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Integrating population-based metabolomics with
computational microbiome modelling identifies
methanol as a urinary biomarker for protective
diet–microbiome–host interactions
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Background: Diet–microbiome interactions are core to human health, in particular through bacterial fibre

degradation pathways. However, biomarkers reflective of these interactions are not well described.

Methods: Using the population-based SHIP-START-0 cohort (n = 4017), we combined metabolome-wide

screenings with elastic net machine learning models on 33 food items captured using a food frequency

questionnaire (FFQ) and 43 targeted urine nuclear magnetic resonance (NMR) metabolites, identifying

methanol as a marker of plant-derived food items. We utilised the independent SHIP-START-0 cohort for

the replication of food–metabolite associations. Moreover, constraint-based microbiome community

modelling using the Human Microbiome data (n = 149) was performed to predict and analyse the contri-

bution of the microbiome to the human methanol pools through bacterial fibre degradation. Finally, we

employed prospective survival analysis in the SHIP-START-0 cohort, testing urinary methanol on its pre-

dictive value for mortality. Results: Among 21 metabolites associated with 17 dietary FFQ variables after

correction for multiple testing, urinary methanol emerged as the top hit for a range of plant-derived food

items. In line with this, constraint-based community modelling demonstrated that gut microbiomes can

produce methanol via pectin degradation with the genera Bacteroides (68.9%) and Faecalibacterium

(20.6%) being primarily responsible. Moreover, microbial methanol production capacity was a marker of

high microbiome diversity. Finally, prospective survival analysis in SHIP-START-0 revealed that higher

urinary methanol is associated with lower all-cause mortality in fully adjusted Cox regressions.

Conclusion: Integrating population-based metabolomics and computational microbiome modelling

identified urinary methanol as a promising biomarker for protective diet–microbiome interactions linked

to microbial pectin degradation.

1. Introduction

Dietary fibres derived from plant-based foods, including whole
grains, vegetables, or fruits,1 have been established to be
essential components of a healthy diet.2,3 Their microbial fer-
mentation products include short-chain fatty acids, which
provide energy to colonocytes and have anti-inflammatory and
anti-tumour effects.4 Other degradation products include alkyl-
resorcinols, which display neuroprotective, muscle-protective,
and metabolism-positive effects.5 Reflecting the importance of
fibre degradation products, accumulating evidence suggests
that a fibre-rich diet reduces the risk of non-communicable
diseases, including cardiometabolic diseases and cancer.1,6

However, the complex diet–host–microbiome interplay in
fibre degradation complicates the interpretation of metabolite–†These authors contributed equally.
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diet associations. For example, dietary fibre intake has been
associated with 2,6-dihydroxybenzoic acid (2,6-DHBA), indole-
propionic acid, linolenoyl carnitine, 2-aminophenol, 3,4-DHBA,
and proline betaine,7 but underlying microbial pathways remain
elusive. Recent progress in gut microbiome modelling allows for
the computational and quantitative description of microbial
fibre degradation8–10 via constraint-based reconstruction and
analysis approaches. This approach is based on personalised
microbiome community models that have been shown to be pre-
dictive for host metabolomics traits.8,10,11 So far, however,
COBRA community modelling has not been employed for the
interpretation and contextualisation of metabolome–food
associations derived from large population studies.

Here, we combine metabolome-wide association studies
and COBRA modelling with in silico fibre supplementation
experiments, identifying methanol as a marker of diet–micro-
biome interactions linked to pectin degradation. We utilised the
SHIP-START-0 cohort (n = 4017)12 for discovery metabolome-
wide association studies and the independent SHIP-TREND-0
cohort (n = 992)12 for replication and applied COBRA commu-
nity modelling13 to samples from the Human Microbiome
Project (n = 149). Using data from the SHIP project, we further
investigated the association between urinary methanol and
health-promoting lifestyle habits and determined whether
urinary methanol could be predictive for mortality rates (all
causes, cancer, cardiovascular diseases (CVDs)).

2. Methods
2.1 Study population SHIP-START-0 and SHIP-TREND-0

For our analysis, we used the population-based SHIP-study,
conducted in north-eastern Germany.12 Its primary objective
was to examine the prevalence and incidence of common risk
factors, subclinical disorders, and clinical diseases. The initial
data acquisition (SHIP-START-0, 1997–2001, n = 4307) was
derived from local registries. Subsequently, a second, indepen-
dent baseline cohort was selected from the same geographical
region (SHIP-TREND-0, 2008–2012, n = 4420), with no partici-
pant overlap from the SHIP-START-0 cohort. Further details of
the measurements performed can be found elsewhere.12

Non-fasting targeted urine nuclear magnetic resonance
(NMR) metabolome data were available for n = 4068 individ-
uals of SHIP-START-0. To assess the frequency of food intake
and its association with NMR metabolite data, we excluded (1)
subjects taking antibiotics (n = 35) and (2) pregnant partici-
pants (n = 16). In total, we included n = 4017 SHIP-START-0
individuals.

In the replication study SHIP-TREND-0 (n = 4420), n = 996
individuals with targeted urine NMR measurements were avail-
able. However, this urine NMR measurements were conducted
exclusively on a subset of fasting participants without self-
reported diabetes. As a result, the utilised SHIP-TREND-0 sub-
sample is a predominantly healthy cohort. Excluding (1) preg-
nant individuals (n = 0) and (2) those on antibiotics (n = 4) we
obtained an analysis sample of n = 992 participants (SI1).

2.2 Covariate measurements

In the baseline SHIP examinations, behaviour, socioeconomic
data, medical history, and sociodemographic factors were
obtained from a computer-assisted interview. Furthermore, exten-
sive medical examinations were performed, including measure-
ments of waist circumference (considered as an indicator of
abdominal fat), body height, weight, and blood pressure. The
smoking variable was categorised into current smoking and non-
smoking. Physical activity in leisure time was defined as either no
activity (neither in summer nor in winter) or steady activity (>1 h
per week in both summer and winter). Between the discovery and
replication studies, covariate definitions differed for alcohol con-
sumption (SHIP-START-0: intake during the last 7 days,
SHIP-TREND-0: intake during the last 30 days) and sleeping pro-
blems (SHIP-START-0: 5 categorical options, SHIP-TREND-0: 3 cat-
egorical options).

Participants were asked to bring their medication prescrip-
tions or package receipts for all medications they had taken in
the past seven days. Each medication was recorded and cate-
gorised according to the Anatomical Therapeutic Chemical
Classification (ATC Index, 2007). For biomarker measurements,
blood and urinary samples were collected and either analysed
directly or stored at −80 °C. The details of the procedures have
been described elsewhere.14 The assays for analysing the blood
and metabolic markers were all conducted by skilled technical
personnel following the manufacturer’s recommendations.
Concentrations of glycated haemoglobin (HbA1c) were measured
by high-performance liquid chromatography (Bio-RadDiamat,
Munich, Germany) and triglycerides (tg) were determined photo-
metrically (Hitachi 704, Roche, Mannheim, Germany). Urine
creatinine concentrations were determined using the Jaffé-
method (Hitachi717, Roche Diagnostic, Mannheim, Germany).

Information on the vital status was obtained from popu-
lation registers at annual intervals. Participants were censored
in the event of death or lack of follow-up. The follow-up length
was defined as the number of months between the baseline
examination and censoring. A request for death certificates
(coded by a certified nosologist according to the International
Classification of Diseases, 10th version) was made to the local
health authority of the residence of death.

Dietary intake in the discovery study SHIP-START-0 was cap-
tured by a face-to-face interview using an previously validated
food frequency questionnaire (FFQ)15 including 33 food items.
In contrast, the FFQ in SHIP-TREND-0 measured dietary
behaviour with a reduced number of 16 food categories.
Within both cohorts, food intake was rated on an ordinal scale
with 6 options (1: daily or almost daily, 2: several times a week,
3: about once a week, 4: several times a month, 5: once a
month or less often, and 6: never or almost never).

2.3 Urinary metabolite quantification using targeted NMR
measurements

In SHIP-START-0, spontaneous urine samples were collected
from non-fasting individuals. Conversely, SHIP-TREND-0 par-
ticipants were fasting prior to biosample collection. Details on
the NMR measurements are provided in SI2.
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In SHIP-START-0, 59 metabolites with their concentrations in
millimoles per litre (mM) were identified. In SHIP-TREND-0,
urinary methanol measured by NMR was exclusively examined
as the primary outcome from the discovery study.

2.4 Outlier detection and data normalisation

Metabolites with over 50% missing quantification in the NMR
spectra were excluded from the statistical analysis. As a result,
43 of 59 targeted NMR metabolites were selected for subsequent
analysis in SHIP-START-0. Outliers, defined by the 4 standard
deviation rule were calculated for each metabolite and excluded
from the analysis. For all urinary metabolite concentrations,
log-transformations were performed. To compensate for metab-
olite-specific dilution-concentration relations, we applied a
regression-based approach using probabilistic quotient normali-
sation(PQN) with restricted cubic splines(RCS) using 4 knots.16

2.5 Statistical analysis

Descriptive statistics were presented as means and standard
deviations for metric variables and proportions for categorical
variables. All analyses and graphs were conducted using R
(version 4.2.3). P-Values were calculated two-sided and mul-
tiple testing was corrected using the false discovery rate (FDR)
with a threshold of <0.05.

2.5.1 Metabolic signatures of dietary intake. Fully adjusted
multiple linear regression analyses were conducted to associ-
ate dietary intake (predictor of interest) with the metabolite
profile (response variable). Testing 33 food frequency cat-
egories on 43 urinary metabolites resulted in 43 × 33
regressions, utilising heteroscedastic robust standard errors
(HRSE). Nonlinearities were modelled using RCS with four
knots using the default setting of the R-package “rms”.17

Additionally, three continuous beverage variables (coffee, dec-
affeinated coffee, and tea in cups per day) were analyzed separ-
ately but analogously. The model’s explication ensued:

Metabolite concentration ¼ β0 þ β1 food=beverage itemð Þ
þ β2 rcs PQN; 4ð Þð Þ
þ β3 rcs age; 4ð Þ � sexð Þ
þ β4 rcs waist circumference; 4ð Þð Þ
þ β5 rcs eGFR; 4ð Þð Þ
þ β6 pH‐valueð Þ
þ β7 physical inactivityð Þ
þ β8 smoking statusð Þ
þ β9 alcohol intake� sexð Þ
þ β10 log GGTð Þð Þ
þ β11 hypertensionð Þ
þ β12 education yearsð Þ
þ β13 sleeping problemsð Þ
þ β14 tgð Þ þ β15 white blood cellsð Þ
þ β16 red blood cellsð Þ
þ β17 total‐hdl‐cholesterol ratioð Þ
þ β18 presence of diabetesð Þ
þ β19 time since last‐mealð Þ þ e

ð1Þ

To assess the statistical significance of the categorical vari-
able food item, a global Wald-test was performed.

Furthermore, the direction of the association between food
intake frequency and urinary metabolites was assessed by
repeating the analysis to compare the frequent and rare food-
item categories: 1 (“every day or almost every day”) and 2
(“several times a week”) versus 5 (“about once a month or
fewer”) and 6 (“never or almost never”).

For external validation, the analyses were replicated within
SHIP-TREND-0 focusing on methanol as the top result. The
multiple linear regression models were performed in an analo-
gous way to previous analyses with 16 dietary food categories
available in SHIP-TREND-0. Here, food item frequencies
(ranging from 1: daily to 6: never) selected by fewer than 10
individuals were reclassified (fresh fruit intake with a fre-
quency of 6 were assigned to 5, and fried potatoes, pasta and
rice intake with a frequency of 1 were reclassified to 2).

