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studied at thermodynamical equilibrium and room temperature using a combination of well estab-

lished many-body potentials and Monte Carlo methods. Tools from percolation theory are used to

further quantify the deviations to ideal behavior from noninteracting solid solutions. Upon varying

the concentration of each element one at a time, the possible surface enrichment in the various metals
is determined and the fragment statistics provide insight into the spatial distribution of atoms within
the nanoparticles and their tendency for mixing or segregation. The effects of size and dimensionality
are addressed separately, by comparing the results obtained for the 0D (nanoparticle) system with
those for the 2D (slabs) and 3D (periodic) samples. Although these properties are found to depend

on the underlying many-body potential to some extent, some robust trends are predicted notably for

silver and platinum, which strongly segregate and preferentially reside at the surface and in the core

of the nanoparticles, respectively.

1 Introduction

Multi-component metallic materials, often referred to as high-
entropy alloys (HEAs), have recently been increasingly scruti-
nized owing to their promising mechanical,™ energy®™ and
electrochemical™ properties, providing valuable alternative to
simpler alloys made from fewer but more expensive elements.
The burst of interest in HEAs has also been fuelled by discov-
eries of their possibly enhanced thermal stability,™"™ electric
conductivity and even superconducting properties,™ or mag-
netism.™ " Among the many applications these materials have
found, the cases of coating, 7 catalysis“® ¥ and hydrogen en-
ergy ™ deserve special mention.

At the nanoscale, multi-component particles are expected to
not only inherit such beneficial effects from the bulk material,
but also undergo synergistic effects from dimensionality reduc-
tion associated with increasingly large fractions of surface atoms.
High-entropy nanowires® and especially HEA nanoparticles or
high-entropy nanoalloys**#F have thus been explored and shown
indeed to stand as useful candidates for various applications. 5

From the fundamental point of view, HEA materials raise a
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number of very interesting questions regarding the competition
between kinetic and thermodynamic stability. As dimensionality
is decreased from the bulk, the increasing fraction of the more
mobile surface atoms suggests that the structure of HEA nanopar-
ticles should be increasingly driven by thermodynamics rather
than kinetics as they become smaller. In practice, the structure of
HEA nanoparticles is effectively strongly dependent on the way it
was synthesized, and it is thus not surprising that producing HEA
nanoparticles with a desired composition remains experimentally
challenging,* although successive synthesis was recently shown
to favor the design of core-shell configurations. >

In the presence of exposed surfaces, the different atomic mo-
bilities and surface energies of the various components can lead
to segregation of some of them, an effect already evidenced for
the seminal Cantor alloy FeCrMnNiCo. > Surface segregation is of
prime importance for many applications of multi-component ma-
terials, starting with catalysis. In nanoparticles, the presence of
sites with different coordinations further complicates the prob-
lem and leads to a subtle interplay between mixing, segrega-
tion, and overall shape, which has been specifically investigated
by various groups.“®®“ The toolbox to address these questions
theoretically is rather diverse, and ranges from electronic struc-
ture approaches® to pure thermodynamical methods such as
CALPHAD ™35 through simplified atomistic descriptions based
on explicit many-body potentials.®*7 All these methods have
their own challenges, starting with their increased degree of
parametrization as the number of variables decreases from nuclei
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and electrons to nuclei only, and finally to phases and composi-
tions alone.

One interesting challenge is that of chemical disorder. With
many elements, the energy landscape becomes extremely compli-
cated and rugged, and this complexity promotes the use of sta-
tistical approaches based on machine learning®*%“4 or, at the
other end, of simplified approaches in which disorder is averaged
out. For example, in thermodynamical approaches, it is often
assumed that a perfect solid solution is achieved in HEA materi-
als, thereby providing explicit formulas for the associated entropy
and enthalpy functions of interest. 7® However, because of sur-
face and site segregation, and due to higher-order effects such
as the composition dependence of the surface energy, ™ treating
size, composition and segregation effects independently from one
another is likely to be unrealistic. The deviations to this ideal
behavior can be quantified from structural or thermodynamical
perspectives, as achieved in our earlier work on selected HEA
nanoparticles,”® in which an efficient approximation for the mix-
ing entropy based on the pair correlation probabilities between
nearest neighbors was introduced.

The present work focuses on perhaps the most important vari-
able in a multicomponent metallic system, namely its elemen-
tal composition. Controlling the ultimate composition in a HEA
nanoparticle during its synthesis is undoubtedly experimentally
challenging, yet it is essential to understand, if not predict, how
the properties of the resulting material are affected by varia-
tions in composition. Despite obviously expected trends, such
as the decrease in the mixing entropy as the composition increas-
ingly deviates from optimal equicomposition, this aspect remains
rather undocumented at least in the theoretical literature. Here
and following our earlier work™ we use the atomistic approach
to model multi-component nanoparticles made from the noble
metals Ag, Au, Pd, Pt, and Cu, and examine computationally
their structural features at 300 K thermal equilibrium, varying the
composition of each element one at a time. High-entropy alloy
nanoparticles from these elements have been successfully synthe-
sized and shown to exhibit promising potential in catalysisZ*&0
as well as hydrogen sensing.*' At equicomposition, various sur-
faces of this mixture have been scrutinized by Kristoffersen and
Rossmeisl®' based on explicit electronic structure methods.

Besides surface fractions, we further exploit the powerful tool
of percolation theory from statistical physics to determine the
propensity of the various elements to actually behave as a solid
solution. By comparing the results obtained on small nanoparti-
cles of a few nanometers diameter to those of slabs or periodic
samples, the effects of size and dimensionality can also be appre-
ciated on a more quantitative footing.

Atomistic simulations require appropriate models to describe
the interactions among the different elements. For metallic
mixtures made from noble or transition metals, and putting
aside more recent but also more abstract machine learning mod-
els, 57 two families of potentials particularly stand out, namely
embedded-atom models (EAM) and potentials based on the sec-
ond moment approximation (SMA) of the electronic density of
states in tight-binding theory. The underlying hypotheses of the
two types of potentials and their functional form markedly dif-
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numbers of parameters usually adjusted to reproduced experi-
mental data and, sometimes, predictions from electronic structure
methods such as density-functional theory. For multi-component
systems this issue is particularly acute, as the available data is
necessarily more scarce, if not less reliable. These simple ob-
servations motivated us to use different potentials for modeling
AgAuPdPtCu nanoparticles, and to examine their predictions in-
dependently, with the aim of identifying which physical trends in
the results are robust against changing the potential, and which
are more disputable in the context of forthcoming experimental
comparison.

In the next section we present the main methods used to simu-
late and analyse the structural and statistical properties of the no-
ble metal HEA nanoparticles, focusing on the ways to measure the
deviation to the perfect solid solution behavior expected for ideal
noninteracting systems. Section B discusses the performances of
the two chosen potentials in reproducing the surface composition
of selected, usually binary alloys made from the present elements
of interest. The main results are presented in Sec. B, comparing
as much as possible the cases of nanoparticles, two-dimensional
slabs, and three-dimensional periodic samples with similar num-
bers of atoms and with varying composition in each element sepa-
rately. The extent of surface and bulk segregation emerging from
these simulations, which is found to depend markedly on the ele-
ment, is concluded to be strong enough for the perfect solid solu-
tion to be a poor approximation for these mixtures. Finally, Sec. B
summarizes the main conclusions and paves the way for future
research avenues.

2 Methods

2.1 Monte Carlo simulations

The present work mainly relies on computer simulations per-
formed at thermal equilibrium and at the fixed temperature 7 =
300 K, based on conventional Monte Carlo sampling ruled by the
Metropolis acceptance probability. Ignoring the kinetics is a sim-
plifying assumption, as it neglects any prior knowledge of the
way the systems were actually prepared, focusing on how they
should behave if left to evolve for sufficiently long. A fully atom-
istic description was followed, imposing for the nanoparticles an
initial structure borrowed from perfect truncated octahedral lat-
tice, which is the Wulff shape corresponding to the face-centered
cubic (FCC) crystalline structure. Most of the simulations were
performed on 6-shell nanoparticles containing 4033 atoms in to-
tal, but additional simulations on the 5-shell (2406 atoms) and
7-shell (6266 atoms) systems were also conducted at equicompo-
sition.

To assess the importance of size and dimensionality separately,
simulations were also performed for the three-dimensional FCC
system under periodic boundary conditions in the three Carte-
sian dimensions, allowing for density relaxations by including
overall box moves in the zero pressure, isothermal-isobaric en-
semble (with one volume move attempted every 100 MC cycles).
A 10x10x10 lattice was considered or the 3D system, or an
equivalent number of 4000 atoms. Similarly, two-dimensional
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slabs also based on the FCC lattice were considered, exposing the
(111) surfaces on both sides, perpendicular to the z axis. Here
again, the density was not fixed but allowed to vary to sam-
ple the isothermal-isobaric ensemble at zero pressure and 300 K
temperature. The volume change associated with random ex-
pansions or contractions of the system was evaluated from the
two imposed lateral dimensions Ax and Ay, and the difference
AZ = Zmax — Zmin Detween the extremal values of the z atomic coor-
dinates, thus without introducing any additional parameter. Sim-
ulations of (111) slabs were carried out on ideal boxes containing
4032 atoms.

For all systems, chemical ordering was sampled in the Monte
Carlo process though random swaps attempted between atoms
with different identities, while small atomic displacements were
allowed as well so the system could adjust to strain variations
caused by altering the local chemical order. In practice, identity
swaps and atomic displacement moves were attempted with 90%
and 10% probability, respectively, the maximum step size being
adjusted to ensure that the random displacement moves were ac-
cepted with a probability in the 40-60% range.

2.2 Statistical tools of analysis

This work focuses on the structural aspects of the HEA systems
at equilibrium, but does not aim at quantifying its fundamental
thermodynamical properties except for the mixing entropy. By al-
lowing the complex space of chemical ordering to be sampled as
the dimensionality, composition and possibly the size are varied,
we are mostly interested in defining the extent to which the var-
ious elements tend to associate together or, conversely, mix and
form alloys.

Surface segregation is a primary property of interest, especially
relevant in catalysis or optics and straightforwardly evaluated
from the known coordination of individual atoms, and by defini-
tion an atom is considered to be at the surface if it has 9 nearest
neighbors at most. For the nanoparticles, we do not distinguish
further the case of atoms residing at even less coordinated sites
such as edges or vertices, leaving such complications for future
scrutiny.

To get deeper insight into the propensity of each element to
segregate or mix, we follow percolation theory,? and partition
each configuration visited along the Monte Carlo simulations into
various disconnected fragments, each fragment forming a con-
nected set of atoms of this element.®* Such ideas were employed
earlier in the statistical analysis of the Potts lattice model at equi-
librium.®¥ Here, one atom of a given element belongs to a frag-
ment if there exists another atom (of this very same element) in
this fragment to which it is connected as nearest neighbor. In
practice, the partitioning is performed separately for the different
elements, yielding after averaging over the entire MC trajectory
statistical distributions in the numbers of fragments or their max-
imum size.

A more global order parameter of the overall mixing behavior
is provided by the mixing entropy itself, which in the limit of a
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Sl(ril?;al) = 7kB ZX,' lnxi7 (1)
i

in which kg denotes the Boltzmann constant and x; the concen-
tration in element i. Deviations from this ideal limit can be eval-
uated using structural or thermodynamical approaches, 53
particular the pair distribution functions p;; among the various
elements.”™ Here we further assume that under the mild tem-
perature conditions, the atoms change their neighbors from iden-
tity swap moves, rather than from slower and more cooperative
moves that would typically take place in the liquid state. Restrict-
ing p;; to the first neighbors provides a very reasonable approxi-
mation for the mixing entropy,

in

Smix = —kg Y pijlnpij, 2
ij

in which the ideal limit of Eq. (@) is straightforwardly recovered
for uncorrelated distributions, for which p;; = x;x;.

To simplify notations, arbitrary elements and their composi-
tions will be called from the uppercase and lowercase letters A
and q, respectively, rather than using the subscripts x;.

2.3 Many-body potentials

Atomistic simulations rely on explicit potentials to describe the
interactions between the various elements in the system, and for
the Ag-Au-Pd-Pt-Cu mixture different models are available in the
literature. %83 Two particular difficulties with multi-component
systems are the larger number of parameters they inherently in-
volve and the fewer reference data on which parameter adjust-
ment can be achieved. While the former issue is intrinsic to alloys,
the training set issue originates experimentally from the lesser
degree of control of the composition, especially in nanoscale sys-
tems. Computationally, where simulation potentials increasingly
rely on density-functional theory calculations, the situation is not
necessarily much more favorable since these methods are known
not to perform universally well for all metals involved in the al-
loy. 4

Among the few available potentials able to describe the five
metallic elements of the present HEA systems, two of them are
employed here with the aim of comparing their predictions. The
embedded-atom model (EAM) of Zhou and coworkers® is a
rather generic many-body potential in which the interactions be-
tween unlike elements are modelled using combination rules.
This potential is very popular for modeling metallic alloys and
HEA materials and appears perhaps as the most natural candi-
date for the Ag-Au-Pd-Pt-Cu system. However, it should be kept
in mind that it was essentially fitted to reproduce reference data
on bulk metallic materials and its performance on finite systems
is unclear,” despite satisfactory reported reproduction of surface
segregation patterns® that will be discussed further in Sec. B.

From the perspective of nanoalloys, a rather large number of
computational groups have adopted the alternative functional
form derived from the second-moment approximation (SMA) to
the density of states in tight-binding theory. 58377 In the SMA
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approach, the main functions of interest for the repulsive and
attractive terms are both exponential but, and in contrast with
the EAM model of Zhou et al., dedicated parameters are intro-
duced for the pairs between alike and unlike elements. For the
Ag-Au-Pd-Pt-Cu system, sets of parameters have been published
by various groups for all 10 existing pairs and the correspond-
ing binary alloys, *®8%2123 with several sets for ternary alloys as
well, B4B880.82 Tn many cases, the parameters were adjusted also
taking into account the application to nanoscale systems, mak-
ing the SMA approach a valuable alternative to EAM. Among the
existing sets of SMA parameters for the various pairs, we have se-
lected recent references focusing on binary nanoalloys, providing
a complete model for the quinary mixture. The functional form of
the SMA potential and the entire list of parameters, together with
their original references, are given as Supplementary Electronic
Information in Tables S1-S6.

3 Benchmarking on slabs

The performance of both EAM and SMA potentials was first eval-
uated by evaluating the propensity for surface segregation in a
number of binary and ternary alloys, for which experimental mea-
surements are available. Dedicated Monte Carlo simulations for
slabs containing approximately 4000 atoms were carried out in
the isothermal-isobaric ensemble, under atmospheric pressure,
attempting swap identity moves with 89% probability, atomic dis-
placements with 10% probability, and global scaling of all coor-
dinates (volume moves) with the remaining 1% probability. The
results of these MC simulations are collected in Table M. Over-
all, the EAM potential behaves significantly better than the SMA
model for the majority of systems addressed experimentally. With
respect to SMA, the agreement is particularly remarkable for the
Ag-Pd, Pd-Cu, and Au-Pt systems, whereas SMA actually provides
a more satisfactory description for the only Au-Cu systems. Per-
haps more importantly, the SMA model turns out to predict high
temperature instabilities (surface melting) for the Ag-Au and Au-
Pt binary systems, as well as the Ag-Cu-Pd ternary slab, although
this system is also found to be rather unstable at 1000 K when
described with the present EAM approach.

Our results generally agree with earlier simulations performed
by Dahale and coworkers®® on the very same systems, employ-
ing the same EAM potential from Zhou and coworkers” but a
rather different computational protocol. However, occasional de-
viations are also found for the systems for which disagreement
with experiment is the most noticeable. We believe the method-
ological differences are precisely the reason of such discrepancies.
In Ref. 96, local minimizations are performed after each identity
swap, before the Monte Carlo acceptance criterion is evaluated.
Owing to such systematic local minimizations, the energy land-
scape actually sampled in these simulations is obtained from the
original landscape by a staircase transformation similar to that of
basin-hopping global optimization.™” The consequences on the
thermodynamics equilibrium can be quite strong, ™ and it is also
quite natural that these earlier simulations did not find any evi-
dence for surface melting.

