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Dietary index for gut microbiota is associated with
stroke among US adults†

Jingjing Liu and Shaoqiang Huang *

Aims: Emerging evidence underscores the diet–microbiota–gut–brain axis as vital to brain health. The

dietary index for gut microbiota (DI-GM), quantifying diet quality linked to gut microbiota diversity,

reflects healthier gut microbiota with higher scores. Therefore, this study was designed to explore the

unclear association between DI-GM and stroke. Methods: A cross-sectional analysis was conducted using

data from 48 677 participants aged ≥20 years in the National Health and Nutrition Examination Survey

(NHANES). Demographic and dietary data were collected, and multivariable weighted logistic regression

analysis was performed to evaluate the association between the DI-GM and stroke. Additionally, restricted

cubic spline (RCS), subgroup analyses, and receiver operating characteristic (ROC) curve were conducted.

Results: In participants aged ≥20 years, the odds ratio (OR) was 0.96 (95% CI: 0.92–1.00, P = 0.075) in the

crude model, but after adjustment, the OR was 0.93 (95% CI: 0.89–0.98, P = 0.003), while higher ben-

eficial to gut microbiota scores were consistently associated with lower stroke prevalence with ORs of

0.87 (95% CI: 0.83–0.90, P < 0.001) in the crude model and 0.88 (95% CI: 0.83–0.93, P < 0.001) after

adjustment. Among participants aged 20–29 years, no significant association was observed. For those

aged ≥30 years, higher DI-GM and beneficial to gut microbiota scores were associated with lower stroke

prevalence, with DI-GM showing ORs of 0.93 (95% CI: 0.89–0.97, P < 0.001) in the crude model and 0.93

(95% CI: 0.89–0.98, P = 0.003) after adjustment, and beneficial to gut microbiota scores showing ORs of

0.82 (95% CI: 0.79–0.86, P < 0.001) in the crude model and 0.88 (95% CI: 0.83–0.93, P < 0.001) after

adjustment. RCS indicated a linear relationship between DI-GM and stroke. Conclusion: The DI-GM was

inversely and linearly associated with stroke prevalence, particularly in adults aged 30 years and above.

Introduction

Stroke is a leading global cause of death and disability, with
an age-standardized mortality rate of 87.4 per 100 000 popu-
lation and 160.4 million disability-adjusted life years (DALYs)
in 2021, according to the Global Burden of Disease (GBD)
study.1,2 Despite recent declines in age-standardized rates,
stroke-related deaths and DALYs are projected to reach
9.7 million and 189.4 million, respectively, by 2050, primarily
due to population growth, aging, and a rising incidence
among young and middle-aged individuals.3 This persistent
burden poses a significant threat to public health, necessitat-
ing sustained focus on prevention and treatment strategies tar-
geting modifiable risk factors to mitigate its global impact.

Diet, a key modifiable risk factor for stroke,3 significantly
determines gut microbiome composition.4,5 The interplay
between diet and gut microbiome profoundly shapes health

consequences, with nutrient-microorganism interactions dic-
tating microbiome stability or disruption, affecting glycemic
sensitivity, cholesterol regulation, body weight, and other
metabolic, inflammatory, and cardiovascular pathways.6–10 Gut
microbiota contributes to atherosclerosis through cholesterol
and lipid metabolism.11 Gut microbiota-derived metabolites
and impaired gut barrier function promote vascular inflam-
mation and thrombus formation.12 These diet-microbiome
interactions are increasingly recognized as key modulators of
stroke risk, highlighting the potential of targeted dietary inter-
ventions to mitigate this risk.

The dietary index for gut microbiota (DI-GM), developed
from an extensive review of 106 studies, quantifies the impact
of diet on gut microbiota composition and diversity by scoring
14 foods or nutrients, with higher scores reflecting healthier
gut microbiota.13 Leveraging the diet-microbiome interplay,
DI-GM serves as a practical and comprehensive tool to eluci-
date the effects of dietary modifications on gut microbiota and
their downstream health impacts, supporting microbiome-tar-
geted dietary recommendations and personalized nutrition
strategies for disease prevention and management. Unlike
other measures, such as direct microbiome diversity metrics
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requiring invasive sampling and advanced sequencing, or the
sulfur-metabolizing diet score targeting only sulfur-metaboliz-
ing bacterium, DI-GM provides unique advantages by incor-
porating specific foods instead of generalized food groups,
and capturing broad attributes of gut microbiota including
diversity, short-chain fatty acid (SCFA) production, specific bac-
teria, and phyla-level changes.13–15 These features make it a
practical, diet-based surrogate particularly suited for large epi-
demiological datasets like the National Health and Nutrition
Examination Survey (NHANES).

Recent findings have demonstrated that DI-GM is negatively
correlated with depression prevalence and symptoms.16

However, its association with stroke remains unexplored. We
posit that DI-GM is an accessible and well-suited proxy to
investigate the diet–microbiota–stroke connection in a study
population. This cross-sectional study is the first to evaluate
the association between DI-GM and stroke using data from the
NHANES, providing actionable insights into personalized
dietary strategies for stroke prevention.

