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Objective biomarkers of food intake are a sought-after goal in nutrition research. Most biomarker devel-

opment to date has focused on metabolites detected in blood, urine, skin, or hair, but detection of con-

sumed foods in stool has also been shown to be possible via DNA sequencing. An additional food macro-

molecule in stool that harbors sequence information is protein. However, the use of protein as an intake

biomarker has only been explored to a very limited extent. Here, we evaluate and compare measurement

of residual food-derived DNA and protein in stool as potential biomarkers of intake. We performed a pilot

study of DNA sequencing-based metabarcoding and mass spectrometry-based metaproteomics in five

individuals’ stool sampled in short, longitudinal bursts accompanied by detailed diet records (n = 27 total

samples). Dietary data provided by stool DNA, stool protein, and written diet record independently ident-

ified a strong within-person dietary signature, identified similar food taxa, and had significantly similar

global structure in two of the three pairwise comparisons between measurement techniques (DNA-to-

protein and DNA-to-diet record). Metaproteomics identified proteins including myosin, ovalbumin, and

beta-lactoglobulin that differentiated food tissue types like beef from dairy and chicken from egg, distinc-

tions that were not possible by DNA alone. Overall, our results lay the groundwork for development of tar-

geted metaproteomic assays for dietary assessment and demonstrate that diverse molecular components

of food can be leveraged to study food intake using stool samples.

Introduction

Biomarkers of food intake are a promising tool for measuring
human nutrition, which is the leading preventable risk factor
for mortality worldwide.1 Food-derived compounds measured
in biological specimens can provide objective and accurate
data on what is being eaten. Objective measurement strategies
can overcome limitations of self-reported dietary data, which
are collected by asking individuals to describe what they eat
via written record, standardized surveys, or a trained inter-
viewer. While self-reports have provided key insights into the

relationship between diet and health, they are at best con-
sidered a semi-quantitative strategy with well-characterized
sources of error,2 including participant memory, cognitive
ability, language and cultural suitability of the collection tool,
and social desirability bias (e.g. a tendency to underreport
food intake3). Most self-report tools are either administered
only once to assess habitual diet for up to the last year (“food
frequency questionnaires”), or a handful of times—though
there are notable exceptions4—to collect repeated data on
short-term intake (“24 hours recalls”). Repeated self-reporting
increases the likelihood of reactivity bias, in which individuals
alter their diet to make it simpler to report: most existing
dietary assessments take between 30 minutes to upwards of an
hour to complete, placing both time and cognitive burdens on
participants, and depending on the method, research staff.
Depending on the specimen type and underlying physiology,
biomarkers can facilitate denser sampling strategies to provide
high-resolution data on daily variation in diet. Development
and validation of dietary biomarkers therefore has the poten-
tial to generate more accurate and comprehensive dietary data
from large numbers of individuals and to enable retrospective
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investigations in studies where dietary data were not initially
collected.5

Prior work on biomarkers of food intake has largely focused
on metabolites present in blood, urine, skin, or hair. Stool has
been used to a much lesser extent although it is both widely
collected in studies and produced directly from consumed
foods. Driven by increased research on gut microbiota, large
studies now routinely sample stool from hundreds to thou-
sands of individuals.6–9 Stool contains molecular information
aggregated from host, microbial, dietary, clinical, and environ-
mental factors, and is increasingly leveraged at the population
scale with wastewater epidemiology to monitor infectious
disease, illicit drug use, or whole-community microbiome
composition. After microbial biomass, the largest portion of
the dry weight of organic solids in feces is derived from unab-
sorbed dietary carbohydrate (∼25%), protein (2–25%), and fat
(2–15%), with exact proportions varying with the specific foods
consumed.10 However, much of the biomarker development in
stool to date has relied on measuring proxies for residual food
material, rather than the food itself. For example, recent
efforts have measured fecal metabolite shifts in response to
supplementation11 or substitution of the source12 of dietary
protein, or used gut microbiota to predict which of six
food items was included in the diet as a controlled
intervention.13

Direct assessment of food tissue, however, is feasible even
after degradation in the gastrointestinal tract. Here, we focus
on two macromolecules, DNA and protein, which can provide
information on consumed food. Both can be measured with
omic-scale tools (“metabarcoding” or “FoodSeq” for DNA, and
“metaproteomics” for protein) that quantitatively survey
residual food DNA or proteins in stool samples, analogous to
qualitative surveys that ask individuals to report their diet.
Dietary DNA was first used to study foods consumed by wild
animals before being applied to free-living human popu-
lations.14 In its current form, FoodSeq uses high-throughput
sequencing technology to amplify and identify marker DNA
regions from consumed food genomes. Early animal dietary
studies also relied on detection of protein from consumed
prey tissues and demonstrated that protein epitopes from
prey could resist digestion for up to several days.15

Metaproteomics, which is the large-scale identification and
quantification of proteins from microbiomes using high-
resolution mass spectrometry,16 has since been applied to
query diverse measures in microbial communities17 and
used to study nutrient flows in biological systems.18 Recent
work has developed high-throughput metaproteomic
methods for stool19 that were applied to a human cohort
undergoing a dietary intervention.20 Plant proteins were
observed in the dataset but not systematically identified
and analyzed due to lack of a food proteome reference data-
base. This is representative of broader metaproteomics
studies of the gut microbiome, which exclude the dietary
proteins contained in the mass spectrometry data by not
including them in protein references or removing them as
“contaminants”.

To evaluate and compare molecular assessment of dietary
proteins and DNA in stool, we applied both metaproteomics
and FoodSeq to a pilot set of samples collected in short longi-
tudinal bursts (most in runs of three to five days) from five
individuals with detailed accompanying diet records. We
began by developing the infrastructure for dietary detection
with metaproteomics, which to our knowledge has not yet
been applied in humans. To this end, we created the first
protein sequence database curated for the identification of
dietary peptides and evaluated strategies for analyzing the
resulting data. We evaluated broad correspondence between
DNA, protein, and diet record measurements, then specifically
compared molecular dietary measures to conventional diet
records as a reference technique. Finally, we used the high
detail of metaproteomics to provide examples of candidate
food tissue-specific biomarkers that could be further devel-
oped for intake of exact food items.

Materials and methods
Human study design, sample collection, and diet composition

Samples were drawn from two human studies based at Duke
University in Durham, NC: a behavioral intervention that
returned daily gut microbiome data to participants by text
message to incentivize fiber intake (NCT04037306, here
“Intervention”) and a protocol for stool collection from healthy
donors (with approval of the Duke Health Institutional Review
Board [IRB] Pro00049498, “Habitual Diet”). All participants
provided written informed consent and authorized future use
of their de-identified stool samples for research, which was
performed in compliance with Duke Health IRB guidelines.
Application of FoodSeq and metaproteomics was a secondary
analysis and determined exempt by the Duke Health IRB
(Pro00100567).

