
Food &
Function

PAPER

Cite this: Food Funct., 2025, 16,
5900

Received 15th November 2024,
Accepted 26th May 2025

DOI: 10.1039/d4fo05637j

rsc.li/food-function

Analysis of human colostrum reveals differential
co-occurrence networks of metabolites,
microbiota and cytokines in maternal obesity†
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Breastmilk is essential for neonatal development, particularly in seeding the gut microbiota and modulat-

ing the immune system. This proof-of-concept study explores the systemic nature of colostrum and the

influence of maternal obesity on co-occurrences of colostrum bioactives. Using 16S-rRNA sequencing,

untargeted metabolomics, and cytokine quantification, we analyzed co-occurring elements in the colos-

trum of mothers with normal weight (18.5 < BMI < 25) or obesity (BMI > 30). We identified 5 different co-

occurrence networks, characterized by positive correlations of taxonomically related bacteria. Our inte-

grative analysis reveals that Aeromonadaceae, Xanthomonadaceae and Staphylococcaceae negatively

correlate with pro-inflammatory cytokines TNF-α, IL-6, and IL-12p70 in the colostrum of mothers with

obesity (WO). Additionally, lipid mediators, including 15-HEDE and LysoPC (16:00), were associated with

cytokines IL-10 and IL-8 and microbiota taxa Burkholderiaceae, Beijerinckiaceae and Planococcaceae –

first reported in the colostrum of mothers WO. Our findings suggest a pervasive regulation of bioactives in

the colostrum of mothers WO. This may have implications for distinctive neonatal intestine development.

Introduction

Breastmilk is a complex and dynamic fluid that supplies
hydration, nutrients, and bioactive molecules essential for the
optimal growth and development of neonates.1 The bioactive
components of breastmilk regulate vital functions, including
passive immunity to pathogens, tolerance to the colonizing
microbiota, and other processes necessary to mature the intes-
tinal system.2,3 Multiple maternal factors have been linked to

alterations in the breastmilk composition including BMI, age,
ethnicity and diet.4–6

Most of the current studies draw direct correlations between
maternal physiological states and alterations in individual milk
components.7 While informative, this approach fails to capture
a more comprehensive breadth of how maternal condition cor-
relates to breastmilk bioactives. This becomes evident when con-
sidering breastmilk as a complex and dynamic ecological
system. As an example, during pregnancy, a clear biological
network emerges within the maternal gut, wherein bacterial fer-
mentation produces short-chain fatty acids (SCFAs), triggering
the proliferation of regulatory T (Treg) cells and modulating the
balance between pro-inflammatory and anti-inflammatory cyto-
kines, thereby promoting an immunotolerant environment that
allows the establishment of commensal bacteria.8

Understanding breastmilk as a biological system and how it is
influenced by maternal health will provide valuable insights
into its potential impacts on neonatal health.9,10

One in three pregnant women worldwide is affected by
obesity. This metabolic disorder has been correlated with sys-
temic alterations, including chronic inflammation. The breast-
milk bioactive components of mothers with obesity are also
altered.5,11,12 For instance, the breastmilk microbiota of
mothers with obesity has increased proportions of
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Staphylococcus and Corynebacterium.13,14 Yet, little is known
about the possible co-dependences of these alterations on
other breastmilk bioactive components. The breastmilk micro-
biota is a living component that produces metabolites and
other molecules while utilizing maternal factors. Therefore, it
is crucial to examine the interactions among soluble bioactives
together with the microbiota composition.15–17 Approaching
breastmilk as an ecosystem, and more importantly, colostrum
– the initial biological message that a lactating mother has for-
mulated for the neonate – will open avenues to explore the
complexity and dynamism of its interacting components.

Using co-occurrence networks to analyze the patterns of
interactions among bioactives represents a promising
approach for exploring the structure of complex biological
systems and their interactions with the host.18 This approach
provides valuable insights into potential interactions that are
difficult to detect by characterizing bioactives independently or
by using general ecological metrics such as alpha/beta diver-
sity.19 Here, we integrate colostrum cytokine concentrations,
microbiota composition and metabolomics in the context of
maternal obesity as an approach for identifying distinctive co-
occurring networks. By exploring these interconnections, we
provide a proof of concept of the systemic nature of colostrum
and begin to dimension the complex biological networks at
play within this microenvironment.

Materials and methods
Experimental model and study participant details

This is an observational study conducted in accordance with the
ethical principles outlined in the Declaration of Helsinki. The
protocol was approved by the IRB at Escuela de Medicina y
Ciencias de la Salud, Tecnologico de Monterrey, with the ID:
P000487; it has been registered at Clinical Trials with the ID:
NCT04812847. Every participant was provided with details regard-
ing the study, and written consent was acquired from each of
them, ensuring the confidentiality of the personal information.

Healthy breastfeeding mothers who had given birth to full-
term infants in the Hospital Regional Materno Infantil de Alta
Especialidad were recruited between November 2020 and July
2022. The inclusion criteria for participants encompassed
mothers between 18 and 35 years, with confirmed residency
within the metropolitan area of Monterrey. The exclusion cri-
teria included a history of antibiotic usage in the 3 months
prior delivery, a prolonged antibiotic exposure exceeding 3
weeks at any stage of pregnancy, antibiotic requirement for
more than 24 hours post-delivery, immunosuppressive, or
immunomodulatory corticosteroid therapy, bariatric surgery,
experienced delayed lactogenesis or issues with milk supply,
pre-term delivery or if required intensive care post-delivery.
Women with pregnancy complications such as gestational dia-
betes mellitus (GDM), hypertensive disorders, thyroid dysfunc-
tion, or history of feeding disorders were also excluded, as well
as cases involving multiple birth or neonates with congenital
anomalies.

Pre-pregnancy BMI was determined by the clinician and
reported in the corresponding clinical records. Participants
were divided into two groups according to the World Health
Organization (WHO) classification of the body mass index
(BMI):20 women with obesity (“WO”; BMI ≥ 30 kg m−2; n = 28)
and mothers with normal weight (“NW”; BMI ≤ 25 kg m−2; n =
20).

Sample collection and processing

Colostrum samples were collected within the first 48 hours
post-partum from a total of 48 mothers by a trained medical
team, utilizing sterile gloves for the process. Following a gentle
cleansing of the areola with sterile water, when possible, 3 mL
of colostrum was obtained by manual expression into a sterile
15 mL polypropylene tube. To ensure the purity of the sample,
the initial drops were discarded. After collection, the samples
were promptly transported to the laboratory and stored at
−20 °C until subsequent processing.