2.5.2 Predicting urinary methanol via FFQ using machine
learning. We utilised elastic nets to determine the prediction
of urinary methanol concentrations through the dietary intake
frequency. Elastic nets integrate the sparsity-inducing Lasso
penalty and the coefficient-shrinking L2 regularization from
Ridge regression.18 The idea is to improve the reduction of
overfitting in addition to the reduction of dimensionality. The
objective function with elastic net regularisation is as follows:

argmin
β

1
2n

Xn
i¼1

yi � ỹi
� �þ γ α

Xn
j¼1

βj

��� ���þ 1� αð Þ
Xn
j¼1

βj
2

� � !
ð2Þ

Here, n represents the number of predictors, yi is the
observed target value for the i-th data point, and ỹi is the pre-
dicted target value for the i-th data point, based on the linear
regression model. The α is the mixing parameter that deter-
mines the combination of L1 and L2 regularisation in the
elastic net. In addition, γ is the regularization parameter, con-
trolling the strength of regularisation, and βi represents the
coefficient for the j-th feature. As the outcome variable, the
residuals of the urinary methanol concentrations were used
after regression out the dilution via regression-based normali-
sation.16 Dummy variables were generated for the food items,
with the lowest intake frequency considered as the reference
category. Dietary intake categories with fewer than 5% individ-
uals selecting a specific food frequency were omitted from the
analysis. We used k-Nearest Neighbour imputation19 to deal
with missing data in the FFQ data. For assessing model fit,
10-fold internal cross-validation was utilised. Finally, r-squared
measures, mean absolute errors and root mean squared errors
were used to assess the model’s performance.

2.5.3 Urinary methanol and lifestyle factors. Next, the
potential associations of urinary methanol with basic and be-
havioural covariates, physiological parameters, and clinical
phenotypes were analysed in the SHIP-START-0 and
SHIP-TREND-0 cohort. We performed multiple linear
regressions, incorporating HRSE, RCS and interaction terms
with an identical model setup as in previous regressions
(Table S1). In addition, the explained variance (incremental R2)
was calculated for the different variables to determine the
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explained variance of urinary methanol concentration related
to the investigated factors.

2.5.4 Constraint-based modelling. We obtained relative
abundances of 149 samples from the Human Microbiome
Project,20 previously mapped to genome-scale reconstruc-
tions.21 Initially, we quantified species onto the reference set
of 7302 microbial metabolic reconstructions of AGORA2.8

Subsequently, microbial community modelling was performed
using the Microbiome Modelling Toolbox.22,23 The mode of
operation is explained in more detail in ref. 10, 22 and 23.
Briefly, community models were generated by combining
genome-scale reconstructions from AGORA2 that were present in
the abundance table for each sample. The community biomass
reaction was then parametrized by weighting by the biomass
reactions of microbes present by its corresponding abundance.
In each simulation, we calculated maximum community net
secretion fluxes for each metabolite that is present in the lumen
compartment for each sample, calculating the maximum net
secretion for 791 metabolites in total, including methanol. One
simulation was done by only using the Average European Diet
constraints that does not neither include an uptake rate of pectin
or xylan and is included in the COBRA toolbox.13 Then, we con-
ducted four simulations utilizing the Average European Diet con-
straints of the virtual metabolic human database,24 where we
additionally gradually incremented the diet constraints (i.e. the
maximal uptake rate) of pectin and xylan for each model respect-
ively. This approach was based on the premise, that an average
apples weights approximately 200 g, contains about 1% pectin
and possesses a molecular weight of roughly 100 kilodaltons
(kDa). This translates to a dietary constraint expressed as:

2 g per 100 kDa� 1 per person per day

¼ 0:2mmol per person per day:
ð3Þ

We gradually stacked up the diet constraints of pectin to
the Average European Diet by 0.2 mmol per person per day at
each step, up to 0.8 mmol per person per day.

We conducted a comparative analysis of our findings by
choosing xylan, which served as a control polysaccharide. To
facilitate this comparison, we scaled the uptake rate of xylan to
an initial uptake rate equivalent to 0.2 mmol per person per
day of pectin by the amount of carbon atoms:

# C‐atoms of pectin
# C‐atoms of xylan

� 0:2mmol per personper day

¼ 2535
2640

� 0:2mmol per personper day

� 0:192mmol per personper day:

ð4Þ

As done with pectin, we gradually increased the diet con-
straint of xylan from 0.192 mmol per person per day up to
0.768 mmol per person per day.

To calculate the individual maximum secretion potential of
methanol of each microbe in a COBRA community model, we
utilized the predictMicrobeContributions function of the
COBRAtoolbox, where we used the Average European Diet and
added the before applied maximum pectin constraint. With

this function, instead of maximizing the combined net secretion
reaction of the community model, each internal exchange reac-
tion of each microbe present into the lumen compartment gets
maximised. The average direct production effect of a species on
methanol secretion was calculated as the product of the mean
abundance and the regression slope of the species methanol pro-
duction against the species abundance. The total effect of a
species on methanol secretion was defined as the product of the
mean abundance with the regression slope of the community
methanol production against the species abundance. The eco-
logical effect is then defined by the difference between direct and
total effect. For details, see Hertel et al.9 All simulations were per-
formed in MATLAB (Mathworks, Inc.) version R2021a, with IBM
CPLEX(IBM) as the linear programming solver. The simulations
were carried out using the COBRA Toolbox13 and the Microbiome
Modelling Toolbox.22,23 Using a linear regression, we additionally
tested the association between methanol and hippuric acid, a
recently reported urinary marker of microbiome diversity.14

2.5.5 Urinary methanol and mortality rates. Finally, we
examined methanol as a predictive biomarker in prospective
survival analysis. By using the follow-up data of the
SHIP-START-0 cohort, a total of 18 (3 × 3 × 2) Cox proportional
hazard models were calculated, involving for each mortality
rate of all causes, cancer and CVD the calculation of the
p-values for the linear effect, non-linear effect (RCS), and
global effect associated with urinary methanol under different
covariate adjustments. The global effect assessed the collective
significance of the RCS transformation of the methanol con-
centrations, while the nonlinearity test determines if the intro-
duction of the non-linear terms in the RCS significantly
improves the model fit in comparison with linear modelling.