Methods
Population under investigation

NHANES is a continuous cross-sectional study conducted by
the National Center for Health Statistics (NCHS) using a
complex, stratified, multistage probability sampling method to
assess the health and nutritional status of the noninstitutiona-
lized US national population. NHANES data are publicly acces-
sible at https://wwwn.cdc.gov/nchs/nhanes/. NHANES proto-
cols were approved by the Institutional Review Board of the
NCHS, and written informed consent was obtained from all
participants. Data from participants in the 1999–2018
NHANES cycles were analyzed, as these cycles provided infor-
mation on DI-GM and stroke. Exclusion criteria for the ana-
lysis included participants aged <20 years, absence of stroke
data, and missing DI-GM components.

The DI-GM

The DI-GM consists of 14 foods or nutrients, with beneficial
components including fermented dairy, chickpeas, soybean,
whole grains, fiber, cranberries, avocados, broccoli, coffee, and
green tea (not recorded in NHANES for specific tea types), and
unfavorable components including red meat, processed meat,
refined grains, and high-fat diet (≥40% energy from fat).13 The
DI-GM score was calculated using 24-hour dietary recall data
from NHANES 1999–2018. For beneficial components, a score
of 1 was assigned if consumption was ≥the sex-specific
median, otherwise 0 score, with the scores summed to yield
beneficial to gut microbiota score (BGMS, ranges from 0–9);
for unfavorable components, a score of 0 was assigned if con-
sumption was ≥the sex-specific median or 40% (for high-fat
diet), otherwise 1 score, resulting in unfavorable to gut micro-
biota score (UGMS, ranges from 0–4). The DI-GM score (ranges
from 0–13) was the sum of these component scores and cate-
gorized into four groups: 0–3, 4, 5, and ≥6.16

Stroke

Stroke data were collected from the NHANES using self-reported
information. Participants were asked whether a doctor or other
health professional had ever told them that they had a stroke.
This question was part of the Medical Conditions Questionnaire
(MCQ), and responses were categorized as ‘yes’ or ‘no’. Only par-
ticipants with complete responses to this question were included
in the analysis to ensure accuracy in identifying stroke cases
within the dataset.

Covariates

Based on previous studies, the potential covariates included age,
gender, race/ethnicity, education level, marital status, poverty
income ratio (PIR), smoking status, alcohol drinking status, physi-
cal activity, body mass index (BMI), hypertension, diabetes melli-
tus (DM), and energy intake.17–21 Race/ethnicity were classified
into 5 categories: non-hispanic white, non-hispanic black,
Mexican American, other hispanic, and other race (including mul-
tiracial participants). Education level was divided into 3 categories:
less than high school, high school or equivalent, and college or
above. Marital status was classified into 4 categories: married,
never married, living with a partner, and other (e.g., widowed,
divorced, or separated). Smoking status can be grouped into 3 cat-
egories: never (less than 100 cigarettes), former (more than 100
cigarettes but quit), and now (more than 100 cigarettes and cur-
rently smoke).22 Alcohol drinking status was divided into 5 cat-
egories: never (<12 drinks in lifetime), former (≥12 drinks in 1
year and did not drink last year, or did not drink last year but
drank ≥12 drinks in lifetime), current mild (≤1 drinks per day for
females, ≤2 drinks per day for males), current moderate (≥2
drinks per day for females, ≥3 drinks per day for males, or binge
drinking ≥2 days per month), current heavy (≥3 drinks per day
for females, ≥4 drinks per day for males, or binge drinking [≥4
drinks on same occasion for females, ≥5 drinks on same occasion
for males] on 5 or more days per month).23 Physical activity refers
to the amount of time individuals report spending during the
week on activities such as walk or bicycle, task around home or in
the yard, work activities, and recreational activities.22 Average
blood pressure was calculated by the following protocol: the dias-
tolic reading with zero is not used to calculate the diastolic
average; if all diastolic readings were zero, then the average would
be zero; if only one blood pressure reading was obtained, that
reading is the average; if there is more than one blood pressure
reading, the first reading is always excluded from the average.22

Hypertension was diagnosed when systolic ≥140 mmHg or dias-
tolic ≥90 mmHg. The diagnostic criteria for DM include a diagno-
sis from a doctor, glycohemoglobin (HbA1c) levels >6.5%, fasting
glucose levels ≥7.0 mmol L−1, random/2-hour oral glucose toler-
ance test (OGTT) blood glucose levels ≥11.1 mmol L−1, or use of
diabetes medication/insulin.22 In addition, energy intake was
derived from the 24-hour dietary recall data.

Statistical analysis

Following NHANES analytic guidelines,24–26 we applied the
complex sampling design and mobile examination center
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(MEC) sample weights to ensure representative, unbiased, and
precise estimates. The sampling weights were calculated as
follows: for 1999–2002, weights were 2/10 × 4-year MEC weight,
and for 2003–2018, weights were 1/10 × 2-year MEC weight.
Categorical variables were represented by proportions (%),
while continuous variables were described by the mean (stan-
dard deviation, SD) or median (interquartile range, IQR), as
appropriate. To compare the differences across groups, we
employed the Wilcoxon rank-sum test for continuous variables
and the Rao-Scott chi-squared test for categorical variables.

Multivariable weighted logistic regression models were
used to determine the odds ratio (OR) and 95% confidence
interval (CI) for the association between DI-GM and stroke.
Model 1 was adjusted for age, sex, and race/ethnicity. Model 2
was adjusted for the factors included in model 1 and edu-
cation level, marital status, and PIR. Model 3 was adjusted for
factors included in model 2 and smoking status, alcohol drink-
ing status, physical activity, and BMI. Model 4 was adjusted for
factors included in model 3 and hypertension, DM, and energy
intake.

Missing covariate values (9534 with unavailable adjusted
factors information) were imputed using multiple imputation
by chained equations, resulting in 5 imputed datasets based
on variables in the final statistical model. Furthermore,
weighted restricted cubic spline (RCS) curves were performed
to investigate the potentially nonlinear association between
exposure and outcome. Subgroup analyses were analyzed
based on age, sex, race/ethnicity, marital status, education
level, smoking status, alcohol drinking status, physical activity,
hypertension, and DM. Receiver operating characteristic (ROC)
curves were used to evaluate the predictive efficacy of DI-GM
on stroke. 1-Specificity is the X axis in the ROC curve plot, and
the Y axis represents the sensitivity. The accuracy of prediction
was evaluated by area under the curve (AUC).

Since large databases inherently involve large sample sizes,
such studies rarely describe sample size determination, as
exemplified by Teng et al.27 and Chen et al.28 However, to esti-
mate statistical power, we performed a post hoc calculation
using PASS 2021, based on secondary NHANES data to analyze
associations. A minimum sample size of 19 333 was required
to achieve a two-sided 95% CI with a width of 0.004 for a
stroke prevalence of 0.02 among US adults aged ≥20 years, as
reported in the Global Burden of Disease (GBD) study (https://
vizhub.healthdata.org/gbd-results/). This statistical analysis
was conducted using R version 4.3.3, and multiple imputation
was conducted using mice package (version 3.17.0) in R. P <
0.05 (two-tailed) was considered statistically significant.

Results
Study population

Of the 101 316 participants, 48 677 were included in the final
analyses (Fig. 1), exceeding the calculated minimum sample
size. The baseline characteristics of the study population are
presented in Table 1. Statistically significant differences were

observed across several variables, including age, sex, race/eth-
nicity, education level, marital status, PIR, smoking status,
alcohol drinking status, physical activity, BMI, and energy
intake (all P < 0.0001), with notable variation among different
DI-GM categories.

Association between DI-GM and stroke

As shown in Table 2, no significant association was observed
between DI-GM and stroke in the unadjusted model (OR: 0.96;
95% CI: 0.92–1.00; P = 0.075). After adjusting for demographic
factors, including age, sex, and race/ethnicity (model 1), a sig-
nificant inverse association emerged (OR: 0.87; 95% CI:
0.83–0.91; P < 0.001). This association remained significant
after further adjustments for socioeconomic factors, including
education level, marital status, and PIR (model 2: OR: 0.90;
95% CI: 0.86–0.95; P < 0.001), behavioral factors, such as
smoking status, alcohol drinking status, physical activity, and
BMI (model 3: OR: 0.92; 95% CI: 0.88–0.97; P < 0.001), and
additional factors, including hypertension, DM, and energy
intake (model 4: OR: 0.93; 95% CI: 0.89–0.98; P = 0.003). When
DI-GM scores were grouped, no significant associations were
observed in the unadjusted model, but in the fully adjusted
model, the DI-GM = 5 group (OR: 0.80; 95% CI: 0.65–0.98; P =
0.035) and the DI-GM ≥6 group (OR: 0.77; 95% CI: 0.63–0.93; P
= 0.007) were both significantly associated with reduced stroke
prevalence (Table 2). Notably, each 1-point increase in BGMS
was associated with a 13% reduction in stroke prevalence in
the unadjusted model (OR: 0.87; 95% CI: 0.83–0.90; P < 0.001)
and a 12% reduction in the fully adjusted model (OR: 0.88;
95% CI: 0.83–0.93; P < 0.001), while no significant association
was observed between UGMS and stroke after adjustments
(Table 2).

Separate analyses for participants aged 20–29 years and
those aged ≥30 years revealed differing results. Among individ-
uals aged 20–29 years (n = 8513), no significant association
was observed between DI-GM and stroke (Table 3). Conversely,
among participants aged ≥30 years (n = 40 164), DI-GM was
inversely associated with stroke, with each 1-point increase

Fig. 1 Study flow chart. Abbreviations: DI-GM, dietary index for gut
microbiota; NHANES, National Health and Nutrition Examination Survey.
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linked to a 7% reduction in prevalence in the unadjusted
model (OR: 0.93; 95% CI: 0.89–0.97; P < 0.001), and this associ-
ation remained significant after adjusting for demographic
factors (model 1: OR: 0.87; 95% CI: 0.83–0.91; P < 0.001), socio-
economic factors (model 2: OR: 0.90; 95% CI: 0.86–0.94; P <
0.001), behavioral factors (model 3: OR: 0.92; 95% CI:
0.88–0.97; P < 0.001), and additional factors (model 4: OR:
0.93; 95% CI: 0.89–0.98; P = 0.003) (Table 4). When DI-GM
scores were grouped, among participants aged ≥30 years, the
DI-GM = 5 group (OR: 0.80; 95% CI: 0.65–0.98; P = 0.033)
and DI-GM ≥6 group (OR: 0.76; 95% CI: 0.63–0.92; P = 0.006)

were significantly associated with reduced stroke prevalence in
the fully adjusted model, with the DI-GM ≥6 group also signifi-
cant in the unadjusted model (OR: 0.76; 95% CI: 0.63–0.91;
P = 0.003) (Table 4). Furthermore, an inverse association was
observed between BGMS and stroke prevalence across all
models, with each 1-point increase linked to an 18% reduction
in the unadjusted model (OR: 0.82; 95% CI: 0.79–0.86; P
< 0.001) and a 12% reduction in the fully adjusted model
(OR: 0.88; 95% CI: 0.83–0.93; P < 0.001), whereas UGMS
showed no significant association with stroke after adjust-
ments (Table 4).