Cytokine measurement

Due to limited sample volume availability, cytokine quantifi-
cation was performed in a subset of 47 colostrum samples
(NW = 20 and WO = 27). Samples were centrifuged (3000g,
15 minutes) to remove any cellular structure. Cytokines were
quantified in the supernatant using a LEGENDplex® kit
(inflammation cytokine markers thirteen, Bio Legend Cat
#740 808) which includes IL-1β, TNFα, IL-6, IL-8, IL-10 and
IL-12p70, according to the manufacturer’s instructions with
some modifications. Briefly, standard curves with known con-
centrations of each cytokine were generated through double
serial dilutions, resulting in an eight-point curve performed in
duplicate. Five microliters of the supernatant were combined
with a fluorescent bead’s reagent at a 1 : 1 volume ratio and
incubated for two hours at room temperature. Following incu-
bation, the beads were washed by resuspending them in wash
buffer and then centrifuged (250g, 5 minutes). The super-
natant was carefully discarded, and a mix of secondary anti-
bodies was added and incubated for one hour. Subsequently,
streptavidin–phycoerythrin (SA–PE) conjugates were intro-
duced into the same reaction and incubated for 30 minutes at
room temperature. After an additional washing step, the
samples were analysed using a BD® FACSCelesta flow cyt-
ometer fitted with 405 nm, 488 nm, and 633 nm lasers and
operated through BD® FACSDiva software v.8. The detection
limits for cytokines were IL-1β, 1.5 ± 0.6 pg mL−1; TNF-α, 0.9 ±
0.8 pg mL−1; IL-6, 1.5 ± 0.7 pg mL−1; IL-8, 2.0 ± 0.5 pg mL−1;
IL-10, 2.0 ± 0.5 pg mL−1; IL-12p70, 2.0 ± 0.2 pg mL−1. Data ana-
lysis was performed using BD software, which is accessible
online at the website of LEGENDplex™ cloud-based data ana-
lysis software (https://legendplex.qognit.com).

Genomic DNA extraction and 16S sequencing

Genomic DNA extraction from 48 colostrum samples (NW = 20
and WO = 28) was performed following an optimized phenol–
chloroform protocol, as previously described.13 Briefly, 1 mL of
colostrum was utilized for DNA extraction whenever feasible.
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The procedure involved the removal of the fat layer using a
sterile hyssop and pelleting bacterial cells with a high-speed
centrifugation followed by a sterile PBS wash. The resulting
pellet was then treated with a lysis buffer and mechanically
lysed using a FastPrep system (MP Biomedicals, Santa Ana,
CA). Enzymatic lysis with proteinase K, lysozyme, and RNAse
was subsequently performed. DNA extraction was carried out
using a phenol : chloroform : isoamyl-alcohol (25 : 24 : 1)
mixture, followed by precipitation of DNA with isopropanol.
The DNA pellet was washed with 70% ethanol and resus-
pended in nuclease-free water. As controls, an in-house mock
community with two bacterial isolates (Escherichia coli and
Pseudomonas putida in a 1 : 1 ratio) and a DNA extraction of
sterile PBS were included as positive and negative controls,
respectively. DNA integrity was assessed by agarose gel electro-
phoresis, and concentration was determined using a
NanoDrop ND-1000 UV spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Unless stated otherwise, all
reagents were obtained from Sigma-Aldrich.

For sequencing, the prepared DNA samples were subjected
to a Zymo Research’s Quick-16S kit, utilizing phased primers
341F (5′-CCTACGGGDGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) targeting the V3–V4 regions
of the 16S rDNA. The sequencing was performed on a V3
MiSeq 622cyc flowcell, generating 2 × 301 bp paired-end reads.

Colostrum taxonomic and differential profiles

The sequencing reads were imported into QIIME2 v.2022.8
and demultiplexed for subsequent analysis.21 DADA2 plugin
was used for denoising and quality control with optimized
parameters to remove low quality regions of the sequences (--p-
trim-left-f 12 --p-trim-left-r 16 --p-trunc-len-f 285 --p-trunc-len-r
250).22 Taxonomic species profiling was accomplished by
aligning amplicon sequence variants (ASVs) against the Silva
138.1 database with 99% of identity threshold,23 using the q2-
feature-classifier classify-sklearn naive Bayes taxonomy classi-
fier.24 To ensure data quality, potential contaminants identi-
fied through batch effect analysis or the positive control
(archaea, mitochondria/chloroplast, Cyanobacteria,
Streptomyces, Stenotrophomonas, and Pseudomonas) were
removed.25 Additionally, rare taxa were identified as ASVs with
a total read count of ≤18 in at least three samples and sub-
sequently excluded from the analysis.26

Rarefaction curves were generated to assess the sequencing
depth and ensure adequate coverage of microbial diversity in
colostrum. The rarefaction was conducted at a depth of 7712
sequences. Diversity analyses were performed in R using vegan
v2.6-427 and phyloseq v1.44.0 libraries.28 Alpha diversity analyses
included the calculation of the Shannon diversity index,
observed ASVs, evenness, and phylogenetic distance.
Comparisons between groups were conducted using the Mann–
Whitney’s U test. Beta diversity was assessed through ANOSIM
(performed with 999 permutations) using the UniFrac and
robust Aitchison distance matrices. A Principal Coordinate
Analysis (PCoA) and a Robust Principal Component Analysis
(RPCA) were created and visualized using EMPEROR.29

Differential abundance analysis at the taxonomic family level
was conducted using DESeq2 v1.40.2 with batch correction
applied30 and ANCOMBC v2.6.0.31 Only those families that were
significantly different in both tools were graphed.

Colostrum metabolite extraction

Due to limited sample volume availability, 25 colostrum
samples (NW = 5 and WO = 20) were used to extract metab-
olites. 100 µL of colostrum was combined with 600 µL of aceto-
nitrile (ACN). The mixture was vortexed for 1 minute and sub-
jected to 30 minutes of sonication in ice-cold water to enhance
the extraction of metabolites. Subsequently, the samples were
centrifuged using optimized centrifuge parameters (20 817g,
4 °C for 10 minutes). From the resulting supernatant, 400 µL
were carefully collected for vacuum evaporation of ACN. The
dried metabolome was then resuspended in 100 µL of an injec-
tion solution composed of a water : acetonitrile mixture in an
80 : 20 ratio containing 0.1% formic acid (v/v). To ensure
effective resuspension, the samples were vortexed for 1 minute
and sonicated in ice-cold water for 30 minutes. To obtain a
particle-free solution suitable for injection, the resuspended
samples underwent centrifugation at the optimized para-
meters before being transferred to the injection vials. Quality
control (QC) samples were generated by pooling all resus-
pended samples in equal volumes.

