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Computer-aided design of stability enhanced
nicotinamide cofactor biomimetics for cell-free
biocatalysist

Alexandra P. Platt, 2@ Heidi Klem, 2 ® Sam J. B. Mallinson, @2 € Yannick J. Bomble*©
and Robert S. Paton (2 *@

Cell-free biocatalysis (CFB) is an efficient and environmentally friendly method to synthesize molecules such
as pharmaceuticals, biochemicals, and biofuels through the in vitro use of enzyme cascades. These enzymes
often require redox cofactors to drive chemical reactions. Natural redox cofactors (NAD(P)H) are expensive
to isolate, motivating synthetic nicotinamide cofactor biomimetics (NCBs) as a cost-effective solution. A
select handful of NCBs have been identified as potential NAD(P)H alternatives with comparable or improved
redox capabilities, however, they display a tendency to degrade in common buffers. In this study, a library of
132 NCB candidates is systematically generated, over 85% of which have not been characterized in the litera-
ture, to expand the diversity of currently explored NCBs. The decomposition mechanism of NCBs in phos-
phate is evaluated using density functional theory (DFT), revealing protonation at the nicotinamide C5 posi-
tion as a reporter of cofactor stability. Based on this result, we trained a linear regression model on DFT cal-
culated descriptors to predict NCB stability in phosphate buffer, achieving mean absolute error (MAE) and
root mean squared error (RMSE) values within computational accuracy. Analysis of key atomic descriptors
and qualitative trends in our dataset informed the design of novel NCB candidates we propose with opti-
mized stability. This work enables researchers to predict the relative stability of NCBs before synthesis,
thereby streamlining the process to make CFB more affordable and viable at industry scales.

1. This work systematically expands the chemical diversity of nicotinamide cofactor biomimetics (NCBs) and develops a computational model to predict
chemical stability in phosphate buffer from calculated descriptors. The design of NCBs is crucial for large-scale implementation of cell-free biocatalysis, a
chemical synthesis strategy popular for its low environmental impact and high yields.

2. Our NCB stability model provides an efficient and accurate (MAE 0.61 kecal mol™") process to filter the candidate pool, informing molecule selection for
experimental synthesis and characterization. This work revealed important stability design features: an aryl N-substituent on the pyridine ring, an electron
withdrawing C3-substituent, and a methyl C5-substituent.

3. Future work will explore additional properties of nicotinamide cofactor biomimetics, such as redox potentials and enzymatic binding affinity, to further
promote cell-free biocatalysis at an industrially viable scale.

Introduction

grown.'” In particular, cell-free biocatalysis (CFB), the in vitro
use of enzymes in chemical synthesis, has gained popularity

With rising demand for stereo-, chemo-, and regioselective in recent years due to its higher yields and specificity and
chiral molecule synthesis, interest in biocatalysis has also lower environmental impact than current synthetic techniques.

Compared with other catalysts currently used in the synthesis
of biofuels, enzymatic catalysts and CFB have many desired
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Enzymes in CFB are also able to be reused, working as true cat-
alysts rather than requiring stoichiometric reagents to produce
biofuels or other desired chemicals.” Furthermore, the use of
enzymes to catalyze chemical reactions instead of traditional
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catalysts ensures the use of safer solvents and auxiliaries, one
of the 12 principles of green chemistry.® CFB also offers
improved yields and resistance to toxicity relative to in vivo bio-
catalysis by removing cellular metabolic requirements and
burdens.””® This aligns with another principle of green chem-
istry, the reduction of waste required to synthesize these plat-
form chemicals. Biosynthetic techniques, especially CFB, have
therefore grown in popularity in recent years. However, the
cost of CFB is still a significant drawback,” with enzyme cofac-
tors representing a significant fraction of the reaction setup
price tag. Approximately 50% of known enzyme reactions
require cofactors, the most popular being nicotinamide cofac-
tors, which can be prohibitively expensive and unstable
outside of cells.’®** Pathways can be designed to recycle these
redox cofactors, and sacrificial substrates can be included
where this is not possible, allowing for their inclusion in cata-
lytic rather than stoichiometric quantities, but this is not
always enough to offset costs and make enzymatic syntheses
economical.”®® As a result, the development and implemen-
tation of synthetic nicotinamide cofactor biomimetics (NCBs)
is an active area of research that aims to facilitate CFB in
industrial settings and at scale.'*"”

