, which was examined using scatter plots. Subsequently,
the relationships between all monitored sensor parameters
and the leaching state were quantified using correlation coeffi-
cients. Since both the sensor data and the metal leaching state
are continuous variables, Pearson’s correlation coefficient was
initially employed to assess the strength and direction of their
linear associations. Additionally, Spearman’s rank correlation
coefficient was calculated to evaluate the strength of mono-
tonic relationships. Compared to Pearson’s correlation coeffi-
cient, Spearman’s is less sensitive to outliers, making it a
more robust alternative for analyzing data that may not fully
satisfy the assumptions of a linear relationship.

3.2 Multiple linear regression

Linear regression models utilize independent variables to
predict dependent variables. In this study, sensor data serve as
the independent variables, and used as inputs to the models.
While these were treated as independent features for model

9582 | Green Chem., 2025, 27, 9578-9596
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input, potential relationships among the sensor readings were
examined. To mitigate issues arising from multicollinearity, a
threshold of 5 was established for the variance inflation factor
(VIF). Only combinations of features yielding a VIF below this
threshold were utilized in the models. Given that the leaching
states of multiple metal elements are described, the linear
regression models employed in this study are multivariant
linear regression or multiple linear regression.

The primary objective of the regression model was to
predict the leaching states of metal elements based on the pro-
vided sensor data. However, the inherent complexity of the
chemical reactions and the inhomogeneity of the solution
posed significant challenges in obtaining consistent sampling
results through manual procedures. Variations in sampling
time and the dynamic nature of the reaction process could
substantially affect the reliability and reproducibility of manu-
ally collected data. Consequently, the leaching states inferred
from discrete sampling analysis primarily reflected the overall
trend of the chemical reactions rather than providing precise,
real-time insights. Therefore, linear regression models were
utilized to describe this overall trend of the leaching process.

Unlike a purely correlation analysis, the linear regression
modeling included data collected from the commencement of
the leaching experiments. A total of 46 data points were uti-
lized for modeling the leaching process. Based on the statisti-
cal guideline known as the “one in ten rule”,*® which
suggests that the number of observations should be at least
ten times the number of independent variables, a sample size
of 46 is considered adequate for multiple linear regression
models incorporating up to four independent variables. To
ensure the robustness and generalizability of the models to
unseen data, 10-fold cross-validation was implemented during
the model fitting process using the scikit-learn library. The
entire dataset was portioned into 10 subsets. In each iteration,
9 subsets were used for training the model, while the remain-
ing subset was reserved for validation. After each subset had
served as the validation set, the average of the validation
results was calculated to assess the overall model performance.

This journal is © The Royal Society of Chemistry 2025
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3.3 Kinetic analysis

To further elucidate the linear relationships and distinct leach-
ing behaviors observed among the metal elements, the shrink-
ing core model was employed. The SCM provides a theoretical
framework for determining the rate-controlling step in hetero-
geneous leaching reactions. Pyrolyzed black mass typically
exhibits a relatively porous structure, which facilitates internal
mass transfer while maintaining particle size integrity. Upon
the addition of black mass to the acidic solution, a thin gas
film initially forms around the solid particles. However, this
gas film is rapidly replaced by a liquid film due to electrical
agitation. Within this liquid film, insoluble metal oxides (e.g.
MgO, Al,03) and contaminants can accumulate on the surface
of the transition metal oxides particles, forming an ash layer.

The leaching mechanism starts with the diffusion of sulfu-
ric acid ions through the liquid film to the surface of the ash
layer. Subsequently, sulfuric acid penetrates and diffuses
through the ash layer to reach the surface of the unreacted
core. At the core surface, sulfuric acid reacts with the tran-
sition metal oxides, forming soluble products. These products
then diffuse through the ash layer and the liquid film, ulti-
mately returning to the bulk solution.

Based on shrinking core model, three potential rate-control-
ling steps were investigated: surface chemical reaction control,
film diffusion control, and ash diffusion control. The corres-
ponding conversion equations for these control mechanisms
are presented in eqn (1)-(3).*”*® These SCM equations indicate
that the conversion on the left side is proportional to time.
Conversion values were calculated based on the leaching rates.

1—(1—X) = ket (1)
X = kq)t (2)
1-3x(1-X) +2x (1—X)=kqst (3)

where X denotes the leaching rate; k. is the apparent rate con-
stant for chemical reaction control; k4, is the apparent rate
constant for film diffusion control; k4 is the apparent rate
constant for ash diffusion control.

The Arrhenius equation, shown in eqn (4), describes the
temperature dependence of reaction rates in physical chem-
istry. It has been utilized to determine the chemical reaction
rate and calculate the activation energy.*® When the apparent
rate constant of a chemical reaction obeys the Arrhenius
equation, its Arrhenius plot is expected to exhibit a linear
relationship.>°

ln(k):f%x%+ln(A) (4)

where £ is the rate constant; E, is the activation energy; R is the

universal gas constant 8.314 J mol™* K™ %; T is the absolute
temperature in Kelvin; A is the frequency factor.

