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Abstract:

Multi-metallic alloys such as high entropy alloys (HEAs) span an extensive compositional 

space, potentially offering materials with enhanced activity and stability for various catalytic 

reactions. However, experimentally identifying the optimal composition within this vast 

compositional space poses significant challenges. In this study, we present a medium-

throughput approach to screen the composition – activity correlation of electrodeposited multi-

metallic and HEA nanoparticles. We apply the approach for exploring the Pd-Ag-Au 

composition subspace for the alkaline Oxygen Reduction Reaction (ORR). The Pd-Ag-Au 

alloy nanoparticles were synthesized electrochemically, characterized and evaluated for the 

ORR using a rotating disk electrode (RDE) setup. From 107 individual measurements, a 

composition – activity correlation model was constructed using Gaussian Process Regression 

(GPR), pinpointing the optimal composition around Pd85Ag1Au14. The experimental results are 

then compared to theoretical predictions based on the well-established descriptor approach 

utilizing density functional theory (DFT) calculations. While some discrepancies exist, the 

experimental DFT-derived models show partial overlap, validating the utility of computational 

screening for multi-metallic systems. This work provides valuable insights for the efficient 

screening of multi-metallic catalysts for catalytic applications and exemplifies advanced 

pathways on how to compare and analyze experimental data to simulations based on well-

defined hypotheses. 

Keywords: high entropy alloys, Pd-Ag-Au nanoparticles, oxygen reduction reaction, Gaussian 

Process Regression, composition-activity correlation.
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 Introduction

Due to the energy crisis and environmental problems caused by the massive use of fossil fuels, 

the demand for clean and sustainable energy conversion technologies has kept growing in the 

past decades.1 Fuel cells, particularly proton-exchange membrane (PEMFC) and alkaline fuel 

cells (AFC), have emerged as one of the promising technologies for reducing greenhouse gas 

emissions and minimizing reliance on fossil fuels.2,3 These devices efficiently convert chemical 

energy (e.g. H2) directly into electricity through electrochemical reactions and have the 

advantages of higher energy efficiency and lower emissions compared to fossil fuel-based 

power plants. Their versatility allows applications such as hydrogen fuel cell powered (heavy 

duty) vehicles and energy storage devices. Among the reactions in fuel cells, the oxygen 

reduction reaction (ORR) at the cathode is critical for the overall performance due to the 

relatively sluggish reaction kinetics (4 e- process).4,5 Therefore, developing catalytic active, 

stable and cost-effective electrocatalysts for the ORR is essential for advancing fuel cell 

technology.

The catalytic performance of ORR catalysts is highly dependent on the electrolyte environment, 

with acidic and alkaline conditions presenting distinct challenges and opportunities. In acidic 

media (e.g. 0.1 M H2SO4 or HClO4), Pt-based catalysts are the benchmark due to their 

exceptional activity and stability under such harsh conditions.6,7 However, the high cost and 

scarcity of Pt, as well as its susceptibility to CO poisoning, have driven research into alternative 

options, including Pt alloys and non-precious metal catalysts. In addition, an acidic 

environment poses the challenge of catalyst stability. In contrast, alkaline electrolytes offer a 

more favorable environment for non-precious metal catalysts, such as transition metal oxides 

(e.g., MnO₂, Co₃O₄), N-doped carbon materials, and single-atom catalysts (Fe-N-C and Co-

N-C), which are reported to exhibit enhanced stability and comparable activity to Pt in alkaline 

media.8–13 However, the activity of these catalysts in alkaline media is still not comparable to 

that of Pt catalysts in acidic media. Catalyst development for the ORR therefore remains one 

of the main challenges for the widespread application of fuel cell technology.

Recently, high-entropy alloys (HEAs) have emerged as a promising platform to screen 

electrocatalysts. HEAs, which consist of five or more principal elements in near-equimolar 

ratios, exhibit high configurational entropy, lattice distortion, potentially leading to synergistic 

effects among multiple elements.14,15 In literature, unique structural and electronic properties 

are reported that lead to improved material properties such as corrosion resistance and 
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enhanced catalytic activity.16–18 For example, FeCoNiCrMn/C has been reported to exhibit 

competitive ORR performance, rivalling Pt-based catalysts in alkaline media.19 In addition, 

these HEA characteristics enable tunable active sites by varying their composition. The 

compositional flexibility of HEAs - and lower dimensional (fewer components) subspaces - 

allows for systematic screening studies, not only identifying compositions with improved 

activity and durability but also providing a test ground for comparing theoretical and 

experimental results in unprecedented detail.20,21 While the approach has been established for 

thin-film HEA libraries,22,23 most experimental HEA research investigating nanoparticles only 

studies a limited number of compositions and the vast compositional space of HEAs (~10⁵ 

possibilities for 5 elements assuming a compositional discretization of 1 %) remains 

underexplored. The traditional one-at-a-time synthesis of nanoparticles fails to exploit their full 

potential, and despite recent progress, few systematic studies exist to explore HEA 

compositional spaces efficiently for nanoparticles. Current methods lack throughput or 

theoretical integration, leaving >99 % of combinations untested.

Here, we bridge this gap by demonstrating a medium-throughput approach to map the ORR 

activity across Pd-Ag-Au trimetallic compositions. Building on our previous work,24 where we 

demonstrated the synthesis of HEA nanoparticles via electrochemical deposition, we employ a 

similar technique to directly deposit Pd-Ag-Au nanoparticles onto glassy carbon (GC) RDE 

tips with tunable compositions by varying the metal precursor ratios. The ORR activity of the 

electro-deposited Pd-Ag-Au nanoparticles is then evaluated in a separate cell with an RDE 

setup. Composition and particle coverage are evaluated by scanning electron microcopy (SEM) 

and energy dispersive X-ray spectroscopy (EDX). The experimental results are processed with 

Gaussian Process Regression (GPR) to build a model correlating composition and ORR activity, 

which is then compared with a model derived from DFT calculation. It is demonstrated that the 

experimental data align with DFT-calculated activity trends, with the optimal zone partially 

overlapping, thus validating computational screening for multi-metallic systems. This work 

establishes a template for accelerated HEA discovery, combining efficient experimentation 

with theoretical guidance.

Experimental part

Chemicals and gases

The following chemicals were employed for the electrochemical deposition of the catalysts and 

subsequent characterization: sodium chloride (NaCl, 99.99 % Suprapur, Sigma-Aldrich), 
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sodium sulfate (Na2SO4. 99.99 % Suprapur, Sigma-Aldrich), potassium hydroxide (KOH, 

99.99 % trace metals basis, Sigma-Aldrich), ammonium tetrachloropalladate(II) ((NH4)2PdCl4, 

99.995 % trace metals basis, Sigma-Aldrich), hydrogen tetrachloroaurate(III) trihyrdate 

(HAuCl4∙3H2O, 99.9 % trace metals basis, Sigma-Aldrich),  sodium aurothiosulfate 

(Na3Au(S2O3)2, 99.9 % metals basis, Alfa Aesar), potassium dicyanoaurate(I) (KAu(CN)2, 

99.95% trace metals basis, Sigma-Aldrich),  silver nitrate (AgNO3, 99.995 % metals basis, Alfa 

Aesar); ammonium hydroxide solution (acs reagent, 28 %-30 % NH3 basis). Ultrapure water 

(resistivity >18.2 MΩ·cm, total organic carbon (TOC) <5 ppb) obtained from a Milli-Q system 

(Millipore) was used for acid/base dilutions, aqueous solution preparation, and electrochemical 

cell cleaning. High purity gases including argon (Ar, 99.999 %), hydrogen (H2, 99.999 %), and 

oxygen (O2, 99.999 %), supplied by Air Liquide, were used for electrochemical measurements.

Electrochemical setup and deposition protocols

Electrochemical deposition was conducted in a three-neck flask equipped with a three-

electrode system. A glassy carbon RDE with a diameter of 5 mm (geometric surface area: 0.196 

cm²) served as the working electrode (WE). A GC rod (5 mm diameter) was used as the counter 

electrode (CE), and a 3 M Ag/AgCl electrode served as the reference electrode (RE). All 

electrochemical experiments were carried out using an Eci-210 potentiostat from Nordic 

Electrochemistry ApS. Three distinct protocols were employed for the deposition of Pd-Ag-

Au nanoparticles: galvanostatic, potentiostatic, and pulsed deposition.

For both the galvanostatic and potentiostatic protocols, a total charge of approximately −3.4 

mC was applied. In the pulsed protocol, the potential was initially held at 0.5 V vs. Ag/AgCl 

for 120 s. During this period, the WE was inserted, and the resistance between the WE and RE 

(~25 Ω) was reduced to ~5 Ω using the potentiostat’s analog positive feedback scheme. The 

potential was then changed to −0.7 V vs. Ag/AgCl (EN) to initiate nucleation. Subsequently, it 

was alternated between a rest potential (ER) of 0 V vs. Ag/AgCl and a deposition potential (ED) 

of -0.65 V vs. Ag/AgCl, with each held for 0.05 s with a deposition time of around 60 s. For a 

typical deposition procedure, 11.5 mL of 0.1 M Na2SO4 was added to the flask and purged with 

Ar to remove dissolved gases. Subsequently, 20 µL of ammonium hydroxide was added, 

followed by the sequential addition of Ag, Pd, and Au precursor solutions. The total metal 

precursor concentration in the electrolyte was kept below 0.5 mmol/L. Ammonium hydroxide 

was included to form soluble [Ag(NH3)2]+ complexes, thereby preventing AgCl precipitation. 

The three electrodes were then assembled as shown in Figure S1, and one of the deposition 

protocols was applied to deposit nanoparticles onto the GC RDE surface. After deposition, the 
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RDE tip was thoroughly rinsed with Milli-Q water and dried before further characterization or 

ORR measurements.

Varying the composition of electrodeposited nanoparticles

Pd-Ag-Au nanoparticles with varying compositions were deposited using the three protocols 

(Figure 1 shows representative SEM images). Most depositions were carried out using the 

pulsed protocol. By adjusting the concentrations of metal precursors in the electrolyte, we 

achieved compositional variation. For a few specific compositions, potentiostatic or 

galvanostatic methods were used. Although particle size and coverage could be fine-tuned by 

altering potential, current, or precursor concentration (Figure S2 shows an example), we did 

not attempt to enforce a uniform particle size across all samples. Instead, we maintained a 

general size range of 50–100 nm, which is above the threshold where typically particle size 

effects (<10 nm) significantly impact the electrochemically active surface area (ECSA) specific 

ORR activity25,26.

Figure 1. Representative SEM images of the nanoparticles obtained via the different electrochemical 

deposition methods. (a) Potentiostatic method with a potential of −0.6 V vs Ag/AgCl; (b) Galvanostatic 

method with a current of −70 μA; (c) Pulsed protocol. The current/potential details of the deposition 

are shown in Figure S3 and Figure S4.

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX)

After thorough cleaning and drying, the RDE tips were mounted onto a custom SEM stage for 

SEM and EDX analysis using a Zeiss Gemini 450 SEM equipped with an InLens secondary 

electron detector. Imaging was performed at 5 kV acceleration voltage, 100 pA current, and a 

working distance of ~5 mm.

For compositional analysis, EDX measurements were taken at 5 kV, 150 pA, and 8.5 mm 

working distance. Spectra were processed using Aztec 4.2 software to determine the elemental 

composition of the nanoparticles.

ORR activity measurements
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The ORR activity of the Pd-Ag-Au nanoparticles was evaluated using an RDE setup in a Teflon 

cell.27 The RDE tip served as the WE, a gold wire as the CE, and a leakless Ag/AgCl electrode 

as the RE. The RE potential was calibrated daily against a reversible hydrogen electrode (RHE). 