NCBs are small molecules designed to mimic the redox role
of natural nicotinamide cofactors, while providing advantages
such as ease and low cost of manufacturing, and tunable
enzyme specificity to enable bioorthogonal redox
cascades."'®?° Simple NCBs contain a central pyridine ring
to maintain the hydride transfer ability of their natural
counterparts (Fig. 1A), and various ring substituents, especially
at the nitrogen position, are introduced to tune chemical pro-
perties. Fig. 1B displays sixteen well-characterized cofactor
mimics found in the literature,"®'®?' three of which contain
variations in the R; substituent such that they are not nicotina-
mide structures, however, they are still classified as NCBs for
their ability to replace NAD(P)H. Not only are NCBs able to
replicate the catalytic reductive properties of NAD(P)H, but
they can, in principle, be used in key immobilization processes
like those using nanostructures or hydrogels.”> Many ene-
reductases and some oxidoreductase enzymes have been
shown to readily accept NCBs as redox cofactors.>® Other types
of enzymes do not always naturally accept NCBs, either due to
poor binding or incompatible reduction potentials, but activity
can be engineered for these synthetic cofactors.">?*™’

The use of NCBs makes CFB more industrially feasible due
to their reduced cost compared to the natural nicotinamide
cofactors. However, many NCBs tested to date are also at risk
of decomposing at the nicotinamide moiety in buffers used in
CFB.?®?° This decomposition risk also applies to immobilized
NCBs in reactors. Due to the difficulty of replacing decom-
posed cofactors in reactors, closer examination of NCB
decomposition is crucial to the implementation of NCBs for
industrial uses. The proposed mechanism of nicotinamide
decomposition by Alivisatos et al. is through addition across
the 5,6-double bond in the 1,4-dihydropyridine ring, depicted
in Scheme $1.1>° This decomposition occurs most quickly in a
potassium phosphate buffer,"'® which often yields high
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Fig. 1 (A) Reduction of NAD*. (B) Selected NCBs previously seen in
literature.?®1%2! The 1,4-dihydropyridine in both NAD(P)H and NCBs,
shown in teal, is featured as the one constant design component
throughout this work.

enzyme activity.>® To further promote the applicability of NCBs
in CFB, we propose their stability should be included as a
feature to optimize during engineering campaigns.

Another opportunity for improvement in the NCB field is
expansion of the chemical space. Within the realm of simple
NCBs, described by Black et al. as structures which do not

This journal is © The Royal Society of Chemistry 2025
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contain nucleotide components, there are vast possibilities for
the R; and R, substituents (N-substituents and C3-substitu-
ents, respectively).>®> However, only a small number of NCBs
have been synthesized and characterized in vitro. Tan et al
investigated chemical and physical properties of NCBs with a
methyl R; substituent (C5-substituent), pointing out the lack
of research into modifications at the R; position.'® However,
they proposed adding an R; methyl substituent to only two
NCB structures of the eleven they report. Additionally, R, var-
iants have only been examined for NCBs with a benzyl R, sub-
stituent. In our literature review, we found sixteen simple syn-
thetic NCBs out of which eleven R, four R,, and two R; substi-
tuents are explored (Fig. 1B)."®'>*' By computationally
expanding the possible NCB structures, we can examine a
larger area of chemical space than previously available without
the need for experimental characterization of potentially
unstable structures.?3%3*

In this work, we expand the chemical space of NCB candi-
dates through a combinatorial generation of simple NCBs
from the previously evaluated substituents, resulting in a
library of 132 NCB candidates (including the sixteen previously
proposed) (Fig. 2, Step I). Quantum chemical calculations are
used to provide a mechanistic understanding of NCB
decomposition in phosphate and determine an approach to
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conduct high throughput estimates of NCB stability (Fig. 2,
Steps II & III). Finally, we curate a dataset of quantum chemi-
cal descriptors for each NCB candidate (Fig. 2, Step IV). This
dataset is subjected to qualitative and quantitative analysis
and evaluated by numerous predictive model schemes (Fig. 2,
Step V). We use the results of these analyses to design novel,
more stable NCBs. Our work allows quick, high-throughput
stability screening of an expanded space of NCB candidates to
select top choices for downstream, more costly experimental
validation.

Experimental

Conformational sampling was performed using CREST version
3.0°” using the GFN2-xTB semi-empirical level of theory*® with
xTB version 6.7.0 (Fig. 2, Step II).** SMILES (Simplified
Molecular Input Line Entry System) text representations of
each NCB can be found at https:/github.com/aplatt22/ncb_
stability and in the ESI{ and were converted to xyz-coordinate
files using OpenBabel version 3.1.1.>° For structures in our
library, CENSO version 1.2.0 ** was used to further refine the
ensemble before clustering into 10 or fewer representative
structures. Transition state conformers were generated using
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Fig. 2 Computational workflow presented in this work for the design of stability-enhanced NCBs. (I) Combinatorial addition of substituents at the
Ri1, Ry, and R3 positions to generate a library of 132 NCBs. (I) Conformational sampling was performed on our NCB library using CREST and CENSO,
followed by PCA and k-Means clustering to result in 10 or fewer conformers for each NCB. (Ill) DFT geometry optimization using PBEO-D3(BJ)/6-
31+G(d)/SMD(water) on NCB conformers to obtain final structures. (IV) Calculation of atomic descriptors of the core 1,4-dihydropyridine ring and
substituents, including atomic charges and condensed Fukui indices. (V) Predictive modeling for NCB stability, testing multiple models.
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constrained CREST conformational sampling without CENSO
to refine the ensembles. More details can be found in section
4 of the ESL.}