The poor thermal stability exhibitted by some systems in
Table @M suggests some excessively weak bonds in the multi-
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component systems, especially with the SV 91/)%?&'31 {41! Besides
such qualitative issues, the behavior of the two models is reason-
able but definitely far from perfect, the description provided by
the EAM approach of Zhou et al. ¥ appearing overall as superior
to that of the present SMA model combining parameters from ex-

isting binary systems.

4 Results:
bulk

Most simulations were performed for 4033-atom truncated oc-
tahedral nanoparticles, with additional simulations for 2D slabs
exposing their (111) surface under periodic boudary conditions
along x and y axes, as well as 3D FCC lattice systems in periodic
cubic boxes, the two latter systems containing 4032 and 4000
atoms, respectively. For periodic systems, the box dimensions
were allowed to vary but the pressure was kept to zero in the
isothermal-isobaric ensemble at 300 K. Varying the composition
one element at a time by steps of 10% in the quinary mixture
Ag-Au-Pd-Pt-Cu yields 45 compositions to be considered, and for
each of them the atoms were initially distributed randomly on the
finite face-centered cubic lattice, chemical ordering and atomic

nanoparticles versus slabs versus

structure being relaxed progressively along the Metropolis MC
sampling according to the appropriate boundary conditions.

4.1 Surface fractions

We first discuss the main structural property of interest in catal-
ysis, namely the surface fraction. By varying the nominal com-
position a of element A in the system, the relative surface com-
positions b = pg(a;B) for atoms of element B that reside at the
outermost layer in the nanoparticles and in the slabs can be deter-
mined, yielding five sets of functions that are partially correlated
since their sum over b must always amount to 1 for all a.

The entire set of surface fractions obtained for the nanopar-
ticles and for the slabs can be represented as 5 x 5 matrices of
graphs along the a and b dimensions, which are provided in Fig.
S1 and S2 of the electronic supplementary material, respectively.
Fig. @ shows instead a selection of surface fractions obtained for
three particular elements (Ag, Au, Pt) whose bulk composition
is being varied, comparing the results obtained for nanoparticles
and for the (111) slabs. For these self-correlation plots, the per-
fect solid solution behavior expected if all interactions between
the various elements were identical is simply pgideal) (a=b;B) =a,
highlighted in the graphs of Fig. [ as diagonal lines. The three
elements selected in this figure behave in very contrasted ways
as their concentration is varied. In Figs. M(a) and M(d), silver
clear shows a strong excess at the surface, with a relative differ-
ential maximum near equicomposition (a = 20%) found for both
nanoparticles and slabs, and with both potentials. Although the
particularly high silver composition in the EAM slab also prob-
ably reflects a deficiency of this potential noted in the previous
section, it is remarkable here that this first trend regarding silver
is nevertheless robust against model and dimensionality.

Having one element in excess at the surface necessarily implies
a lack in other elements, and this is precisely the case with plat-
inum in Figs. M(c) and D(f). Here again, the two models agree
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Alloy Surface | T (K) Exp. (Ref.) SMA EAM
Ago.33Pdy 67 111 820 94.8% Ag (B8) | 47.9% | 86.1%
Ago.33Pdg .67 100 700 98.6% Ag (98) | 60.3% | 94.5%
Pd 75Ptg.25 111 600 99.0% Pd (99) | 96.4% | 99.9%
Pdy.75Cug 25 111 600 26.0% Cu ( 99) 3.9% | 23.9%

Agp3Aug 7 111 973 40.0% Ag ( T00) 29.1% 68.8%

Aug s9Cup 41 111 723 98.0% Au ( [0O0) | 87.7% 70.3%
Aug 71 Cug 29 111 698 98.0% Au ( T00) | 95.3% | 85.3 %
Aug 9Pty 4 111 873 100% Au ( T00) | 91.8% 100%
Ago.091Cug 303Pdo 606 110 1000 | 28.0% Cu (T0OM) | 15.8% | 38.6%

Table 1 Surface segregation in selected binary and ternary alloys from the Ag-Au-Pd-Pt-Cu system. All values for the simulated systems refer to the
same element for which the experimentally reported segregation is mentioned. The numbers in bold face in the predicted concentrations highlight
satisfactory agreement, while numbers in italics indicate that the system melts at the surface.

quite well with one another and both predict marked deviations
from ideality from below, with an approximate threshold of 60—
70% of Pt in the nanoparticle required to see any of this element
at its surface, and only a fraction of platinum at the surface slab
below this value. In contrast, gold displays surface fractions in
the nanoparticles similar to the bulk composition as its overall
concentration is increased, with some excess in the SMA model
but some lack when described with EAM, the latter effect being
amplified in the slab.

A selection of cross-correlation plots, in which the concen-
tration of elements other than the one being varied, is given
in Fig. . The surface fractions ps(a # b;B) can be compared
with the simple prediction for the ideal solid solution for which
p_ﬁide"“) = (1—a)/4. These plots also provide a first opportunity to
illustrate the behavior of the remaining two elements not consid-
ered so far, namely palladium and copper. Figs. B(a) and B(d)
show how the gold surface composition varies when the bulk
copper concentration increases in nanoparticles and in slabs, re-
spectively, while Figs. B(b) and B(e) show the reciprocal prop-
erty, or the surface fraction in copper as the gold bulk proportion
increases. Here the predictions from the two models markedly
differ, with non-monotonic excess in surface gold with the SMA
model and a local maximum near 70% bulk copper, but a clear
dearth in gold described with the EAM approach. If the bulk con-
centration in gold is increased, copper generally shows a lack in
surface composition for both models, except for a slight excess
with EAM in the nanoparticles at low gold concentration, and a
temporary increase in the SMA slab near 50% gold. Comparison
between these four plots shows that the information contained
in the cross-correlation function pg(b;A) cannot be inferred from
that of the reciprocal function p,(a;B), more generally indicating
that for such multi-component systems, the tendency for surface
segregation of a particular element cannot be explained by its in-
teraction with a single other element.