All ORR measurements were performed in freshly prepared 0.1 M KOH. A macro script 

developed using EC4DAQ automated the gas purging, RDE rotation and recording of the 

electrochemical data. Initially, the electrolyte was purged with Ar (200 mL/min, 20 min), 

followed by recording cyclic voltammograms (CVs) at 25, 50, 100, and 250 mV/s (three cycles 

each) within a potential range of 0 to 1.1 VRHE under Ar atmosphere. Subsequently, the solution 

was purged with O2 (same conditions; 200 mL/min, 20 min), and CVs were recorded at rotation 

rates of 0, 100, 400, 900, 1600, 2500, 3600, and 4900 rpm (three cycles per rotation rate) with 

a scan rate of 50 mV/s within a potential range of 0 to 1.1 VRHE under O2 atmosphere.

During the measurements, the resistance between the WE and RE (~25 Ω) was compensated 

to approximately 4 Ω using the potentiostat's analog positive feedback scheme.

Gaussian Process Regression (GPR) Model

The GPR model was trained using compositions obtained from EDX as input features (x), 

where the sum of all elemental components equals one, and the target variable (y) was the ORR 

activity, which was normalized prior to modelling. The GPR model was implemented using 

the scikit-learn library28. The kernel employed was a Pairwise Kernel (gamma=1.00, 

gamma_bounds= (0.01, 1e5), metric='laplacian’).

Density functional theory calculations and Simulated activities

The DFT calculations performed as part of this project used the revised Perdew-Burke-

Ernzerhof (RPBE) exchange-correlation functional29 implemented in the GPAW code30,31. All 

surfaces were modelled with ASE32 as 3x3x5 atom-sized fcc(111) slabs with lateral periodic 

boundary conditions and a vacuum of 10.0 Å added above and below the slab. Each slab had 

the x and y dimensions of the unit cell scaled to the weighted mean lattice constant of the 

elements found in the surface layer due to considerations on strains described in a previously 

published study33. The atoms in the two bottom layers were held fixed during the relaxations, 

and the structures were then optimized towards a maximum force criterion of 0.1 eV/Å. The 

wave functions were expanded in plane waves with an energy cutoff set to 400 eV, and the 

Brillouin zone was sampled with a Monkhorst-Pack grid34 of 4x4x1 k-points. Molecular gas 

phase references were used to calculate the adsorption energy as:

𝛥𝐸𝐷𝐹𝑇
∗𝑎𝑑𝑠 = 𝛥𝐸𝐷𝐹𝑇

𝑠𝑙𝑎𝑏 + 𝑎𝑑𝑠 ― 𝛥𝐸𝐷𝐹𝑇
𝑠𝑙𝑎𝑏 ― 𝛥𝐸𝐷𝐹𝑇

𝑎𝑑𝑠 (1)
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with 𝛥𝐸𝐷𝐹𝑇
𝑠𝑙𝑎𝑏 + 𝑎𝑑𝑠 and 𝛥𝐸𝐷𝐹𝑇

𝑠𝑙𝑎𝑏 being the total energy of the slab with and without adsorbate, 

respectively. 𝛥𝐸𝐷𝐹𝑇
𝑎𝑑𝑠  is the total energy of the 𝑎𝑑𝑠𝑜𝑟𝑏𝑎𝑡𝑒 calculated from the molecular 

references in vacuum. Specifically, this equates to 𝛥𝐸𝐷𝐹𝑇
𝐻2𝑂 ―𝛿 ᐧ 𝛥𝐸

𝐷𝐹𝑇

𝐻2
 with 𝛿 being 0.5 and 

1.0 for *OH and *O.

The simulation of catalytic activities was achieved by applying a well-known kinetic activity 

model, which is exponentially dependent on the adsorption energies of *OH and *O as 

descriptors for ORR activity. Our assumption is that the catalytic process occurs on a 

stochastically composed surface characteristic of high-entropy materials greatly complicates 

these simulations as the adsorption energies are not a few discrete values but rather complex 

distributions due to the combinatorial explosion of unique binding sites on the surface. To 

obtain the adsorption energy distribution of a particular alloy composition, we employ an 

earlier published procedure of creating a surrogate surface to emulate a 96x96 atom-sized 

fcc111 surface to achieve statistically relevant sampling of the binding sites35.