Table 1 Participants’ characteristics

Characteristics

Overall, N =
204 326 645; n =
48 677

DI-GM

P
value

0–3 4 5 6–11
N = 51 165 742; n =
12 650 (25%)

N = 51 728 459; n =
12 643 (25%)

N = 48 523 025; n =
11 625 (24%)

N = 52 909 418; n =
11 759 (26%)

Age, mean (SD), years 47.04 (16.95) 43.17 (16.36) 45.74 (16.82) 48.13 (16.90) 51.04 (16.71) <0.001
Sex, n (%) <0.001
Male 23 471 (48.13) 6312 (50.55) 6322 (50.08) 5617 (48.32) 5220 (43.73)
Female 25 206 (51.87) 6338 (49.45) 6321 (49.92) 6008 (51.68) 6539 (56.27)

Race, n (%) <0.001
Non-hispanic white 21 829 (68.80) 4964 (62.33) 5436 (66.77) 5284 (69.84) 6145 (76.10)
Non-hispanic black 10 189 (11.03) 3679 (16.50) 2835 (12.29) 2095 (9.24) 1580 (6.18)
Mexican American 8547 (8.04) 2127 (8.60) 2395 (9.12) 2236 (8.58) 1789 (5.96)
Other hispanic 3954 (5.55) 944 (5.99) 1002 (5.66) 994 (5.77) 1014 (4.81)
Other race 4158 (6.57) 936 (6.58) 975 (6.16) 1016 (6.57) 1231 (6.95)

Education level, n (%) <0.001
Less than high school 13 049 (17.11) 3752 (20.71) 3671 (19.16) 3129 (16.64) 2497 (12.05)
High school or

equivalent
11 320 (24.17) 3416 (29.39) 3131 (26.39) 2565 (22.45) 2208 (18.54)

College or above 24 308 (58.72) 5482 (49.90) 5841 (54.45) 5931 (60.91) 7054 (69.42)
Marital status, n (%) <0.001
Married 25 757 (56.39) 6011 (51.05) 6556 (55.17) 6383 (58.28) 6807 (61.01)
Never married 8481 (17.66) 2844 (22.29) 2362 (18.96) 1807 (16.25) 1468 (13.19)
Living with partner 3640 (7.52) 1151 (8.96) 996 (7.77) 807 (6.90) 686 (6.45)
Other 10 799 (18.44) 2644 (17.70) 2729 (18.10) 2628 (18.57) 2798 (19.36)

PIR, mean (SD) 2.99 (1.64) 2.70 (1.62) 2.84 (1.63) 3.05 (1.63) 3.38 (1.59) <0.001
BMI, mean (SD), kg m−2 28.79 (6.76) 29.73 (7.34) 29.02 (6.90) 28.66 (6.54) 27.79 (6.05) <0.001
Smoking status, n (%) <0.001
Never 26 391 (53.78) 6683 (52.98) 6717 (52.38) 6289 (53.37) 6702 (56.29)
Former 12 141 (24.91) 2700 (20.89) 2953 (23.03) 2988 (25.64) 3500 (29.97)
Now 10 145 (21.31) 3267 (26.14) 2973 (24.59) 2348 (21.00) 1557 (13.74)

Alcohol drinking status, n
(%)

<0.001

Never 7205 (11.62) 1801 (11.99) 1884 (12.04) 1757 (11.64) 1763 (10.83)
Former 8501 (14.33) 2229 (14.69) 2224 (14.77) 2114 (14.89) 1934 (13.03)
Mild 16 201 (35.98) 3595 (29.54) 3952 (34.17) 3940 (36.39) 4714 (43.60)
Moderate 7161 (16.91) 1881 (16.99) 1836 (16.08) 1674 (16.84) 1770 (17.72)
Heavy 9609 (21.16) 3144 (26.79) 2747 (22.94) 2140 (20.24) 1578 (14.82)

Physical activity, median
[IQR], minutes per week

160.00 [7.88, 640.00] 126.00 [0.00,
600.00]

141.75 [0.00,
660.00]

160.00 [10.50,
640.00]

210.00 [31.50,
660.00]

<0.001

Hypertension, n (%) 20 498 (37.02) 5134 (36.40) 5133 (36.14) 5084 (38.37) 5147 (37.24) 0.046
DM, n (%) 8353 (12.73) 2153 (13.20) 2115 (12.59) 2047 (13.14) 2038 (12.04) 0.060
Energy intake, mean (SD),
kcal

2130.66 (897.84) 2189.39 (913.28) 2146.53 (966.67) 2128.52 (915.78) 2060.31 (784.47) <0.001

DI-GM score, mean (SD) 4.54 (1.52) 2.60 (0.61) 4.00 (0.00) 5.00 (0.00) 6.52 (0.75) <0.001
BGMS, mean (SD) 2.14 (1.21) 1.07 (0.81) 1.77 (0.91) 2.43 (0.86) 3.40 (0.87) <0.001
UGMS, mean (SD) 2.34 (1.02) 1.53 (0.85) 2.23 (0.91) 2.57 (0.86) 3.10 (0.76) <0.001