Figs. O(c) and B(f) finally show the surface concentration in pal-
ladium, as the bulk amount of copper is again increased. For this
element, the EAM method systematically predicts a near absence
at the surface, whereas the SMA model finds a slight excess as
soon as the amount of copper exceeds 20%, but still not deviating
much from the ideal limit b = (1 —a) /4.

Beyond the selected examples, a more global picture arises
from the matrix representations of Figs. S1 and S2 in the elec-
tronic supplementary material. From these figures, the most strik-
ing features at the surface are the strong excess in silver and the
extreme lack in platinum, the remaining three elements (Au, Pd,
Pt) sharing what is left of the surfaces themselves. The effects
of dimensionality (nanoparticles versus periodic slabs) are most
prominent on copper, which is nearly absent in the (111) peri-
odic surface but close to the ideal solid solution behavior in the
nanoparticle with the EAM, but the complex variations seen with
the SMA model in some cross-correlation plots are preserved for
both nanoparticles and slabs. Quantitatively, the main differences
between the predictions of the two models are those for silver and
gold, for which their discrepancy is also quite high in Table .

4.2 Percolation analysis

A far more complete picture of segregation in the multi-
component systems is provided by the statistics of disconnected
fragments within the frame of bond percolation theory.5? Here
we consider mainly the average number » = ny(a;B) of discon-
nected fragments of element B as the concentration a in element
A increases, providing once again a set of 5 x 5 correlation plots
for nanoparticles, (111) slabs, as well as fully periodic bulk sam-
ples. The number of disconnected fragments is directly related
to the propensity of the element to aggregate together into few
but large fragments or, conversely, to distribute homogeneously
within the available lattice as many small fragments.

For this statistical property also, the perfect solid solution be-
havior in the absence of interactions can be obtained exactly,
at least numerically by sampling a large number of times the
random elemental distributions at prescribed composition. The
Monte Carlo procedure (with all moves being accepted) can be
repeated under the boundary conditions appropriate to the slab
and the bulk systems, yielding the corresponding functions n(;deal)
to which the simulation results, in the presence of the EAM or
SMA interactions, can be compared with. Unlike the surface seg-
regation, we do not expect simple analytical expressions to be
available for the statistics of disconnected fragments, because of
the nontrivial dependence on the details of the underlying lattice.

Similar to the surface fraction, the entire sets of ny(a;B) plots
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Fig. 1 Surface fractions in selected elements, as the overall concentration of this element is increased in 4033-atom nanoparticles (upper panels) or
4032-atom (111) slabs (lower panels), predicted from the EAM and SMA potentials. The dashed blue line is the expected result for the ideal solid

solution. (a,d) Ag; (b.,e) Au; (c,f) Pt.

are given in the figures S3, S4, and S5 of the electronic supple-
mentary material, for the nanoparticles, slabs, and bulk samples,
respectively. In Fig. B we focus on a selection of results showing
the average numbers of silver, gold, or platinum fragments as the
nominal concentration in the same element increases in the entire
system. For these self-correlation plots, the functions n(;deal) (a;A)
corresponding to the ideal solid solution behavior exhibit simi-
lar bell shapes with maximum near 11.6%, 11.0%, and 10.6%
for the nanoparticle, slab, and bulk systems, respectively. Such
shapes are qualitatively expected because n}ldeal) (a;A) is necessar-
ily positive, vanishes for ¢ = 0 and reaches 1 at sufficiently large

a approaching 100%.

For the interacting systems, the average number of fragments
also exhibits bell shapes with maxima in the 10-20% range, but
is generally lower than the ideal result for silver and especially
for platinum. The much lower numbers found for platinum indi-
cate a strong tendency for segregation in this element, expected
to form few but rather large clusters already at low concentration.
In contrast, gold is found to behave very closely to the ideal limit
with the EAM, and produces even more fragments with the SMA
model, suggesting a significant dispersion of this element into tiny
bits, even more so as dimensionality is increased from nanopar-
ticles to slabs and finally to periodic samples. The case of silver
appears to be rather intermediate between the two previously dis-
cussed elements, with fewer fragments than the ideal limit for the
EAM, and also for the SMA model at low concentration a < 40%
but with slightly higher values above this approximate threshold.