Density functional theory (DFT) calculations were per-
formed using Gaussian 16, Revision C.01 (Fig. 2, Step II1).>” All
geometry optimizations used PBEO0-D3(BJ)/6-31+G(d)/SMD
(water) as the level of theory.*®** Vibrational frequency ana-
lyses at the geometry optimization level of theory confirmed
the nature of transition structures and ground state structures
based on the presence of only one imaginary normal mode or
none at all, respectively. Intrinsic Reaction Coordinate (IRC)
calculations also used this level of theory to ensure the nature
of transition structures during the mechanistic study.
Additional single-point energy corrections with larger basis
sets were used to obtain more accurate energies. For the calcu-
lation of all barrier heights, we used wB97M-V/def2-TZVP/SMD
(water) to obtain these energies.*®*>*® Calculations which
used the ®B97M-V functional were done using Orca version
5.0.3 *” with support from 1libXC version 5.1.0.*® Energy correc-
tions for structures in our library and the newly-designed
NCBs were performed with PBE0-D3(B]J)/def2-TZVP/SMD
(water). Free energies were calculated and potential energy sur-
faces constructed using GoodVibes version 3.2.%°

Natural bonding orbital (NBO) program version 7.0.5 *°
used to obtain atomic partial charges. NBO partial charges at
ten key atoms were gathered from the ground state structure of

was
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each reduced cofactor. Additionally, nucleophilic and electro-
philic condensed Fukui indices were calculated using NBO
partial charges for each after the subtraction and addition of
an electron, respectively (Fig. 2, Step IV).>!

Predictive modeling was done using ROBERT®? software
version 1.0.6 (Fig. 2, Step V). Our final model was trained
using DFT-level descriptors after testing numerous model
architectures (Fig. S7t) before settling on the highest-perform-
ing one, a multivariate linear regression model with a
101:18:13 train:validation: test split. Default settings were
used except permutation feature importance analysis (PFI). PFI
scores were calculated in ROBERT and tabulated, then used to
isolate the 8 most important descriptors to train the model.
More details about the use of ROBERT software for predictive
modeling, including model architectures and data splits
tested, permutation feature importance analysis, and verifica-
tion of model performance and generalizability, can be found
in section 7 of the ESL.}

Results and discussion
Expanding the NCB candidate space

To expand the limited space of NCB candidates, we assembled
a library of 132 NCBs, over 85% of which have not (to our
knowledge) been previously evaluated. Each molecule contains
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(A) Visual representation of our substrate scope. Substituent possibilities were grouped in all possible combinations to create 132 structures
Gla). (B) Principal component analysis (PCA) representation of the scope of our computational

library, highlighting previously studied structures (green stars). Select NCBs have been labeled.
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the redox active 1,4-dihydropyridine ring and is uniquely
identified by the combination of R;, R,, and R; substituents
(Fig. 3A). Each substituent possibility was combinatorically
added to the core 1,4-dihydropyridine moiety. Substituents
were selected based on previously evaluated NCBs to improve
the likelihood that the resultant molecules will maintain some
semblance of those that have been experimentally validated,
increasing the likelihood that these untested NCBs maintain
the activity of their natural counterparts. However, we also
included two additional R, substituents which have not
appeared in the literature to help examine substituent effects
within the library, 4 and 6 in Fig. 3A. These substituents were
added due to their electron-withdrawing capabilities, which we
hypothesize will improve cofactor stability and allow further
examination of the electronic effect of R, substituents on stabi-
lity while maintaining chemical similarity to precedented
mimics. To refer to specific molecules we will adopt a three-
character naming convention detailed in Fig. 3A, where the
first, second, and third characters correspond to the R; (A-K),
R, (1-6), and R; (a, b) substituent identities, respectively. For
example, all NCBs with an octyl substituent at the R, position
are named D**, where the asterisks represent wildcard charac-
ters that could be any R, and R; substituent, respectively.
Similarly, all NCBs which have a methyl group as the R; substi-
tuent are named **b. In addition to the reduced form of each
NCB, our automated workflow also generates the oxidized and
decomposed species to study substituent effects on stability or
redox activity. Generation of this expansive library was auto-
mated using an in-house developed Python script that is pub-
licly available at https://github.com/aplatt22/ncb_stability and
can be openly used to further expand this library with different
substituents. More details about the generation of our NCB
library can be found in section 1 the ESL{