The data collected by each study are compared side-by-side
in Fig. S1.† In brief, participants in both studies collected
daily stool samples when permitted by their natural bowel
habits. All participants first collected their entire stool in a
plastic collection tub suspended above the toilet bowl.
Intervention participants subsampled 3–5 g amounts with
scoop-cap tubes in triplicate. The Habitual Diet participant
returned the entire stool sample, which was aliquoted into a
similar 3–5 g amount. All samples were stored at −20 °C
immediately after collection.

Participants in the “Intervention” study were clients of a
residential-style, medically supervised weight loss center, with
all their weekday meals prepared in the center’s cafeteria and
consumed on site. Diets were low-calorie (ranging from ∼1200
to 1700 kcal day−1, depending on participant body size) but
were nutrient dense, included many unique foods, and varied
day-to-day. A digital menu system used by clients to order
meals recorded the exact amount of food served, except for
beverages, a daily fruit offering, and a salad bar, which could
be freely chosen. Participants were encouraged to dine out or
prepare their own meals on weekends and submitted food
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diaries recording Saturday and Sunday intake. The “Habitual
Diet” participant was a healthy donor with normal BMI who
ate a freely selected diet with no restriction on caloric intake.
Foods consumed included commercially prepared and home-
cooked meals and were recorded in a food diary without infor-
mation on amount, calorie, or nutrient content.

Diet detection with metaproteomics

Protein extraction and peptide preparation. We homogen-
ized 1.5 g of each sample in 15 mL of SDT-lysis buffer (4%
(w/v) SDS, 100 mM Tris-HCl pH 7.6, 0.1 M DTT) with a hand-
held homogenizer (Omni Micro Homogenizer 115 V, Omni
International). 1.5 mL of the homogenate was transferred to
lysing Matrix E tubes (MP Biomedicals) and bead beaten at
6.45 m s−1 for 5 cycles of 45 s with 1 minute between cycles.
Samples were heated to 95 °C for 10 minutes, briefly vortexed,
and centrifuged at 21 000g for 5 minutes to pellet debris. The
supernatant was transferred to fresh tubes and centrifuged
3 minutes at 21 000g to pellet any remaining debris. We then
prepared tryptic digests (13.5 hours digestion) using the filter-
aided sample preparation (FASP) protocol21 with all centrifuga-
tions performed at 14 000g. Briefly, we combined 60 μL of the
lysate supernatant with 400 μL UA solution (8 M urea in 0.1 M
Tris/HCl pH 8.5) in a 10 kDa MWCO 500 µl centrifugal filter
unit (VWR International) and centrifuged for 40 minutes.
Filters were washed with 200 μL of UA solution and centri-
fuged for 40 minutes. 100 μL IAA (0.05 M iodoacetamide in UA
solution) was added to the filters, incubated 20 minutes, and
centrifuged for 20 minutes. Filters were then washed with
100 μL of UA and centrifuged three times, and the buffer
changed to 50 mM ammonium bicarbonate by adding 100 µl
and centrifuging three times. For digestion, we added 0.95 µg
of MS grade trypsin (Thermo Scientific Pierce, Rockford, IL,
USA) in 40 µl of 50 mM ammonium bicarbonate to the filters
and incubated 13.5 hours in a wet chamber at 37 °C. Following
digestion, filters were centrifuged for 20 minutes, washed
with 50 μL of 0.5 M NaCl, and centrifuged for an additional
20 minutes. Peptide concentrations were measured with the
Pierce Micro BCA assay (Thermo Scientific Pierce).

LC-MS/MS. We analyzed tryptic peptides with a Q Exactive
HF hybrid quadrupole-Orbitrap mass spectrometer (Thermo
Fisher Scientific) using a method similar to one described pre-
viously.22 Samples (n = 22) collected from the Intervention
cohort were run separately from those collected from the
Habitual Diet participant (n = 5). For both runs, samples were
randomized and a wash run with 100% acetonitrile performed
between each sample. We used an UltiMate 3000 RSLCnano
Liquid Chromatograph (Thermo Fisher Scientific) to load pep-
tides (600 ng for Intervention, 800 ng for Habitual Diet) on a
5 mm, 300 μm ID C18 Acclaim PepMap100 pre-column
(Thermo Fisher Scientific) with loading solvent A (2% aceto-
nitrile, 0.05% TFA). Peptides were then eluted onto an
EASY-Spray analytical column (75 cm × 75 µm, heated to
60 °C) packed with PepMap RSLC C18, 2 µm material (Thermo
Fisher Scientific) with eluent A (0.1% formic acid in water) and
eluent B (80% acetonitrile, 0.1% formic acid). We performed

peptide separation using a 140 min (Intervention) or 260 min
(Habitual Diet) gradient from 5–99% B at a flow rate of 300 nl
min−1. Peptides were ionized with electrospray ionization
using the Easy-Spray source (Thermo Fisher Scientific) and
mass spectra acquired in the Q Exactive HF hybrid quadru-
pole-Orbitrap mass spectrometer (Thermo Fisher Scientific).
We performed a full MS scan from 380 to 1600 m/z at a resolu-
tion of 60 000 and maximum injection time of 200 ms. We per-
formed data-dependent MS2 for the 15 most abundant ions at
resolution of 15 000 and maximum injection time of 100 ms
(Intervention) or 200 ms (Habitual Diet). The instrument para-
meters were as follows: 445.12003 lock mass, normalized col-
lision energy equal to 24 and exclusion of ions with +1 charge
state. We used a 25 s dynamic exclusion for Intervention
samples and a 15 s dynamic exclusion for Habitual Diet
samples. Method differences between the two sample sets are
the result of LC-MS/MS method optimization.

Protein reference database construction. We curated a data-
base containing: (1) the human proteome (UP000005640,
Downloaded May 17, 2020), (2) microbial protein sequences
derived from the human GI tract as part of the Human
Microbiome Project (https://www.hmpdacc.org/hmp/HMRGD/,
downloaded October 13, 2020) and (3) a custom database of
protein sequences of potential dietary plants, animals, and
fungi. To curate the dietary protein sequences (downloaded
April 10–May 10, 2020, Table S1†), we combined the proteomes
or available protein sequences (if a complete proteome was not
available) of approximately 250 different organisms that were
deemed likely food items in a Durham, NC-based cohort from
a global list. Every proteome (human, microbiota, individual
dietary components) was independently clustered with an
identity threshold of 95% using cd-hit23 to reduce redundancy.

A preliminary search before clustering against the most
abundant human proteins revealed that some host digestive
proteins (e.g. Homo sapiens alpha-amylase) were misidentified
as dietary proteins (e.g. cattle, or Bos Taurus, alpha-amylase).
To address these misidentifications, we concatenated the indi-
vidual dietary proteomes and used cd-hit-2d to remove dietary
proteins with an identity threshold of at least 50% to the
15 most abundant human proteins identified in the samples
(Table S2†). This additional clustering step allowed us to be
more confident that the dietary proteins we did identify were
true dietary proteins and not cross-species identifications of
host proteins. The final database contained 2 942 188 protein
sequences.

Protein identification and quantification. We searched MS/
MS spectra against the protein database using the Sequest HT
node in Proteome Discoverer version 2.3 (Thermo Fisher
Scientific) using the following parameters: trypsin (Full),
maximum 2 missed cleavages, 10 ppm precursor mass toler-
ance, 0.1 Da fragment mass tolerance and maximum 3 equal
dynamic modifications per peptide. We considered the follow-
ing dynamic modifications: oxidation on M (+15.995 Da), dea-
midated N, Q, R (+0.984 Da), and acetyl on the protein N termi-
nus (+42.011 Da). We also considered carbamidomethyl on C
(+57.021 Da) as a static modification. We used the Percolator
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node in Proteome Discoverer for the peptide false discovery
rate (FDR) calculation with the following parameters:
maximum Delta Cn 0.05, a strict target FDR of 0.01, a relaxed
target FDR of 0.05 and validation based on q-value. For protein
inference, we used the Protein-FDR Validator node in
Proteome Discoverer with a strict target FDR of 0.01 and a
relaxed target FDR of 0.05 to restrict protein FDR to below 5%.
Peptide-spectrum matches (PSMs), the taxonomic assignment
of their source food, and sample metadata were organized
using phyloseq v. 1.32.0.24

Proteomic analysis. We removed a single outlier sample
from the analysis that had a low number of protein identifi-
cations and peptide spectral matches compared to other
samples in the dataset. Despite multiple extraction attempts,
we were unable to extract a sufficient number of peptides
(quantification below the limit of detection) from this sample.
We chose to include the sample for LC-MS/MS analysis but
omitted it from the final analysis.

Proteinaceous biomass was calculated as previously
described25 by considering proteins with ≥2 protein unique
peptides to provide high confidence that the protein originated
from a specific taxon in addition to the above 5% FDR con-
dition. Total PSMs from the remaining proteins were then
summed within human, microbial taxa, and dietary taxa.

We only considered identified dietary proteins that were the
master proteins of their protein group and that had at least 5
cumulative PSMs in the dataset. After summing PSMs from
proteins identified to the same food taxon, we also only con-
sidered a taxon “detected” if it had ≥5 PSMs.

Because the filter we applied to the protein reference data-
base to address misidentification of host or microbial proteins
as dietary was likely incomplete, we applied an additional
filter to animal-derived proteins in the dataset. We reasoned
that due to a closer evolutionary relationship, animal proteins
were more likely to be misidentified as human than those
derived from fungi or plants. We therefore manually categor-
ized each of these proteins with >5 PSMs as “muscle”, “egg”,
“dairy” or “other” and then used regular expressions to auto-
matically label the remainder based on the names identified
in the manual pass. The regular expressions for muscle-
specific proteins included matches to terms like “actin”,
“titin”, “sarco-”, and “myo-”; for egg to “ovo-” and “vitello-”;
and for dairy to “casein” and “butyrophilin”. In downstream
analyses, we excluded the “other” category to remove potential
misidentifications, though we note that this strategy also
excluded uncharacterized proteins.

Diet detection with FoodSeq

PCR amplification of trnL and 12SV5. trnL FoodSeq was per-
formed as previously described.14 We performed 12SV5
FoodSeq using a similar two-step PCR protocol, with the fol-
lowing differences in the primary amplification: 12SV5 used
the AccuStart II PCR SuperMix (Quantabio, Beverly, MA) in a
10 μl volume containing 0.5 μl of 10 μM forward and reverse
primers (IDT, Coralville, Iowa), 1 μl of 100 μM human blocking
primer (IDT), 5 μl of 2X AccuStart SuperMix, 0.1 μl of 100X

SYBR Green I (Life Technologies, Carlsbad, CA), 20 mg μl−1 of
BSA (Thermo Fisher Scientific, Waltham, MA), 1.65 μl nuclease
free water, and 1 μl of extracted DNA template. The amplifica-
tion primers were 12SV5F and 12SV5R26 with Illumina over-
hang adapter sequences added at the 5′ end, and the human
blocking primer was DeBarba14 HomoB.27 Cycling conditions
were an initial denaturation at 94 °C for 3 minutes, followed
by 35 cycles of 94 °C for 20 seconds, 57 °C for 15 seconds, and
72 °C for 1 minute.

For both trnL and 12SV5, each PCR batch included a posi-
tive and negative control, and samples were only advanced to
the secondary PCR if controls performed as expected (other-
wise, the entire batch was repeated). Secondary PCR amplifica-
tion to add Illumina adapters and dual 8 bp indices for
sample multiplexing was performed in a 50 μl volume contain-
ing 5 μl of 2.5 μM forward and reverse indexing primers, 10 μl
of 5X KAPA HiFi buffer, 1.5 μl of 10 mM dNTPs, 0.5 μl of 100X
SYBR Green I, 0.5 μl KAPA HiFi polymerase, 22.5 μl nuclease
free water, and 5 μl of primary PCR product diluted 1 : 100 in
nuclease-free water.

Sequencing library preparation. Amplicons were cleaned
(Ampure XP, Beckman Coulter, Brea, CA), quantified (QuantIT
dsDNA assay kit, Invitrogen, Waltham, MA), and combined in
equimolar ratios to create a sequencing pool. If samples could
not contribute enough DNA to fully balance the pool due to
low post-PCR DNA concentration, they were added up to a set
volume, typically 15–20 μl. Libraries were then concentrated,
gel purified, quantified by both fluorimeter and qPCR, and
spiked with 30% PhiX (Illumina, San Diego, CA) to mitigate
low nucleotide diversity. Paired-end sequencing was carried
out on an Illumina MiniSeq system according to the manufac-
turer’s instructions using a 300-cycle Mid or 300-cycle High kit
(Illumina, San Diego, CA, USA), depending on the number of
samples in each pool. trnL and 12SV5 libraries were cleaned
and pooled separately and sequenced on independent runs.

DNA reference database construction. A list of edible plant
and animal taxa was compiled from US food availability
data,28 global surveys,29 and reference volumes.30 DNA
sequences likely to contain trnL or 12SV5 were downloaded
from two sources within NCBI: GenBank (all publicly available
DNA sequence submissions) and the organelle genome
resources of RefSeq (a curated, non-redundant subset of
assembled chloroplast and mitochondrial genomes). To
obtain GenBank sequences, we used the entrez_search func-
tion of rentrez v1.2.331 to submit separate queries for
sequences containing “trnL” in any metadata field and each
plant taxon name in the Organism field (e.g. “Zea mays[ORGN]
AND trnL” to pull data for corn, or Z. mays) or “12SV5” and
each animal taxon name in the same manner. Sequences with
an “UNVERIFIED”: flag were discarded. To obtain RefSeq
sequences, the plastid and mitochondrial sequence releases
current as of June 2021 were downloaded and subset to only
those accessions including an edible taxon name. Results
from either source were then filtered to sequences containing
primer binding sites for trnL or 12SV5 primers in the correct
orientation. Binding sites were identified using a custom R
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script with a mismatch tolerance of 20% (≤3 mismatches for
trnL(UAA)g, ≤4 for trnL(UAA)h, ≤3 for 12SV5F, and ≤3
12SV5R), and sequence outside the primer binding sites
removed. Identical sequences from different accessions of the
same taxon were de-duplicated, but we preserved distinct
sequences within taxa (indicating genetic variability) and iden-
tical sequences from different taxa (indicating genetic conser-
vation) to yield the final references.

FoodSeq analysis. For each sequencing run, raw sequencing
data were demultiplexed using bcl2fastq v2.20.0.422.32 Read-
through into the Illumina adapter sequence at the 3′ end was
detected and right-trimmed with BBDuk v. 38.38.33 Using cuta-
dapt v. 3.4,34 paired reads were filtered to those beginning
with the expected primer sequence (either trnL(UAA)g or
12SV5F for the forward read and trnL(UAA)h or 12SV5R for the
reverse) and then trimmed of both 5′ and 3′ sequences using a
linked adapter format with a 15% error tolerance. Paired reads
were quality-filtered by discarding reads with >2 expected
errors and truncated at the first base with a quality score ≤2,
denoised, and merged to produced amplicon sequence var-
iants (ASVs) using DADA2 v. 1.10.0.35 For trnL, taxonomic
assignment was done with DADA2’s assignSpecies function,
which identified ASVs by exact sequence matching to the
custom trnL reference database, with multiple matches
allowed. If multiple matches occurred, indicating that the
sequence at the amplified region was shared between plants
and could not differentiate them, reads were assigned to the
taxon representing the last common ancestor of all matched
taxa (e.g. an ASV matching to both wheat [Triticum aestivum]
and rye [Secale cereale] was relabeled as Poaceae, the family
shared by both genera). For 12SV5, taxonomic assignment
used DADA2’s assignTaxonomy function, as exact sequence
matching had reduced performance due to the introduction of
mismatches by the DNA polymerase without proofreading
activity in the PCR step required for blocking primer
compatibility.

Sequence data were screened for contamination on a per-
PCR batch basis using decontam v1.8.036 using DNA quanti-
tation data from the library pooling step, and suspected con-
taminants were removed. ASV count tables, taxonomic assign-
ments, and metadata were organized using phyloseq v1.32.0.
As with metaproteomic data, we considered a taxon “detected”
if it had ≥5 sequence reads.

Dietary data collection and processing

Digital menus (Intervention). Complete menu data for each
participant was exported from RealChoices menu software
(SciMed Solutions, Durham, NC) and linked to ingredient
names from recipe source files. Ingredient common names
were then manually identified to plant species using the NCBI
Taxonomy Browser and Integrated Taxonomic Information
System databases. For ingredients that were themselves com-
posite foods (e.g., “whole wheat bread”), we identified a
primary ingredient using either provided brand information or
the USDA FoodData Central database, which includes taxon
mapping under the “Other information” header. For all foods,

portion sizes were estimated with FoodData Central by convert-
ing the recorded menu amount (e.g. teaspoon, cup, ounce-
weight, slice, etc.) to a gram amount using the average weights
under the “Measures” header.

Diet records (Habitual Diet). Dietary intake was coded from
text files recorded by the participant that included descriptions
of items eaten at each meal without information on quantity
consumed. For ingredients that were themselves composite
foods, each ingredient was coded. In cases where brand infor-
mation was recorded (e.g. “Nutrigrain bar”, “Ben and Jerry’s
Cherry Garcia”), ingredient lists were used. Otherwise (e.g.
“pasta salad”, “sesame chicken”), ingredients were coded from
a representative member of that item.

Statistical analysis

Ordinations of dietary data. Diet records were binarized
(assigned a value of “1” for any intake, and “0” for no intake)
to synchronize data format between the Habitual Diet partici-
pant, who did not record quantity consumed, and the
Intervention cohort, who did have estimates of quantity avail-
able. DNA- and protein-based dietary data were analyzed both
as binary presence/absence and as quantity. To ordinate pres-
ence/absence data, Jaccard dissimilarity was calculated
between each sample pair using the distance function of phy-
loseq v1.42.0 and then input into a principal coordinates ana-
lysis (PCoA) using the ordinate function of vegan v2.6.4.37 For
quantitative data, we first computed the centered-log ratio
(CLR) transform of DNA sequencing read counts or metapro-
teomic PSM counts to account for the compositional nature
of the data using the transform function of microbiome
v1.21.1.38 Sample-to-sample Aitchison distances (Euclidean
distance between CLR-transformed counts) were then calcu-
lated on the transformed data and then input into a principal
components analysis (PCA) using the function prcomp in stats
v4.2.2.39 PERMANOVA and Mantel tests were run with the
vegan functions adonis and mantel, respectively.