Running structure optimizations with density functional theory on tens of thousands binding 

site geometries to estimate the catalytic activity of a single alloy in a continuous composition 

space is obviously infeasible to the point of impossibility. Therefore, we employ machine 

learning-based models to infer the adsorption energy of each binding site so we can screen a 

catalyst composition in the order of minutes. Our inference model of choice is the 

EquiformerV2-31M (eqV2-31M) model36 which is pre-trained on the OC20 dataset37. It has 

previously been shown that fine-tuning this model on HEA systems have proven effective for 

direct inference of *OH and *O adsorption energies in a so-called Initial-Structure-to-Relaxed-

Energy (IS2RE) procedure, without the need of a time-costly geometry optimization38. 

For this study, we have used a version of eqV2-31M which we have fine-tuned on a large 

dataset of DFT calculations that spans solid-solution HEAs in a composition space spanned by 

12 different elements and 9 different adsorbates, including Ag, Au, and Pd as constituent 

elements and *OH and *O as adsorbed species. This dataset will be published in a separate 

upcoming publication, however electronic supplementary for this publication holds the model 

checkpoint and dedicated test sets on Pd-Ag-Au and the binary sub-alloys, Ag-Au, Pd-Ag, and 

Pd-Au, to document the model performance. As seen in figures S5 to S8, the model achieves 

extremely low mean absolute errors across the test sets ranging from 0.015 to 0.034 eV for 

*OH and between 0.029 and 0.043 eV for *O.
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By applying this model, we can obtain the gross *OH and *O adsorption energy distributions 

for any alloy in the Pd-Ag-Au composition space. Subsequently masking the binding sites 

deemed unavailable for adsorption, due to inter-adsorbate interactions and site-blocking, we 

get the net adsorption energy distributions35. These are the descriptors that constitute the input 

to the expression for average kinetic current, 𝑗𝑘, (measured in arbitrary units) calculated as:

𝑗𝑘 = 1
𝑁

∑𝑁𝑛𝑒𝑡
𝑖 𝑒

―𝑐⋅|𝛥𝐸𝑖
∗𝑎𝑑𝑠―𝛥𝐸𝑃𝑡(111)

∗𝑎𝑑𝑠 ―𝛥𝐸𝑜𝑝𝑡
∗𝑎𝑑𝑠|+ 0.86 𝑒𝑉 ― 𝑒𝑈

𝑘𝐵𝑇   (2)

𝑐 and 𝛥𝐸𝑜𝑝𝑡
∗𝑎𝑑𝑠 are set to 1.0 and 0.1 eV for *OH, with the same parameters being 0.5 and 0.2 

eV for *O. 𝛥𝐸𝑖
∗𝑎𝑑𝑠 is the adsorption energy of binding site i and 𝑇 was set to 298.15 K. 𝑁 and 

𝑁𝑛𝑒𝑡 are the total number of surface sites and the number of occupied sites, respectively.

Data analysis

Figure 2a shows LSVs from a typical ORR activity test. The kinetic current density (jk) was 

extracted from the positive going scan recorded under O2 atmosphere (1600 rpm, 50 mV/s), 

with the respective scan recorded under Ar atmosphere (0 rpm, 50 mV/s) used for background 

correction. The Koutecký–Levich equation:

1
𝑗 =

1
𝑗𝑘

+
1
𝑗𝑙

was applied to derive jk, where jl is the diffusion-limited current density and j the recorded 

current density.