Continuous variables are presented as weighted mean (SD) or median [IQR], whereas categorical variables are presented as actual frequency
(weighted percentage [%]). The DI-GM score comprises BGMS and UGMS, categorized into four groups: 0–3, 4, 5, and ≥6. N represents weighted
counts to reflect the population distribution, while n represents unweighted counts from the actual sample size. Abbreviations: BGMS, beneficial
to gut microbiota score; BMI, body mass index; DI-GM, dietary index for gut microbiota; DM, diabetes mellitus; IQR, interquartile range; PIR,
poverty income ratio; SD, standard deviation; UGMS, unfavorable to gut microbiota score.
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For the entire adult participants, the RCS analysis indicated
a linear association between DI-GM and stroke (P for non-line-
arity = 0.715), as well as between BGMS and stroke (P for non-
linearity = 0.532) (Fig. 2). Similarly, among participants aged
≥30 years, DI-GM was linearly associated with stroke (P for
non-linearity = 0.791), along with BGMS (P for non-linearity =
0.449) (Fig. 3).

Subgroup analyses

Fig. 4 illustrates consistent associations between DI-GM and
stroke prevalence among the NHANES 1999–2018 participants
aged ≥30 years across various subgroups. Higher DI-GM scores
were significantly associated with reduced stroke prevalence in
participants aged <60 years, females, non-hispanic white indi-

Table 2 Association between DI-GM and stroke among the NHANES 1999–2018 participants (N = 204 326 645; n = 48 677)

Characteristics

Crude model Model 1 Model 2 Model 3 Model 4

OR (95% CI)
P
value OR (95% CI)

P
value OR (95% CI)

P
value OR (95% CI)

P
value OR (95% CI)

P
value

DI-GM score 0.96
(0.92–1.00)

0.075 0.87
(0.83–0.91)

<0.001 0.90
(0.86–0.95)

<0.001 0.92
(0.88–0.97)

<0.001 0.93
(0.89–0.98)

0.003

DI-GM group
0–3 1(reference) 1(reference) 1(reference) 1(reference) 1(reference)
4 0.98

(0.82–1.17)
0.818 0.84

(0.70–1.02)
0.073 0.88

(0.72–1.06)
0.175 0.89

(0.74–1.08)
0.243 0.91

(0.74–1.10)
0.323

5 0.92
(0.76–1.11)

0.404 0.69
(0.57–0.85)

<0.001 0.76
(0.62–0.94)

0.010 0.79
(0.64–0.97)

0.026 0.80
(0.65–0.98)

0.035

≥6 0.89
(0.74–1.06)

0.177 0.57
(0.48–0.69)

<0.001 0.67
(0.56–0.82)

<0.001 0.74
(0.61–0.89)

0.002 0.77
(0.63–0.93)

0.007

Trend test 0.135 <0.001 <0.001 0.001 0.003
BGMS 0.87

(0.83–0.90)
<0.001 0.80

(0.76–0.84)
<0.001 0.85

(0.81–0.89)
<0.001 0.87

(0.82–0.91)
<0.001 0.88

(0.83–0.93)
<0.001

UGMS 1.13
(1.06–1.20)

<0.001 1.00
(0.94–1.06)

0.997 1.00
(0.94–1.07)

0.969 1.02
(0.96–1.08)

0.493 1.01
(0.94–1.08)

0.826

The crude model was not adjusted for any covariates. Model 1 = age, sex, and race/ethnicity. Model 2 = model 1 + (education level, marital status,
and PIR). Model 3 = model 2 + (smoking status, alcohol drinking status, physical activity, and BMI). Model 4 = model 3 + (hypertension, DM, and
energy intake). The DI-GM score comprises BGMS and UGMS, categorized into four groups: 0–3, 4, 5, and ≥6. N represents weighted counts to
reflect the population distribution, while n represents unweighted counts from the actual sample size. Abbreviations: BGMS, beneficial to gut
microbiota score; BMI, body mass index; CI, confidence interval; DI-GM, dietary index for gut microbiota; DM, diabetes mellitus; NHANES,
National Health and Nutrition Examination Survey; OR, odds ratio; PIR, poverty income ratio; UGMS, unfavorable to gut microbiota score.

Table 3 Association between DI-GM and stroke among the NHANES 1999–2018 participants aged 20–29 years (N = 38 301 799; n = 8513)

Characteristics

Crude model Model 1 Model 2 Model 3 Model 4

OR (95% CI)
P
value OR (95% CI)

P
value OR (95% CI)

P
value OR (95% CI)

P
value OR (95% CI)

P
value

DI-GM score 0.94
(0.68–1.30)

0.699 0.94
(0.68–1.29)

0.687 0.97
(0.68–1.38)

0.871 1.00
(0.71–1.41)

0.993 1.00
(0.71–1.41)

0.999

DI-GM group
0–3 1(reference) 1(reference) 1(reference) 1(reference) 1(reference)
4 1.07

(0.40–2.85)
0.886 1.08

(0.41–2.84)
0.879 1.10

(0.41–2.93)
0.855 1.14

(0.44–2.99)
0.781 1.15

(0.43–3.06)
0.775

5 0.64
(0.18–2.28)

