Issue 10, 2025

Potential of queen bee larvae as a dietary supplement for obesity management: modulating the gut microbiota and promoting liver lipid metabolism

Abstract

Queen bee larvae (QBL) have been consumed as both a traditional food and medicine in China for thousands of years; however, their specific benefits for human health, particularly their potential anti-obesity property, remain underexplored. This study investigated the anti-obesity effect of QBL freeze-dried powder (QBLF) on high-fat diet (HFD) induced obesity in mice and explored the underlying mechanisms. Our findings showed that QBLF effectively reduced body weight, fasting blood glucose levels, lipid accumulation, and inflammation in HFD mice. 16S rRNA sequencing revealed that QBLF significantly modulated the gut microbiota disrupted by an HFD, notably increasing the relative abundance of beneficial microbes such as Ileibacterium, Clostridium sensu stricto 1, Incertae sedis, Streptococcus, Lactococcus, Clostridia UCG-014, and Lachnospiraceae UCG-006, which were inversely associated with obesity-related phenotypes in the mice. RNA sequencing analysis further demonstrated that QBLF intervention upregulated the expression of genes involved in liver lipid metabolism, including Pck1, Cyp4a10, Cyp4a14, and G6pc, while downregulating genes associated with the inflammatory response, such as Cxcl10, Ccl2, Traf1, Mapk15, Lcn2, and Fosb. These results suggested that QBLF can ameliorate HFD-induced obesity through regulating the gut microbiota, promoting liver lipid metabolism, and reducing inflammatory response.

Graphical abstract: Potential of queen bee larvae as a dietary supplement for obesity management: modulating the gut microbiota and promoting liver lipid metabolism

Supplementary files

Article information

Article type
Paper
Submitted
09 Jan 2025
Accepted
12 Mar 2025
First published
12 Mar 2025

Food Funct., 2025,16, 3848-3861

Potential of queen bee larvae as a dietary supplement for obesity management: modulating the gut microbiota and promoting liver lipid metabolism

Z. Li, Y. Chen, T. Shi, H. Cao, G. Chen and L. Yu, Food Funct., 2025, 16, 3848 DOI: 10.1039/D5FO00166H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements