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Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, includ-

ing inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have

been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are

of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail

owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries,

and nuts. This review summarises studies on the effects of flavan-3-ols, their microbiome-mediated

metabolites, and food sources of these compounds, on gut barrier structure. Extensive evidence demon-

strates that flavan-3-ol rich foods, individual flavan-3-ols (e.g., (epi)catechin, epi(gallo)catechin-3-O-

gallate, and pro(antho)cyanidins), and their related microbiota-mediated metabolites, could be effective in

protecting and restoring the integrity of the gut barrier. In this context, various endpoints are assessed,

including transepithelial electrical resistance of the epithelial layer and expression of tight junction pro-

teins and mucins, in ex vivo, in vitro, and animal models. The differences in bioactivity reported for barrier

integrity are structure–function dependent, related to the (poly)phenolic source or the tested compound,

as well as their dose, exposure time, and presence or absence of a stressor in the experimental system.

Overall, these results suggest that flavan-3-ols and related compounds could help to maintain, protect,

and restore gut barrier integrity, indicating that they might contribute to the beneficial properties associ-

ated with the intake of their dietary sources. However, rigorous and robustly designed human intervention

studies are needed to confirm these experimental observations.

1. Introduction

Preservation of a functional gut barrier is fundamental to the
effective absorption of nutrients as well as protection against

antigens and pathogenic microorganisms present in the intes-
tinal lumen.1–8 This barrier comprises a single layer of home-
ostatically renewed epithelial cells,4 joined by specific proteins,
including tight junction proteins (TJs), adherens and gap junc-
tions, and desmosomes.1,2,5 It is separated from the gut lumen
by a mucus layer formed from mucins, hydrated high mole-
cular weight glycoproteins, creating a physical-immunological
protection for the host, as well as an environmental niche and
a source of nutrients for a sub-group of gut microorganisms.6,7

The gut barrier structure is subject to deleterious factors, both
endogenous and exogenous, such as intake of diets low in
fibres and high in fat, consumption of advanced glycation end
products (AGEs), inflammatory responses, obesity and, psycho-
logical stress, that could lead to unregulated destruction of TJs
and excessive thinning of mucin coverage.8 While beneficial
factors include components of fruits and vegetables, such as
(poly)phenols, fibres, minerals, and vitamins.8,9

(Poly)phenols are of particular interest in this respect: these
are dietary phytochemicals which possess a structure with one
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or more hydroxylated aromatic rings and sub-categorised based
upon number of rings, their linkages, and chemical group
moieties.10,11 Flavonoids and non-flavonoids are the two main
families of (poly)phenols.10,11 The former are abundant in nature
with flavan-3-ols representing the main dietary forms
consumed.11,12 Following intake, flavan-3-ols, which include
(–)-epicatechin (1), (–)-epigallocatechin-3-O-gallate (2, ECGC), and
pro(antho)cyanidins, among others, are extensively metabolised
during their transit through the gastrointestinal tract. This review
summarises the current evidence on the bioactive potential of
flavan-3-ols and of their microbially derived metabolites with
respect to gut barrier integrity in the presence or absence of stres-
sors analysed in ex vivo, in vitro and animal models.

2. Flavan-3-ols and their metabolites

Despite the currently available information on the role of nutri-
tion and (poly)phenols in reducing the occurrence and severity
of gut barrier impairments,9,13 a more in-depth analysis of the
potential involvement of flavan-3-ols is warranted, especially
when considering their dietary abundance. Tea, cocoa-derived
products, wine, and pome fruits such as apples or pears, are key
contributors to flavan-3-ol intake.12,14,15 The National Diet and
Nutrition Survey rolling programme (2008–2014) analysed the
dietary intake of the UK population, noting consumption of
flavan-3-ols gradually increases up to 483 ± 293 mg day−1 from
childhood to adulthood, with the type of dietary sources differing
in contribution between age groups.12

From a gastrointestinal perspective, following intake,
flavan-3-ols remain relatively unaffected by the action of saliva
enzymes16–19 and limited modifications occur during the
gastric phase, as indicated by studies where stomach metab-
olism was simulated in vitro, or naso-gastric sampling was
performed.20–23 Depending on the degree of polymerisation,
and conjugation, up to ∼90% of pro(antho)cyanidins transit
through the small intestine without being metabolized or
absorbed, while monomers are predominantly absorbed in the
small intestine, with a portion being effluxed back into the
intestinal lumen as phase II metabolites, a portion possibly
through enterohepatic recirculation.16,23–33 Phase II sulphate,
methoxy, and/or glucuronide metabolites occur in the entero-
cytes and, after transport through the portal vein, in the
liver.34 The mechanism of absorption-conjugation-excretion in
the small intestine was confirmed by the pivotal study of Actis-

Goretta et al.,35 who analysed intestinal perfusate collected fol-
lowing the intra-intestinal administration of (−)-epicatechin
(1). Analysis of the (poly)phenolic content in ileal fluids follow-
ing intake of flavan-3-ol sources by subjects with a ileostomy
confirmed their relative stability with total intra-luminal pres-
ence of up to 2468 µmol of total flavan-3-ols over 24 h post-
ingestion.23,25,28–31,33 The (poly)phenolic profile of blood and
urine samples collected from subjects with a full gastrointesti-
nal tract after intake of flavan-3-ol-rich sources were in line
with these observations with an average bioavailability esti-
mated to be ∼31%.36 The ca. 70% of flavan-3-ol monomers
that reach the colon, as either parent compounds or their
metabolites, is then subjected to microbiota-mediated catabo-
lism resulting in the production of phenyl-γ-valerolactones
and phenylvaleric acids, unique products of flavan-3-ol mono-
mers and pro(antho)cyanidins.37,38 Phenolic acids including
phenylpropanoic, phenylacetic, and benzoic acids can also be
produced. All these catabolites, thus, have the potential to
exert bioactivity within the colonic lumen as well as at a sys-
temic level. It must be considered that bioavailability of flavan-
3-ol compounds has been widely studies in rat and mice
models. However, there are significant differences in their
metabolism in comparison to humans, e.g., absence of pro-
duction of sulfated metabolites in rats,39 which could rep-
resent a limit in translating findings in animal models to
potential similar effects in humans.

3. Assessment of gut barrier integrity

Several direct and indirect methods are available to analyse the
status of intestinal barrier integrity via in vitro and ex vivo
models. Transepithelial electrical resistance (TEER) is a refer-
ence technique to quantitatively evaluate the permeability and
integrity of the gut barrier via its electrical resistance,40,41

thereby indirectly monitoring TJ functionality.41 This tech-
nique can be applied both in vitro and ex vivo. Most com-
monly, TJ gene and protein expression and cellular localisation
are measured, including zonula occludens (ZO), claudins,
occludins, and junctional adhesion molecules (JAM).
Permeability can be analysed in vitro through paracellular
transport of fluorochrome markers, such as fluorescein iso-
thiocyanate–dextran (FITC-Dx),42,43 and, in animals, by moni-
toring circulating ovalbumin (OVA), glucagon-like peptide
(GLP)-2, lipopolysaccharides (LPS) and LPS-binding protein
(LBP) levels,42,43 and by mannitol42,44 and its ratio with lactu-
lose.45 In particular, these two monosaccharides cross the
small intestinal barrier through trans- and para-cellular
passage, therefore, their increased urinary excretion represents a
marker of impaired permeability of this gastrointestinal
section.42,44 Faecal markers, including myeloperoxidase (MPO),
which is specific for the neutrophil activity,46 and calprotectin42

are also used, while the presence of a healthy mucus layer can be
assessed via analysis of mucin status and abundance of goblet
cells. The interest in goblet cell density is mainly due to their
ability to produce gel-forming mucins, which form the core struc-
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ture of the mucus layer.6 The production of mucus differs
between cell lines typically used for in vitro gut barrier studies
and influences the type of cell line selected for use, based on the
purpose of the study. For example, IPEC-J2 is a porcine intestinal
cell line that does not produce mucus, which is a characteristic
common to the Caco-2 human epithelial cell line cultured in
normal conditions, whereas Caco-2 co-cultured with HT-29-MTX
cells are characterised by mucus expression.47 As revised by
Martel and co-authors,8 there are several factors that can trigger
gut barrier integrity through several biological mechanisms.
Examples are reported in Table 1.

4. Effects of flavan-3-ols, their
metabolites, and their dietary sources

The studies covered in this review have been organised by type
of (poly)phenolic source tested (i.e., specific food source or
individual compounds) with the main outputs summarised in
Table 2 with more comprehensive experimental details pro-
vided in ESI Table 1.†

4.1. Cocoa (Theobroma cacao L.)

The (poly)phenolic profile of cocoa is characterised by a range
of flavan-3-ols, from the unconjugated monomers to procyani-
dins with a degree of polymerisation >10 units,48 and this
composition is susceptible to effects of different processing
methods.49 Bitzer and co-workers50 demonstrated in vitro that
different fractions of cocoa extracts, containing mainly mono-
mers, procyanidin oligomers (mainly dimers–hexamers), and
polymers (mainly heptamers–decamers), exerted significant
protection against a dextran sulphate sodium (DSS)-induced
increase in permeability in Caco-2 cells. Moreover, the extracts
containing mainly high molecular weight procyanidins
showed significantly greater protective effects in comparison
to the other fractions at the maximal concentration tested
(100 µg mL−1) and a protective effect was also observed at

lower concentrations (10 and 25 µg mL−1). Similarly, a cocoa
extract containing mainly hexamers (10 µM), tested in the
same cell model, protected against a decrease in ZO-1 protein
expression and its cytoplasmic translocation induced by
exposure to a stressor, the secondary bile acid deoxycholic acid
(DCA, 0.2 mM).51 While, in the absence of stress, the extract
induced a significant time – (30–120 min) and concentration –

(10–20 µM) dependent increase in TEER.51 The latter effect
was proposed to be the result of the adsorption of cocoa pro-
cyanidins to the cell membrane, that could lead to prolonged
beneficial effects in the gut lumen,51 with the procyanidins
putatively also acting as a physical protective layer between the
gut barrier and the intestinal lumen.

Similar positive protective results were reported in mice follow-
ing prolonged (i.e., 8- or 18-weeks) daily intake of different formu-
lations of cocoa powder (80 mg per g diet per day) with a high-fat
diet, assessed via analysis of plasma markers of gut barrier integ-
rity (i.e., GLP-2, LPS, LBP, or FITC-Dx).52,53 In rats, chocolate
(50 mg day−1) alone did not affect barrier functions, but, in com-
bination with probiotics, which prove to have beneficial effects,
inhibited the increase in ileum permeability caused by lopera-
mide-induced constipation, a condition linked to possible impair-
ments on the gut barrier structure, indicating an effect of the pro-
biotics rather than the cocoa-derived compounds.54

4.2. Pome fruits

Apple consumption contributes to the intake of both fibres
and flavan-3-ols, mainly proanthocyanidins.55 Like in an
earlier study by Bitzer et al.50 with cocoa extracts, Wu and co-
workers56 analysed (poly)phenolic fractions extracted from
Granny Smith apples in Caco-2 cells. The extract which con-
tained (–)-epicatechin (1), (+)-catechin (3), 5-O-caffeoylquinic
acid (4), and procyanidins B2 (5) and C1(6), attenuated
decreases in ZO-1 and occludin protein expression in a concen-
tration-dependent manner (12.5–150 µg L−1) in response to a
LPS challenge. Similarly, an increase in TJs (i.e., ZO-1, occlu-
din, and claudin-1) expression was reported using a IPEC-J2
small intestinal cell model incubated with apple (poly)phenols
for 24 h.57 Another apple (poly)phenolic extract exerted time
(0–48 h)- and concentration (0.01–1%)-dependent increases in
TEER of the Caco-2 cell monolayer.58 While supplementation
of pigs (49-day, three times per day) with similar products (400
and 800 mg kg−1) induced an increase in the expression of the
same TJ proteins in the small intestine and promoted villi
tightness at the ileum and jejunum level.57 Furthermore, Swiss
mice fed an extract of the Pyracantha fortuneana (Maxim.) fruit
rich in flavan-3-ols and other (poly)phenols,59 for 8 weeks
(0.4–1% dietary intake), led to significant dose-dependent
attenuation in high-fat diet-induced decrease in colonic TJ
expression, increased urinary lactulose/mannitol excretion,
and widening of intestinal villi caused by the challenge diet.60

