

Data-driven Discovery in the Chemical Sciences

Trinity College, Oxford,
United Kingdom and online
10–12 September 2024

FARADAY DISCUSSIONS

Volume 256, 2025

The Faraday Community for Physical Chemistry of the Royal Society of Chemistry, previously the Faraday Society, was founded in 1903 to promote the study of sciences lying between chemistry, physics and biology.

Editorial Staff

Executive Editor

Michael A. Rowan

Deputy Editor

Edward Gardner

Development Editors

Bee Hockin, Andrea Carolina Ojeda-Porras

Editorial Manager

Gisela Scott

Associate Editorial Manager

Chris Goodall

Publishing Coordinator

Konoya Das

Publishing Editors

Emma Gorrell and Lauren Yarrow-Wright

Editorial Assistant

Daphne Houston

Publishing Assistants

Lee Colwill and Robert Griffiths

Publisher

Sam Keltie

Faraday Discussions (Print ISSN 1359-6640, Electronic ISSN 1364-5498) is published 8 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, UK CB4 0WF.

Volume 256 ISBN 978-1-83767-442-8

2025 annual subscription price: print+electronic £1342

US \$2363; electronic only £1279, US \$2250.

Customers in Canada will be subject to a surcharge to cover GST. Customers in the EU subscribing to the electronic version only will be charged VAT.

All orders, with cheques made payable to the Royal Society of Chemistry, should be sent to the Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK Tel +44 (0)1223 432398; E-mail orders@rsc.org

If you take an institutional subscription to any Royal Society of Chemistry journal you are entitled to free, site-wide web access to that journal. You can arrange access via Internet Protocol (IP) address at www.rsc.org/ip

Customers should make payments by cheque in sterling payable on a UK clearing bank or in US dollars payable on a US clearing bank.

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, Telephone: +44 (0) 207 4378 6556.

Printed in the UK

Faraday Discussions

Faraday Discussions are unique international discussion meetings that focus on rapidly developing areas of chemistry and its interfaces with other scientific disciplines.

Scientific Committee volume 256

Co-Chairs

Volker Deringer, University of Oxford, UK
Fernanda Duarte, University of Oxford, UK

Committee

Graeme Day, University of Southampton, UK
Janine George, Federal Institute for Materials Research and Testing (BAM), Germany
Nadine Schneider, Novartis, Switzerland
Philippe Schwaller, École Polytechnique Fédérale de Lausanne, Switzerland

Faraday Standing Committee on Conferences

Chair

Susan Perkin, University of Oxford, UK

David Fermin, University of Bristol, UK

Secretary

Susan Weatherby, Royal Society of Chemistry, UK

Julia Lehman, University of Birmingham, UK

David Lennon, University of Glasgow, UK

George Booth, King's College London, UK

Andrew Mount, University of Edinburgh, UK

Rachel Evans, University of Cambridge, UK

Julia Weinstein, University of Sheffield, UK

Advisory Board

Vic Arcus, The University of Waikato, New Zealand

Michel Orrit, Leiden University, The Netherlands

Timothy Easun, Cardiff University, UK

Zhong-Qun Tian, Xiamen University, China

Dirk Guldi, University of Erlangen-Nuremberg, Germany

Siva Umapathy, Indian Institute of Science, Bangalore, India

Marina Kuimova, Imperial College London, UK

Bert Weckhuysen, Utrecht University, The Netherlands

Luis Liz-Marzán, CIC biomaGUNE, Spain

Julia Weinstein, University of Sheffield, UK

Andrew Mount, University of Edinburgh, UK

Sihai Yang, University of Manchester, UK

Frank Neese, Max Planck Institute for Chemical Energy Conversion, Germany

Information for Authors

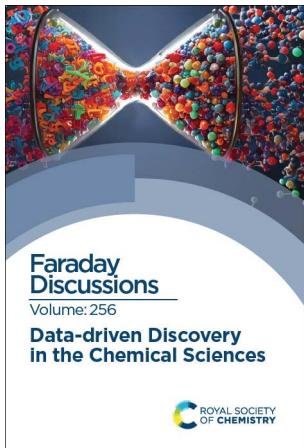
This journal is © the Royal Society of Chemistry 2025. Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the Publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA.

© The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper).

Registered charity number: 207890

Data-driven Discovery in the Chemical Sciences

Faraday Discussions


www.rsc.org/faraday_d

A General Discussion on Data-driven Discovery in the Chemical Sciences was held in Oxford, UK and online on the 10th, 11th and 12th of September 2024.

The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community.

CONTENTS

ISSN 1359-6640; ISBN 978-1-83767-442-8

Cover

See Brett Savoie *et al.*, *Faraday Discuss.*, 2025, **256**, 104–119.

Large property models convert design constraints (depicted by letters- left) directly into molecules (emerging from the model - right).

Image reproduced with permission of Brett Savoie from B. Savoie *et al.*, *Faraday Discuss.*, 2025, **256**, 104–119.