This journal is © The Royal Society of Chemistry 2025
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4 Results and discussion
4.1 Data preparation

The leaching state was calculated based on eqn (5). In this
equation, V and C represent the volume and concentration of
the leaching solution at the sampling point, respectively.  is
the mass fraction of the element in the input material, and M
represents the total mass of the input material. Leaching
efficiency is defined as the leaching state determined for the
final liquid sample collected from an experiment.

Leaching state LS = (V x C)/(w x M) (5)

Table 3 summarizes the experimental conditions and the
corresponding leaching efficiencies. Overall, the results indi-
cate that leaching efficiency increased with increasing temp-
erature. The highest average leaching efficiency was obtained
at 65 °C, as shown in Fig. 2(a).

Fig. 2(b) illustrates the influence of leaching temperature
on the leaching efficiencies for individual elements (Al, Fe, Ni,
Co, Li, and Mn). Specially, the leaching efficiencies of Al, Fe,
Ni, Co increased with increasing leaching temperature up to
65 °C, while the leaching efficiencies of Li and Mn exhibited
less sensitivity to temperature variations. The comparatively
lower leaching efficiencies observed for Ni and Co may be
attributed to the low acid concentration employed and the
absence of H,0,. The concentration of copper in all samples
remained below 1 mg L' and was therefore not considered
further in this study.

Fig. 3(a) illustrates the changes in leaching states of Al, Fe,
Ni, Co, Li, and Mn over time during the leaching experiment
conducted at 65 °C. The leaching efficiencies of Li and Mn
exceeded 95% within a short duration and subsequently
remained relatively stable. Similarly, the rate of increase in
leaching efficiencies for Al, Fe, Ni, and Co also decreased fol-
lowing an initial period of rapid dissolution. Fig. 3(b) depicts
the measured profiles of pH, temperature, electrode potential,
and conductivity throughout the leaching process. The leach-
ing process was initiated upon the addition of black mass to
the solution. Strong exothermic reactions occurred within the
initial three minutes, resulting in a temperature increase
exceeding 10 °C. Subsequently, the rate of chemical reaction
decreased and the leach solution gradually cooled due to the
temperature differential between the leach solution and the
surrounding water bath. To eliminate the cooling effect arising
from the temperature difference between the water bath and
the reaction solution, the target leaching temperature was
increased from 45 °C to 55 °C after the temperature reached
the peak in one specific experiment. However, comparable
leaching efficiencies were achieved in this instance compared
to experiments conducted at a constant temperature of 55 °C.
Apart from periodic sampling, no other external interruptions
were introduced during the leaching experiments.
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Table 3 Experimental conditions and average leaching efficiencies
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Temperature, °C 25 35 45 50 55 45-55 65 75
Average leaching efficiency % 64.8 66.0 69.2 69.1 71.9 72.5 76.5 76.2
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Fig. 2 (a) Temperature influence on overall leaching efficiency; (b) Temperature influence on individual metal elements.
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Fig. 3 (a) Metal leaching states at 65 °C; (b) Online sensor data during leaching at 65 °C.

4.2 Correlation analysis

Fig. 4 presents a scatter plot illustrating the relationship
between nickel leaching state and pH across different leaching
temperatures. A linear trend was observed, with the data
points from a single experiment exhibiting a strong linear
relationship.

Fig. 5 illustrates the calculated Pearson’s and Spearman’s
correlation matrices based on 38 sampling points. For this
analysis, the initial sampling points of each experiment were
excluded because they uniformly showed a leaching state of
0%, which would artificially inflate the perceived linear
relationship between variables. Correlation coefficients range
from —1 to 1. A positive coefficient indicates that two variables

9584 | Green Chem., 2025, 27, 9578-9596

tend to increase or decrease together, while a negative coeffi-
cient suggests an inverse relationship. The absolute value sig-
nifies the strength of the correlation, with values approaching
1 indicating a stronger linear or monotonic relationship.

The leaching states of Al, Fe, Ni, and Co exhibited strong
positive correlations with pH values (correlation coefficients >
0.7). Furthermore, the leaching states of Al, Ni, and Co showed
strong negative correlations with conductivity. In contrast, the
leaching state of Fe displayed a strong negative correlation
with electrode potential (mV). The leaching states of Li and
Mn exhibited moderate correlations with the electrode poten-
tial (correlation coefficients between 0.5 and 0.7).