4.3. Berries

Berries contribute to the intake of flavan-3-ols but it should be
noted that the levels vary, and that berries are also the main
dietary source of other (poly)phenols, most notably anthocya-

Table 1 Examples of gut barrier stressors and models to simulate them
in animals and cell models

Stressor Model

Diabetes High-fat diet + streptozotocin administration (a)
Inflammation DSS administration (a), LPS, IL-1β, IL-6, and-or TNF-α

exposure (c)
Coeliac
disease

Transgenic DQ8 mice (a), gliadin exposure (c)

Obesity Diet induced obesity (a)
CRC Cancer treatment CTX (a)
Stress Heat exposure, or water avoidance stress (a)
Age Old mice (a)
Diet High-fat and/or high-sugars diet (a)
Pathogens L. monocytogenes exposure (c)

Stressor tested on a cell model (c), stressor tested on an animal model
(a), colorectal cancer (CRC), cyclophosphamide (CTX), dextran
sulphate sodium (DSS), interleukin (IL), lipopolysaccharides (LPS),
tumour necrosis factor (TNF).
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Table 2 Overview of studies reporting the effects of products containing flavan-3-ols and derivatives compounds, as well as these individual com-
pounds, on selected markers of the gut barrier integrity, in presence (Y) or absence (N) of gut barrier stressors

PP source/type Stress Main significant outcomes Ref.

Cocoa N TEER ↑ 51
Y Permeability ↓, ZO-1 ↑, OCC ↓ or ↑, CL ↑ or ↑, Muc2 ↑ 50–54, 156 and 157

Pome fruits N TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 57 and 58
Y Permeability ↓, ZO-1 ↑, OCC ↑, CL ↑ 56, 57, 60 and 158

Berries N ZO-1 ↑ 159
Y Permeability ↓, TEER ↑, ZO-1 ↑, JAM-1 ↑, OCC ↓ or ↑,

CL ↑ or ↓, Muc2 ↑, Muc ↑
61–67, 69–73 and 159

Tea N Permeability ↓, TEER ↑, ZO-1 ↑ or ↓, OCC ↑ or ↓, CL ↑, Muc2 ↑ 77, 81, 83, 93 and 123
Y Permeability ↓, TEER ↑, ZO-1 ↓ or ↑, OCC ↓ or ↑, CL ↑, Muc2 ↑ 77, 81–83, 85–92 and 160

Grape N Permeability ↓ or ↑, TEER ↑, ZO-1 ↑, OCC ↑ or ↓, CL ↓
or ↑, Muc1 ↑, Muc2 ↑

98, 99, 101–106, 123,
161 and 162

Y Permeability ↓, TEER ↑, ZO-1 ↑, OCC ↑, CL ↑, E-cad ↑, Muc2 ↑ 98, 99, 101, 102,
105–121 and 163

(–)-Epicatechin N Permeability ↑, TEER ↑, ZO-1 ↑. 125
Y Permeability ↓, TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 1, 128, 133 and 134

(–)-ECG N Muc17 ↑ 129
(–)-EGCG Y Permeability ↓, TEER ↑, ZO-1 ↑, OCC ↑, CL ↑, TJ ↑, Muc2 ↑ 130, 132, 135, 160, 164

and 165
(+)-Catechin N TEER ↑, ZO-1 ↑ or ↓, OCC ↑, CL ↑ 41 and 125

Y TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 1, 41, 125, 160 and 166
Procyanidin B2 N ZO-1 ↓, OCC ↑, CL ↑ 41

Y ZO-1 ↑ 41
Theaflavin-3′-O-gallate N Permeability ↓, TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 127
Theaflavin, theaflavin-3,3′-O-digallate,
theaflavin-3-O-gallate

N Permeability ↓ 127

Theasinesins A, theasinesins B N Permeability ↓ 138
Theabrownin N ZO-1 ↑, CL-1 ↑, Muc2 ↑ 167
Procyanidin A1 Y Permeability ↓, TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 168
3,4-Dihydroxy-BA N TEER ↑ 169
2,4,6-Trihydroxy-BA N TEER ↓ 169
3,4-Dihydroxy-BA Y ZO-1 ↑, Muc2 ↑ 149
4-Hydroxy-3-methoxy-BA Y OCC ↑ 170
Hippuric acid Y ZO-1 ↑ 149
3′,4′-Dihydroxyphenylacetic acid N Permeability ↓, TEER ↑ 101 and 125