Per-food comparison between molecular measures and
recorded diet. Taxon names were synchronized to account for
varying detection resolution between the diet record, FoodSeq,
and metaproteomic datasets. For example, menu items that
were manually annotated to the subspecies or variety level (e.g.
carrot, or Daucus carota subsp. sativus) might only be identifi-
able to higher levels in the molecular datasets: for instance,
due to the annotation of protein sequences in public databases
(Daucus carota) or because their FoodSeq marker region
sequence is identical to other species or genera (for carrot, the
same sequence is shared between carrot, parsnip, and parsley,
among other species, leading the detection to be labeled as
the last common ancestor of all taxa sharing that sequence, in
this case the family Apiaceae). A complete mapping of the syn-
chronization is provided in Table S5.†

To assess taxon overlap between the datasets, area-
proportional Euler diagrams were visualized using the euler
function of package eulerR v7.0.0.40 Exact tests of multi-set
interaction were done with function MSET of package
SuperExactTest v.1.1.0.41 The number of taxa detected within
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each sample was compared with repeated-measures ANOVA
using the lm function of stats v4.2.2 and Anova of car v3.1.2.42

We compared DNA- or protein-based presence or absence
to the presence or absence of the same food taxon in the
menu record from 1 to 2 days prior to account for the mean
(28 h) and typical variation of measured gastrointestinal
transit times in humans (28, 29). Responses were coded as
true positives (TP, food present by both molecular detection
and menu), true negatives (TN, absent by both molecular
detection and menu), false positives (FP, present by molecular
detection, not by menu), and false negatives (FN, absent by
molecular detection, but present in menu). Recall was calcu-
lated as TP/(TP + FN). Precision was calculated as TP/(TP + FP).
Two-tailed Spearman correlations between precision and recall
were performed using the cor.test function from R stats v4.1.3.

Results
DNA- and protein-based detection of consumed foods

We conducted paired assessment of food-derived proteins and
DNA in stool collected by five individuals: four volunteers con-
suming interventional diets at a medically supervised weight
loss center, and one donor consuming their typical diet
(“Intervention” and “Habitual Diet”, respectively, n = 27 total
samples). The samples shared two features that enabled the
joint evaluation of metaproteomics and metabarcoding
(FoodSeq): (1) they were accompanied by detailed, longitudinal
dietary records for external validation (Fig. 1a), and (2) the
majority were collected in runs of several consecutive days to
investigate the kinetics of molecular dietary signals (Fig. S1†).
Measurement of peptide spectra by metaproteomics, amplifi-
cation of the trnL-P6 chloroplast marker region (“plant
FoodSeq”), and amplification of the V5 region of the mito-
chondrial 12S rRNA gene (“animal FoodSeq”) was successful
for 26, 23, and 27 of the samples, respectively. In successful
samples, we detected a median of 1985 metaproteomic
peptide-spectrum matches (range 794–17 472), 68 256 trnL
reads (range 9744–95 249), and 7647 12SV5 reads (range
404–22 705; Fig. S2).† To identify foods by their peptide
spectra or DNA sequences, we generated reference databases
of protein or marker gene sequences from a manually curated
list of 246 foods known to be consumed in human diets. The
protein reference database included proteomes from 180
plants, 56 animals, and 8 fungi (Table S1†) and was refined to
exclude animal proteins similar to the human proteins that
are most abundant in human fecal material (Table S2†). The
DNA reference database contained 909 sequences representing
591 plants and 31 animals. Collectively, peptides from 8273
unique food-derived proteins and 93 DNA amplicon sequence
variants (ASVs; 82 [88%] from trnL, and 11 [12%] from 12SV5)
were detected in the sample set.

In the metaproteomic dataset, proteinaceous biomass was
dominated by microbiota-derived proteins (74% of all peptide-
spectrum matches), with smaller contributions from host
(14%) and dietary (11%) proteins (Fig. S3†). To tune the sensi-

tivity and stringency of the metaproteomic analysis for dietary
proteins, we tested two filtering methods: (1) selecting dietary
proteins identified with a 5% false-discovery rate (FDR) cutoff
and at least one protein unique peptide and (2) selecting
dietary proteins identified with an FDR of 5% and at least one
protein group unique peptide. The first analysis restricted pro-
teins to those definitively identified by one or more peptides
matching to a single protein sequence, whereas the second
included proteins that did not have a unique peptide match,
but for which there was a unique peptide match to the protein
group composed of very similar homologous sequences.
Because we observed only slight variations in the overall
results between the protein-unique peptide (PUP) strategy and
the unique peptide (UP) analysis and the UP analysis included
39% more PSMs, 2616 additional proteins, and 18 additional
food taxa (Fig. S4†), we selected the UP analysis for all down-
stream steps.

Despite the steps taken to remove dietary proteins similar
to human proteins from the metaproteomic reference data-
base, we noted detection of a high number of food species (n =
18) in every sample, including staple foods like wheat, corn,
and soy, but also less common items like goat and salmon. We
also observed persistent detection of digestive tract and intesti-
nal epithelial proteins (e.g. progastricin, enteropeptidase, gly-
coprotein 2). We therefore categorized every protein name
from an animal species with ≥5 cumulative PSMs in the full
dataset as “muscle”, “egg”, “dairy”, or “other” (n = 280 manual
categorizations) and used regular expressions to automatically
label the remainder (animal-derived proteins with <5 cumulat-
ive PSMs, n = 1170) with the same dietary categories (see
Table S3†). In downstream analyses of animal taxa, we
excluded the “other” category, which included likely host and
microbial cross-identifications as well as uncharacterized pro-
teins. When considering food taxa identified by metaproteo-
mics generally, we filtered to only those taxa with five or more
PSMs (46 taxa removed); we performed no additional filtering
when analyzing data at the level of individual proteins. Across
samples, 105 foods were detected by metaproteomics with the
most abundant ones being rice (Oryza sativa), oats (Avena
sativa), and chicken (Gallus gallus); out of 90 foods detected by
FoodSeq, the most prevalent items were carrot family (a DNA
sequence variant shared by carrots, celery, parsley, and pars-
nips), peppers, avocado, cattle, chicken, and turkey
(Table S4†).

Overall dietary assessment by record, DNA, and protein

Because there is no gold-standard method for dietary assess-
ment, we first evaluated the consistency between FoodSeq,
metaproteomics, and conventional diet records as tools to
capture inter- and intra-individual dietary differences.
Participant identity was significantly associated with the
overall composition of the diet provided by all three tech-
niques (Fig. 1b). Roughly 22% of the variation in dietary com-
position captured in menu records could be attributed to
differences between the participants (PERMANOVA on Jaccard
dissimilarity, R2 = 0.22, p = 0.001). This individual-specific
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dietary signature was also present in both food DNA and
protein composition in stool, and was stronger for DNA-based
than protein-based data (PERMANOVA on Aitchison distance
R2 = 0.45 for FoodSeq, and 0.28 for metaproteomics, both with
p = 0.001; Fig. 1b).