Two different covariate adjustment models were conducted.
The first analysis model involved:

Mortality rate of all causes=cancer=CVD

¼ β0 þ β1 urinarymethanol concentrationð Þ
þ β2 rcs PQN; 4ð Þð Þ þ β3 pH‐valueð Þ
þ β4 rcs eGFR; 4ð Þð Þ þ β4 rcs age; 4ð Þ � sexð Þ
þ β5 waist circumferenceð Þ þ β6 myocardial infarctionð Þ
þ β7 hypertensionð Þ þ β8 tgð Þ þ β9 white blood cellsð Þ

þ β10 total‐hdl‐cholesterol ratioð Þ
þ β11 presence of diabetesð Þ þ e

ð5Þ
In the second Cox regression, additionally health-related

behaviours were included as covariates, to evaluate the remain-
ing predictive effect of methanol on mortality cases:

Mortality rate of all causes=cancer=CVD

¼ first analysismodel½ � þ β11 physical inactivityð Þ
þ β12 education yearsð Þ
þ β13 alcohol intake during last 7 days� sexð Þ
þ β14 smoking statusð Þ þ β15 sleep problemsð Þ þ e

ð6Þ

The results were visualised by computing Kaplan–Meier
curves for tertiles of the regression-normalised urinary metha-
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nol concentration. Schoenfeld residuals were examined to
evaluate the proportional hazard assumption.

Additionally, in a sensitivity analysis, a competing risk
regression was used to evaluate the independent association of
methanol concentrations with the mortality rates of CVD and
cancer, using the analogous setup of the two different covari-
ate adjustments models. Moreover, we performed prospective
survival analysis to determine the predictive impact of the
food categories on the mortality rates of all causes, cancer and
CVD, both with and without accounting for methanol in the
two different covariate adjustments models.

3. Results and discussion
3.1 Characteristics of study sample SHIP-START-0 and
SHIP-TREND-0

The analysis sample of the discovery study SHIP-START-0 com-
prised n = 4017 participants (age-range: 20–81, 50.4% female)
(Table 1 and Table S2, SI1) with FFQ data (33 items, Table S3)
and 43 non-fasting urine NMR metabolites (Table S4). In the

independent replication SHIP-TREND-0 cohort, n = 992 indi-
viduals (age-range: 20–81, 50.9% female), (Table 1 and
Table S5, SI1) with fasting urine NMR metabolome data and
FFQ data (16 items, Table S6) were included. As SHIP-TREND-0
NMR urine metabolome data was exclusively available in a
subset of participants without self-reported diabetes, partici-
pants were substantially healthier in general than those in
SHIP-START-0, reflected in a wide range of variables (Table 1).

3.2 Metabolic signatures of dietary intake

First, we conducted exploratory metabolome-wide association
analysis using fully adjusted multiple linear regression ana-
lyses with HRSE for 43 quantified urinary metabolites and 33
food items in SHIP-START-0, exploring associations across all
six FFQ categories, plus three continuous beverages (coffee,
decaffeinated coffee, and tea in cups per day) analyzed
separately.

Prior to corrections for multiple testing (nominal p-value
<0.05), associations between 41 NMR urinary metabolites and
32 food items were identified (Table S7.1). After adjusting for
multiple testing (false discovery rate (FDR) < 0.05), 42 associ-

Table 1 Descriptive table of SHIP-START-0 and SHIP-TREND-0

SHIP-START-0 (n = 4017) SHIP-TREND-0 (n = 992) p-Value

Demographics and anthropometrics
Age [years,(SD)a, (range)] 50 (16.3), (20–81) 50 (13.7), (20–81) 0.679
Sex [no., (% female)] 2024 (50.39) 554 (55.85) 0.002
Waist circumference [cm, (SD)]a 89.27 (13.87) 88.06 (12.87) 0.013
Lifestyle factors
Physical inactivity [no., (% yes)] 2309 (57.70) 261 (26.31) <2.2 × 10−16

Smoking status [no., (% yes)] 1209 (30.20) 217 (21.92) 1.64 × 10−7

Alcohol intake [g d−1, (IQR)] 4.97 (0, 17.4)b 3.99 (1.22, 10.46)c 0.239
Education [years, (range)] 11 (10–13) 13 (11–15) <2.2 × 10−16

Time since the last meal [h, (IQR)] 3.53 (2.58, 4.58) — —
Metabolic and blood markers
C-reactive protein (CRP) [mg L−1, (IQR)] 1.38 (0.68, 3.15) 1.18 (0.62, 2.5) 0.000101
Glomerular filtration rate (eGFR) [mL per min per 1.73 m2, (IQR)] 79.3 (69.8, 89.1) 89 (78.5, 102.5) <2.2 × 10−16

Total hdl cholesterol ratio [(IQR)] 4.03 (3.19, 5.11) 3.75 (3.08, 4.57) 7.07 × 10−10

LDL-C [mmol L−1, (IQR)] 3.49 (2.75, 4.25) 3.36 (2.76,4) 0.001
HDL-C [mmol L−1, (IQR)] 1.39 (1.14, 1.7) 1.43(1.21,1.7) 0.001
Triglycerides [mmol L−1, (IQR)] 1.48 (1.01, 2.27) 1.22 (0.87,1.73) <2.2 × 10−16

Red blood cells [%, (IQR)] 4.4 (4.12, 4.7) 4.6 (4.4, 4.9) <2.2 × 10−16

White blood cells [%, (IQR)] 6.4 (5.4, 7.7) 5.46 (4.68, 6.46) <2.2 × 10−16

HbA1c [%, (IQR)] 5.3 (4.9, 5.8) 5.2 (4.8, 5.5) 4.44 × 10−15

Gamma-glutamyltransferase [μmol per sll, (IQR)] 0.34 (0.23, 0.56) 0.48 (0.38, 0.67) <2.2 × 10−16

Health status
Prevalent T2D [no., (%)] 441 (11.01) 29 (2.93) <2.2 × 10−16

Hypertension [no., (%)] 1897 (47.35) 602 (60.81) 3.38 × 10−14

Metabolic syndrome [no., (%)] 1107 (28.06) 212 (21.44) 2.02 × 10−5

Myocardial infarction [no., (%)] 135 (3.37) 34 (3.43) <2.2 × 10−16

Chronic kidney disease [no., (%)]d 350 (8.75) 154 (15.54) 1.43 × 10−9

Mortality
All cause mortality [no., (%; YFU)] 1067 (26.56; 11.5) — —
CVD mortality [no., (%; YFU)] 329 (8.53; 10.3) — —
Cancer mortality [no.; (%; YFU)] 311 (8.06; 10.1) — —