After SMILES (text-based) representations of each NCB in
our library were generated, we followed an in-house automated
protocol to perform conformational sampling and obtain opti-
mized geometries at the DFT level of theory. This in-house
script can be found at https:/github.com/aplatt22/ncb_stabi-
lity. Our conformational sampling procedure, using CREST to
generate conformers and CENSO then CREST clustering to
refine the ensemble, was used to isolate ten or fewer confor-
mers of each NCB which were used for DFT optimizations and
the curation of electronic-structure derived descriptors. A
description of all calculated descriptors can be found in
section 6 of the ESL.{ Principal component analysis (PCA) was
applied to visualize the variations within our dataset of NCBs
featurized by calculated atomic descriptors (Fig. 3B). The
first two principal components account for 71.55% of the
total variance in the data, providing a sufficient representation
of the diversity in our NCB library. Most of the experimental
structures occupy a localized region of the chemical space,
alluding to an improvement in molecular diversity. This
robust library of structures allows more research into various
substituent effects, opening the door for tuning specific pro-
perties of NCBs, such as reduction potential and stability in
buffer.

This journal is © The Royal Society of Chemistry 2025

View Article Online

Paper
Modeling NCB decomposition in phosphate buffer

Having expanded NCB candidate space, we aimed to under-
stand the stability in terms of the NCB decomposition mecha-
nism. NCBs which have been studied experimentally are noted
to have high decomposition rates in phosphate buffer, which
is problematic for CFB applications where enzymes often have
highest activity in phosphate buffers.'*'®?* Thus, we modeled
the decomposition mechanism of NCBs using a negatively
charged phosphate molecule to approximate the buffer solu-
tion. Referencing a previously-proposed decomposition
scheme,”® we modeled the decomposition of four NCBs which
have experimental decomposition rates in phosphate buffer:
MNAH (Ala), BNAH (Fla), P2NAH (Gla), and P3NAH (H1a).
The activation barriers obtained are consistent with a process
that is kinetically feasible at ambient temperatures. DFT mod-
eling of the decomposition pathway suggests that the process
occurs in a stepwise manner (Fig. 4). The first step involved C5
protonation via dihydrogen phosphate to form Int I, followed
by attack of hydrogen phosphate at C6 to form the functionally
inactive product. A concerted mechanism could also be envi-
sioned; however, it is not supported at this level of theory (see
section 3 of the ESIT for discussion). In each evaluated NCB,
TS I corresponds to the highest energy barrier. As a result,
these NCBs follow the stability trend of Fla = Gla > Ala > Hla,
which is comparable to the experimental study that found the
stability in phosphate buffer of Fla and Gla to be equivalent
and higher than that of Ala and H1a.'* The species product
labeled on the reaction scheme in Fig. 4 does not necessarily
represent the final decomposed species, and has been known
to further decompose into another final product.”® However,
because experimental rates of decomposition are measured by
the disappearance of the 1,4-dihydropyridine moiety and our
calculated values are consistent with experiment, we do not
consider further decomposition.

After identifying TS I as a predictor of NCB stability, we
sought a simpler stability representation that would be more
suitable for high-throughput calculations. Optimization of
transition state structures often requires more computationally
intensive protocols and manual intervention. Therefore, we
investigated whether the free energy difference of this first
elementary step (AG) was an appropriate alternative.
Calculating AG requires only the optimization of minima
structures and is therefore computationally cheaper. Such an
approach is well grounded in studies of catalytic reactivity,
where the thermodynamics of an elementary step is used to
quantitatively assess the kinetic feasibility, formalized by the
Evans-Polanyi principle®® and linear (free) energy relation-
ships (LFERs).”*

To ensure that this assumption holds, we optimized tran-
sition state structures for a subset of 34 NCBs from our library.
These 34 representative structures were selected using a
binning technique based on important features of the mole-
cules (details in section 3 of the ESIt). There is a highly corre-
lated LFER between thermodynamic (AG) and kinetic (AG¥)
quantities, demonstrated by a Pearson’s correlation coefficient

Green Chem., 2025, 27, 6831-6844 | 6835
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(R?) of 0.92 (Fig. 5 and Table S17). Furthermore, we compared
thermodynamic stabilities of five NCBs with rates of decompo-
sition from literature. Though quantitative decomposition
rates were not available, we achieved qualitative accuracy in
ranking the stabilities of Bla, Blb, Dla, Fla, and F1b from
Tan et al. with 100 mM NCB concentrations.'® Due to high cor-
relation between AG and AG¥, as well as qualitative agreement
with experiment, we decided to model NCB stability through
only a thermodynamic analysis of the first step, a procedure
that is more amenable to high-throughput computation and
analysis.