Standard methods (e.g., CV, CO stripping) to determine the ECSA of ORR catalysts risk 

altering the surface composition of multi-component nanoparticles. Furthermore, no precise 

standard stripping charges exist. Thus, we approximate nanoparticles as hemispheres. The 

kinetic current was then normalized to the nanoparticle-covered area on the GC electrode, 

determined from SEM image analysis. For this a Python script39 inverted (converting 

nanoparticles from white to black and the background from black to white) and enhanced the 

contrast of the SEM images. Then the coverage was calculated by determining the percentage 

of dark pixels (representing nanoparticles) relative to the total numbers of pixels in the image, 

with one example shown in Figure S9. The thus normalized kinetic currents were used to 

identify the WE potential at which −1 mA/cm² was reached, from which the composition–

activity contour plot was generated.

Results and discussion
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As outlined in the introduction, this study aims to systematically compare experimental ORR 

data with DFT-derived models to investigate the composition–activity relationship of Pd–Ag–

Au trimetallic nanoparticles. In electrocatalysis, DFT is frequently used to support claims that 

specific compositions or structures exhibit enhanced catalytic activity. The core hypothesis is 

that the ORR activity- expressed in arbitrary units - can be predicted from the binding energies 

of key intermediates (e.g., adsorbed OHad), as discussed in the experimental section. Such 

“experiment–theory” comparisons often rely on a limited number of data points, either from a 

single experimental campaign or aggregated from different literature sources. Additionally, the 

calculated catalyst structures typically diverge from those actually tested. The resulting 

comparisons are often visualized using logarithmic volcano plots based on Sabatier’s principle, 

but these can feature significant outliers - particularly for low-performing catalysts that deviate 

by orders of magnitude from the trend. Systematic, large-scale comparisons using consistent 

experimental datasets remain rare. To address this, we implemented a medium-throughput 

experimental strategy to explore the Pd–Ag–Au compositional space. This approach, combined 

with GPR, enabled us to derive an experimental composition–activity model for comparison 

with DFT predictions.

Exploration of the Pd-Ag-Au compositional space

A targeted sampling strategy was employed to efficiently map the compositional space of Pd–

Ag–Au nanoparticles. Unlike conventional high-throughput methods, which require hundreds 

of uniformly distributed samples, our approach prioritized regions predicted to exhibit high 

ORR activity (e.g., Pd-rich zones), reducing the number of required samples. We began by 

synthesizing Pd90Ag10 and Pd90Au10 nanoparticles, focusing on predicted optimal compositions. 

Sampling was then extended along the Pd–Ag and Pd–Au binary edges, leveraging the greater 

control afforded by electrodeposition of bimetallic systems. The ORR activities of 

monometallic Pd, Ag, and Au nanoparticles were also evaluated. To complete the ternary map, 

we tempted to construct a compositional grid using 15% increments. The Ag–Au binary edge 

was minimally sampled due to the known poor ORR activity of both pure Ag and Au.

In total, 107 samples (including replicates) were synthesized, characterized, and tested. Details 

of synthesis parameters (method, electrolyte composition, deposition time) are provided in the 

supporting Excel file. LSVs for all samples are shown in Figure 2b, from which the kinetic 

current densities were extracted and normalized by nanoparticle coverage, see Figure 2c. For 

the contour plot, the potential at –1 mA/cm2 (normalized current density) was extracted for 

each sample and visualized on a color scale (Figure 2d). GPR was then used to construct the 
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experimental composition–activity model as shown in Figure 3a (the accuracy of the GPR 

model is shown in Figure S10), correlating each metal ratio in the Pd-Ag-Au composition space 

with an ORR activity. We refer to this as the “experimental model”. The full dataset, including 

determined elemental compositions, surface coverages, and determined ORR “onset” 

potentials (potential at which a normalized current density of –1 mA/cm2 was reached) are also 

available in the SI Excel. All raw data and python scripts to process the data are published in 

Zenodo.40

Figure 2. (a) Positive going LSV curves of a Pd100 sample at different RDE rotation rate; (b) Positive 

going LSV curves recorded at 1600 rpm of all the measured 107 samples; (c) Kinetic current densities 

normalized to the individual coverage of the 107 samples; (d) Color-coded results of the normalized 

kinetic current densities from (c) indicating the “onset” potential at which a specific current density of 

− 1 mA cm−2 was recorded.