In addition to the relationships between leaching states and
sensor data, the correlation matrix revealed strong correlations

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Scatter plot for leaching state of Ni against pH.

among certain metal ions: Al, Fe, Ni, and Co exhibited high cor-
relations among themselves, as did Li and Mn. These results
suggest similar leaching behaviors for Al, Fe, Ni, and Co as a
group, distinct from the behaviors of Li and Mn. Additionally,
the correlation matrices indicated strong correlations between
pH and conductivity, and between both of these variables and
temperature. The correlation matrix calculated based on
Spearman’s rank correlation coefficient yielded results consist-
ent with those obtained using Pearson’s correlation.

Both visual inspection and the quantitative correlation ana-
lysis indicate that the relationship between online acquired
sensor data and the leaching state is not only monotonic, but
also potentially linear. However, as correlation analysis intrin-
sically focuses on the relationship between only two variables,
the leaching state may be more accurately described by consid-
ering a combination of multiple features.

4.3 Multiple linear regression

4.3.1 Data pre-processing. The data utilized in this study
comprise the calculated leaching states of Al, Fe, Ni, Co, Li, and
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(a) Pearson'’s correlation matrix; (b) Spearman’s correlation matrix.
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Mn, along with the corresponding pH, temperature, electrode
potential, and conductivity obtained from each sample.
Variations in temperature across experiments led to distinct
ranges in both leaching states and sensor data. Data normaliza-
tion is a crucial step for eliminating the influence of dimen-
sions, reducing numerical errors, and enhancing model inter-
pretability.'® To mitigate the effect of temperature variations,
data points from each experiment were standardized to the
range of [0,1] based on the maximum and minimum values
observed within that specific experiment. Compared to normal-
izing data based on the global maximum and minimum values
across all leaching experiments, the individual scaling approach
effectively preserves the relative stability of sensor data.

Fig. 4 illustrates a clear shift in pH when examining the
unscaled Ni leaching state against the unscaled pH values.
This shift is attributed to temperature variations. Following
the application of individual scaling, the pH shift was effec-
tively eliminated, resulting in a more accurate fit of the data
points to the linear regression model, as shown in Fig. 6(a).
Upon rescaling the leaching state, experiments conducted at
higher temperatures tend to exhibit higher leaching rates, indi-
cated by steeper slopes (Fig. 6(b)). Nevertheless, the linear
relationship between pH and leaching state remains consist-
ent, irrespective of temperature differences. By incorporating
individual scaling, the linear regression models can effectively
capture this data relationship by adapting the individual
scaling factors within the model.

4.3.2 Regression modeling and performance evaluation.
Initially, the coefficient of determination (R*) was used to
evaluate the linear regression models. However, most calcu-
lated R? values exceeded 0.9, which complicated direct com-
parison between models. As a relative measure of fit, R* quan-
tifies the proportion of variance in the dependent variable
explained by the independent variables. It does not indicate
bias and can be sensitive to the range of the dependent vari-
able. Consequently, the root mean squared error (RMSE), was
adopted as the primary evaluation criterion. RMSE quantifies
the absolute error between the model’s predictions and the
actual values, expressed in the same unit as the dependent
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Fig. 6 Linear regression model for Ni using pH as input: (a) Scaled pH and leaching state; (b) Scaled pH and original leaching state.

variable. Following cross-validation, the average RMSE scores
of linear regression models with varying input features from
the leaching experiments were summarized in Table 4. Models
exhibiting only high RMSE scores (exceeding 7) were excluded
from further consideration.

pH effectively described the leaching states of Al, Fe, Ni, and
Co. However, it proved insufficient for accurately predicting the
leaching states of Li and Mn. Conversely, conductivity appeared
to be the most effective estimator for the leaching states of Li
and Mn, although its predictive power for other metal elements
was comparatively lower than that of pH. When temperature was
included as a compensatory factor, conductivity could also effec-
tively describe the leaching states of Al, Fe, Ni, and Co.
Furthermore, the combination of pH and conductivity yielded
the most accurate predictions among the MLR models utilizing
two input features. The inclusion of temperature as a third inde-
pendent variable led to a slight improvement in the performance
of the linear regression model.

To assess the influence of training set size on the model’s
predictive performance, MLR models were trained using data
from one, two, three, five, and seven leaching experiments. For
each model, pH, conductivity, and temperature were used as
input features. This data splitting approach ensured that each

Table 4 Evaluation and comparison of linear regression models using
cross-validation

Average

Input feature Al Fe Ni Co Li Mn RMSE
pH 29 24 14 2.8 122 12,5 5.7
cond. 4.7 51 4.0 4.5 3.1 3.3 4.1
PH & temp. 25 23 13 27 59 6.2 3.5
mV & temp. 47 43 23 47 88 91 5.7
cond. & temp. 21 24 19 23 2.1 2.3 2.2
pH & mV 23 21 14 24 5.9 5.8 3.3
PH & cond. 1.8 19 14 23 2.2 2.3 2.0
mV & cond. 1.9 2.0 1.8 2.5 2.2 2.3 21
PH & cond. & 1.8 1.8 1.5 23 2.0 2.2 19
temp.