LC-MS2 data acquisition

We employed the instrumentation and followed the equip-
ment’s parameters previously described,32 with minor modifi-
cations. Four μL of resuspended metabolomes were injected
into an LC Agilent 1260 system (Agilent Technologies, Inc.,
Santa Clara, CA, USA). The separation of metabolites was done
using a ProtID-Chip-43 II column (C18, 43 mm, 300 Å, 5 μm
particle size, equipped with a 40 nL enrichment column).
Mobile phase consisted of water with 0.1% formic acid (solu-
tion A) and acetonitrile (ACN) with 0.1% formic acid (solution
B). The chromatographic method separation started with a
mobile phase composition of 5% B, which was then linearly
increased to 40% B over 20 minutes. Subsequently, the gradi-
ent was elevated to 100% B within 5 minutes and maintained
at this composition for an additional 5 minutes. Next, the
system was returned to its initial condition of 5% B within
1 minute and held for 9 minutes to ensure complete column re-
equilibration before the next sample analysis. The total process
time was 40 min, utilizing a flow rate of 300 nL min−1. To miti-
gate potential carryover effects, two blank samples of 6 μL each
– one comprising the injection solution and the other compris-
ing ACN – were run between every sample injection. The separ-
ated metabolites were then introduced into an Agilent 6530A
Q-TOF mass spectrometer (Agilent Technologies, Inc., Santa
Clara, CA, USA) through a Chip Cube–LC interface using nanos-
pray ionization in positive mode. Data-dependent acquisition
was used. For MS1, mass range was 110–2000 m/z with 4 spectra
per s velocity. The top 5 most intense precursor ions per cycle
reaching 150 cps were selected for fragmentation (MS2 acqui-
sition) in a mass range of 50–2000 m/z, at 3 spectra per s rate.
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The active exclusion option was on, set to 2 spectra, and
released after 0.25 min. Ramped collision energy was used with
a slope of 6 and an offset of 4. Calibration was done before
sample acquisition and every 24 hours with an ESI-L low mix
concentration tuning mix solution (Agilent Technologies, Inc.,
Santa Clara, CA, USA) to ensure a mass accuracy <5 ppm for
MS1 and MS2 data. The samples were randomly allocated in the
autosampler for data acquisition.

LC-MS2 data processing

Processing of LC-MS2 datasets was performed to reach two
main goals: feature or peak (signals with m/z and retention
time) extraction (peak-picking) and metabolite annotation at
the structure (metabolomics standard initiative (MSI) levels 2
and 3), substructure, and chemical class (MSI, level 3) levels.33

Raw datasets were transformed from commercial .d format to
open source .mzXML format using an MSconvert tool within
ProteoWizard v3.34 Transformed datasets were processed in
MZmine v2.53 for peak-picking using the parameters
described in Table S1.†35 For feature annotation by spectral
matching (MSI, level 2), open-source raw and processed data
were uploaded and analyzed in the Global Natural Products
Social Molecular Networking (GNPS) platform36 for classical
molecular networking37 and feature-based molecular network-
ing (FBMN),38 respectively. To expand the annotations not
achieved by spectral matching, we employed MolDiscovery39

and Dereplicator+40 within the GNPS environment.
Additionally, we employed SIRIUS v5.8.141 for database-inde-
pendent chemical formula annotation and correction by
ZODIAC,42 in-silico structural metabolite annotation by CSI:
FingerID,43 and chemical class assignment by CANOPUS algor-
ithm (MSI, level 3). The chemical landscape representation
was created using the molecular network provided by the
FBMN analysis in GNPS, enriched with the chemical super-
class annotations of CANOPUS. Substructure (motifs; MSI,
level 3) annotation was done using the MS2LDA webpage.44

Molecular structure assignments were filtered by a mass error
less than 10 ppm to keep annotations with high-mass accu-
racy. Additionally, peaks and annotations derived from blank
samples were filtered out from the analysis.

Quantification and statistical analysis

Unless other specified, all statistical analyses were performed
and plotted using GraphPad Prism version 8.0.1, GraphPad
Software, San Diego, California, USA (https://www.graphpad.
com). The clinical data (maternal age, gestation weeks, delivery
mode and neonatal sex) were compared between groups using
independent-sample median test or Fisher’s exact test to evalu-
ate their influence as confounding factors. The Kruskal–Wallis
test and GLM were used to assess the influence of maternal and
neonatal demographic and clinical data on the microbiota com-
position, metabolomic profile, and cytokine quantification.
Mann–Whitney’s U test was used for evaluating the difference in
cytokine concentrations between the NW and WO groups. A
p-value ≤ 0.05 was considered statistically significant.

For metabolomic data analysis, feature abundance normali-
zation was conducted using the quantile method, and sub-
sequent differential abundance analysis was carried out within
the NormalyzerDE online platform.45 Metabolites exhibiting a
log 2-fold change (Log 2FC) of ±0.58 and a p-value <0.05 (calcu-
lated with the limma package46) were considered differentially
abundant between WO and NW groups. Volcano plots were
created to facilitate data visualization using EnhancedVolcano
R package v1.16.0.47 To assess differences among groups at the
chemical class level, the summed abundance (area under the
curve) of all the quantified features belonging to each respect-
ive class was calculated, followed by a two-group comparison
using the Wilcoxon test, assuming unequal variance,
implemented with the wilcox.test() function in R. For compar-
ing colostrum chemical diversity between groups, the Shannon
and Simpson indexes were calculated as community ecology
metrics48 using the vegan package v2.6-4. Statistical signifi-
cance was determined through a two-group comparison using
the Wilcoxon test, as described above.

Bacterial interactive network was constructed by linking
taxonomic families that exhibited a Spearman rank correlation
exceeding an absolute value of 0.5 and a p-value < 0.05.
Network analysis was performed using MicrobiomeAnalyst.49

Correlations between clinical data, cytokine concentrations,
bacterial families, and metabolite abundances were calculated
with Spearman’s correlation (ρ) using R. Only correlations with
a p < 0.10 were kept for visualization in the heatmaps.