INTRODUCTORY LECTURE

10 Spiers Memorial Lecture: How to do impactful research in artificial intelligence for chemistry and materials science

Austin H. Cheng, Cher Tian Ser, Marta Skreta, Andrés Guzmán-Cordero, Luca Thiede, Andreas Burger, Abdulrahman Aldossary, Shi Xuan Leong, Sergio Pablo-García, Felix Strieth-Kalthoff and Alán Aspuru-Guzik

PAPERS AND DISCUSSIONS

61 Beyond theory-driven discovery: introducing hot random search and datum-derived structures

Chris J. Pickard

85 Integration of generative machine learning with the heuristic crystal structure prediction code FUSE

Christopher M. Collins, Hasan M. Sayeed, George R. Darling, John B. Claridge, Taylor D. Sparks and Matthew J. Rosseinsky

**Industrial
Chemistry
& Materials**

**Chemical
Science**

MSDE

**Reaction Chemistry
& Engineering**

PCCP

Digital
Discovery

104 Large property models: a new generative machine-learning formulation for molecules
Tianfan Jin, Veerupaksh Singla, Hsuan-Hao Hsu and Brett M. Savoie

120 Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies
Harveen Kaur, Flaviano Della Pia, Ilyes Batatia, Xavier R. Advincula, Benjamin X. Shi, Jinggang Lan, Gábor Csányi, Angelos Michaelides and Venkat Kapil

139 Knowledge distillation of neural network potential for molecular crystals
Takuya Taniguchi

156 Modelling ligand exchange in metal complexes with machine learning potentials
Veronika Juraskova, Gers Tusha, Hanwen Zhang, Lars V. Schäfer and Fernanda Duarte

177 Discovering chemical structure: general discussion

221 Web-BO: towards increased accessibility of Bayesian optimisation (BO) for chemistry
Austin M. Mroz, Piotr N. Toka, Ehecatl Antonio del Río Chanona and Kim E. Jelfs

235 Sequence determinants of protein phase separation and recognition by protein phase-separated condensates through molecular dynamics and active learning
Arya Changiarath, Aayush Arya, Vasileios A. Xenidis, Jan Padeken and Lukas S. Stelzl

255 Discovery of highly anisotropic dielectric crystals with equivariant graph neural networks
Yuchen Lou and Alex M. Ganose

275 Leveraging natural language processing to curate the tmCAT, tmPHOTO, tmBIO, and tmSCO datasets of functional transition metal complexes
Ilia Kevlishvili, Roland G. St. Michel, Aaron G. Garrison, Jacob W. Toney, Husain Adamji, Haojun Jia, Yuriy Román-Leshkov and Heather J. Kulik

304 Are we fitting data or noise? Analysing the predictive power of commonly used datasets in drug-, materials-, and molecular-discovery
Daniel Crusius, Flaviu Cipcigan and Philip C. Biggin

322 Prediction rigidities for data-driven chemistry
Sanggyu Chong, Filippo Bigi, Federico Grasselli, Philip Loche, Matthias Kellner and Michele Ceriotti

345 Accurate and reliable thermochemistry by data analysis of complex thermochemical networks using Active Thermochemical Tables: the case of glycine thermochemistry
Branko Ruscic and David H. Bross

373 Discovering structure–property correlations: general discussion

413 Specialising and analysing instruction-tuned and byte-level language models for organic reaction prediction
Jiayun Pang and Ivan Vulić

434 Predictive crystallography at scale: mapping, validating, and learning from 1000 crystal energy landscapes
Christopher R. Taylor, Patrick W. V. Butler and Graeme M. Day

459 Optical materials discovery and design with federated databases and machine learning
Victor Trinquet, Matthew L. Evans, Cameron J. Hargreaves, Pierre-Paul De Breuck and Gian-Marco Rignanese

483 How big is big data?
Daniel Speckhard, Tim Bechtel, Luca M. Ghiringhelli, Martin Kuban, Santiago Rigamonti and Claudia Draxl

503 Making the InChI FAIR and sustainable while moving to inorganics
Gerd Blanke, Jan Brammer, Djordje Baljozovic, Nauman Ullah Khan, Frank Lange, Felix Bänsch, Clare A. Tovee, Ulrich Schatzschneider, Richard M. Hartshorn and Sonja Herres-Pawlis

520 Discovering trends in big data: general discussion

551 Analysis of uncertainty of neural fingerprint-based models
Christian W. Feldmann, Jochen Sieg and Miriam Mathea

568 Re-evaluating retrosynthesis algorithms with Syntheseus
Krzysztof Maziarcz, Austin Tripp, Guoqing Liu, Megan Stanley, Shufang Xie, Piotr Gaiński, Philipp Seidl and Marwin H. S. Segler

587 Embedding human knowledge in material screening pipeline as filters to identify novel synthesizable inorganic materials
Basita Das, Kangyu Ji, Fang Sheng, Kyle M. McCall and Tonio Buonassisi

601 Mapping inorganic crystal chemical space
Hyunsoo Park, Anthony Onwuli, Keith T. Butler and Aron Walsh

614 A critical reflection on attempts to machine-learn materials synthesis insights from text-mined literature recipes
Wenhai Sun and Nicholas David

639 Discovering synthesis targets: general discussion

CONCLUDING REMARKS

664 Concluding remarks: *Faraday Discussion on data-driven discovery in the chemical sciences*
Andrew I. Cooper

ADDITIONAL INFORMATION

691 Poster titles
696 List of participants