9586 | Green Chem., 2025, 27, 9578-9596

training set, regardless of the number of experiments
included, contained the complete set of features from all
samples collected throughout the duration of the respective
leaching processes. A fixed validation dataset, derived from a
single leaching experiment conducted at 35 °C, was used con-
sistently for model validation.

Fig. 7 presents the learning curve analysis for the MLR
models trained with these varying amounts of data. The train-
ing error begins at a low value and increases slightly as more
diverse data are added to the training set, eventually tending
towards stabilization. Conversely, the validation error starts at
a high value and decreases as the model learns from an
increasing volume of training data. Both curves subsequently
converge at a low error value, with a small gap remaining
between them. These observations indicate that the developed
MLR model achieves a good bias-variance tradeoff and general-
izes well under the evaluated conditions.

The correlation analysis initially indicated a potential linear
relationship between sensor data and leaching states. This
potential relationship was subsequently corroborated by the
linear regression models, as evidenced by the high adjusted R*
scores and low RMSE values. The data used in this study were
derived from samples collected five minutes after the start of

—@—Training Curve  —@— Validation Curve
18
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=
e 12
&
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e
[
Z 08
0.6
0.4
S 10 15 20 25 30 35 40

Number of training data

Fig. 7 Learning curve analysis for multiple linear regression models.
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the leaching process. The observed linear relationship between
sensor data and leaching state may be attributed to the reac-
tion mechanism prevalent during this time period.
Furthermore, significant differences in the leaching behavior
of different metal elements were observed. The dissolution of
Ni and Co proceeded steadily after the initial five minutes and
could be accurately estimated using sensor data, whereas the
predictive accuracy for Li and Mn remained comparatively
lower.

4.4 Kinetic analysis

4.4.1 Determination of the rate-controlling step. In this
study, an agitation speed of 450 rpm was employed, which
effectively minimized the influence of external diffusion on
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the mass transfer process. Kinetic analysis focused on data col-
lected starting five minutes after the addition of the black
mass. Strong exothermic reactions were captured by sensors
during the initial minutes, suggesting that the majority of the
chemical reactions between sulfuric acid and black mass par-
ticles occurred within this period. It is assumed that, sub-
sequent to this initial period, the rate-controlling step of the
dissolution process shifts to the diffusion of reaction products
from the particle surface into the bulk solution. Fig. 8 illus-
trates the plots of conversion against time for Ni and Co, along
with corresponding linear regression lines. The slopes of these
lines represent the apparent rate constants.

Table 5 summarizes the averaged R*> scores for all tren-
dlines, considering three potential rate-controlling mecha-
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Fig. 8 Plot of SCM equations versus time for Ni (a), (c) and (e) and for Co (b), (d) and (f): k. for chemical reaction control; kg, for liquid film diffusion

control; kq s for ash diffusion control.
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Table 5 Summary of the averaged R? scores from all trendlines
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Al Fe Ni Co Li Mn
RZJCC 0.87 0.86 0.92 0.91 0.38 0.45
R _kd,l 0.84 0.84 0.91 0.90 0.57 0.71
R 7kd,s 0.89 0.87 0.94 0.93 0.55 0.66
Control mechanism Ash diffusion Ash diffusion Ash diffusion Ash diffusion Film diffusion Film diffusion

nisms for each metal element. The rate-controlling step for
each metal element was determined based on the highest R
score. Statistical analysis suggests that ash diffusion control is
the predominant rate-controlling step for Al, Fe, Ni, and Co,
while film diffusion control appears to be the dominant
mechanism for Li and Mn. These findings support the hypoth-
esis that a significant amount of newly formed metal sulphate
products accumulate on the particle surface after the initial
five minutes, hindering further dissolution by restricting the
diffusion of products through the ash layer and the surround-
ing liquid film. Although the results suggest that Li and Mn
may have reached the final stages of dissolution due to rapid
reaction kinetics, the relatively low R”> values for these metal
elements indicate that the identified control mechanism may
not fully explain their leaching behavior. Further investigation
is needed to elucidate the precise rate-controlling steps for Li
and Mn.

4.4.2 Calculation of the apparent activation energy. Fig. 9
illustrates the Arrhenius plots for Ni, Co, Al, and Fe obtained
from black mass leaching experiments. Both fitted lines for Ni
and Co exhibit high R* scores, indicating a strong linear corre-
lation. However, the R? scores for Al and Fe are insufficient for
further analysis. The activation energies were determined from
the slopes of these lines. The calculated activation energies for
Ni and Co were 29.8 k] mol™" and 22.6 k] mol™", respectively.
According to previous studies in reaction kinetics, a chemical
reaction with an activation energy below 40 k] mol™" is typi-
cally classified as a diffusion-controlled reaction.>>* The acti-
vation energies for other metal elements were not calculated
in this study due to poor linearity in the corresponding plots.