Having determined an appropriate metric for NCB stability,
we analyzed the relative stability of our structures (Fig. S4t).
The stabilities of structures in our NCB library range from
—141.2 to —121.2 keal mol™ (=591.0 to —507.2 kJ mol™"). The
majority of our library shows increased stability when com-
pared with a common mononucleotide NCB, nicotinamide
mononucleotide (NMNHT), which has a stability of
—134.1 keal mol™ (—560.9 k] mol™"). These data suggest that
we will be able to design NCBs with higher stability than those
currently used in CFB.

Predictive modeling of NCB stability

To train a machine learning model to predict NCB stability in
buffer, we had to identify descriptors to effectively describe the
NCBs in ways relevant to decomposition. Because decompo-
sition in phosphate buffer occurs within the conserved,
redox active 1,4-dihydropyridine ring, this motif was our focus

6836 | Green Chem.,, 2025, 27, 6831-6844

while describing NCBs. DFT-level descriptors
calculated at each atomic position within the 1,4-dihydropyri-
dine ring (N1, C2, C3, C4, C5, and C6), as well at the first atom
of each substituent (R, Ry, & R3) and the descriptor values of
both hydrogens at the C4 position (C4H) were averaged for a
total of ten descriptors from eleven atomic loci. Calculated
descriptors include partial atomic charges derived from
natural population analysis (NPA),>® as well as the electrophilic
and nucleophilic condensed Fukui indices (f(+) and f(-),
respectively).>® Further explanation of descriptors can be
found in the ESL{ Upon examination, these descriptors are
able to effectively capture different substituent identities at
each position, so no other features were considered in this
study (Fig. S67).

To limit computational cost as we moved forward, descrip-
tors were calculated only for the reduced species of each NCB.
Using a single species for descriptor calculation also reduces
the computational cost of making future predictions with out-
of-sample NCBs. We selected the reduced cofactor species for
descriptor generation due to its role as the “universal inter-
mediate” for both decomposition and catalytic reduction,
allowing this set of descriptors to be used in a future multi-
objective optimization for both stability and reduction poten-
tial. Permutation feature importance (PFI) analysis was
implemented to isolate and use only the most important
descriptors for NCB stability to help prevent model overfitting.
PFI begins with a model trained on all descriptors, then sys-
tematically permutates one descriptor at a time to determine

were

This journal is © The Royal Society of Chemistry 2025
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the impact of that descriptor on the overall model. The worse a
model performs when a descriptor is permutated, the more
important that descriptor is to making predictions. This ana-
lysis is automated in ROBERT, resulting in a PFI score for each
descriptor (Table S51). The eight descriptors with the highest
PFI scores were used in our model, including atomic charges
at N1, C2, C3, C5, and C4H and electrophilic condensed Fukui
indices at C3, R,, and C4H. We also performed a comparison
of these properties calculated from the lowest energy confor-
mer, which was used in model training, with the Boltzmann
weighted properties for our representative subset of 34 NCBs.
The maximum differences between values for all atomic
charges and electrophilic condensed Fukui indices of these
NCBs were 0.001 and 0.008, respectively. The differences are
low relative to the magnitude of the values, suggesting we do
not need to include the full conformational ensemble for our
descriptors.

An array of four model types and seven train : validation :
test splits were used to train possible DFT-level models for pre-
dicting stability using ROBERT (Fig. S7t1). We selected the
highest-performing model architecture after default PFI ana-
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lysis based on the root mean squared error (RMSE) values of
the validation set, a multivariate linear regression (MLR)
employing a 101:18:13 train:validation: test split (Fig. 6).
PFI scores were then further analyzed to limit model training
to only the eight most important physical properties of the
NCBs. This number of descriptors was selected because it was
the lower limit at which we still had high model performance
(Table S671). The final descriptors included in our model are
the NBO partial charges at N1, C2, C3, C5, and C4H, as well as
f(=) at C3, R,, and C4H. While our list of key descriptors does
not include direct contributions from the R; or R; substitu-
ents, properties from N1 and C5 are used to predict stability,
which we believe incorporate effects from their respective sub-
stituents. In support of this, descriptors of R; were highly cor-
related with the C5 NBO partial charge and not considered for
model training. More details regarding model training can be
found in section 7 of the ESL.