Cross-correlation plots can be numerically determined for the
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average number of fragments for elements other than the one
whose nominal concentration is being increased, either assuming
perfect solid solution or accounting for the interactions through
the EAM or SMA approaches. They are represented in Fig. B, for
the same combinations as in Fig. @. In the ideal limit, the resulting
function ngﬂdeal) (a # b;B) also exhibits a bell shape that necessar-
ily begins with a finite value at low «a, since the element under
scrutiny is present at 25% nominal composition, and vanishes for
a — 1 when the entire system is empty of this element. The inter-
mediate non-monotonic variations of n(fideal> are not entirely triv-
ial, because they show that there exists an optimal composition
x* for the specific Ac(BCDE)(;_,) /4 quinary system, close to 55%,
that maximises the number of disconnected fragments other than
A. Numerically we find x* = 53.1%, 56.1%, and 57.4% for the
nanoparticle, slab, and bulk systems, respectively. Overall, the
ideal behavior is recovered almost quantitatively by the EAM ap-
proach for the Au and Cu elements, but deviates significantly for
the Pt-Cu pair. With the SMA method, the number of gold frag-
ments is overestimated at low copper concentration in slabs and
especially in the periodic samples, suggesting a strong dispersion
of this element as small clusters or individual atoms. Interest-
ingly, the average numbers of gold and copper fragments undergo
threshold behaviors with this potential, with much stronger vari-
ations if the leading element exceeds 50% concentration.

Such a threshold behavior is clearly found for the number of
platinum fragments when the amount of copper is increased, with
extremely few platinum fragments below 60-70% copper, and
many above this limit. Fig. S6 in the electronic supplementary
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Fig. 2 Surface fractions in selected elements, as the overall concentration of another element is increased in 4033-atom nanoparticles (upper panels)
or 4032-atom (111) slabs (lower panels), predicted from the EAM and SMA potentials. The dashed blue line is the expected result for the ideal solid

solution. (a,d) Au vs Cu; (b,e) Cu vs Au; (c,f) Pd vs Cu.

material, which shows the final configurations obtained in the
EAM simulations of the nanoparticles with 70% and 80% cop-
per, respectively, confirms that the chemical ordering exhibits a
composition-induced transition from fully segregated to fully dis-
persed, a feature that is also robust with dimensionality even
though its precise location in terms of copper concentration is
slightly altered. In contrast, the SMA potential predicts a far
more continuous trend, with a number of platinum fragments
that remains substantially lower than the ideal limit curve, thus
indicative of a superior segregating tendency of this element. The
results obtained here with the EAM potential are particularly en-
lightening as they suggest that chemical disorder of specific el-
ements may be triggered and even amplified away from global
equicomposition due to their particular interactions with other
elements.

At this stage it is instructive to consider how the structural indi-
cators discussed previously translate into actual elemental distri-
butions, and for this purpose we have selected the lowest-energy
configuration visited along the MC trajectories. Restricting our-
selves to the equicomposition case, Figs. B and B illustrate such
configurations predicted for the EAM and SMA approaches, re-
spectively, emphasizing the distributions of the five elements in-
side the NP. With the EAM description, the tendencies for silver
segregating at the NP surface and, to a lesser extent, copper are
rather obvious on this figure, whereas platinum and palladium
are barely visible at the surface, gold contributing only to a minor
fraction and near the edges. Perhaps the most striking elemental
distribution is that of platinum which, and as suggested by the

previous discussion, forms at equicomposition only a small num-
ber of homogeneous clusters inside the NP.

Although silver remains as the most favored element at the sur-
face with the SMA model, gold and palladium are also clearly vis-
ible, with platinum occupying subsurface sites, hence perceivable
along the low-density (001) directions. Copper is the element
that tends to segregate the most at equicomposition and form
a main cluster inside the NP along with a number of individual
atoms dissolved in the rest of the lattice.

According to Figs. -8, the mixing or segregating trends de-
pend more on the underlying interatomic potential than on di-
mensionality and the possibly periodic boundary conditions along
two or three dimensions. Size effects themselves were also inves-
tigated but only at selected compositions and for nanoparticles
containing 2406 or 6266 atoms, forming perfect truncated octa-
hedral shapes with just one less or one more layer than our ref-
erence 4033-atom nanoparticle. The surface segregation in two
elements, silver and palladium, is examined in Fig. @ as a function
of the inverse nanoparticle radius that is inversely proportional to
N'/3 at the specific equicomposition and for the two EAM and
SMA potentials. From this figure, size effects appear mostly reg-
ular for the EAM potential, surface segregation tendencies con-
verging in the limit 1/N'/3 — 0 to the values obtained for the slab
using the same interaction model. The variations predicted by the
SMA model are not as smooth, and for the larger nanoparticle a
slight excess in surface silver is found, accompanied by a depres-
sion in surface palladium. Inspection of the structures visited by
the Monte Carlo simulation with this potential indicates that the
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Fig. 3 Average number of disconnected fragments of a given element, as the overall concentration of this element is increased in 4033-atom
nanoparticles (upper panels), 4032-atom (111) slabs (middle panels), or 4000-atom FCC periodic samples (lower panels), predicted from the EAM
and SMA potentials. The dashed blue line is the expected result for the ideal solid solution. (a,d,g) Ag; (b,e,h) Au; (c,f,i) Pt.

truncated octahedral structure is not entirely stable even at such
a low temperature as 300 K, silver and gold atoms tending to des-
orb and form terraces (see [@). Such effects are consistent with
the tendency of the present SMA potential to underestimate the
melting point in binary and ternary alloys containing gold and
palladium, as noted in Table .

The distributions of maximum fragments size for the same
nanoparticles at equicomposition are represented in Fig. B(a) and
B(b) for the EAM and SMA potentials, respectively. Here the frag-
ment size was normalized by the total nanoparticle size N in or-
der to allow for comparison between the different systems. The
information provided by these figures is complementary to the
average number of fragments, and it emphasizes perhaps even
more that most elements do not behave as solid solutions, espe-
cially when described with the EAM. In this case, and consistently
with Fig. B, most of the silver is distributed into few, highly con-
nected fragments that also turn out to be exposed at the surface.