00p28 00029 0003 00031 00032 00033  0.0034
-5.5 4
-6 1 - y=-2717.1x+ 1.835
- # R? =0.8902
+ -6.5 4
£
E 7 it o o o Ni
2
Z 75 4 ... eco
® )
ry Bos S
y = -3581.5x+ 3.4201 B
-85 1 R? = 0.9325 24
9 J

1/TK-1

(@)

4.5 Leaching state prediction

4.5.1 SCM method. Given the activation energies, the
leaching states of Ni and Co at a specific time and temperature
can be determined using the Arrhenius equation and the con-
version equation of the shrinking core model. Data obtained
from the 35 °C leaching experiment were employed as a test
set to compare the SCM and the MLR method.

The apparent rate constants k4 for ash diffusion control
were determined using the Arrhenius equation, referred to as
eqn (4), yielding values of 0.00027 and 0.00093 for Ni and Co,
respectively. These values correspond to the slopes of the tren-
dlines depicted in Fig. 8(e) and (f). The kinetic analysis
focused on the leaching process starting from five minutes
after its initiation. As the leaching state was not zero at this
initial time point, the trendlines required intercepts. In this
study, only temperature was varied across all leaching experi-
ments. Therefore, the intercept values are likely related to the
leaching temperature. Fig. 10 illustrates the relationship
between these intercepts and temperature for both Ni and Co.

The intercept values exhibit a strong positive correlation
with leaching temperature, as evidenced by the high R* scores
obtained from the fitted lines. The equations of these fitted
lines were subsequently used to calculate the intercepts
specially at a leaching temperature of 35 °C, yielding values of
0.0177 for Ni and 0.0909 for Co. eqn (6) and (7) were then used
to calculate the leaching states of Ni and Co. The leaching
states of Ni and Co were calculated at the 5, 10, 15, 30, and
60 minutes for the 35 °C experiment and compared with the
experimentally determined leaching states at these time points.

00p28 00029 0003 00031 00032 00033  0.0034
5.4 1 y =-1844.3x- 0.6104
R?=0.7534
5 y =-757.15x- 4.0482
& 58 4 5 }
i ° R?=0.2753
= o [ oAl
2 3
= - L g taey ®F
= 6.2 e g .. €
66 e o g
o o e
74
1/TK-1

(b)

Fig. 9 Arrhenius plot during black mass leaching for (a) Ni, Co and (b) Al, Fe.
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1-3x(1—Xni) +2 % (1—Xyi) = 0.00027 x £ +0.0177 (6)

1-3 % (1 Xco)' +2 x (1 — Xgo) = 0.00093 x ¢ +0.0909 (7)

Here, Xy; denotes the leaching rate for Ni, and X, represents
the leaching rate for Co, with t being the time in minutes.
4.5.2 MLR method. The equations for the best-performing
multiple linear regression model are presented in eqn (8)-(13).
This model employs pH, conductivity, and temperature as
independent variables to predict the metal leaching states.

LSa = 0.42 x pH — 0.6 x cond. — 0.08 x temp. + 0.6  (8)
LSpe = 0.54 X pH — 0.48 X cond. — 0.08 X temp. + 0.48 (9)

LSni = 0.71 x pH — 0.29 x cond. — 0.11 X temp. + 0.29 (10)

LSco = 0.36 X pH — 0.65 x cond. — 0.09 x temp. + 0.65 (11)
LSy = —0.09 X pH — 1.04 X cond. + 0.05 x temp. + 1.04 (12)

LSyn = —0.14 x pH — 1.08 x cond. + 0.04 x temp. + 1.08
(13)

The equations indicate that both pH and conductivity sig-
nificantly influence the estimation of the leaching states of Al,
Fe, Ni and Co. In contrast, conductivity serves as the primary
estimator for the leaching states of Li and Mn. Notably, the
equations for Li and Mn exhibit larger intercepts compared to
those for the other metals, suggesting a greater influence of
factors independent of the input variables included in this
model.

4.5.3 Model comparison. The R*> and RMSE values for the
prediction of each element’s leaching state were calculated
and are summarized in Table 6. Fig. 11 compares the R*> and

Table 6 Evaluation of leaching state prediction at 35 °C
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RMSE scores for Ni and Co obtained from both the SCM and
MLR methods. The MLR method demonstrated better per-
formance in predicting the leaching states of both Ni and Co
compared to the SCM. Furthermore, the MLR model possesses
the capability to predict the leaching states of Al, Fe, Li, and
Mn, which cannot be calculated using the shrinking core
model due to the structural limitations of applying this model
to the leaching behavior of these elements in the studied
material.