0.486 0.64
(0.18–2.31)

0.490 0.69
(0.18–2.62)

0.578 0.73
(0.19–2.75)

0.633 0.73
(0.19–2.75)

0.634

≥6 0.81
(0.20–3.22)

0.759 0.79
(0.20–3.12)

0.734 0.92
(0.96–1.37)

0.905 1.02
(0.26–4.03)

0.976 1.03
(0.26–4.06)

0.968

Trend test 0.598 0.578 0.757 0.861 0.865
BGMS 0.85

(0.54–1.36)
0.507 0.85

(0.53–1.37)
0.503 0.89

(0.53–1.49)
0.660 0.92

(0.55–1.53)
0.751 0.90

(0.52–1.55)
0.705

UGMS 1.09
(0.74–1.61)

0.672 1.08
(0.73–1.61)

0.686 1.09
(0.74–1.61)

0.645 1.11
(0.75–1.63)

0.613 1.14
(0.75–1.74)

0.525

The crude model was not adjusted for any covariates. Model 1 = age, sex, and race/ethnicity. Model 2 = model 1 + (education level, marital status,
and PIR). Model 3 = model 2 + (smoking status, alcohol drinking status, physical activity, and BMI). Model 4 = model 3 + (hypertension, DM, and
energy intake). The DI-GM score comprises BGMS and UGMS, categorized into four groups: 0–3, 4, 5, and ≥6. N represents weighted counts to
reflect the population distribution, while n represents unweighted counts from the actual sample size. Abbreviations: BGMS, beneficial to gut
microbiota score; BMI, body mass index; CI, confidence interval; DI-GM, dietary index for gut microbiota; DM, diabetes mellitus; NHANES,
National Health and Nutrition Examination Survey; OR, odds ratio; PIR, poverty income ratio; UGMS, unfavorable to gut microbiota score.
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viduals, those with college or above, other marital statuses, all
smoking statuses, current alcohol drinkers, those with varying
levels of physical activity and BMI, individuals with hyperten-
sion, those with or without DM, and individuals with energy
intake ≤1865.5 kcal.

Establishment of the predictive nomogram

Based on model 4 (the fully adjusted model), the nomogram
was constructed for participants aged ≥30 years. Each predic-
tor was calculated as a specific score on a rating scale, the total
points of each variable were summed, and a vertical line was
drawn downward at the total points to correspond to the prob-
ability of stroke. A higher score indicated a higher probability
of stroke (Fig. 5A). The predictive accuracy of this nomogram
was assessed using the receiver operating characteristic (ROC)
curve, yielding an area under the curve (AUC) of 0.795 (95%
CI: 0.787–0.804) (Fig. 5B).

Discussion

This cross-sectional study is the first to reveal a significantly
inverse association between the DI-GM with stroke prevalence
in the US population. Among adults aged ≥20 years, DI-GM
showed no significant association in the unadjusted model,
but after adjustments for demographic, socioeconomic, behav-
ioral, and health factors, higher DI-GM scores correlated with
reduced stroke prevalence, as well as higher BGMS across all
models. Among participants aged ≥30 years, DI-GM and BGMS
were significantly and negatively associated with stroke preva-
lence across all models, with each 1-point increase corres-

ponding to 7% and 12% reductions, respectively. RCS analysis
indicated linear relationships between DI-GM, BGMS, and
stroke prevalence. Subgroup analyses demonstrated consistent
protective effects across participants aged <60 years, females,
non-hispanic white individuals, those with college or above,
other marital statuses, all smoking statuses, current alcohol
drinkers, those with varying levels of physical activity and BMI,
individuals with hypertension, those with or without DM, and
individuals with energy intake ≤1865.5 kcal. These findings
underscore the potential of personalized dietary interventions
focused on DI-GM for stroke prevention, particularly in
middle-aged and older populations.

The lack of significance in the crude model likely reflects
the influence of confounding factors, particularly age, a key
determinant of stroke risk. Stroke incidence rises substantially
with age, as younger populations exhibit lower stroke rates and
weaker dependence on modifiable risk factors like diet.29–34

Age is also an independent risk factor for cardiovascular
disease (CVD), with older individuals facing higher risks of
adverse outcomes, including ischemic and bleeding events.35

To address this, age-stratified analyses were conducted, reveal-
ing no significant association between DI-GM and stroke in
participants aged 20–29 years. Conversely, in those aged ≥30
years, a significant inverse association was observed even in
the crude model, highlighting age-related variations in stroke
risk and DI-GM associations. These findings suggest younger
age groups dilute the overall effect, reinforcing the importance
of focusing on middle-aged and older populations where the
relationship is stronger. Adjusted models across all age groups
consistently showed significant inverse associations, empha-
sizing the need to control for confounders when exploring

Table 4 Association between DI-GM and stroke among the NHANES 1999–2018 participants aged ≥30 years (N = 166 024 846; n = 40 164)

Characteristics

Crude model Model 1 Model 2 Model 3 Model 4

OR (95% CI)
P
value OR (95% CI)

P
value OR (95% CI)

P
value OR (95% CI)

P
value OR (95% CI)

P
value

DI-GM score 0.93
(0.89–0.97)

<0.001 0.87
(0.83–0.91)

<0.001 0.90
(0.86–0.94)

<0.001 0.92
(0.88–0.97)

<0.001 0.93
(0.89–0.98)