Abbrevations: HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; HbA1c, glycated haemoglobin; T2D, type 2
diabetes; CVD, cardiovascular disease; SD, standard deviation; IQR, interquartile range; YFU, median year of follow up. a Variables summarized
with means ± SD. b Alcohol intake during the last 7 days. c Alcohol intake during the last 30 days. dChronic kidney disease defined as the glomer-
ular filtration rate >60 mL per min per 1.73 m2. Median with the IQR/range for quantitative variables and the number (percentage) for categorical
variables are presented if not stated otherwise. Characteristics were compared between the two groups using t-tests for normal distribution con-
tinuous variables, the Wilcox-test for non-normal distribution continuous variables, Fisher exact tests for binary variable and the Chi2 test for cat-
egorical variables.
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ations remained statistically significant among 21 urinary
metabolites and 17 food items (Fig. 1a). Urinary methanol was
the top hit, being associated particularly with plant-derived
food items, such as fruit and vegetable juices (FDR = 3.44 ×
10−22, Fig. 1a and b), rice (FDR = 6.46 × 10−5), and fresh fruits
(FDR = 1.90 × 10−4). In the continuous-variable analysis,
methanol and coffee intake showed a significant inverse
association (FDR = 5.58 × 10−22; b = −0.06, 95%-CI: (−0.07,
−0.05), Table S7.2), possibly confounded by higher coffee con-
sumption among smokers (SI4).

Other significant associations were observed for plant-
derived food-items including citrate with fruit and vegetable
juices (FDR = 8.79 × 10−3), hippurate with fresh fruits (FDR =

2.45 × 10−2), or betaine with rice (FDR = 3.98 × 10−2).
Significant links were also found for animal-derived products,
such as creatine with meat (without sausages) (FDR = 9.16 ×
10−6), trimethylamine-N-oxide with fish (FDR = 2.62 × 10−4)
and trigonelline associated with coffee intake in the separate
continuous-variable analysis (FDR = 3.97 × 10−68) (Table S7,
Fig. 1a), aligning with findings from previous studies.25–29 For
urinary methanol, being associated with 10 food items, we
found no similar findings reported in the existing literature.
Next, we conducted analogous regressions to identify the direc-
tions of metabolite associations with frequent (“every day or
almost every day” joined with “several times a week”) versus
rare consumption (“about once a month or fewer” joined with

Fig. 1 (a) Stack plot of the significant associated 21 urinary metabolites with 17 food items. The x-axis shows the significant negative logarithmised
FDR values (−log10(FDR)) of multiple linear regression analysis, whereas the y-axis depicts the urinary metabolites. (b) Association of urinary metha-
nol and the frequency of fruit and vegetable juice intake. The figure depicts the top hit association of urinary methanol with the food item “fruit and
vegetable juices” using the residuals of the methanol concentration after regressing out the same variables as in the main analysis: PQN (rcs:
restricted cubic splines), age (rcs), age–sex interaction term (rcs), sex, waist circumference (rcs), glomerular filtration rate (eGFR) (rcs), pH-value,
physical inactivity, smoking status, alcohol intake during the last 7 days, sex–alcohol intake interaction term, gamma-glutamyl transferase (GGT),
hypertension, years of education, sleeping problems, triglycerides (tg), white blood cells (wbc), red blood cells (rbc), total-hdl-cholesterol ratio, time
since the last meal, and prevalence of diabetes.
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“never or almost never”) of each food item (full results
Table S7). Consistent with the first set of regressions, urinary
methanol was positively associated with fruit and vegetable juices
(b = 0.29, 95%-CI: (0.23, 0.35), FDR = 7.93 × 10−17), rice (b = 0.16,
95%-CI: (0.08, 0.25), FDR = 9.83 × 10−3), flaked oats, muesli, and
cornflakes (b = 0.13, 95%-CI: (0.06, 0.20), FDR = 1.04 × 10−2), and
cooked vegetables (b = 0.28, 95%-CI: (0.11, 0.44), FDR = 3.18 ×
10−2) (Table 2a, S7 and S8, Fig. 2a). Conversely, food items such
as fried potatoes, croquettes, French fries (b = −0.19, 95%-CI:
(−0.28, −0.10), FDR = 6.6 × 10−3) and soft drinks (b = −0.12, 95%-
CI: (−0.18, −0.06), FDR = 4.86 × 10−3) were found to have inverse
associations with urinary methanol levels (Table 2a, S7, S8, and
Fig. 2a). This pattern was also visible in nominally significant
(p-value < 0.05, FDR > 0.05) methanol associations (e.g. positive:
salad and fresh fruits; negative: cake and pizza, Fig. 2b), further
strengthening the conclusion that urinary methanol is linked to
a diet, rich in plant-derived food and potentially a high fibre.

In the SHIP-TREND-0 replication cohort, we focused our
analysis on urinary methanol concentrations to validate the
initial findings from SHIP-START-0. Significant results were
again detected between urinary methanol and plant-derived
food items (salad or raw vegetables, FDR = 1.30 × 10−2; fresh
fruits, FDR = 4.90 × 10−2), as well as food items, including
cake, biscuits, and cookies (FDR = 3.70 × 10−2) (Table 2b and
S9). In conclusion, the analysis in both SHIP-cohorts indicates
that urinary methanol is positively associated with the con-
sumption of plant-derived food items potentially indicative of
a fibre-rich diet.

3.3 Predicting urinary methanol via FFQ using machine
learning

To determine the extent to which urinary methanol concen-
trations could be predicted from the FFQ data, we adopted a
machine learning approach using elastic net regressions with
10-fold cross-validation (Table S10) after imputation of
missing FFQ data via k-nearest neighbours. The model pre-
dicted normalised urinary methanol concentrations based on
FFQ data (Table S11), with the two penalisation parameters
alpha = 0.899 and lambda = 0.005 and an out-of-sample
r-squared value of 0.10 (SI3), meaning that FFQ data could
explain 10% of the variance in urinary methanol levels.

Consistent with the previous results, the largest positive
coefficient was attributed to the frequent consumption of fruit
and vegetable juices (“daily or almost daily”, b = 0.31).
Conversely, the most negative coefficient was related to the
rare intake of flaked oats, muesli and cornflakes (“never or
almost never”, b = −0.14). Potential reasons for the low
amount of explained variance might include the limited accu-
racy of the FFQ and other non-diet-related influence factors on
urinary methanol levels.