The MLR model exhibits strong overall predictive perform-
ance, achieving an average adjusted R*> score of 0.995 and an
average prediction error of only 1.1%. This high accuracy is
visually corroborated by the close agreement between the pre-
dicted and actual leaching states, as illustrated in Fig. 12.
Among all metal elements considered, the predictions for Ni
and Co exhibit the lowest error rates, suggesting a strong
linear relationship between sensor data and their respective
leaching states. Conversely, the leaching state predictions for
Li exhibit lower accuracy compared to other metal elements,
which aligns with the findings of the preceding correlation
analysis. Given the empirical nature of this modeling
approach, the equations presented above are applicable solely
to predicting the leaching state under the specific conditions
and when utilizing the same input material, as detailed in
Section 2. To apply this modeling approach to other leaching
systems or different materials, the model parameters must be
adjusted using data obtained from those specific systems.

4.6 Material characterization and its influence on leaching
behaviors

Regression modeling demonstrated a strong correlation
between sensor measurements and the leaching states of the
metal elements. Based on kinetic analysis, this linear relation-
ship can be attributed to the diffusion of metal-ion products
through the ash or liquid film layers. However, due to limited
linearity in the SCM equations, the statistical data were insuffi-
cient to definitively differentiate between the rate-controlling
steps for Li and Mn. Furthermore, the applicability of the
shrinking core model relies on the assumption that the spheri-
cal structure of the metal particles remains intact before and
after the leaching process.

To further investigate the distinct leaching behaviors of the
metal elements, the thermal pretreatment process of the
employed battery black mass was analyzed. Subsequently,
scanning electron microscope and energy-dispersive X-Ray
spectroscopy (EDS) were employed to characterize the mor-

Al Fe Ni Co Li Mn Average
RMSE_SCM — — 1.18 1.11 — — —
RMSE_MLR 1.07 1.34 0.40 0.33 1.72 1.55 1.07
R>_SCM — — 0.778 0.888 — — —
Ragi”_MLR 0.994 0.990 0.996 0.999 0.994 0.995 0.995
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Fig. 11 Comparison of SCM and MLR methods for leaching state
prediction.

phology and crystal structure of both the employed black mass
and the solid residue obtained after leaching.

4.6.1 Influence of thermal treatment. The black mass uti-
lized in this study was vacuum treated at temperatures
between 500 and 550 °C. The observed rapid reaction kinetics
for Li and Mn during leaching may be attributed to the effects
of this pyrolysis process. During pyrolysis within this tempera-
ture range, the layered cathode materials undergo a structural
transformation into a spinel structure. Transition metal oxides
are initially reduced to simpler mixed oxides such as LiNiO,,
LiCoO,, LiMn,0,, and subsequently further reduced to Li,O,
NiO, CoO, and MnO with the release of oxygen.>*>>* The for-
mation of soluble compounds such as Li,CO; occurs during
thermal treatment and is directly related to CO, registered
during the process.”® The simplified overall decomposition of
cathode materials is summarized in eqn (14) and (15). Possible
chemical reactions involved in this process are listed in the fol-
lowing eqn (16)-(23).>%”
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12LiNi1/3 C01/3Mn1/302 + 3C

— 6Li,0 + 4NiO + 4C00 + 4MnO + 3CO, (14)
12LiN%1/3C01/31T/[n1/302 (15)
— 6Li,0 + 4NiO + 4Co0 + 4MnO + 30,
4LiNiO, + C — 2Li,0 + 4NiO + CO, (16)
2LiNiO, + C — Li,O + 2NiO + CO (17)
4LiCo0, + C — 2Li,0 + 4Co0 + CO, (18)
2LiCo0, + C — Li,0 + 2C00 + CO (19)
2LiMn,04 + 2C — Li,CO;3; + 4MnO + CO (20)
6LiMn,0, + 5CO — 4Mn30y + 3Li,CO;3 + 2CO, (21)
2Mn,0; + C — 4MnO + CO, (22)
Li,O + CO, — Li,CO3 (23)

Li,CO;j is likely the predominant form of lithium within the
pyrolyzed black mass, exhibiting high solubility in sulfuric
acid. Lithium dissolution rates were observed to be the fastest,
even at lower temperatures, consistent with findings from pre-
vious studies.’®>° This rapid dissolution can be attributed to
the absence of a reduction step in the lithium dissolution
mechanism.*?°

In this study, manganese exhibited faster dissolution rates
compared to iron and aluminum. This phenomenon can be
explained by the formation of an oxide layer on the surface of
iron and aluminum particles, hindering their reaction with
sulfuric acid. Among the cathode materials, manganese oxides
demonstrated faster dissolution rates compared to cobalt and
nickel oxides, likely attributed to their higher standard
reduction potential and the formation of more soluble MnSO,.
Another contributing factor to the high dissolution rate of
manganese is the Jahn-Teller effect. The Jahn-Teller effect is
prominent in manganese oxides containing trivalent manga-
nese ions, which induces geometric distortions in the manga-
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Fig. 12 Visualization of leaching state prediction at 35 °C using MLR model for (a) Al, Ni, Co, Mn (b) Fe, Li.
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nese oxide crystal structure, leading to weaker Mn-O bonds
and increased instability. As a result, these manganese oxides
are more susceptible to acid attack during the leaching
process.>>%%!