Analyzing the data obtained, it should be noted that the RDE setup provides several benefits 

for assessing the ORR activity of nanoparticle-based catalysts. Rotation creates a well-defined 

diffusion layer, enabling an accurate extraction of the intrinsic kinetic activity using the 

Page 10 of 18Faraday Discussions

Fa
ra

da
y

D
is

cu
ss

io
ns

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 9

/2
8/

20
25

 1
2:

50
:1

1 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

DOI: 10.1039/D5FD00095E

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5fd00095e


11

Koutecký–Levich equation and minimizing artifacts such as local pH gradients. The expected 

“shape” in the polarization curves is well-established and the theoretical diffusion limited 

currents are known. In our overall data set, some potential outliers were identified while 

possible errors originating from the RDE setup have been excluded by showcasing normal 

distributed activity values when repeating the complete synthesis and testing procedure for a 

selected composition more than ten times (Figure S11). 

The potential outliers may stem from various sources such as incomplete four-electron ORR, 

uneven nanoparticle deposition (leading to inaccurate coverage estimates), contamination, or 

O2 undersaturation. These outliers in principle can be identified for example by incomplete 

diffusion-limited plateaus or non-linear behavior in Koutecký–Levich plots. While 31 samples 

could have been flagged as potential outliers, it was noted that excluding them in the GPR 

model would have had minimal impact on the final experimental model (no comparison shown 

here but at the beginning of the measurement campaign such potential outliers had a significant 

influence on the derived experimental model), affirming the robustness of our data set. Thus, 

all measurements were retained for analysis and no potential outlier was excluded. The 

experimental model and the accuracy excluding the potential outliers are shown in Figure S12 

and Figure S13.

Comparison between experimental model and DFT model

Figure 3. Simplexes representing the Pd-Ag-Au composition space with the sampled compositions 

overlaid as individual points with (a) the experimentally measured potentials at which the kinetic ORR 

current density reaches −1 mA cm−2; (b) the corresponding simulated potentials based on DFT 

calculations; (c) a finer DFT “grid model” using 5% composition steps. The background heatmap is 

obtained from fitting a GPR model to the data points. 
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The experimental model (Figure 3a) indicates that high Pd content with small amounts of Ag 

and Au gives the best ORR activity. The optimal compositions lie between Pd85Au15 and 

Pd90Ag5Au5, with maximum activity of higher than 957 mVRHE at normalized current density 

of –1 mA cm-2. Monometallic Pd approaches this optimal activity (940 mVRHE), while Ag- and 

Au-rich compositions exhibit significantly lower performance (~800 mVRHE). Along the Pd–

Ag edge, the ORR activity decreases near monotonically from Pd100Ag0 to Pd0Ag100, whereas 

the Pd–Au edge displays a maximum between Pd90Au10 and Pd70Au30, then slowly declines to 

~900 mVRHE at Pd20Au80. The Ag–Au edge shows the lowest ORR activity overall.

For comparison, a respective contour map was constructed using DFT-calculated binding 

energies (Figure 3b), using the same composition set as in the experimental data. In addition, 

a finer “grid model” using 5% composition steps is shown in Figure 3c. Note that the overlap 

between both DFT models further supports sufficient data sampling in the experimental 

approach.

The DFT grid model also suggests that Pd-rich composition shows higher activity for ORR, 

with the optimal contents of Pd between 80-95% and 5-10% for both Ag and Au. These areas 

of optimal ORR activity in DFT grid model partially overlapped with the experimental model. 

In addition, the top 2% most active compositions were plotted into a box plot in Figure S14, 

highlighting the elemental distribution trends and showing strong agreement in Pd-rich optima. 

However, two key discrepancies arise. In the DFT grid model, monometallic Pd exhibits lower 

ORR activity when compared to the trends in the experimental model. The reason for this 

discrepancy is not entirely clear at this point, however, two possible reasons can be suggested. 