Results
Demographic and clinical characteristics of the study cohort

This study cohort consisted of 48 women between 18 and 35
years old. As per the study design, the body mass index (BMI)
was significantly higher in the group “with obesity” (WO) com-
pared to the “Normal Weight” (NW) group (medians: 22.45 vs.
32.05, in the NW and WO groups, respectively, p < 0.0001,
Table 1). There was no difference in maternal age, duration of
gestation, delivery mode or biological sex of the offspring.

There were no evident alterations in colostrum pro-
inflammatory cytokines in maternal obesity

We quantified colostrum cytokines relevant in inflammatory
processes. All cytokines were detected in all samples. However,
no significant differences were observed between the groups
and correlations with the maternal BMI (Table 1). Although we
explored the relationships between the maternal clinical
characteristics (maternal age, gestational age, and way of deliv-
ery) and colostrum cytokine concentrations, no clear corre-
lation patterns were observed across the groups.

Changes in the microbial composition in the colostrum of
mothers with obesity

We analysed the colostrum microbial community using 16S
ribosomal RNA amplicon sequencing. We obtained
2 280 755 high-quality reads, corresponding to 45 615 reads

Food & Function Paper

This journal is © The Royal Society of Chemistry 2025 Food Funct., 2025, 16, 5900–5916 | 5903

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/4
/2

02
6 

6:
00

:3
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

https://www.graphpad.com
https://www.graphpad.com
https://www.graphpad.com
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fo05637j


per sample. We identified 1255 amplicon sequence variants
(ASVs) annotated within 4 major phyla: Firmicutes (66.5%,
NW; 77.5%, WO), Proteobacteria (21.9%, NW; 12.3%, WO),
Actinobacteriota (4.5%, NW; 4.8%, WO), and Bacteroidota
(2.3%, NW; 1.6%, WO) (Fig. 1A). Overall, the taxonomic

families Staphylococcaceae (37.8%, rank 0.17%–97.8%) and
Streptococcaceae (28.8%, rank 0.02%–92.7%) exhibited the
highest relative abundance. Lower abundances were observed
for Gemellaceae (3.7%), Burkholderiaceae (2.2%),
Enterobacteriaceae (2%), and Sphingomonadaceae (1.3%) taxo-

Table 1 Study population characteristics, colostrum cytokine concentrations, and metabolite data, grouped in accordance with maternal weight
classification

Variables Mothers with normal weight (NW) Mothers with obesity (WO) P-Value

Number of participants 20 28
Maternal age (years)a 23.5 (23.0 to 28.8) 26.0 (21.0 to 29.0) 0.60
BMIa 22.5 (22.0 to 23.7) 32.1 (31.0 to 36.8) <0.0001
Gestational age (weeks)a 39.0 (38.0 to 39.0) 38.4 (38.0 to 40.0) 0.28
Way of deliveryb 0.16
Vaginal 18 (90) 20 (71.4)
Caesarean 2 (10) 8 (28.6)

Neonatal characteristics
Sex assigned at birthb 0.14
Female 12 (60) 10 (35.7)
Male 8 (40) 18 (64.3)

Cytokinesc

IL-12p70 0.76 (0.01 to 1.77) 1.15 (0.10 to 2.33) 0.30
IL-10 4.33 (1.91 to 9.49) 2.72 (1.23 to 5.75) 0.34
IL-1β 16.53 (3.86 to 76.56) 8.16 (2.96 to 31.34) 0.31
TNF-α 7.66 (3.43 to 28.22) 11.49 (4.62 to 18.50) 0.94
IL-6 46.54 (26.64 to 236.9) 53.05 (26.74 to 85.60) 0.40
IL-8 12 498 (3221 to 31 737) 22 294 (10 881 to 36 852) 0.19

Metabolitesd

(12Z)-9,10-Dihydroxyoctadec-12-enoic acid 2706 (2011 to 4156) 2406 (1576 to 15 898) 0.72
12(13)Ep-9-KODE 3164 (2746 to 20 827) 3091 (2046 to 14 327) 0.41
15-HEDE 1070 (741 to 3694) 244.5 (141.60 to 749.90) 0.02
1-O-Elenoloyl-2-O-(9Z-octadecenoyl) glycerol 4432 (2313 to 10 431) 9572 (5217 to 16 373) 0.11
3-Acetyl kabiramide D 180.2 (30.04 to 2515) 210.9 (11.00 to 1650) 0.77
4-Hydroxynonenal 2290 (974.70 to 4708) 1361 (912.60 to 3593) 0.67
7,26-Epoxy-2,7-dihydro-cycloirid-16-enal 192.10 (88.44 to 1046) 366.70 (316.80 to 1169) 0.37
8-Hydroxy-9,10-epoxystearic acid 8762 (7063 to 11 353) 6994 (5829 to 24 920) 0.49
8S-Hydroxy-9E,11Z,14Z-eicosatrienoic acid 8441 (1712 to 27 819) 1937 (998.60 to 5005) 0.15
9(S)-HOTrE 3370 (1432 to 5267) 2938 (2053 to 3423) 0.92
Aminopentol 11 710 (7385 to 26 755) 29 520 (12 087 to 45 859) 0.13
Carveol 12 052 (6423 to 19 590) 7979 (4180 to 12 588) 0.37
Conodutarine A 19′-ketone 81.16 (2.79 to 8660) 451.70 (28.10 to 2134) 0.87
Decanoylcarnitine 2622 (2023 to 11 551) 1563 (639.30 to 2862) 0.04
M531 1483 (977 to 2144) 2771 (1946 to 8447) 0.02
Ervahainamidine B 3150 (27.33 to 6736) 1138 (47 to 4016) 0.76
Isomotuporin D 102.10 (11.63 to 1986) 295.70 (25.36 to 967.90) 0.87
Kaimonolide A 1683 (1100 to 1786) 2625 (1532 to 6364) 0.15
LysoPC(16:0) 668 (362.50 to 1594) 671.90 (547.30 to 1152) 0.72
Linoleic acid 23 852 (1272 to 41 630) 4997 (1412 to 63 942) 0.92
Linolenic acid 4284 (1943 to 33 102) 2387 (1329 to 9357) 0.30
Monoelaidin 1041 (214.50 to 23 263) 896.80 (319.4 to 5932) 0.72
1-Monolinolenoyl-rac-glycerol 5879 (3722 to 10 378) 6145 (2921 to 21 338) 0.87
Myxochromide S3 3208 (2865 to 37 604) 3883 (2274 to 9778) 0.53
PA (18:4(6Z,9Z,12Z,15Z)/22:2(13Z,16Z)) 499.20 (294.90 to 873.60) 819.70 (528.80 to 1420) 0.19
Palmitic acid 1839 (1548 to 3776) 1462 (963 to 2440) 0.22
Pargamicin B 400 (218.70 to 7937) 406.20 (71.86 to 1409) 0.41
PC (18:1(9Z)/16:0) 1040 (93.18 to 10 347) 530 (125 to 2864) 0.57
PE (18:4(6Z,9Z,12Z,15Z)/20:1(11Z)) 1183 (769.40 to 1521) 1839 (1001 to 4197) 0.27
PE (18:4(6Z,9Z,12Z,15Z)/P-18:1(11Z)) 1736 (1250 to 2028) 2559 (1583 to 6457) 0.11
Progesterone 10 698 (3653 to 11 922) 7071 (3148 to 19 685) 0.77
Sphingosine 1547 (942.10 to 2905) 2675 (1420 to 3388) 0.37
TG (16:0/18:1(9Z)/20:4(5Z,8Z,11Z,14Z)) 1603 (625.50 to 13 417) 3493 (667 to 10 753) 0.92
TG (16:1(9Z)/18:2(9Z,12Z)/18:3(6Z,9Z,12Z)) 393.30 (176.8 to 6832) 533.60 (186.70 to 2450) 0.92
Vitamin E 559.80 (160.60 to 690.60) 271.80 (105.50 to 1005) 0.67