Y TEER ↑ 125
BA N ZO-1 ↑, OCC ↑ 143
4-Hydroxy-BA Y OCC ↓, E-cad ↓ 142
3-(3’,4’-Dihydroxyphenyl)propanoic acid N TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 125

Y TEER ↑ 125
1,3,5-Trihydroxybenzene N TEER ↑, ZO-1 ↑, OCC ↑, CL ↑ 125

Y TEER ↑ 125
3,4,5-Trihydroxybenzoic acid N TEER ↓, CL ↓ 144

BA, benzoic acid; (–)-ECG, (–)-epicatechin-3-O-gallate; EGCG, (–)-epigallocatechin-3-O-gallate; PP, (poly)phenols; TEER, transepithelial electrical
resistance; ↑, significant increase; ↓, significant decrease. Gene/protein expression of zonula occludens (ZO), occludin (OCC), claudin(s) (CL), and
mucin (Muc) are reported. Results for paracellular or transcellular permeability were reported. For more experimental details see ESI Table S1.†
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nins and ellagitannins.10,11 Respectively, açai and aronia
berries protected against reductions in TEER induced by
LPS-61 and a pro-inflammatory cytokines mix,62 with a general
consistent increase in TJ proteins observed in both
studies.61,62 An 8 weeks diet high in sugars and fats fed to
obese mice increased serum LPS, an effect that was mitigated
by supplementation of three (i.e., cloudberry, alpine bearberry,
and lingonberry) of five types of Arctic berries.63 In addition,
supplementation of a high fat diet with blueberry powder
(10% w/w diet) for 8 weeks decreased circulating LBP, while
promoting Muc2 expression at colonic level in a rodent
model.64 This agrees with protective effects exerted by wild
blueberry (poly)phenolic fractions (17–53 mg (poly)phenols
per day) against diet-induced thinning of the colonic mucus in
mice, and albeit with inconsistent increases in goblet cells
density.65 Maqui berry-derived products (50–200 mg kg−1

day−1) enhanced barrier integrity, occludin expression, mucin
content, and goblet cell number in mice models of colitis (i.e.,
DSS or TNBS induced), when supplemented intra-gastrically,66

or orally.67

Ulcerative colitis and Crohn’s disease can contribute to gut
barrier disruption8 and, although enteral nutrition represents
one of the possible treatments for these conditions, it has
been linked with side effects.68,69 A significant dose-dependent
(8–200 mg per kg BW per day) attenuation in the decrease of
intestinal Muc2 expression and goblet cell number was
observed following the addition of cranberry proanthocyani-
dins to enteral nutrition administered to mice (5 days).69 Oral
feeding of a cranberry extract (200 mg kg−1),70 or a freeze-dried
cranberries (20% w/w diet)71 improved barrier function in
mice either challenged with a high fat or genetically-predis-
posed to colon-rectal cancer. Cranberry products not only
increased Muc2 expression and content,69–71 but promoted
increases in ZO-1 and colon claudin-3 gene expression,71 and
attenuated the stress-induced increases in plasma levels of
LPS.70 Similar effects were observed by Heyman-Lindén et al.72

after freeze-dried lingonberry supplementation to mice for 11
weeks decreased serum LBP and modulated occludin gene
expression, albeit with some batch product variation being
evident. Finally, an infusion of Chinese blackberry (Rubus sau-
vissimus S.) leaves mitigated against LPS-induced intestinal
permeability in a mouse model while increasing expression of
ZO-1 and JAM-1.73