We tested if sample-to-sample differences were similar
between the three measures of diet composition using the
Mantel test, which evaluates correlation between distance
matrices. When we used distance metrics that incorporated
abundance data (Aitchison distance on the number of meta-
proteomic peptide-spectrum matches or DNA sequencing read
counts), inter-sample distances were significantly and posi-

tively correlated for DNA and protein (Mantel r = 0.265, p =
0.001), DNA and menu (r = 0.307, p = 0.002), but not for menu
and protein (r = −0.0453, p = 0.659; all visualized in Fig. 1c).
Interestingly, only the relationship between menu- and DNA-
based diet composition was preserved when we used a pres-
ence/absence-based distance, indicating potentially significant
quantitative information present in the molecular datasets
(Jaccard dissimilarity, Fig. S5†).

Direct comparison of molecular detection to recorded diet

We next evaluated FoodSeq and metaproteomic data in
relationship to recorded dietary data. In doing so, we note that

Fig. 1 Dietary landscapes of study participants by written records and stool-based measurements. (a) Participant diets included food items derived
from 27 food groups, shown as a heatmap of presence (gray) or absence (white) of each food group (x-axis) in the recorded diet on the day prior to
stool sampling (y-axis). The x-axis dendrogram reflects food group relationships as structured by the Interagency Food Safety Analytics
Collaboration (IFSAC)44 and the y-axis dendrogram the clustering of recorded diets by relatedness of the food groups they contain. Although food
groups are displayed for clarity, dietary records provided data resolved to the level of individual food species (e.g. the column “vegetables, vegetable
row crops” summarizes data on 13 unique food items, shown in inset). (b) Principal coordinate analysis (PCoA) and principal component analysis
(PCA) ordinations of samples in dietary space derived from either recorded diet (presence-absence of food), metaproteomic detection of food pro-
teins in stool (number of PSMs per food), or FoodSeq detection of DNA in stool (number of sequence reads per food). Points represent individual
stool samples, or for menu data, the day of eating prior to sample collection. Samples are colored by participant and by diet type, either habitual diet
(HD) or interventional diet (ID1 to ID4). Metaproteomic data are filtered with the final criteria described in the text (5% FDR, ≥1 UP and >5 PSMs for
the food taxon). (c) Results of Mantel tests comparing distance matrices of points in (b) between datasets, interpretable as correlation coefficients (1,
perfect positive correlation; 0, uncorrelated; −1, perfect negative correlation).
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neither cohort’s dietary data represented a “ground truth”
comparator. The manually recorded diet of the healthy donor
lacked information on amount of food and exact ingredients
of prepared dishes that were present in the detailed digital
menus from the Intervention center; the Intervention menus
reported only food served (rather than consumed) and did not
track items that could be freely chosen (e.g. fresh fruit and
salad bar offerings that varied daily and potential off-menu
eating that occurred when clients were not at the center).
However, exact menu records or diet diaries are established
methods of dietary assessment, so we evaluated molecular
measures against them.

All food items were coded to a plant, animal, or fungal
source taxon. We manually synchronized taxon names across
the three datasets to reconcile naming differences that arose
by data type (see Methods, Table S5†). To align with estimates
of 24–48 hours for gastrointestinal transit time,45,46 detected
taxa were compared to foods recorded in the diet records from
two days prior to sampling. There was significant overlap
between taxa recorded or identified by the diet records, DNA,
and protein, with the intersection size of foods observed by all
three measures unlikely to be detected by chance (multi-set
intersection test p = 0.03 for plant and p = 0.07 for animal taxa,
Fig. 2a). 68% of plant taxa and 41% of animal taxa were
detected by at least two measures. Comparing the number of
food taxa identified within single samples, there was no differ-
ence between the number of plants or animals recorded in
diet records from two days prior to sampling and detected by
metaproteomics (repeated-measures ANOVA, Benjamini–
Hochberg adjusted p = 0.72 and 0.69, respectively). FoodSeq
identified significantly fewer plant and animal taxa in com-
parison to diet records (repeated-measures ANOVA,
Benjamini–Hochberg adjusted p = 10−10 and 10−7 for plants
and animals, respectively) and metaproteomics identified

significantly more fungi within individual samples (paired
t-test p = 0.002; Fig. 2b).

We next calculated FoodSeq and metaproteomic perform-
ance in comparison to the prior two days of recorded diet at
the level of food taxon. Cumulatively, performance was higher
for FoodSeq than metaproteomics across taxonomic ranks
(Fig. 3a; two-way ANOVA p < 10−5 for performance by dataset,
p = 0.4 for performance by taxonomic level) and, within each
measure, significantly higher for animal compared to plant
taxa (unpaired Mann–Whitney test, p < 10−5 and p = 0.005 for
DNA and protein, respectively; Fig. 3b). Per-taxon performance
varied widely, with some taxa in near-perfect agreement with
menu data and others dominated by false positives, false nega-
tives, or a mixture (Fig. 3c).

Because of the limitations of the menu data noted above,
we also directly compared FoodSeq and metaproteomic per-
formance to determine if divergences from menu data were
shared or distinct. For each measure, we calculated recall (or
true positive rate, the proportion of recorded foods that were
detected by molecular signal) and precision (or positive pre-
dictive value, the proportion of positive molecular signals
that were confirmed by a menu entry). On a per-taxon basis,
FoodSeq and metaproteomic recall were moderately corre-
lated with one another (Spearman ρ = 0.02–0.52, p ∼ 10−1–
10−4 across varying taxonomic rank), but for precision this
correlation was markedly stronger (Spearman ρ = 0.80–0.88,
p ∼ 10−11–10−14). This finding was consistent across taxo-
nomic levels (Fig. 4). Recall and precision differ by only one
term in their denominator: the number of false negatives
(recall) or the number of false positives (precision). The
increased correlation observed for precision indicated that
the false positive structure between the two molecular
measures was stronger than the false negative structure. In
other words, a false positive by either measure was more

Fig. 2 Diet records and stool measurements include similar food taxa. (a) Overlap between food taxa detected by diet record, stool DNA, or stool
protein, separated by kingdom. “Detection” is any record of food intake, or any sequence read count or PSM count ≥5 in each sample. Note that the
FoodSeq assay does not include a marker for fungi, seaweed, or bacteria-derived foods (i.e. xanthan gum), which are shown in the “Other” category.
Menu data included from records that occurred 1 or 2 days prior to any collected sample. Molecular data is only included from samples with suc-
cessful molecular detection by both protein- and DNA-based methods, resulting in a total number of taxa that differs slightly from that in all
samples reported in Table S4.† (b) On a per-sample basis, dietary richness (the number of unique food items recorded or detected) was significantly
lower by FoodSeq than for the two other measures.
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likely to be shared by the alternate approach, and could be
reflective of a real divergence from the recorded menu (a
food or beverage not captured by diet records like tea
[Theaceae], one commonly eaten but not reported like choco-
late [Malvaceae], or an error in assuming a constant two day
lag in our analysis). However, failures to detect recorded
items were less correlated with one another, and therefore

likely to be due to method-specific limitations or biases.
From this comparison, we also noted extremes of detection:
some foods were reliably detected by both measures
(chicken, peppers, and carrots), better detected by FoodSeq
(tilapia, peas), better detected by metaproteomics (citrus),
and poorly suited for detection by either method (olives or
their oil, sugarcane).