8| Journal Name, [year], [vol.], 1_ra

The distributions are particularly narrow for platinum, indicat-
ing that highly stable chunks of this element were formed inside
the nanoparticles, with very limited mobility of the remaining Pt
atoms. In contrast, Pd, Au, and Cu all display rather broad distri-
butions, suggestive of appreciable statistical fluctuations that con-
firm their greater tendency to mixing even at room temperature.
Figs. S§7-S10 in the Electronic Supplementary Material depict the
lowest-energy structures found in the Monte Carlo simulations for
these two systems and the two interaction potentials, along with
the elemental distributions.

With the SMA potential, the propensity for mixing is stronger
for all elements, with particularly broad distributions or silver
and palladium matching the elemental representation of Fig. B as
well as Figs. S8 and S10 for the 2406- and 6266-atom nanoparti-
cles, respectively. Copper and platinum are now the two elements
forming the largest clusters, gold lying inbetween, but still with
rather broad distributions. Noteworthily, and unlike the fraction
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Fig. 4 Average number of disconnected fragments of a given element, as the overall concentration of another element is increased in 4033-atom
nanoparticles (upper panels), 4032-atom (111) slabs (middle panels), or 4000-atom FCC periodic samples (lower panels), predicted from the EAM
and SMA potentials. The dashed blue line is the expected result for the ideal solid solution. (a,d,g) Au vs Cu; (b,e,h) Cu vs Au; (c,f,i) Pt vs Cu.

in silver of palladium atoms discussed in Fig. [, size effects on
the largest fragment size distributions are smooth except for the
specific location of the platinum peak with the EAM potential at-
tributed to the low mobility of this element. In particular, and for
both interaction models, the distributions for palladium become
increasingly narrow and their centers slightly shift to higher val-
ues. Such effects, which are particularly marked for the SMA po-
tential, show that nanoparticles should become more and more
segregated in palladium with increasing size. The same behavior
is found for silver with the SMA model, and with copper with the
EAM potential. In contrast, gold does not exhibit such size effects,
the two potentials also producing for this element rather similar
distributions in the largest disconnected fragment.

4.3 Mixing entropy

It is tempting to rationalize the information provided by the statis-
tics of surface atoms or disconnected fragments using the mixing

entropy as the sole descriptor of segregation, using the pair corre-
lation probabilities to evaluate Sy,;x. Fig. @ shows the variations of
Smix for the quinary systems with increasing concentration in two
specific elements, silver and copper, but for the nanoparticle, slab,
and periodic systems containing about 4000 atoms each. The en-
tire set of mixing entropies in their variations with each of the five
elements is given as electronic supplementary information in Fig.
S11. For this quantity the result expected for arbitrary concen-
trations in the ideal, noninteracting alloy AX(BCDE)( 1-x)/4 with
varying x, is a simple function of x that reads

(ideal) 1—x

Shix  (%)/kg = —xInx— (1 —x)In )

(3)

This function has the expected increasing behavior with a max-
imum for x = 1/5 and it vanishes for x = 1 in the limit of
monometallic systems.

The results of Fig. B show that the presence of realistic inter-
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Fig. 5 Elemental distribution in a low-energy configuration of the 4033-
atom nanoparticle at equicomposition, as predicted using the EAM po-
tential.

actions between the various elements significantly decrease the
mixing entropy, especially when the EAM potential is used. Di-
mensionality effects are not prominent, although noticeably the
deviations to ideal behavior with this model are slightly lower for
the slab. While the stronger propensity for mixing in the SMA
model is clearly reflected in this figure and for the three systems
when the relative concentration in silver increases, the EAM po-
tential predicts a more complex behavior when copper concentra-
tion is varied, the system becoming then increasingly mixed. This
numerical observation is fully consistent with the composition-
induced chemical ordering transitions identified for platinum in
Figs. B(c,f,i) for this model.

Although the qualitative behavior in the ideal limit, Eq. (B),
seems recovered in the presence of interactions with both many-
body potentials, the quantitative differences may be significant in
thermodynamical models of alloys, such as those in the popular
CALPHAD method, 58 as they could be responsible for changes
in the respective ordering between Gibbs free energies. In this re-
spect, the present calculations emphasize the importance of cor-
rectly evaluating the mixing entropy as a key component of the
thermodynamical state functions.

5 Concluding remarks

The opportunities offered by multi-component materials in nan-
otechnology face multiple challenges, ranging from the control
of their synthesis or fabrication to their detailed characterization
in terms of atomic structure and chemical ordering. While it is
often assumed that high-entropy materials effectively behave as
solid solutions evolving on prescribed lattices, such approxima-
tions could be crude and even deleterious for important applica-
tions such as catalysis because excess or lack of particular ele-
ments might deteriorate the overall performance of practical de-
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Fig. 6 Elemental distribution in a low-energy configuration of the 4033-
atom nanoparticle at equicomposition, as predicted using the SMA po-
tential.

vices.