This analysis led to a high-performing model, shown by a
high correlation (test set R> = 0.98), as well as mean absolute
error (MAE) and RMSE within DFT accuracy levels (<3 kcal
mol ™, 12.552 kJ mol*).>> Furthermore, ROBERT automates
the additional evaluation of model performance, see https:/
github.com/aplatt22/ncb_stability/tree/main/Data/ROBERT _
Results for results. This extra evaluation includes testing for
worse performance when training with mean stability values,
shuffled stability values or one-hot encoded descriptors, and
performing 5-fold cross-validation to ensure our model is
robust. Our model passed these tests, demonstrating a general-
izable model with an appropriate train : validation : test split.
The data was also checked for outliers and the ratio of data
points to descriptors as part of this additional model evalu-
ation. More details regarding this evaluation can be found in
section 7 of the ESL.}

As further assessment of the performance of our model, we
calculated Spearman rank-order correlations comparing stabi-
lity from our model predictions with those from experiment.
With the limited experimental stability data available, a
problem we address with our computational NCB library, we
are unable to compare our model predictions to many experi-
mental stabilities. Using the limited data, we are able to
examine rankings of the 5 NCB structures from Tan et al.'®
Our model ranks these cofactors Bla < Dla < Fla < B1b < Fib,
which is the same ordering found experimentally, earning a
Spearman correlation of 1.000. When comparing our model
predictions to experimental data of 4 NCBs from Nowak
et al.,"* our model predictions showed rankings, in order of
increasing stability, of Hla < Ala < Gla < Fla and the experi-
mental rankings are Ala < Hla < Fla < Gla, earning a
Spearman correlation of 0.600. The rankings for the Nowak
et al. experimental results were not predicted as well as for the
Tan et al. results, which can be explained by the nature of the
experimental stability data. For the Nowak et al. set of NCBs,
the range of calculated stabilities is only 1.9 kcal mol™* (8.0 kJ
mol '), while the Tan et al. set has a range of 5.2 kcal mol™
(22.0 k] mol™"). Compared to our full computational library,
which has a range in stabilities of 20.0 kcal mol™ (83.8 kJ
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(A) Parity plot and results for the best-performing predictive model trained with DFT-level descriptors, a MLR with a 101:18:13 train:

validation : test split using the eight most important descriptors. Model performance metrics are shown at the bottom right of the graph for the vali-
dation and test sets. (B) Visual representation of the eight descriptors used for model training and MLR equation from standardized descriptor data.

Raw weights can be found in the ESI.}

mol ™), this subset of experimental stability data is not very
diverse, so this available experimental data gives limited
insight for our chemically diverse dataset. Additionally, all of
the structures for which we have experimental stability data
are similar, each with 1 for the R, substituent, only examining
different R; substituents for 2 R; substituents, and only
sampling 5 R; substituents of the 11 possibilities, further
demonstrating the limited insight from comparing model
results with current experimental data.

Finally, we tested our model performance with a Spearman
correlation over our full NCB library, which a gave rank-order
correlation of 0.974 when comparing model predictions to cal-
culated stabilities, demonstrating the ability of our model to
correctly order NCBs with respect to their relative stabilities
(Table S107). This feature is ideal for an optimization protocol,
where only the most stable NCBs are considered for experi-
mental validation, so getting the correct stability ranking is as
effective as predicting the actual value. We also explored a
model trained with semi-empirical descriptors in an attempt
to reduce the computational cost of making predictions, but
the difference in performance relative to the cost of each
method was not enough to favor the semi-empirical model
(see section 7 of the ESIY).

Examining model and descriptor trends

After training a regression model to predict NCB stability, we
used that information to design NCBs with substituent groups
outside the scope of those previously identified. To do this, we
further examined the descriptors which were used in training
the model by examining the relationship between each
descriptor and the NCB stability. In Fig. 7, we show a subset of
these relationships and label the data according to substituent
positions to highlight how certain descriptors can discriminate

6838 | Green Chem., 2025, 27, 6831-6844

by substituent identity. Examining the relationship of f(—) at
the C4H atoms with stability (Fig. 7A), there are two substitu-
ents which yield higher stabilities, corresponding to R, substi-
tuents E and J. Each of these substituents have an aryl substi-
tuent bound directly to the N atom in the 1,4-dihydropyridine
ring. Furthermore, the two most stable NCBs in our library are
E4b and J4b, suggesting that aryl R, substituents are a favor-
able design component to enhance NCB stability (Table S117).
This suggests that alterations to an aryl R, substituent could
be a viable path for further NCB chemical space exploration.
Other substituent identities also impact stability, but not to
the extent of that seen from R, aryl substituents.

We performed a similar analysis of the R, substituent
(Fig. 7B), showing that the aldehyde moiety (4) tends to have
higher stability than the other functional groups represented
in our library at this position. The five most stable NCB struc-
tures in our library, and fifteen of the twenty most stable, have
4 as the R, substituent. We hypothesize that this trend is due
to the highly electron-withdrawing nature of aldehydes.
Though 4 is not a substituent previously evaluated in litera-
ture, we added it to our library as an additional substituent to
determine if the electron-withdrawing characteristics made a
large impact on NCB stability. Based on these data, this is a
key design feature in optimizing stability in NCBs. The next
most stable substituent, 2, is also highly electron-withdrawing
as a nitrile, which has been evaluated previously.