BMI = body mass index [kg m−2]. a Values expressed as median (interquartile range); statistical analysis by an independent-samples Mann–
Whitney U test. b Values expressed as frequency (intra-group percentage); statistical analysis by Fisher’s exact test. c Cytokine concentrations are
reported as median [pg ml−1] (interquartile range); statistical analysis by the Mann–Whitney U test. NW = 20 and WO = 27. dMetabolite abun-
dances are reported as median (interquartile range); statistical analysis by the Mann–Whitney U test. NW = 5 and WO = 20.
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nomic families. Additional families (102), including
Bacillaceae, Lactobacillaceae and Bifidobacteriaceae, contributed
to <1% of the total relative abundance (Fig. 1B and raw data).
There was no difference between the groups looking at the
main ecological diversity indices (Fig. S1†). The Firmicutes to
Bacteroidota (F/B) ratio and the Firmicutes to Proteobacteria
(F/P) ratio were higher in samples from women with obesity,
although these differences were not statistically significant
(mean ratio: 28.7 vs. 47.7, p = 0.30, and 3.0 vs. 6.3, p = 0.14,
respectively). In contrast, the Proteobacteria to Bacteroidota
(P/B) ratio was significantly decreased in WO (9.4 vs. 7.6, p =
0.046), which agrees with a relative reduction in the abun-
dance of the Proteobacteria phylum, although not significant
(21.9% ± 23.5% vs. 12.3% ± 17.2%, p = 0.14; Fig. S2†).

To our knowledge, this is the first report identifying an
increase abundance of the Chitinophagaceae family in the
colostrum of women with obesity, with a 0.78 Log2FC relative
to samples from the NW group (Fig. 1C). In contrast, 7 taxo-
nomic families were less abundant, including Brevibacteraceae
(Log 2FC: −0.96), Burkholderiaceae (Log 2FC: −1.04),
Lactobacillaceae (Log 2FC: −1.10), Comamonadaceae (Log 2FC:

−1.16), Rhodospirillales (Log 2FC: −1.40), Bacillaceae (Log 2FC:
−1.60), and Planococcaceae (Log 2FC: −1.62).

Maternal obesity correlates with changes in the colostrum
metabolite environment

We used untargeted metabolomics to explore discrepancies in
the colostrum of women with obesity compared to normal
weight subjects. Our pipeline led to the quantification of 2808
features across the samples. We annotated 1027 MS2-contain-
ing features across 12 superclasses, leaving 473 features unas-
signed (Fig. 2A and Table S2†). Metabolite diversity at the class
level was assessed using the Shannon and Simpson indexes,
revealing a reduction in the colostrum samples from the WO
group compared to the NW group (p = 0.05; Fig. S3†).
Subsequently, we observed 73 features with decreased abun-
dance and 49 features with increased abundance in the WO
group (log 2FC ± 0.58, limma test, p < 0.05; Fig. 2B). Decreased
features were mostly linked to carboxylic acids, fatty acyls and
prenol lipids, whereas the distribution of the increased fea-
tures was primarily carboxylic acids, organooxygen com-
pounds, azoles, and organic phosphines (Fig. 2C). To gain

Fig. 1 Composition of the microbiota of colostrum collected from women with and without obesity. (A) Relative abundance of the most abundant
taxa at phylum and (B) family levels. “Other” classification represents bacterial families with less than 1% of the total relative abundance. (C)
Differential abundance analysis performed at the taxonomic family level using ANCOMBC. The graph provides information on the phylum, family,
and corresponding log 2 fold change values (p < 0.05), which indicate the magnitude and direction of the differential abundance. NW, normal
weight group (n = 20); WO, with obesity group (n = 28); *p < 0.10.
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Fig. 2 Metabolite environment in the colostrum of women with obesity (WO). (A) Molecular network of the identified MS2-containing features in
colostrum samples. Each node represents a feature, and the color denotes its assigned chemical superclass. Node size highlights the m/z value. Edge
thickness indicates the MS2 similarity (cosine score) among the features and (B) volcano plot of all quantified features highlighting the differentially
abundant features between the WO and NW groups. Brown dots represent significantly increased or decreased features in the WO group (log 2FC ±
0.58, limma p < 0.05), while gray dots indicate features without significant differences; (C) pie charts of the chemical class distribution of the differen-
tially increased (n = 49) or decreased (n = 73) features in the colostrum samples from the WO group. “Other” classification corresponds to classes that
only contained one feature; (D) LOESS curves of each feature significantly associated with maternal BMI classified by their Spearman’s correlation value
(ρ). Curves are color-coded based on the feature chemical class assigned as described in the color key. Only features with a correlation value higher
than absolute 0.45 were plotted; (E) boxplots of the relative abundance of the dysregulated (limma test, p < 0.05) lipid related identified metabolites,
15-HEDE and decanoylcarnitine; NW, normal weight group (n = 5); WO, with obesity group (n = 20). See also Tables S2 and S3.†
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insights into the metabolic markers of obesity, we performed
correlation analyses between metabolites (identified at the
chemical class level) and maternal BMI levels. We identified
57 features distributed across 11 chemical classes that were
significantly associated with the maternal BMI (Fig. 2D and
Table S3†), mainly comprising carboxylic acids and derivatives
(n = 31), followed by fatty acyls (n = 7), and organooxygen com-
pounds (n = 6). Through high-confidence putative structural
annotation (mass error ≤ 10 ppm) and differential abundance
analysis (limma test), we found that decanoylcarnitine (along-
side an unidentified carnitine, as revealed through MS2LDA
analysis) and 15-HEDE (fatty acyl) presented reduced abun-
dance in the colostrum of the WO group compared to the NW
group (Fig. 2E and Table 1). This is the first time that 15-HEDE
is detected in differential abundance in the colostrum of
mothers with obesity.