First, the DFT calculations were performed for a surrogate 111-surface, the surface will have 

a perfect layer of oxygen and the adsorption energy of oxygen on Pd is suboptimal regarding 

the activity-expression we have defined. Structural effects may influence the results 

particularly for monometallic surfaces. Second, it should be noted that residual metal impurities 

are always present in the precursor salts, an effect that is not captured in the DFT calculations. 

Hence, a “real” Pd100Ag0Au0 data point is experimentally not feasible despite the use of “high 

grade” chemicals. In this context, it should be noted that while in the DFT model the predicted 

ORR activity of monometallic Pd is significantly lower than the optimal ORR activity, it 

quickly reaches close to optimal activity when Pd content at 80-95%. 

The second discrepancy is the difference in “symmetry” of the ORR activity along the Pd–Au 

and Pd–Ag edges. The experimental model exhibits along the Pd–Au edge enhanced ORR 

activity as compared to the Pd–Ag edge, whereas the DFT model is more symmetrical along 
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the two edges – at least in the region of high Pd content. This difference may be an experimental 

artifact, or it may indicate different segregation behavior of Au and Ag in the alloys. Supporting 

the artifact explanation is the observation from the SEM images (Figure S15) that the 

nanoparticles along the two edges exhibited morphological differences. Pd–Au nanoparticles 

displayed rough, cauliflower-like structures, suggesting that their ECSA was underestimated 

using the assumption of hemispherical nanoparticles for the area active area determination. Pd–

Ag nanoparticles by comparison appeared less “rough” and more “hemispherical”. In addition, 

it should be noted that the DFT model assumes a completely homogeneous alloy composition, 

whereas in reality, surface segregation can occur under ORR conditions. For example, literature 

reports suggest Ag in Pd–Ag alloys segregates to the surface reactive conditions, which could 

explain lower experimental activity than predicted by the DFT model41 Hence, our approach 

might be suitable for indirectly detecting such phenomena occurring upon exposing 

electrocatalysts to a reactive environment.

Conclusions

This study presents a robust framework for comparing experimental and DFT-derived 

composition–activity relationships. The proof of concept using a nanoparticle electrodeposition 

approach is applied for the Pd–Ag–Au trimetallic composition space and the ORR tested in 

alkaline conditions. Through a targeted sampling strategy and GPR modeling, we efficiently 

explored the ternary space using only 40 core compositions and 107 samples in total.

The key insights derived from this study include:

1. Converging predictions: Both experiments and DFT modeling identify Pd alloyed with 

small amounts of Ag and Au as the optimal catalyst composition.

2. Discrepancies: DFT may underestimate Pd’s activity in nanoparticle-based 

electrocatalysts due to structural or compositional differences. While the experiments 

indicate an enhanced activity along the Pd–Au edge, this is not capture in the DFT 

calculations, most likely due to surface roughness and, or segregation effects.

Our methodology enables efficient exploration of multi-metallic and high entropy alloy 

electrocatalysts and can be extended to other systems, accelerating catalyst discovery and 

deepening understanding of composition–structure–activity relationships. Looking forward, 

our approach offers more than black-box model comparisons: it can flag deviations that hint at 

surface composition changes under reaction conditions. A major limitation in current catalyst 
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screening is reliance on ex-situ, bulk-averaged data. Our strategy helps pinpoint compositional 

regions where operando investigations are most warranted.

To advance our approach, the observed discrepancies between the experimental and the DFT 

modelling of the composition-activity relationship underscore the need for:

• Incorporating surface reconstruction, dynamic segregation, and stability effects into 

theoretical and experimental considerations

• Experimental validation of even widely accepted computational predictions

• In depth analysis of optimal compositions to capture the morphology nanoparticle 

based electrocatalysts under operation conditions

Data availability

The raw data for this publication including electrodeposition files, SEM images, SEM-EDX 

data, ORR measurements, DFT calculation, and python scripts for data processing are available 

at Zenodo at https://doi.org/10.5281/zenodo.15577624.40
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