3.4 Urinary methanol and lifestyle factors

Consequently, we explored the associations of urinary metha-
nol with basic, behavioural, physiological, and clinical covari-
ates in SHIP-START-0 and SHIP-TREND-0. While we could not
identify associations with clinical covariates, we found strong

associations between urinary methanol and lifestyle indi-
cators. Urinary methanol was positively associated with edu-
cation years, whereas it was negatively associated with physical
inactivity, smoking and alcohol intake (Table 3 and Table S12).
We validated the methanol associations with education,
smoking, and alcohol intake in the replication cohort (Table 3
and Table S13, SI4). However, the explained variance for all
these factors together was low (Table S12 and S13). In con-
clusion, urinary methanol showed associations with health-
related behaviours in the SHIP cohorts, under both fasting
and non-fasting conditions, but the main factors causing
inter-individual variation in methanol levels were not
identified.

3.5 Constraint-based modelling

Since methanol is a metabolic by-product of plants,30 stem-
ming mainly from water-soluble dietary fibre pectin metaboli-
sation, we analysed in a further step, the potential contri-
bution of the microbiome to human methanol pools through
fibre degradation. Investigating the reference set of
7302 microbial metabolic reconstructions of AGORA2,8 we dis-
covered 92 strains belonging to 15 genera (mainly Bacteroides
(39 strains) and Bacillus (24 strains)) that are theoretically able
to produce methanol through fibre breakdown specifically via
the degradation of pectin’s. To explore the contribution of
these species to microbiome methanol production in actual
measured microbiomes, we applied COBRA community model-
ling to 149 individuals with metagenomics data (Table S14)
from the Human Microbiome Project. For each individual, a
personalised microbiome community model was built, and
the maximum secretion potential of methanol was quantified
through flux variability simulations under different diet con-
straints (Table S15).

Gradually incrementing diet constraints (i.e., the maximal
uptake rate) of pectin revealed a continuous rise in methanol
production with increasing pectin intake (Fig. 3a). This was
not observed for incremental increases of xylan diet con-
straints, which served as a control fibre contributing the same
number of additional carbon atoms to the community
(Fig. 3a). Since a wide range of microbes may also produce
methanol as a by-product of biotin synthesis,8 this result indi-
cates that the rise in methanol is not driven by a general
increase in the availability in carbon sources. Instead, the
results point into the direction that microbiome methanol pro-
duction can be specifically attributed to pectin availability.
Thus, the simulations supported the hypothesis that pectin is
a primary source of microbiome methanol production. Indeed,
a previous study demonstrated that fecal bacteria are capable
of releasing methanol through the degradation of pectin.31

The microbiome’s capacity to produce methanol from pectin,
also explains the observed association pattern of food items
with urinary methanol in the SHIP-cohort. Interestingly,
maximal methanol secretion potentials positively correlated
with alpha-diversity, as quantified by Shannon entropy (corre-
lation r = 0.34, p-value = 2.78 × 10−5, Fig. 3d), suggesting that
methanol may serve as a potential biomarker indicative of a
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healthy microbiome, which is characterised by high ecological
diversity.32 Furthermore, by testing the association between
methanol and hippuric acid, a urinary marker of microbiome
diversity, a small but significant inverse association was found
(p-value = 0.049, b = −0.03, and 95% CI: (−0.07, −0.00)), with a
negligible incremental R2 of 0.02%, suggesting methanol and
hippurate may independently reflect microbiome diversity.

To shed light on the individual microbes responsible for
methanol production, we computed the maximum secretion
fluxes of each strain present (Table S15). Additionally, using a

variation of the analysis routes developed by Hertel et al.9 we
calculated the ecological, direct and total contributions of
each microbe to the overall community methanol production
(Fig. 3c). At the broader genus level, we found that Bacteroides
(68.9%) and Faecalibacterium (20.6%) were together respon-
sible for nearly 90% of the total methanol community pro-
duction (Fig. 3b). At the species level, Faecalibacterium praus-
nitzii (20.6%) was computed to produce the highest secretion
contribution, followed by the species Bacteroides ovatus
(19.1%) and Bacteroides stercoris (18.6%) (Table S15). These

Fig. 2 Urinary methanol concentration linked to the comparison of frequent and rare food item categories. (a) Violin plots depicting the significant
correlation between urinary methanol concentrations and food items using residuals of methanol concentration, after regressing out the same vari-
ables as in the main analysis: PQN (rcs: restricted cubic splines), age (rcs), age–sex interaction term (rcs), sex, waist circumference (rcs), glomerular
filtration rate (eGFR) (rcs), pH-value, physical inactivity, smoking status, alcohol intake during the last 7 days, sex–alcohol intake interaction term,
gamma-glutamyl transferase (GGT), hypertension, years of education, sleeping problems, triglycerides (tg), white blood cells (wbc), red blood cells
(rbc), total-hdl-cholesterol ratio, time since the last meal, and prevalence of diabetes. (b) Vulcano plot illustrating the association of urinary methanol
and the categories of food frequency intake with nominal p-values and significant FDR values.
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results align with an earlier study showing that
Faecalibacterium prausnitzii is capable of degrading various
types of pectins.33

Further analyses of ecological effects9 revealed that
Parabacteroides sp. D13 exhibited the highest negative ecological
effect on community methanol production. Thus, while
Parabacteroides sp. D13 itself can produce certain amounts of
methanol, community methanol production was indicated to be
lower in communities with higher Parabacteroides sp. D13 abun-
dance, which could be explained by competitive effects on other
methanol-producing species. In summary, the in silico experi-
ments indicate that the microbiome produces methanol from
pectin. Communities with greater diversity, which is often viewed
as an unspecific protective factor in human health and disease,32

showed higher methanol secretion potentials with the genera
Bacteroides and Faecalibacterium as primary methanol producers.

3.6 Urinary methanol and mortality rates

Given our previous findings, we further investigated urinary
methanol as a predictive biomarker in a prospective survival
analysis using the follow-up data of SHIP-START-0. The cohort
exhibits an overall mortality rate of 26.6% (1067 deaths), with
30.8% (329 deaths) of the deaths attributed to CVD, and 29.1%

(311 deaths) to cancer (Table 1 and Table S16) during a
median follow-up of 11.5 person-years (maximum of 21.5 years
of follow-up).