Finally, it is clear when looking at the relationship between
C4H partial atomic charge and stability colored by R; substitu-
ent (Fig. 7C) that NCBs with an R; methyl substituent have
higher stability than those with only hydrogen at that position.
While examining NCBs with similar C4H partial charges,
those with b at R; demonstrate greater stability. Furthermore,
our eleven most stable NCBs have a methyl substituent at the

This journal is © The Royal Society of Chemistry 2025
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R; position. Tan et al. hypothesized that this improved stability
is due to kinetic effects,'® and we are still able to replicate this
trend even though our analysis is strictly thermodynamic. This
observation could be caused by additional steric effects, such
as lower flexibility in the 1,4-dihydropyridine ring with greater
congestion at the C5 carbon with a methyl substituent rather
than a hydrogen.

Out-of-sample NCB design

To test our hypotheses, we created out-of-sample NCBs by
varying the identity of our substituents and testing the stabi-
lity. We first examined new aryl R, substituents with the most
stable R, (4) and R; (b) substituents (Fig. 8, R;sub-I-R;sub-V).
We also designed a NCB with an R, amide (1) and R; hydrogen
(a) with a highly electron-withdrawing R, substituent (R;sub-
VI).>® We wanted to design this NCB to look more similar to
current structures to ensure the calculated properties are
reasonable because the majority of structures in literature
include 1 as the R, substituent and a and the R; substituent.
In addition to altering the R; substituent, we also looked at
how changing the R, and R; substituents impacted stability.
To do this, we designed four structures with new R, substitu-
ents. These moieties included a thioaldehyde (R,sub-I), thioke-
tone (R,sub-II), trifluoromethyl (R,sub-III), and nitro (R,sub-
IV). Thioamides have literature precedent as dinucleotide bio-
mimetic cofactors, which share most of their structure with
NAD(P)H, and are proposed to behave similarly to their amide
counterparts but have higher reduction potentials than the
natural cofactors.”” We selected a thioketone rather than a
thioamide because ketones demonstrate higher stability than
amides in our library. Additionally, the increased stabilities
shown by R, aldehydes led us to also choose a thioaldehyde
due to the increased stability shown by aldehydes in our study.
Electron-withdrawing groups seem to improve stability at the
R, position, with aldehydes performing well, so we selected a
highly electron-withdrawing substituent, trifluoromethyl, to

This journal is © The Royal Society of Chemistry 2025

further investigate this trend. This reasoning also led us to
design an NCB with a nitro R, substituent. Additionally, we
designed two structures with a trifluoromethyl R; substituent
(Rzsub-I & R3sub-II). We selected this moiety as a possible Rz
substituent to test if electron-withdrawing effects at this posi-
tion would have any influence on stability in addition to the
bulkiness of the substituent. Trifluoromethyl substituents
have only a slightly larger size than the previously tested
methyl substituent but are more electron-withdrawing.

The new proposed NCBs were among the most stable
tested, with three structures surpassing stability of those cur-
rently in our library: Rysub-II (=117.1 kecal mol™, —490.1 kJ
mol ™), Rysub-IV (=120.0 kcal mol™, —502.3 k] mol™"), and
Rysub-1V (—117.3 keal mol™, —490.9 kJ mol™") (Fig. S11%). The
increased stability of these NCBs relative to the remainder of
the library is promising since it shows that we can use trends
in existing data to propose and successfully design new NCBs
with enhanced stability. Furthermore, the higher stability seen
with the new substituents at each position supports our
hypotheses that NCBs with aryl R, substituents, electron-with-
drawing R, substituents, and bulky and/or electron-withdraw-
ing R; substituents are likely to be stable structures. With this
new information about how substituent identity and pro-
perties at each position impact stability, we can make
informed decisions to eventually suggest novel NCBs which
will be more resistant to decomposition via C5-C6 saturation.

In addition to high thermodynamic stability, these out-of-
sample NCBs also show high kinetic stability and correlation
between AG and AG*, as was determined with NCBs in our
library (R* = 0.92) (Fig. S12 and Table S121). We also used
these novel structures to test our model’s performance with
out-of-sample structures. All except three of these out-of-
sample NCBs showed accurate predictions (<3 kcal mol™,
12.552 kJ mol ™", prediction error), with each poor prediction
occurring for structures with out-of-sample R, groups. The
accurate predictions on unseen substructures gives confidence