Fig. 3 Performance of DNA- and protein-based dietary assessments in comparison to recorded diet. (a) Summary of molecular detection consist-
ency with menu data across taxonomic levels of analysis. All data are treated as presence-absence, described in Methods. “All” levels indicates no
aggregation of taxa, preserving each individual taxon at the level to which it can most accurately be specified by the three methods (a mix of family,
genus, and species designations). The “predictive performance” measure used here is the F-measure, which is the harmonic mean of precision and
recall and ranges from 0 (completely inaccurate detection) to 1 (perfect precision and recall). Black bars indicate the median. (b) Comparison of per-
formance by DNA- and protein-based assessment in comparison to recorded diet between food taxa of animal and plant origin. (c) Protein and DNA
detections in comparison to the recorded diet from the two days prior to sample collection. For ease of visualization, data are presented at the
family level; see Fig. S6† for a visualization of the full dataset. Detections were coded as true positives (TP, food present by both molecular measure
and menu), true negatives (TN, absent by both molecular measure and menu), false positives (FP, present by molecular measure, not by menu), and
false negatives (FN, absent by molecular measure, but present in menu). A gray bar indicates that the food was never detected by the molecular
measure in any sample in the dataset; therefore, we cannot confirm that detection is possible and do not interpret the absence of detection as a
true or false negative. Taxa are aggregated to the family level and ranked by their F measure statistic, which is the harmonic mean of their sensitivity
and positive predictive value.
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Metaproteomics enables distinction of food type from the
same source species

Finally, we selected a subset of foods for analysis to highlight
the tissue-specificity of metaproteomics and support its use as
a complementary measure to FoodSeq. Unlike DNA signatures,
which are common across all tissues, metaproteomics provides
data on individual protein constituents that reflect tissue of
origin and thus food type. We began by specifically investi-
gating Gallus gallus (chicken) and Bos Taurus (cattle), which
are food species with prominent tissue-specific consumption
of meat versus egg or dairy. In the metaproteomic dataset, we
labeled 28, 10, and 4 proteins as meat-specific, egg-specific,
and dairy-specific, respectively (Table S3†) and used them to
categorize intake from stool. The key proteins identified for
meat were myosin, actin, and titin; for egg, avidin, ovotransfer-
rin, ovalbumin (abundant in egg white), and vitellogenins
(abundant in yolks); and for dairy, caseins, butyrophilin (the
major protein associated with fat droplets), and beta-lactoglo-
bulin (the major whey protein in cow’s milk). For all tissue
types but dairy, detections by tissue-specific proteins had no
significant difference from presence or absence of the same
food tissue in diet records from the day prior to sampling
(McNemar test p = 1.0 for egg, p = 0.7 for chicken meat, p = 0.7
for cattle meat, and p = 0.0008 for dairy; Fig. 5).
Metaproteomics detected dairy intake less frequently than
menu records (dairy detected in 50% of samples compared to

100% of the diet records one or two days prior to sampling),
potentially reflecting the impact of processing, digestion, or
lower protein content per gram of tissue.

We next tested if we could identify a set of candidate
protein biomarkers for specific foods in the metaproteomic
dataset that would lend themselves to future development of
targeted proteomic assays for high throughput detection at
reduced cost. Considering foods detected in ≥5 samples
(n = 85), we identified individual proteins that were present
in more than half the cases an individual food taxon was
detected by metaproteomics. Of 3392 candidate proteins for
the initial 85 foods, we identified 67 candidates with this strat-
egy that could serve as potential standalone indicators of
intake, covering food species including corn, oats, chocolate,
Brussels sprouts, almond, grape, and chicken (Table S6†). In
addition, we also noted interesting cases that did not meet
these criteria (potentially due to mixing of true signal with
spurious positive detections from food proteins that share
similarity to human proteins). Two specific additional proteins
we want to highlight as examples are ananain and bromelain,
which are both proteases that are highly specific to pineapple.
Although daily fruit offerings in Intervention participants were
not always recorded to the species level, three intake events for
bromelain came shortly after recorded meals with pineapple
as an ingredient in this cohort and ananain was detected in
the Habitual Diet participant only in the sample collected the
day after written pineapple consumption.

Fig. 4 Per-food detections by metaproteomics and FoodSeq are more correlated for precision than recall. Each point represents an individual food
taxon, summarized to the taxonomic level as labeled at the top of each facet. “All” includes every taxon in the dataset without any aggregation;
these can differ in their taxonomic level due to a variable degree of resolution in the FoodSeq data. As in Fig. 3, precision and recall are calculated
based on presence-absence data for both recorded intake and molecular detection.

Food & Function Paper

This journal is © The Royal Society of Chemistry 2025 Food Funct., 2025, 16, 282–296 | 291

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
D

ec
em

be
r 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
24

/2
02

5 
11

:0
3:

48
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4fo02656j


Discussion

We have shown that residual dietary DNA and protein from
consumed foods are present in human stool, readily detected
with existing techniques, and can be identified with reference
databases curated from publicly available genomes of food
species. Our findings demonstrate that both FoodSeq and
metaproteomics detect a broad range of foods and have a sig-
nificantly similar global structure. This detection is possible
despite forces that may degrade the molecular components of
food prior to detection, including thermal and chemical degra-
dation by cooking and enzymatic degradation in the gastroin-
testinal tract by host proteases and nucleases. In our data,
dietary sources still accounted for a substantial proportion of
total proteinaceous biomass of stool (∼11% on average).
Comparable data on the prevalence of dietary DNA in the
overall pool of extracted stool DNA is sparse but supportive of
a lesser contribution: in a wild primate model, 0.004–0.008%
of metagenomic reads were dietary in origin,47 which agrees
with anecdotal communications we have heard from research-
ers working in humans (unidentified metagenomic sequences
assumed to be dietary and <1% of total reads). An increased
prevalence of diet-derived stool protein in comparison to DNA
also agrees with prior work in invertebrate animals showing
that protein epitopes, especially those internal to the protein,
survive in the gut for longer than DNA fragments.15