Regardless of covariate adjustments, we found strong
associations between urinary methanol and cancer, CVD and
all-cause mortality in Cox regressions (Fig. 4a). Kaplan–Meier
curves for tertiles of regression-normalised urinary methanol
concentration (Fig. 4b) revealed higher mortality rates, particu-
larly in the lowest tertile, thereby visually explaining the detec-
tion of nonlinearity (Fig. 4b). To address potential overestima-
tion of hazard ratios in cause-specific Cox regressions, we per-
formed competing risk models, in which neither cancer mor-
tality nor cardio vascular disease mortality remained signifi-
cant (SI5), indicating that the cause-specific findings may
need further corroboration. Note that this caveat does not
apply to the negative association between urinary methanol
levels and all-cause mortality. Noteworthy, methanol stayed
predictive for all-cause mortality in models adjusting for
methanol-associated food items, providing evidence for a
value of urinary methanol as a biomarker beyond FFQ data
(Table S17).

The negative association between urinary methanol and
mortality deserves explanation since methanol is known to be

Table 3 Methanol concentration and correlations with lifestyle factors

SHIP-START-0 (n = 4017) SHIP-TREND-0 (n = 992)

bg (95% CI) p-Value FDR bg (95% CI) p-Value FDR

Basic covariatesa

Sexa — 5.78 × 10−4 2.43 × 10−3 — 0.325 0.568
Agea — 8.03 × 10−4 2.81 × 10−3 — 0.310 0.568
Waist circumferenceb — 1.62 × 10−2 4.25 × 10−2 — 0.020 0.084
eGFRc — 1.39 × 10−2 4.17 × 10−2 — 0.097 0.292
Behaviour covariatesd

Smoking −0.27 (−0.32, −0.22) 8.13 × 10−25 1.71 × 10−23 −0.17 (−0.28, −0.07) 0.002 0.016
Alcohol intake −0.01(−0.02, −0.01) 4.27 × 10−8 2.99 × 10−7 −0.02 (−0.03, −0.01) 0.000 0.004
Physical inactivity −0.095 (−0.05, −0.14) 7.67 × 10−5 4.03 × 10−4 −0.08 (−0.17, 0.02) 0.126 0.331
Years of education 0.03 (0.02, 0.04) 2.57 × 10−10 2.70 × 10−9 0.03 (0.01, 0.04) 0.002 0.016
Physiological parameterse

tg 0.02 (−0.02, 0.07) 0.257 0.360 −0.04 (−0.13, 0.05) 0.401 0.648
log(crp) −0.00 (−0.02, 0.02) 0.882 0.882 0.01 (−0.03, 0.06) 0.637 0.787
log(ggt) −0.01 (−0.04, 0.03) 0.816 0.856 −0.03 (−0.12, 0.06) 0.493 0.701
wbcs −0.01 (−0.02, 0.00) 0.098 0.171 −0.00 (−0.03, 0.03) 0.951 0.951
rbcs 0.072 (0.01, 0.14) 0.030 0.062 0.09 (−0.03, 0.22) 0.150 0.351
hdl 0.01 (−0.05, 0.07) 0.804 0.856 0.01 (−0.15, 0.13) 0.869 0.912
ldl −0.01 (−0.04, 0.01) 0.237 0.356 −0.014 (−0.06, 0.04) 0.590 0.774
HbA1c −0.04 (−0.07, −0.00) 0.025 0.058 −0.11 (−0.19, −0.02) 0.017 0.084
Clinical phenotypese

Diabetes 0.02 (−0.07, 0.11) 0.645 0.797 −0.03 (−0.24, 0.19) 0.817 0.912
Hypertension 0.05 (−0.01, 0.10) 0.079 0.150 0.01 (−0.09, 0.11) 0.829 0.912
MetS 0.04 (−0.02, 0.09) 0.222 0.356 0.08 (−0.05, 0.20) 0.220 0.461
MI 0.01 (−0.05, 0.07) 0.731 0.853 0.04 (−0.08, 0.16) 0.501 0.701
CKD f 0.035 (−0.05, 0.12) 0.414 0.543 0.18 (−0.03, 0.39) 0.090 0.292

Abbreviations: eGFR, estimated glomerular filtration rate; tg, triglyceride; crp; c-reactive protein; ggt, gamma-glutamyl transferase; wbcs, white
blood cells; rbcs, red blood cells; hdl, high density lipoprotein; ldl, low density lipoprotein; HbA1c, glycated haemoglobin; HDL-C, high density
lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; MetS, metabolic syndrome; MI, myocardial infarction; CKD, chronic kidney
disease; SD, standard deviation; and FDR, false discovery rate. a Adjusted for PQN (rcs), pH, and sex–age interaction (rcs). b Adjusted for waist cir-
cumference (rcs), PQN (rcs), pH, and sex–age interaction (rcs). c Adjusted for eGFR (rcs), PQN (rcs), pH, and sex–age interaction (rcs). d Adjusted
for smoking, alcohol–sex interaction, physical inactivity, education, waist circumference (rcs), eGFR (rcs), sex–age interaction (rcs), PQN (rcs), and
pH-value. e Variables considered individually with adjustment for smoking, alcohol–sex interaction, physical inactivity, education, waist circum-
ference (rcs), eGFR (rcs), sex–age interaction (rcs), PQN (rcs), and pH-value. f Adjustment for CKD, smoking, alcohol–sex interaction, physical inac-
tivity, education, waist circumference (rcs), eGFR (rcs), sex–age interaction (rcs), PQN (rcs), and pH-value. g b-Values = per SD.
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toxic at high concentrations. Blood methanol levels above
200 mg L−1 are associated with adverse effects on the central
nervous system, with severe acute toxicity above 500 mg L−1

and fatality at levels exceeding 1500 mg L−1,34 known from
cases of contamination in alcoholic beverages35 or occu-
pational exposure.36 The toxicity of methanol arises from two
primary mechanisms. The first one is related to the direct
depression of the central nervous system, similarly to ethanol
poisoning.37 The second one involves the conversion of metha-
nol to toxic formaldehyde via alcohol dehydrogenase, resulting

in cellular hypoxia and several other metabolic
disturbances.37,38 The metabolisation of methanol predomi-
nantly occurs in the liver (70–97%), while minor amounts are
excreted non-metabolically through urine and lungs.38