4.4. Tea (Camellia sinensis L.)

Green and black teas, major sources of flavan-3-ols and their
derived products,74,75 are consumed widely by the adult popu-
lation of many countries.76 Green tea has been reported to alle-
viate the detrimental effects of coeliac disease on the gut
barrier.77,78 Avoiding gluten intake is the only current treat-
ment against this disease,77,79,80 but complete adherence to
this restricted diet is often not fulfilled.79,80 In an in vitro
Caco-2 model, a decaffeinated green tea extract (1 mg mL−1)
improved gut permeability and prevented a gliadin-induced
decrease in TEER up to 24 h post-incubation.77 Dias et al.78

showed that attenuation of gliadin-induced morphological

changes in colonic crypts, and villi of gluten-sensitive DQ8
transgenic mice, were reduced by green tea extract consump-
tion (50 mg kg−1 day−1) over a 45-day period. In the absence of
stressors, a 12-weeks oral supplementation of a green tea
extract (2% w/w diet) did not significantly change colonic TJ
expression (i.e., ZO-1, occludin, claudin-1), nor FITC-Dx per-
meability in mice, although serum and portal vein endotoxe-
mia were decreased significantly.81 Furthermore, daily sup-
plementation of animals with green tea-derived products sig-
nificantly prevented or ameliorated impairments of the gut
barrier caused by a high-fat diet, in terms of permeability to
endotoxin and TJ expression.81–84 Broadly in line with these
results are the outputs reported for fu brick tea,85 pu-erh tea86

and its ripened version,87,88 raw bowl tea,89 and other tea-
derived products.86 As with lingonberries,72 batch effects were
evident in the efficacy of ripened pu-erh tea (year of pro-
duction 2006 vs. 2010) with respect to attenuation of DSS-
induced ZO-1 protein expression decrease, but not in the
modulation of MPO activity.90

Alcohol is also a known cause of gut barrier impairment,8 and
an aqueous extract of fu brick tea (400 mg per kg BW per day)
was assessed for efficacy in mice supplemented daily for
12-weeks with alcohol (40%).91 The treatment improved the
alcohol-impaired gut barrier function, up-regulating epithelial
TJ expression and reducing circulating LPS concentrations.91

In addition, intra-gastric gavage with a tea flower extract
(200 mg per kg BW per day) significantly mitigated against
changes in markers of gut barrier disruption caused by intra-
peritoneal supplementation of the cancer treatment cyclopho-
sphamide (CTX) in mice.92 Furthermore, daily consumption
for 22 days of a green tea catechin extract (0.1–0.5% w/v in
drinking water) by Wistar rats significantly increased ileal
mucins and decreased the sialomucins/sulfomucins ratio,
although it did not affect the content of mucins in either the
jejunum or colon.93 Similarly, 3,4,5-trihydroxybenzoic acid (7,
aka gallic acid), present in tea both as the free acid and conju-
gated to monomeric and polymeric flavan-3-ols, inhibited the
increase in colonic sialic acid containing mucins as a conse-
quence of sub-cutaneous exposure to 1,2-dimethylhydrazine
(DMH).94 In contrast to (–)-epicatechin (1), EGCG (2), one of
the main monomeric flavan-3-ols in green tea, can cross-link
with gastric (MUC5Ac) and duodenal (Muc2) porcine mucins
in vitro.95 Conjugated flavan-3-ols can also form multilayer-
EGCG structures via interactions with other similar molecules
already adsorbed to the mucus.96

4.5. Grape (Vitis vinifera L.)

Cultivated grapes are a dietary source rich in proanthocyani-
dins,11 which occur predominantly in skin and seeds.97 Grape
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seed (12.5 µg L−1)98 and red wine (60 µg mL−1)99 extracts
decrease the permeability of fluorescent markers and increase
TEER in vitro, improving the barrier function of the intestinal
cell layer. This permeability decrease was not always associated
with increased expression of TJ proteins.99–101 Similarly, in a
porcine model, grape proanthocyanidins fed (100 and 250 mg
kg−1) for up to 28 days promoted a decrease in intestinal per-
meability in weaned piglets,102,103 while a combined oral and
intra-gastric supplementation of grape seed extract decreased
faecal calprotectin, but not blood endotoxemia in rats.104

Despite differences in (poly)phenolic composition, in the con-
centrations tested of grape-derived products, and in the dur-
ation of interventions, there seemed to be a general trend to
protect against stress-induced increase in gut barrier
permeability99,102,105–114 or decreased TJ expression99,102,105–119

caused by inflammatory98,99,113 and oxidative challenges,105

the microbial pathogen L. monocytogenes,119 ulcerative
colitis,106,108,116–118,120 antibiotic treatment,102 weaning,105 or
westernised dietary patterns characterised by a high content of
sugars and fats.106,107,109–112,114,115 Studies report significant
protection mediated by grape-derived products on some of the
monitored markers of gut barrier disruption.99,109,110,114,116,121

Absence of beneficial protection was observed for a grape skin
powder116 and a table grape extract rich in (poly)phenols.109

However, their effects improved when fractions obtained from
the same original products, but differing in flavan-3-ol pro-
files, were tested.109,116 Moreover, a decrease in claudin-1
caused by a cafeteria diet was prevented by intermittent sup-
plementation of a grape seed procyanidin extract, but not
when the intake of the extract occurred prior to stress
exposure,111 highlighting the potential importance of fre-
quency of (poly)phenol intakes in the framework of stress
exposure.