Bacterial co-occurrence network in the colostrum microbiota

Expanding upon the abundance analysis of individual
elements, we used co-occurrence networks to define distinctive
bacterial interaction modules within the samples. This
approach provides a comprehensive view of the coexistence of
bacterial taxa and their potential influence with each other.
Using Spearman’s rank coefficients, we defined five distinct
modules of taxonomic families according to their degree of
interaction. A positive correlation in this context denotes a
potential coordinated and mutualistic interaction, either
through direct or indirect mechanisms, which implies that the
presence of specific taxa positively influences the presence of
others within the microbial community. Conversely, a negative
correlation indicates a direct or indirect antagonistic inter-
action, wherein the coexistence of certain taxa is perturbed by
the presence of others (Fig. 3 and raw data).

In the first module, composed of Firmicutes members,
Streptococcaceae appears as a central taxon, negatively corre-
lated to Staphylococcaceae and positively correlated to
Gemellaceae. These associations suggest potential competition
between dominant breastmilk bacterial families and high-
lights the role of Streptococcaceae in the microbial structure.
The second module includes mostly members of
Proteobacteria, including Yersiniaceae, Erwiniaceae,
Shewanellaceae, Reyranellaceae and Rhodanobacteraceae. Strong
positive correlations were observed between Candidatus
Kaiserbacteria and both Reyranellaceae (ρ = 0.81) and
Rhodanobacteraceae (ρ = 0.83), suggesting cooperation or
shared environmental preferences. Notably, their similar
median relative abundance in both groups indicate that the
interactions are potentially resilient to the maternal BMI. In
the third module, we observed moderate positive correlations
(ρ ≈ 0.51–0.53) among Saccharimonadales, Fusobacteriaceae,
Neisseriaceae and Carnobacteriaceae. Neisseriaceae and
Carnobacteriaceae showed higher median relative abundance
in the colostrum of the NW group, indicating potential
obesity-mediated disruptions on the mutualistic interactions
of this module. The fourth module presented positive corre-
lations between Prevotellaceae, Campylobacteraceae,

Veillonellaceae and Peptostreptococcaceae. Veillonellaceae was
the most interconnected family within this module, suggesting
a key structural role in the bacterial network. Conversely,
Prevotellaceae showed a decreased median relative abundance
in the WO group, which may imply shifts in the dynamics of
the colostrum microbiota. The fifth module was the largest
and most diverse, comprising 19 taxonomic families with posi-
tive correlations. Potential key taxa in the network included
Alcaligenaceae and was identified as a potential key player, par-
ticipating in 7 interactions, followed by Caulobacteraceae and
Nocardiopsaceae, each involved in 6 interactions. We identified
families with reductions in relative abundance in the colos-
trum of women with obesity, including Comamonadaceae,
Burkholderiaceae, Xanthobacteraceae, Beijerinckiaceae,
Sphingomonadaceae, Caulobacteraceae, Bifidobacteriaceae,
Nocardiaceae, Deinococcaceae, and Moraxellaceae, which
suggest that maternal obesity may compromise a core mutua-
listic module essential to colostrum’s ecological and func-
tional integrity. Further investigation is required to unravel the
complex network of interactions that may hold biological sig-
nificance in the context of maternal obesity.

Lipid mediators are correlated with pro-inflammatory
cytokines and Proteobacteria members in the colostrum

We performed a co-occurrence analysis to explore potential
interactions between putatively annotated metabolites and
cytokines in the colostrum (Fig. 4A and B). We found that
15-HEDE negatively correlated with IL-12p70 and IL-10,
suggesting a potential role of this regulatory lipid in inflam-
mation. Lysophosphatidylcholine (16:00; LysoPC [16:00]), on
the other hand, correlated positively with IL-1 and IL-8,
suggesting a role in pro-inflammatory signalling pathways
(Fig. 4B and Table S4†).

In addition, we analysed the interrelationship between
metabolites and bacterial groups. For instance, the regulatory
lipid 15-HEDE, found to be decreased in the colostrum of
women with obesity, exhibited positive correlations with taxo-
nomic families such as Beijerinckiaceae, Burkholderiaceae, and
Erwiniaceae, which were also less abundant in the colostrum
of women with obesity (Fig. 1C and Fig. 4C). Moreover, despite
the absence of a significant difference between the study
groups, 12(13) Ep-9-KODE showed a positive correlation with
Micrococcaceae, Aeromonadaceae, and Beijerinckiaceae. On the
other hand, LysoPC (16:00) showed negative correlations with
Xanthobacteraceae, Reyranellaceae, Xanthomonadaceae,
Caulobacteraceae, Cellulomonadaceae, Pasteurellaceae,
Rhodospirillales, Streptococcaceae, Weeksellaceae and
Bacteroidaceae, but exhibited positive correlations with
Planococcaceae, Alphaproteobacteria and Burkholderiaceae.

We also identified that the steroid hormone progesterone
displayed negative correlations with Caulobacteraceae,
Comamonadaceae, Devosiaceae, Nocardioidaceae and
Staphylococcaceae, which may imply instances where negatively
affects abundance of the bacterial community. Furthermore,
fat-soluble vitamin E was negatively correlated with
Comamonadaceae, Neisseriaceae, Fusobacteriaceae,
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Staphylococcaceae, Erwiniaceae and Carnobacteriaceae (Fig. 4C
and Table S4†). Further research into the specific metabolic
pathways and ecological roles associated with these metab-
olites could support their significance in the colostrum system
and their implications in obesity.

Pro-inflammatory cytokines are negatively correlated to
Proteobacteria members in the colostrum of mothers with
obesity.