Despite likely lower input, we found that on average, DNA-
based assessment had higher detection performance than
protein when we considered individual foods in direct com-
parison to the diet record (Fig. 3a). However, some foods were
preferentially detected by protein, likely due to nuances of

their composition and digestion (points falling above the unit
line in Fig. 4). FoodSeq protocols include an amplification step
that metaproteomics does not, potentially allowing DNA to
more reliably report food items present in lower initial abun-
dance like herbs and spices. We hypothesized this would lead
to predominantly false negative detections by protein (protein
failing to detect a recorded item). However, we found that false
positive detections were the most common discrepancy
between protein and menu data. 23 food taxa were detected in
>90% of samples by metaproteomics: these included several
species that were supported by diet records and could plausi-
bly be consumed daily by the US-based participants in this
study (corn, chicken, soy) but others that were not (dates,
Napa cabbage, cassava). We were able to reduce putative false
positive signals from prevalent animal detections (goat, duck)
by considering only animal-derived proteins that we could defi-
nitively identify as originating from skeletal muscle, egg, or
milk. We suspect that remaining animal false positives may be
due to continued misidentification of host-derived proteins as
dietary ones by our necessarily large reference database.

We did not perform a similar filtering strategy for plant
foods due to the higher variation in tissue types consumed
(e.g. roots, tubers, leaves, fruits, seeds, nuts, grains, etc.). For
plant taxa, possibly erroneous false positives are likely attribu-
table to (1) fruit or salad items consumed by Intervention par-
ticipants that were not recorded on the menu (e.g. pineapple
or Bromeliaceae), (2) foods consumed but not reported by par-
ticipants (e.g. chocolate or Malvaceae), and (3) the incomplete-
ness of some reference food genomes in public databases,
which can lead to mis-identification of close relatives. To this
final point, if sufficient similarity between protein sequences

Fig. 5 Metaproteomics enables food type-specific detection. Menu records (upper panel) and metaproteomic detections (lower panel) of food
type-specific intake of cattle (a) and chicken (b) intake. Dates within each subject are relative, days on which a sample was collected are indicated in
gray, and the menu and protein panels are not shifted relative to one another in time. A protein detection should therefore be compared to the
several preceding days of recorded intake in the menu panel. Dietary abundance in the habitual diet participant (HD) was recorded as instances of
intake (for example, 1 for consumed once in that day, 2 for consumed twice, etc.), and in the interventional participants as grams estimated from
ordered servings of individual recipes. Abundances for protein detection are PSM counts by metaproteomics.
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is present, proteins from a species with an incomplete pro-
teome may instead be identified as one or more related taxa.
For example, very few protein sequences are currently available
for broccoli (Brassica oleracea var. italica). Therefore, if a par-
ticipant consumed high quantities of broccoli and thus many
mass spectra of broccoli peptides are acquired from stool
samples, these spectra will likely match to proteins from other
members of the cabbage family (Brassicaceae) of which broc-
coli is a member. Future sequencing efforts of food species
genomes or genes encoding dominant food proteins should
improve database quality and resolve associated taxonomic
resolution issues. The false positives caused by database
incompleteness may also have contributed to the overall
weaker correspondence we observed between proteomic data
globally and dietary records by Mantel test. We therefore
expect that future work can improve proteomic performance
compared to known intake.

Nevertheless, proteomic data can provide more dietary
information than DNA alone. DNA cannot distinguish foods
with an identical sequence at the marker region used: this is
the case not only for foods derived from different parts of the
same organism but often for foods derived from closely related
species. For instance, a single trnL sequence variant is shared
by dill, carrot, cumin, parsley, fennel, and parsnip, but these
foods are readily distinguished by protein constituents in our
data. Tissue type conveys important nutritional information
(e.g. the fat content of chicken breast versus egg) that is unmea-
surable by FoodSeq but readily assessed by metaproteomics.
In our data, we identified multiple cases where metaproteo-
mics had higher resolution than FoodSeq. Protein signals
differentiated durum wheat (most commonly used in pasta)
from bread wheat and identified distinct tissues from the
same food species (e.g. chicken and egg, beef and dairy). For
future biomarker development, food-derived proteins provide
a large number of candidate targets, some of which are very
abundant in specific tissues. Additionally, the detection limit
of protein-based biomarkers could be increased by developing
targeted mass spectrometry approaches that are much more
sensitive than the discovery-focused untargeted approach that
we used.48 Specific food groups of interest could also be tar-
geted with DNA barcodes designed to delineate their members
(e.g. grains, carrot family members, cruciferous vegetables)
that cannot be distinguished at the trnL region.

Features of the consumed diet and its record limited our
analyses, and we can therefore make specific recommen-
dations for the design of future dietary studies and follow-on
validation. To assess the performance of FoodSeq and meta-
proteomics in real-world diets and across many foods, we
included participants with diets that included a range of items
and varied day-to-day. However, in some cases, this limited
our analysis: for example, most participants consumed both
beef and dairy or both chicken and egg in the days prior to
sampling, which precluded a clear connection between
detected proteins and a specific episode of prior intake.
Designing diet interventions that include non-repeating food
items or introduction of a specific item into the baseline diet

may help to adjust for this effect by more accurately linking
molecular and menu data. Even though the dietary records of
both Intervention and Habitual Diet participants were
detailed, they had notable limitations: some foods were not
tracked by the digital menu system, and others could be eaten
off-menu or left on the plate (intervention); quantity was not
recorded, and complex meals were not always separated into
their component ingredients (Habitual Diet). Future studies
could include paired sampling of food inputs and stool
outputs to reduce errors from ingredients inferred during the
process of coding written records to food items.

The data shared here can be re-analyzed for food-specific
candidate biomarkers that would lend themselves to develop-
ment in targeted proteomic assays that would allow for high
throughput and reduced cost. Clear frameworks for establish-
ing biomarker validity from nutritional epidemiology49 can
then guide in vitro and in vivo testing. With additional develop-
ment, metaproteomics may be helpful not only for detecting
what is present in stool, but to determine what is absent from
foods known to be consumed, and thus being degraded
farther upstream and absorbed by the host or fermented by
microbiota. Future work may also develop the ability of mole-
cular measures to measure not only identity but amount of
food consumed, which has previously been shown to be poss-
ible for a subset of foods with trnL FoodSeq.14 Quantitative
assays could be similarly developed for metaproteomics, with
the caveat that protein absorption (and thus residual amount
in stool) varies with source, matrix, and processing,50 and may
need to be evaluated on a per-food basis. A central theme in
dietary assessment has been developing tools with different
sources of error that can be used to validate one another. By
expanding the range of tools available for dietary assessment,
our work provides independent measures of food and tissue
constituents in the diet that can be used in future studies.
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