Green Chem., 2025, 27, 6831-6844 | 6839
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in the predictive ability of our model. Additionally, the model
tends to predict stabilities higher than the benchmark DFT
calculations, especially for the three out-of-sample structures
errors in stability prediction for these out-of-sample structures
assume higher stability than calculated using DFT, a trend
present for all except one structure. Errors tending this way
reduce the chance that synthetic chemists disregard highly
stable structures due to our model when choosing stability-
ranked NCB candidates to characterize experimentally.
However, there were also some structures which showed low
model accuracy (error >3 kcal mol™", 12.552 kJ mol™), likely
due to the type of descriptors utilized to make predictions and
absence of sufficient structure representations in the training
data. When analysing these structures with poor model accu-
racy, Rpsub-I (error of 13.8 kcal mol™, 57.7 k] mol™"), R,sub-II
(error of 8.0 keal mol™, 33.5 k] mol™'), and R,sub-IV (error of
10.2 keal mol™, 42.6 k] mol™"), we found that each NCB had
at least three descriptors used in the model which were
outside the range seen by the initial library. For example,
R,sub-I and R,sub-II each had f(—) values at the R, substituent
(—0.09 and —0.03, respectively) that were outside the observed
range (—0.02 to 0.02), likely causing poor stability predictions
in these structures. The other NCB which had a poor predic-
tion was R,sub-IV. Our model likely failed in making an accu-
rate prediction of stability for R,sub-IV because all other struc-

6840 | Green Chem., 2025, 27, 6831-6844

tures within our library have a neutral carbon atom at R,, so
the electronic descriptors at this atom and C3 (directly bound
to R,) are beyond the scope of our trained model.

While the expansion of our NCB space with these out-of-
sample structures showed that our model carries predictive
power even with substrates it was not trained with, the model
can be adapted over time through expansion of the training
data, which would be recommended if a substituent chemi-
cally distinct from our current library is found to be relevant in
NCB design. Nevertheless, our model tends to predict stabi-
lities higher than the benchmark DFT calculations, especially
for the three high-error out-of-sample structures. This error
trend reduces the chance that a highly stable structure would
fail to advance to an experimental stage in a high-throughput
NCB discovery pipeline, and even though some “false posi-
tives” might appear in the top ranks, our results show that is
unlikely. For example, if an experimental group chose to syn-
thesize and characterize the top 10% of stability-ranked struc-
tures, including the out-of-sample designs, this would result
in two of the fifteen candidates (rounded up), with DFT calcu-
lated AG values that would have excluded them from the top
10%, but that still place them in the top 20%. The design of
our computational workflow and ability of our model to
predict the correct rankings of stability, even of newly designed
NCB structures, reduces the chance that experimental che-

This journal is © The Royal Society of Chemistry 2025
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mists create additional reaction waste by synthesizing NCBs
with low stability.

Conclusions

This work introduces an NCB library which covers more
chemical space than has been studied before, generating a
library of 132 unique NCBs to expand the candidate space and
allow us to examine substituent stability effects in more detail
than was previously possible. With the limited number of
experimental structures with decomposition data available, we
also isolated the mechanism of decomposition of nicotina-
mide NCBs in a phosphate buffer, suggesting decomposition
occurs in a stepwise manner where the first decomposition
event (TS I) is highest in energy. Furthermore, there is a strong
correlation between the thermodynamic and kinetic data, so
we simplified our model of stability and used AG for the
proton transfer step of decomposition (Reactant to Int I).

Using our NCB library and simplified model of stability, we
fit a regression model on DFT-calculated electronic descriptors
to predict NCB stability in phosphate buffer and used the
results of our model to design new NCBs proposed to demon-
strate higher stability. Our model has high accuracy, shown by
low MAE and RMSE values, as well as high ranked-order corre-
lations, demonstrating successful rankings of NCB stabilities,
even if we cannot predict the correct quantitative stability.
Using trends in key descriptors, we drew qualitative con-
clusions about designing stable cofactors and tested these
hypotheses through the design of novel NCBs, most of which
showed high stability. We also tested these structures as out-
of-sample predictions for our predictive model, through which
we discovered strengths and weaknesses of the model. In the
future, we also hope to expand the library of NCBs to improve
generalizability of our predictive models.

As shown by this work, the stability of NCBs can be success-
fully tuned. We now have an initial pass at designing more
effective NCBs, narrowing the search to only NCBs which
demonstrate stability. Following this work, we can continue
down the molecular design pathway, focusing on cofactor
activity and optimization of other desirable properties.
Additionally, this work integrates only publicly available
packages into an automated workflow available at https:/
github.com/aplatt22/ncb_stability, highlighting the transpar-
ency and reproducibility of this work. Future work in this area
can be efficiently adapted to build predictive models for other
key NCB properties, such as reduction potential or solubility.
The binding affinity of NCBs within an enzyme active site has
been studied through enzyme engineering,*® so provided that
the NCBs demonstrate high stability and solubility, as well as
an optimized reduction potential, we are confident that the
NCBs can successfully be used for industrial CFB. This work
provides a robust computational study of new NCB structures
with the goal of motivating experimental validation, a direc-
tion currently pursued. Tuning NCBs and their properties on a
case-by-case basis with workflows like ours will increase the
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usefulness of CFB, reducing waste from synthesis of NCBs
known to have low stability and making the method more
efficient and feasible for use in industrial settings.
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