We also delve into the interplay between microbial commu-
nities and immune-modulating factors (Table S5†). In samples
obtained from normal weight participants, members of the
Proteobacteria phylum such as Enterobacteriaceae and
Burkholderiaceae displayed negative correlations with IL-10,
while Prevotellaceae showed a positive correlation with this
anti-inflammatory cytokine. Other members of the
Proteobacteria phylum, including Neisseriaceae and

Fig. 3 Colostrum bacterial co-occurrence network. Visualization of the interactions between taxonomic families’ abundances within the normal
weight (blue; n = 20) and with obesity (brown; n = 28) groups. Five distinct modules, each comprising at least 3 members, were obtained based on
Spearman’s rank correlation of coexistence. Each node is represented by a pie chart displaying the median relative abundance of a taxonomic family
within each group. Edges connect two families if their Spearman’s rank correlation exceeds an absolute value of ρ = 0.5 with a p-value < 0.05. The
edges are annotated with Spearman’s correlation values. Positive correlations between differentially abundant taxonomic families are represented by
red edges, while negative correlations are indicated by blue edges as described in the color key.
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Pasteurellaceae, exhibited positive correlations with IL-6, TNF-
α, IL-1β, and IL-8, suggesting a potential pro-inflammatory
modulation (Fig. 4D). Meanwhile Veillonellaceae,
Prevotellaceae, and Gemellaceae presented a positive correlation
with IL-1β, and Dermabacteraceae and Brevibacteraceae were

positively correlated with IL-12p70. Additionally,
Porphyromonadaceae was positively correlated with IL-6.

In contrast, samples from women with obesity showed
negative correlations between the taxonomic families
Aeromonadaceae, Xanthomonadaceae, and Staphylococcaceae,

Fig. 4 Correlation analysis between colostrum bioactive elements. (A) Scheme of the different correlations performed between the bioactive
elements. (B) Heatmap of Spearman’s correlation between metabolites and cytokines in colostrum; (C) Heatmap of Spearman’s correlation analysis
of taxonomic families and metabolites in colostrum; (D and E) Heatmap of Spearman’s correlation analysis of taxonomic families and cytokines in
the colostrum of women with (D) normal weight and (E) obesity. Red represents a positive correlation, white represents a low correlation, and blue
represents a negative correlation, as shown in the color key. *p-value < 0.05; #p-value < 0.10. See also Tables S4 and S5.†
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and the immune-modulating factors IL-6, TNF-α, and
IL-12p70. Devosiaceae, Mycobacteriaceae, and Nocardioidaceae
were negatively correlated with IL-8, while Corynebacteriaceae,
Staphylococcaceae, Leptotrichiaceae and Tannerellaceae showed
positive correlations (Fig. 4E). Notably, Peptostreptococcaceae
exhibited a positive correlation with IL-8 across the entire
cohort independently of the study group.

Discussion

Colostrum is a complex and dynamic fluid that seeds neonatal
intestines within the initial hours of life. The impact of colos-
trum depends on the composition and interactions among its
bioactive components.10,14 Integrative research initiatives,
such as the BEGIN project, are exploring breastmilk as a bio-
logical system, emphasizing the interactions and coordinated
functionality between its bioactive components.10,50 In this
study, we profiled the colostrum microbiota, cytokines, and
metabolites and established networks of co-occurring
elements to provide insights into the effect of maternal obesity
on interacting bioactive components.

Despite extensive research on the associations between
breastmilk components and maternal obesity, the findings
remain heterogeneous.4,11,13,51–53 We identified subtle differ-
ences while analysing individual bioactive components, i.e.
cytokines, microbiota, and metabolites. While variability can
be attributed to technical and methodological factors,54–56

studying colostrum as a dynamic biological system with inter-
connected components could provide valuable insights into
the relationships within microbial communities and their
interactions with bioactive molecules.

In our study, we identified a negative correlation between
Staphylococcaceae and Streptococcaceae, indicating a potential
competitive relationship. This association could be influenced
by ecological factors within the mammary gland microenvi-
ronment, such as niche competition, resource availability, or
immune responses, which could benefit the dominance of one
bacterial group over the other.57,58 Moreover, co-occurrence
network analysis revealed bacterial relationships among
Proteobacteria members exhibiting reduced relative abun-
dance in the colostrum of women with obesity. Within the
same co-occurrence module, these taxa demonstrated positive
correlations, indicating mutualistic interactions and func-
tional similarities.57

The observed variations in the colostrum microbiota of the
WO group may impact the microbiota development of neo-
nates. Offspring born to mothers with obesity presented a
decrease in the abundance of Gammaproteobacteria two weeks
after birth.59 This is critical for the establishment of a healthy
gut microbiome functioning, since Proteobacteria members
are the primary colonizers during the first week of life and
play a crucial role in preparing anaerobic conditions in the gut
for successive colonization by strict anaerobes.60–62

Additionally, their presence in the postnatal period is essential
for promoting a healthy immune system, facilitating host–

microbe interactions. A reduction in Proteobacteria supply in
the colostrum of mothers with obesity may compromise
immune system training during the critical early days of life,
potentially leading to impaired immunological tolerance and
increased risk of immune-related diseases later in life.63,64

Alterations in specific microbial taxa within breastmilk may
potentially be linked to cytokine levels, exerting an impact on
breast-fed infants.65 We report that the abundance of
Enterobacteriaceae in the colostrum of women with normal
weight was negatively correlated with TNF-α, while
Proteobacteria such as Neisseriaceae was positively correlated
with TNF-α and IL-6. This pattern aligns with previous obser-
vations in mice, where the presence of the early colonizer
Enterobacteria triggers TNF-α production during the first week of
life. This interaction prevents excessive inflammatory and auto-
immune gastrointestinal disorders in the future.64 Furthermore,
the production of TNF-α by macrophages and monocytes within
the first three days of life, stimulated by the microbiota, is a pre-
requisite for the maturation of pre-conventional dendritic cell 1
(pre-cDC1) into conventional dendritic cell 1 (cDC1).66

The increased levels of Gram-negative bacteria in the gut
are known to stimulate the local production of pro-inflamma-
tory cytokines.67 In mothers with obesity (WO group), we
observed negative correlations between pro-inflammatory cyto-
kines (TNF-α, IL-6, and IL-12p70) and certain bacterial families
such as Aeromonadaceae, Xanthomonadaceae and
Staphylococcaceae (Fig. 5). Our unexpected correlative findings
align with the observations of lower TNF-α and IL-6 concen-
trations in the breastmilk of mothers with obesity compared to
mothers with normal BMI.68 This suggests a potential local
regulatory system within the mammary gland that may modu-
late systemic inflammation during obesity.