4.6.2 Influence of morphology and crystal structure.
Fig. 13 and 14 illustrate SEM images of the pyrolyzed black
mass and the solid residue. In these images, heavier elements
appear lighter due to differences in electron scattering. EDS
analysis was performed to determine the composition of
different particles. The results revealed that the light spherical
particles correspond to metal oxides originating from the
cathode material, while the darker, irregular structures are
graphite from the anode material. In the black mass SEM
image, spherical particles were observed, distributed either
sparsely or in clusters. Quantitative EDS at specific spots on
these particles allowed for the differentiation of three distinct
types. Type I particles consist primarily of nickel-manganese-
cobalt (NMC) oxides, suggesting incomplete decomposition of
cathode materials during the pyrolysis process. Type II par-
ticles are predominantly manganese oxides (MnO and Mn,0;),
likely resulting from the further decomposition of LiMn,0,, as
described in eqn (20)-(22). Type III particles consist mainly
of nickel and cobalt oxides. A small amount of aluminum was
detected within these spherical particles, potentially contribut-
ing to the formation of an ash layer during the thermal treat-
ment process. Additionally, impurities such as oxides of Si,
Mg, Al, Fe, K were observed attached to the graphite particles.

“

Y Graphite]

Fig. 13 SEM image of battery black mass before leaching.
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The SEM image of the solid residue after leaching revealed
a higher density of small, light particles. The spherical par-
ticles remaining in the residue primarily consisted of nickel
and cobalt oxides (Type III), with their shape and size largely
unchanged during the leaching process. This observation
suggests that the complete consumption of H,SO, by other
metal elements resulted in only partial dissolution of nickel
and cobalt oxides. Notably, spherical particles containing pre-
dominantly manganese oxides were absent in the solid
residue, indicating the complete dissolution of these particles.
This observation suggests that the SCM theory may not be
entirely applicable to manganese, which aligns with the
observed low statistical fit. A small amount of the manganese
was found within the transition metal oxide particles due to
incomplete dissolution of the NMC oxides. Additionally, fully
dissolved manganese, along with cobalt, aluminum, and iron
may have been trapped within the filter cake during the fil-
tration process and subsequently recrystallized onto graphite
or other metal oxide particles during the drying process.
Copper is insoluble in 1 molar H,SO, and thus remained in
the solid residue.

4.7 Leaching predictive models

Predictive models, including statistical models, chemical
kinetic models, and machine learning models, have been
applied to the leaching process of primary and secondary
materials, as detailed in Table 7. However, research specially
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Fig. 14

SEM image of solid residue after leaching.

Table 7 Leaching predictive models and model comparison

Data
Material Solvent Predictive models volume  Model inputs Model outputs Best results ~ References
Spent LIBs Sulfuric acid MLR <50 Sensor data Leaching states MLR This work
SCM with linear fitting of AL, Fe, Ni, Co,  Raq;” 0.995
equations Li, Mn RMSE 1.1
Spent LIBs Sulfuric acid MLR <50 Experimental Efficiency of Li, R®0.95 Ghassa et al.!
conditions Co
Spent LIBs Sulfuric acid ANN <1000 Random Kinetic Accuracy Ebrahimzade
combinations of parameters of Li, 97.8% et al®
kinetic data Co, Ni, Mn
WPCBs Sulfuric acid Second-order MLR <100 Experimental Efficiency of Cu Second- Hao et al.*
conditions order MLR
Avrami model with R.Adj2 0.9
linear fitting equations
e-Waste Nitric acid Second-order MLR <100 Experimental Efficiency of Cu  Raq;® 0.987 Barragan
conditions et al.”?
Gold Ferric chloride Mechanistic kinetic <100 Estimated kinetic ~ Leaching state of ~R* 0.92 Seisko et al.**
model data Au
Cobalt Sulfuric acid and Mathematical <500 Experimental Total leaching RMSE 1.1 Hu et al.®®
compound sulfurous acid mechanism model conditions state of ore
ore with error Change of acid
compensation concentrations
Copper oxide  Sulfuric acid Nonlinear fitting <50 Leaching states Leaching states Fitting Apua et al.”®
ore model of Cu, Co, Fe model
Gompertz kinetic Time R®0.98
model
Eudialyte Hydrochloric ANN <50 Experimental Efficiency of total ANN Ma et al.®®
concentrate acid and water SWR conditions rare earth RMSE 3.27
MLR elements
Alyssum Sulfuric acid Second-order MLR <50 Experimental Efficiencies of Second- Houzelot
mural ashes SCM equation conditions Ni, Mg order MIR et al 18
R” 0.985
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focused on predicting leaching states in battery recycling is
limited. Multiple linear regression has been commonly
employed in previous studies to examine data relationships
and predict leaching efficiency, particularly when the available
dataset is small. Nevertheless, the majority of these studies
have used static experimental conditions for prediction, thus
neglecting the dynamic nature of the leaching process.