0.003

DI-GM group
0–3 1 (reference) 1 (reference) 1 (reference) 1 (reference) 1 (reference)
4 0.93

(0.77–1.11)
0.398 0.83

(0.69–1.01)
0.061 0.87

(0.72–1.05)
0.150 0.88

(0.73–1.07)
0.212 0.90

(0.74–1.09)
0.281

5 0.84
(0.70–1.02)

0.076 0.69
(0.57–0.85)

<0.001 0.76
(0.62–0.93)

0.009 0.79
(0.64–0.97)

0.025 0.80
(0.65–0.98)

0.033

≥6 0.76
(0.63–0.91)

0.003 0.57
(0.47–0.69)

<0.001 0.67
(0.55–0.81)

<0.001 0.73
(0.60–0.89)

0.002 0.76
(0.63–0.92)

0.006

Trend test 0.002 <0.001 <0.001 <0.001 0.003
BGMS 0.82

(0.79–0.86)
<0.001 0.79

(0.76–0.83)
<0.001 0.85

(0.80–0.89)
<0.001 0.86

(0.82–0.91)
<0.001 0.88

(0.83–0.93)
<0.001

UGMS 1.12
(1.05–1.19)

<0.001 1.00
(0.94–1.06)

0.967 1.00
(0.94–1.07)

0.994 1.02
(0.96–1.08)

0.542 1.00
(0.94–1.07)

0.917

The crude model was not adjusted for any covariates. Model 1 = age, sex, and race/ethnicity. Model 2 = model 1 + (education level, marital status,
and PIR). Model 3 = model 2 + (smoking status, alcohol drinking status, physical activity, and BMI). Model 4 = model 3 + (hypertension, DM, and
energy intake). The DI-GM score comprises BGMS and UGMS, categorized into four groups: 0–3, 4, 5, and ≥6. N represents weighted counts to
reflect the population distribution, while n represents unweighted counts from the actual sample size. Abbreviations: BGMS, beneficial to gut
microbiota score; BMI, body mass index; CI, confidence interval; DI-GM, dietary index for gut microbiota; DM, diabetes mellitus; NHANES,
National Health and Nutrition Examination Survey; OR, odds ratio; PIR, poverty income ratio; UGMS, unfavorable to gut microbiota score.
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Fig. 3 Association between DI-GM and stroke among the NHANES
1999–2018 participants aged ≥30 years by RCS (N = 166 024 846; n =
40 164). (A) Linear association between DI-GM score and stroke preva-
lence. (B) Linear association between BGMS and stroke prevalence. (C)
Linear association between UGMS and stroke prevalence. The model
was adjusted for age, sex, race, education level, marital status, PIR,
smoking status, alcohol drinking status, physical activity, BMI, hyperten-
sion, DM, and energy intake. The DI-GM score comprises BGMS and
UGMS. N represents weighted counts to reflect the population distri-
bution, while n represents unweighted counts from the actual sample
size. Abbreviations: BGMS, beneficial to gut microbiota score; BMI, body
mass index; CI, confidence interval; DI-GM, dietary index for gut micro-
biota; DM, diabetes mellitus; NHANES, National Health and Nutrition
Examination Survey; OR, odds ratio; PIR, poverty income ratio; RCS,
restricted cubic spline; UGMS, unfavorable to gut microbiota score.

Fig. 2 Association between DI-GM and stroke among the NHANES
1999–2018 participants by RCS (N = 204 326 645; n = 48 677). (A) Linear
association between DI-GM score and stroke prevalence. (B) Linear
association between BGMS and stroke prevalence. (C) Linear association
between UGMS and stroke prevalence. The model was adjusted for age,
sex, race, education level, marital status, PIR, smoking status, alcohol
drinking status, physical activity, BMI, hypertension, DM, and energy
intake. The DI-GM score comprises BGMS and UGMS. N represents
weighted counts to reflect the population distribution, while n rep-
resents unweighted counts from the actual sample size. Abbreviations:
BGMS, beneficial to gut microbiota score; BMI, body mass index; CI,
confidence interval; DI-GM, dietary index for gut microbiota; DM, dia-
betes mellitus; NHANES, National Health and Nutrition Examination
Survey; OR, odds ratio; PIR, poverty income ratio; RCS, restricted cubic
spline; UGMS, unfavorable to gut microbiota score.
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diet–microbiota–stroke relationships. This aligns with evi-
dence from prior studies where crude models often fail to
capture complex associations until adjusted.36,37 These results
underscore the potential of DI-GM in stroke prevention, par-
ticularly among middle-aged and older populations.

The protective association between DI-GM and stroke is
rooted in the diet–gut microbiota interplay, which plays a central
role in stroke pathophysiology. Gut microbiota contribute to the
pathophysiology of stroke through the microbiota–gut–brain axis
(MGBA), influencing inflammation, and immune regulation,
mediated by gut microbes and microbiota-derived metabolites
such as SCFAs, secondary bile acids, trimethylamine-N-oxide
(TMAO), and phenylacetylglutamine.38–40 In addition, Schneider