Metabolites are key elements of microbial communities as
they reflect interactions within the ecosystem. Different metab-
olites have been associated with interactions in the breastmilk
of women with obesity.5,69,70 We observed a reduction in fatty
acyls and prenol lipids, which suggests potential alterations in
the lipid profile of colostrum associated with maternal obesity.
For instance, we observed that decanoylcarnitine exhibited a
negative correlation with BMI and was found to be decreased
in the WO group. Our results contrast previous observations
where elevated levels of various acylcarnitines were detected in
the serum and breastmilk of individuals with obesity.5,71

Acylcarnitines play a crucial role in mediating the beta-oxi-
dation of fatty acids within the mitochondria, a pivotal process
in energy production.72

In addition, the breastmilk of women with overweight or
obesity exhibits decreased levels of polyunsaturated fatty acids
(PUFAs).73 The metabolism of PUFAs processed through the
enzymatic action of lipoxygenases and cyclooxygenases can
lead to the formation of oxylipins.74 Breastmilk has a diverse
array of bioactive lipids, which play significant roles within the
neonatal immune system.75,76 The presence of oxylipins in
breastmilk may be a marker of maternal health and could
influence the health outcomes and inflammatory status of
breast-fed infants.74
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Some hydroxy fatty acids appear to be linked to inflamma-
tory processes with robust functions, for example, with anti-
inflammatory and pro-resolving properties, either directly or
through their conversion into lipid mediators.77,78 One notable
example is 15-HEDE, a macrophage-oxidized product of the
inflammatory modulator 6-PUFA eicosadienoic acid (EDA).79,80

We found that 15-HEDE levels were decreased in the colostrum
of women with obesity, showing a negative correlation with
IL-10 levels and positive correlations with Proteobacteria
members, such as Beijerinckiaceae and Burkholderiaceae
(Fig. 5). Despite the fact that 15-HEDE has been described as
an inhibitor of 5-lipoxygenase (5-LO),81 it has also been
reported to induce vasodilation and vascular hyperpermeabil-
ity, acting as a pro-inflammatory lipid mediator that exacer-
bates allergic rhinitis.82 Elevated levels of 15-HEDE have also
been observed in allergic airway inflammation in mice after a
house dust mite exposure and in psoriasis.79,83 The negative
correlation with IL-10 suggests that IL-10 may act as a modu-
lator of inflammation resolution in colostrum. In the chronic
inflammatory milieu of obesity, circulating levels of IL-10 are
elevated compared to normal weight women.84,85 Therefore,
we hypothesized a potential compensatory mechanism to
counterbalance chronic inflammatory processes and mitigate
the impact of reduced but highly immunogenic bacteria. In
normal-weight mothers, the higher abundance of 15-HEDE
may enhance the vasodilatory capacity of the mammary vascu-
lature, facilitating efficient nutrient transfer and immunologi-
cal component delivery to the neonate.86

While progesterone showed no significant difference
between the NW and WO groups, its potential role in shaping
colostrum microbial ecology warrants further investigation.
We observed negative correlations when compared to specific
bacterial taxa, including Staphylocococcaceae, Ferrovibrionales,
Caulobacteriaceae, and Devosiaceae (Fig. 5). Progesterone has
been shown to influence microbial communities in vitro by

reducing the growth, adhesion, and virulence of certain
Staphylococcus strains.87 While progesterone is dominant
during late pregnancy, pregnant women with obesity often
exhibit reduced serum progesterone levels.88,89 Moreover, pro-
gesterone levels in the breastmilk of women with a high fat
and protein diet are diminished90 and negatively correlated
with infant weight at 6 months.91

Our study presents some limitations. For instance, detailed
information regarding maternal diet and lifestyle was not col-
lected, which could represent potential confounding factors.
Although small cohorts are common in colostrum-related
studies, we acknowledge that the implementation of larger
sample sizes would enhance the statistical power and robust-
ness of findings. Some correlations in our study fell within the
moderate range (|ρ| = 0.40–0.59). These values, though statisti-
cally significant, should be interpreted with caution, as they
may miss nonlinear relationships or interactions mediated by
unmeasured variables. In addition, due to limited sample
volumes, this work presents high variability in sample size
across datasets (16S sequencing, cytokines, and metabolo-
mics), which may negatively impact data integration and
interpretation. Finally, while co-occurrence networks offer
insights into the microbial community structure and their
interactions with bioactive molecules that traditional methods
might overlook, they do not establish directional interactions
or causal mechanisms.

In summary, using co-occurrence networks, we integrated
metataxonomic data, metabolomics, and cytokine profiles to
provide novel insights and a proof of concept for colostrum as
an interconnected system and demonstrate the influence of
maternal obesity on bioactive interactions within this micro-
environment. Our analysis identified a negative co-occurrence
between the lipid mediator 15-HEDE and IL-10 while also
showing a positive association with microbiota members such
as Beijerinckiaceae and Burkholderiaceae – findings that have

Fig. 5 Integrated biological network of the colostrum environment in the obesity context. Summary of Spearman’s correlation analysis between
colostrum inflammatory cytokine quantification, bacterial families, and metabolites in the maternal obesity context (p < 0.05). The left panel corres-
ponds to the correlation network between pro-inflammatory cytokines and bioactives in the colostrum samples of women with obesity. The right
panel corresponds to the colostrum anti-inflammatory cytokine correlation network of women with obesity. Rectangle colors represent bioactive
elements: the blue rectangle corresponds to cytokines, brown to bacterial families, and green to metabolites. Red and blue edges represent the
positive and negative correlations, respectively.
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not been previously reported in the colostrum of mothers with
obesity. Additionally, we identified that Aeromonadaceae,
Xanthomonadaceae, and Staphylococcaceae were negatively cor-
related with pro-inflammatory cytokines (TNF-α, IL-6, and
IL-12p70), suggesting a potential regulatory effect on inflam-
matory responses in colostrum associated with maternal
obesity. Our findings reveal that maternal obesity influences
alterations in the ecosystem structure. However, further
research is needed to elucidate the neonatal health impli-
cations of the disrupted interactions among the bacterial com-
munity, metabolites and local inflammatory markers observed
in the colostrum of women with obesity.
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