4.6. Other sources of flavan-3-ols or their metabolites

Studies on the effects of other dietary sources of flavan-3-ols
on gut barrier function include peanut skin and other nut or
derived products. Procyanidins from peanut skin significantly
mitigated gut barrier impairments in mice affected by type 2
diabetes caused by a high-fat diet and streptozotocin.122

However, downregulation of claudin-1 caused by stressors of
the gut barrier was not prevented by supplementation with
peanut skin procyanidins.122 In contrast, a chestnut extract
exhibited a dose-dependent decrease in TEER, which was
accompanied by a significant decrease in claudin-2
expression.123 However, it did not impact other monitored TJs,
namely ZO-1, occludin, claudin-3 and -15, JAM-1.123

4.7. Individual compounds and metabolites

When models were analysed in absence of stressor-related per-
turbations, a general absence of significant changes in
markers of gut barrier integrity, TJs or mucin expression has
been reported following intestinal cell line incubations,
animal supplementation, and ex vivo exposure to (–)-epicate-
chin (1),124–128 (–)-epicatechin-3-O-gallate (8),127,129 and EGCG
(2).127,130–132 Protective effects of (–)-epicatechin (1–20 µM)

occur in vitro independent of the tested stress-
source,1,128,133,134 while its effect against dysbiosis in the gut
barrier of mice caused by high-fat diet was concentration-
dependent upon oral supplementation (2–20 mg per kg
BW).128 Inhibition of stress-induced decrease in TEER and
ZO-1 protein expression in mono-cell lines was caused by
(+)-catechin (9) (10–50 µM) incubation.1,125,135 In contrast,
these effects were not observed in a more complex Caco-2/
HT-29 MTX co-culture model when (+)-catechin was tested at a
50 µM concentration.41 Moreover, the protective activities
exerted by EGCG (2) were dependent on the
concentration,78,132 stressor type,130 and route of adminis-
tration.135 Regarding the latter aspect, a study by Wu and co-
workers135 highlighted that, in mice, the metabolism of EGCG
(50 mg per kg BW per day) may represent a critical step for
observing significant effects against DSS-induced changes in
MPO plasma activity, disruption of TJs, and mucosal damages,
as these properties were absent following rectal administration
of the gallated flavan-3-ol.

An increase in TEER was reported upon incubation of Caco-2
cells with theaflavin-3′-O-gallate (10) (10–50 µM)127 or a
mixture of procyanidins with different degrees of polymeris-
ation,136 suggesting their possible effects as gut barrier
strengthening factors. Indeed, all the studies testing bioactivity
of pro(antho)cyanidins on cell models of gut barrier applied
these compounds in their free form, and not bound to pro-
teins which can modulate and mediate their bioactive poten-
tial.137 Moreover, a decrease in the permeability of Caco-
2 monolayers has been reported followed incubation with thea-
flavin-3′-O-gallate, theaflavin (11), theaflavin-3-O-digallate (12),
theaflavin-3,3′-O-digallate (13),127 theasinesin A (14), and thea-
sinesin B (15).138 Similar effects were observed for compounds
with lower molecular weight namely 1,3,5-trihydroxybenzene
(16, aka phloroglucinol)125 and 3′,4′-dihydroxyphenylacetic
acid (17).1 With a combined in vitro and in silico model invol-
ving the use of a porcine gastric mucin type III, Brandão and
co-workers139 observed that a grape seed fraction, containing
mainly procyanidin B4 and a tetramer, could interact with the
mucins, through hydrogen bonds and hydrophobic inter-
actions, similarly to that reported for EGCG.95,96