Chemical kinetic models have been utilized in previous
leaching kinetic studies to determine the rate-controlling step
and describe the dissolution rate of metallic elements.
However, the predictive capabilities of these models have not
been sufficiently evaluated.>®**?>*® The coefficient of determi-
nation, R?, does not directly quantify prediction error and
should therefore not serve as the sole evaluation metric for
regression models. Conversely, the root mean squared error,
RMSE, measures the average magnitude of the difference
between predicted and actual values, thus providing a more
robust evaluation of regression model performance.

The proposed approach utilizes sensor measurements as
model inputs and the leaching states of metallic elements as
model outputs, thereby accounting for the dynamic conditions
of the leaching process. In comparison to predictions derived
from traditional kinetic models, this approach avoids the need
for intricate material characterization and circumvents struc-
tural limitations, while simultaneously providing valuable
insights for process monitoring. This study represents a pio-
neering effort in predicting leaching states using online sensor
data during the leaching process of battery black mass.

Data relationships are quantitatively investigated through
correlation analysis and multiple linear regression, and are
also elucidated by principles of leaching kinetics theory. The
performance of the models developed in this study is evalu-
ated using both R*> and RMSE. The MLR model, using pH, con-
ductivity, and temperature as input variables, demonstrates
the capability to predict the leaching state of six metallic
elements with the highest adjusted R*> value and the lowest
RMSE. Furthermore, the observed variations in the leaching
behaviors of the metallic elements are investigated based on
thermal pretreatment mechanisms and material morphology,
aspects not typically addressed in other leaching kinetic
studies of battery black mass.

The proposed approach exhibits adaptability and can be
readily applied to other leaching processes where sensor
measurements are accessible. More advanced methodologies,
such as machine learning algorithms, can be implemented to
streamline the process and address more complex scenarios in
future research, contingent on the availability of larger
datasets.

5 Conclusion

This study combines correlation analysis and regression mod-
eling to propose a novel approach for predicting leaching
states using readily measurable sensor data. Pearson’s and
Spearman’s correlation coefficients were employed to explore

This journal is © The Royal Society of Chemistry 2025
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the linear relationships between sensor data and the metal
leaching state. Regression modeling extended this correlation
study by incorporating the effect of feature combinations.
Predictions of the leaching sate derived from the multiple
linear regression model outperformed the traditional calcu-
lation methods based on the Arrhenius equation and shrink-
ing core model theory, achieving an average prediction error of
less than 1.1%.

The leaching kinetics of nickel and cobalt were effectively
described by the shrinking core model. A strong, chemically
controlled reaction phase was observed during the initial
minutes following the addition of black mass. Subsequently,
the leaching of nickel and cobalt proceeded via a diffusion-
controlled mechanism. During this diffusion-controlled phase,
a strong linear relationship between sensor data and leaching
state was observed. The calculated activation energies for
nickel and cobalt were 29.8 k] mol™ and 22.6 k] mol™,
respectively. Given that aluminum and iron do not possess a
spherical structure, their leaching kinetics could not be
modeled using the shrinking core model. The rapid reaction
kinetics observed for lithium and manganese were attributed
to the unique physiochemical properties of their respective
metal compounds, which were influenced by the thermal pre-
treatment. To further investigate the kinetics of lithium and
manganese, particularly during the initial five minutes of the
reaction, faster sampling methods are required.

Due to the complexity of the leaching process and the
inhomogeneity of the materials, the findings of this study are
specific to the black mass and the experimental conditions
employed. To enhance the generalizability of these findings,
future research should systematically vary other parameters,
such as acid concentration, solid-liquid ratio, and input
material. Nevertheless, this methodology, which integrates
statistical analysis of online sensor data with kinetic modeling
and material characterization techniques, offers a valuable
framework for further research and practical applications in
this field. The proposed predictive strategy is applicable to
leaching processes involving other types of input materials.
The monitoring of leaching operations can be optimized
through the systematic analysis and modeling of sensor and
experimental data. Such optimization is crucial not only for
advancing fundamental research but also for enhancing
efficiency in industrial applications.
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