Nevertheless, methanol is physiologically present in small
amounts in humans.39 Accordingly, the urinary concentration
observed in this study can be rated as being in the physiologi-
cal range. Interestingly, the toxic methanol catabolite formal-
dehyde has been shown to have positive effects at low doses.
In plants, formaldehyde can influence growth and photosyn-

Fig. 3 (a) Maximum secretion fluxes of methanol under an Average European Diet (AED) and under the AED with gradually increasing diet con-
straints of pectin and xylan. (b) Average maximum individual secretion fluxes of microorganisms summarized at the genus level. (c) Direct, ecological
and total effects of the different strains present in the community models calculated based on the individual secretion fluxes. (d) Scatterplot of
alpha-diversity measured in Shannon entropy and the maximum secretion flux of methanol (correlation r = 0.34, p-value = 2.78 × 10−5).
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thetic pigments, while in animal cells, it can positively impact
cell proliferation and viability.40,41 Given the hermetic
response displayed by the methanol catabolite
formaldehyde40,41 and this study showing a positive link
between methanol and longevity, it can be speculated that low
doses of methanol are act in a hormetic manner.

Besides the bound form of methanol in pectin, free metha-
nol can be found in plant-based foods (e.g. 11–68 mg L−1 in
fresh squeezed fruit juices),42 or as a catabolite of aspartame, a
synthetic non-nutritive sweetener.38 It is also present at low
levels in most alcoholic beverages, without conferring health
risks.43 Importantly, we found a negative association between
urinary methanol concentrations and alcohol intake in the
SHIP cohorts, indicating that low concentrations in non-con-
taminated alcoholic beverages are not a major source of
normal human methanol pools. Our study provides support

for the contribution of free methanol from dietary sources
besides bound methanol from pectin degradation, to human
methanol levels, yet their precise contributions remain
unclear.38,39 Pectin, putatively the primary dietary source of
methanol, has been shown to enhance the diversity and abun-
dance of beneficial microbial communities.44 Its microbial
degradation improves gastrointestinal immune barrier func-
tion through the production of short-chain fatty acids and pro-
motes the adhesion of commensal bacteria while inhibiting
the adhesion of pathogens to epithelial cells.44 This raises the
hypothesis that microbial methanol may help modulate gut
inflammation, though this remains to be shown. Beyond
pectin, methanol as a biomarker for beneficial microbiome–
host–diet interaction may also be a marker for a variety of bio-
active compounds in foods, such as melanoidins, polyun-
saturated fats, inulin, and oligosaccharides, highlighting the

Fig. 4 Association of methanol concentration and mortality rates. Abbreviation: CVD, cardiovascular diseases; SD, standard deviation (a). Methanol
concentration in association with mortality rates in SHIP-START-0. (b). Kaplan–Meier survival probability curves as well as the significant values of a
log-rank test for the mortality of all causes, cardiovascular diseases and cancer using residuals of methanol concentration, adjusted for the probabil-
istic quotient normalisation (PQN).
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need for further study. For instance, fiber intake enhances
SCFA production like butyrate, which may promote methanol
generation via pathways not yet included in AGORA2.

3.7 Strengths and limitations

Regardless of the robust findings across two independent
cohorts and multiple lines of analysis, several limitations have
to be discussed. Utilising NMR allowed us to identify and
quantify methanol, a metabolite previously missed in food-
metabolome analyses. However, the relatively high detection
limit and the targeted nature of the applied NMR methodology
poses a limitation, restricting the scope of metabolome ana-
lysis and thus missing important microbial degradation pro-
ducts such as butyrate. Second, despite the findings related to
a potentially high fibre diet–microbiome–host interaction, the
FFQ utilised in the SHIP cohort is not specifically tailored to
measure fibre intake in a quantitative way. Moreover it does
not differentiate between sources from processed and unpro-
cessed foods, such as fruit juices or soft drinks, which may
contain fibre-like compounds or additives with differing
microbial fermenting and bioactivity, potentially influencing
microbial fibre degradation.45,46 Future studies should explore
the relationship between urinary methanol and dietary fibre in
greater detail. Additionally, the measurement of dietary habits
through the FFQ could be biased by participants’ self-reported
food-intake frequencies, adding unwanted variability and
masking true food–metabolite associations. Given the ordinal
nature of the FFQ, quantitative relations between food frequen-
cies and metabolite could not be established, and as such
further research is necessary to identify the quantitative
relation between fibre intake and urinary methanol. Third, the
validity of our findings may be influenced by unmeasured con-
founding due to the observational design, and the hypothesis
of methanol being a marker for pectin intake requires further
experimental tests. Fourth, normal fluctuations over time in
microbial composition alongside microbial and host meta-
bolic activity causing substantial inter-individual and intra-
individual variability, may modulate methanol excretion and
thereby affect its predictive value.47 Finally, the results may not
generalise to populations with different diet patterns due to
regionally restricted nature of SHIP data, which exclusively
originates from north-eastern Germany and shows very low
ethnic diversity.12 However, the integration of mechanistic
microbiome community modelling provided additional evi-
dence for a microbiome-mediated contribution to human
methanol pools.

4. Conclusion

In conclusion, we have provided consistent evidence that
urinary methanol is a valuable biomarker for protective diet–
microbiome interactions linked to microbial pectin degra-
dation, as demonstrated in two independent population
studies, microbiome modelling of an independent sample

with publicly available metagenomics data, and prospective
survival analysis.
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from 149 healthy adult gut microbiome samples from the
Human Microbiome Project had been mapped to the nomen-
clature of AGORA48 previously.21 The mapped relative abun-
dances are available at https://GitHub.com/SysPsyHertel/
CodeBase. All scripts utilised to generate results for this manu-
script can be found at https://GitHub.com/SysPsyHertel/
CodeBase.

Supplementary information containing detailed tables sup-
porting the analyses presented in this manuscript is available
at DOI: https://doi.org/10.1039/d5fo00761e.
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