As reviewed by other authors,37,140,141 flavan-3-ols undergo
extensive metabolism during their transit through the gastro-
intestinal tract and, especially in the colon where they are cata-
bolised to simple phenolic catabolites. Significant dose-depen-
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dent mitigation against stress-induced impairment of gut
barrier integrity has been reported for, 4-hydroxybenzoic acid
(18), (10–40 mg kg−1 day−1),142 benzoic acid (19) (2–5 g kg−1

diet),143 and 3,4,5-trihydroxybenzoic acid (7) (5–50 µM).144

Moreover, time-dependent protection exerted by phenolic com-
pounds against stressors of this key intestinal
structure,125,145,146 as well as the absence or partial protective
effects, have been described.1,62,86,142,147–150 For example, none
of the simple phenolic compounds individually tested in vitro
by Valdez and collaborators62 effectively protected Caco-2 cells
against an inflammatory insult, suggesting that the (poly)phe-
nolic fraction of aronia berry powder, having a mixture of
these compounds, might not be the unique factor responsible
for the beneficial effects attributed to the whole food extract.
These results confirm the importance of elucidating the contri-
bution of individual compounds to the overall effects observed
in complex matrixes as food products and their extracts, as
noted by Bianchi et al.41

5. Conclusions

The studies included in this review were mainly conducted
employing cell models, with the colorectal adenocarcinoma Caco-
2 cell line being the most frequently utilised, and in animals, typi-
cally mice and rats. Modulation or strengthening of the gut barrier
was assessed by testing the flavan-3-ols, their metabolites, or their
dietary sources in the absence of stress, or prior to a stress chal-
lenge. Their capacity to reduce the severity of damage and dysfunc-
tion, or to facilitate the re-establishment of gut barrier integrity fol-
lowing stress-induced impairment, were analysed by tests in mixed
temporal models, or after challenge exposure. However, it is impor-
tant that human interventions are carried out with healthy and
patient groups to confirm these protective effects. Several human
studies are ongoing,9 and a recent investigation by Del Bo’ et al.151

analysed the impact of a diet rich in (poly)phenols on the gut
barrier integrity of older subjects via monitoring their serum
zonulin levels and reported potential promising findings.
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Greater elucidation of the potential benefits derived from
flavan-3-ol phase II metabolites and their characteristic
phenyl-γ-valerolactones (20) and phenylvaleric acid (21)
colonic catabolites37 will be essential in the context of person-
to-person variations in the fate of flavan-3-ols within the gas-
trointestinal tract. In vitro and in silico analyses of the mecha-
nisms and stability of the interactions between these com-
pounds and the epithelial and mucus layers are needed to
define their putative mechanism(s) of action. While analysis of
the stability of tested compounds in the media used for cell
models has been identified as a critical step in the assessment
of their bioactivity,152 this has been investigated with a only a
limited number of (poly)phenolic sources with the majority of
incubations only up to 24 hours duration. Moreover, artifacts
due to the addition of these (poly)phenolic compound to the
cell models should be also monitored as they can mediate oxi-
dative stress response via, e.g., hydrogen peroxide gene-
ration,153 as recently reported by Mahmutović et al.154

Therefore, it might be advisable that future research
implements experimental protocols to consider these factors.
For this purpose, the analysis of the concentration of metab-
olites present in the culture media during incubations requires
investigation.41,152 Furthermore, a more complete analysis of
the intra-luminal availability of flavan-3-ols and their metab-
olites, both in terms of chemical structure and available con-
centrations, could better support future design of studies
aiming at investigate the bioactivity of these compounds on
the gut barrier. While a harmonised way to report the com-
pounds name and tested quantity would benefit comparison
between studies. Finally, the potential synergies of (poly)
phenols with the resident microbiota in maintaining gut
barrier functions also deserves attention.65,155 In this regard,
designing and testing functional foods or supplements to
improve and maintain a healthy epithelial and mucus layer,
including probiotics together with flavan-3-ols, represents a
field of importance for future research. There are considerable
differences in the metabolism of flavan-3-ols between animals
and humans.39 Therefore, clinical human studies are needed
to further clarify the potential impact of these (poly)phenols
on human gut health. The results reported in this review, in
terms of possible promising compounds and concentrations
to be tested, could represent a starting point for their design.
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