Fig. 5 Establishment of a risk prediction model for stroke among the
NHANES 1999–2018 participants aged ≥30 years (N = 166 024 846; n =
40 164). (A) The nomogram model based on model 4. Numbers in the
figure represent the following values: race/ethnicity: 1 = non-hispanic
white, 2 = non-hispanic black, 3 = Mexican American, 4 = other hispa-
nic, 5 = other race. Education level: 1 = less than high school, 2 = high
school or equivalent, 3 = college or above. Marital status: 1 = married, 2
= never married, 3 = living with partner, 4 = other. (B) ROC curve based
on model 4, evaluating the predictive power for stroke of the nomogram
model. Model 4 is the fully adjusted model, including adjustments for
age, sex, race/ethnicity, marital status, PIR, education level, smoking
status, alcohol drinking status, physical activity, BMI, energy intake,
hypertension, and DM. Abbreviations: AUC, area under curve; BMI, body
mass index; DM, diabetes mellitus; DI-GM, dietary index for gut micro-
biota; NHANES, National Health and Nutrition Examination Survey; PIR,
poverty income ratio; ROC, receiver operating characteristic. Based on
model 4, the nomogram was constructed for participants aged above
30 years. Each predictor was calculated as a specific score on a rating
scale, the total points of each variable were summed, and a vertical line
was drawn downward at the total points to correspond to the probability
of stroke. A higher score indicated a higher probability of stroke (A). The
predictive accuracy of this nomogram was assessed using the receiver
operating characteristic (ROC) curve, yielding an area under the curve
(AUC) of 0.795 (95% CI: 0.787–0.804) (B).

Fig. 4 Subgroup analyses of the association between DI-GM and stroke
among the NHANES 1999–2018 participants aged ≥30 years (N =
166 024 846; n = 40 164). N represents weighted counts to reflect the
population distribution, while n represents unweighted counts from the
actual sample size. Abbreviations: CI, confidence interval; DI-GM,
dietary index for gut microbiota; DM, diabetes mellitus; NHANES,
National Health and Nutrition Examination Survey; OR, odds ratio; PIR,
poverty income ratio. This forest plot presents ORs and 95% CIs for the
association between DI-GM and stroke across various subgroups.
Significant associations were observed among participants aged <60
years, females, non-hispanic white individuals, those with college or
above, other marital statuses, PIR < 2.23, all smoking statuses, current
alcohol drinkers, those with varying levels of physical activity and BMI,
individuals with hypertension, those with or without DM, and individuals
with energy intake ≤1865.5 kcal.
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et al.41 proposed the diet–microbiota–gut–brain axis as a frame-
work linking diet to brain health, highlighting how dietary
factors shape gut microbiota to influence brain function and
overall well-being. Fermented dairy, a unique beneficial com-
ponent of the DI-GM, contains beneficial microbes, microbial
metabolites, and bioactives that shape composition of the gut
microbiota, and, ultimately, modulate the microbiota–gut–brain
axis.42 A meta-analysis by Zhang et al.43 indicated that fermented
dairy intake was associated with decreased CVD risk. Our find-
ings are also consistent with previous research highlighting the
role of gut microbiota in stroke risk, with dietary fiber, a ben-
eficial component of DI-GM, improving stroke outcomes by fos-
tering SCFA production, while choline- and L-carnitine-rich
foods, unfavorable components of DI-GM, increasing stroke risk
via TMAO production.44 Furthermore, poor diet is strongly
associated with first stroke risk, whereas adherence to a
Mediterranean diet, emphasizing whole-plant foods, olive oil,
moderate poultry and fish, and minimal red meat, has been
shown to reduce this risk.45 The DI-GM, with a correlation of
0.42 with the Mediterranean diet score (MDS; P < 0.0001),13 simi-
larly highlights the dual focus on diet and gut microbiota in
stroke prevention. In addition, the microbiome regulates gut
inflammation via diet-driven microbial mechanisms,46 and the
inverse association between DI-GM and stroke aligns with dietary
inflammatory index (DII)-linked stroke risk.47 DI-GM provides a
comprehensive framework for understanding diet-stroke connec-
tions, complementing indices like DII, with potential to mitigate
stroke risk pending further research to confirm causal links.

Our study has several limitations. First, its cross-sectional
design precludes establishing temporal or causal relationships
between DI-GM and stroke, necessitating longitudinal or pro-
spective studies. Second, the DI-GM reflects dietary habits at
the time of data collection rather than long-term patterns.
However, most adults maintain relatively stable diets unless
influenced by major health concerns, suggesting that the
DI-GM reasonably represents habitual diets in the general
population. Third, residual confounding due to measurement
error cannot be fully excluded. Fourth, the NHANES 24-hour
dietary recalls lacked information on specific types of tea con-
sumption, limiting the comprehensiveness of the DI-GM.
Fifth, reliance on self-reported dietary data and covariates
introduces potential recall bias. Finally, generalizability is
limited, as significant associations were observed primarily
among Caucasians, likely due to their larger sample size in
this study, which provided greater statistical power, whereas
other racial subgroup did not achieve statistical significance,
possibly due to smaller sample sizes. Further studies with
more balanced representation of diverse populations are
needed to validate these findings and deepen understanding
of the diet–gut microbiota–stroke risk relationship.

Conclusions

The DI-GM, an innovative dietary quality index reflecting gut
microbiota diversity, was significantly and inversely associated

with stroke prevalence, particularly in individuals aged ≥30
years. Notably, beneficial to gut microbiota scores showed a
strong linear inverse relationship with stroke prevalence.
These findings highlight the potential of gut–microbiota-
focused dietary interventions as a promising strategy for stroke
prevention.
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