The present theoretical work was aimed at addressing this spe-
cific issue. Dedicated computational tools were developed to
measure the extent to which model nanoalloys made from multi-
ple elements and described at the atomistic level of details actu-
ally behave as ideal solid solutions, as the composition is varied
one element at a time. The surface fraction and the statistics of
disconnected fragments were used as our primary tools to inves-
tigate the propensity of the Ag, Au, Pd, Pt, and Cu elements to
segregate or mix in nanoparticles, slabs, and periodic samples all
based on the face-centered structures and at room temperature.
The mixing entropy was also evaluated based on the nearest-
neighbor pair correlation probabilities. These three quantities on
which our investigation relies can be rigorously determined in the
perfect solid solution limit, either from simple analytical formulas

100 T T T
o0 Ag (EAM)
o-0Ag (SMA) |

oo Pd (EAM)
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Fig. 7 Surface fractions in silver and palladium predicted for N-atom
nanoparticles at equicomposition, as a function of their inverse radius
l/N1/3, predicted by the EAM and SMA potentials, and extrapolation
to the (111) slab for N=13 0. A typical configuration for the largest
nanoparticle described by the SMA potential is shown in the right panel,
emphasizing the surface desorption in silver by red ellipses.
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or through numerically exact Monte Carlo sampling.

Our simulations used two alternative many-body potentials
that are commonly employed to model multimetallic materials.
Surface fractions evaluated for selected binary and ternary alloys
for which experimental data are available indicate an overall su-
periority of the EAM potential of Zhou and coworkers™
second-moment approximation model with parameters combined
from the existing literature, and which notably underestimates
the high temperature stability of several systems. Applied to
multi-component nanoparticles, slabs and periodic samples, both
interaction potentials predict a stronger tendency for elemental
segregation than the ideal solid solution picture, most marked for
platinum, at the expense of gold which is more distributed and
tends to significantly dissolve into individual atoms. A common
feature of the two models is also the marked segregation of silver
to the surface and of platinum away from the surface.

However, elemental segregation was also found to be far more
significant with the EAM approach, except in very specific con-
figurations in which the influence of a third party element (here
copper) causes a complete redistribution in chemical ordering. In
comparison, the mixing and segregation features found with the
SMA model appear much smoother as the composition is contin-
uously varied.

The effects of dimensionality were scrutinized by comparing
the results obtained for finite nanoparticles with those of (111)
slabs and 3D periodic samples. For both models they turn out
to be rather limited, all qualitative features being robust against
changes in dimensionality. As far as nanoparticles are concerned,
size effects were investigated at equicomposition and found to be
also quite minor, confirming the general trends about the exces-
sive surface segregation of silver and the poor mixing propensity
of platinum, esepcially with the EAM approach.

The amount of information carried by the mixing entropy ap-
pears somewhat weaker, as expected for this more global index.
In particular, and while it deviates significantly from the ideal
solid solution limit, it does not directly illustrate, and a fortiori ex-
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Fig. 9 Mixing entropy determined from the pair correlation functions,
predicted by the EAM or SMA potentials as a function of increasing
concentration in Ag or Cu, for 4033-atom nanoparticles (upper panels),
4032-atom (111) slabs (middle panels), or 4000-atom FCC periodic sam-
ples (lower panels). The dashed blue line is the expected result for the
ideal solid solution. (a,c,e) Ag; (b,d,f) Cu.

plain, how these deviations manifest themselves in terms of seg-
regation or mixing patterns for the various elements. Yet, it would
be useful to incorporate such quantitative measures for the mix-
ing entropy, especially in its correction relative to the noninter-
acting limit, to thermodynamical approaches of multi-component
materials.

The computational approaches pursued in the present work call
for several improvements, starting with the underlying interac-
tion potentials that are always a cornerstone of atomistic simula-
tions. Both EAM and SMA potentials could be reparametrized for
better performance against nanoalloys, but this naturally raises
a number of questions. The EAM approach notably oversimpli-
fies the interactions between unlike elements through the use
of combination rules, and for more flexibility these could be re-
placed by dedicated expressions with their own sets of parame-
ters for each pair. The SMA model, with its ingredients borrowed
from various independent sources, needs perhaps even more to
be reparametrized, owing to its sometimes conflicting sources:
the parameters for a given A-A pair often differ when the element
A was assumed to be in contact with the other elements B and C.

Global reparametrizations would seem the best way to produce
a potential appropriate for the quinary system, and also covering
all intermediate quaternary systems, but producing reliable train-
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ing datasets is also a difficult task in itself. While the amount of
atomistically accurate experimental data remains scarce to date,
it is tempting to rely on density-functional theory calculations
to surmount this limitation and generate large samples of refer-
ence data on which to reparametrize atomistic potentials, be they
of EAM or SMA type, or higher-level, multiparametric machine
learning types.”” Unfortunately, DFT itself struggles to describe
multi-element systems, mainly because the best functional for a
given metal is not necessarily the same for the other elements in
the alloy,™ and these difficulties will naturally convey to any po-
tential whose parameters are adjusted on such constructed train-
ing datasets, implying additional approximations. ™™ In any
case, and beyond the basic structural and energetic properties,
the surface energies associated with the various orientations and
perhaps the next-order properties causing terraces, localized or
extended defects, seem the most important quantities to include
in a training set aimed at modelling nanoscale systems, and in
this respect it could still be useful to convert the data obtained by
Kristoffersen and Rossmeisl for various surfaces of the very same
high-entropy alloy at equicomposition. ¥

From the methodological perspective it would be interesting
to exploit the mixing entropy as an order parameter to sample
the various segregation patterns and quantify the associated Lan-
dau free energy. Restricting the Monte Carlo exploration to spe-
cific hypersurfaces of the energy landscapes, such as constraining
the surface fraction of a given element to a particular range or
value,™ would also enable getting a deeper understanding of the
interplay between surface segregation and mixing propensity in
multi-component nanoparticles. It could also shed light onto the
importance of kinetics, which was entirely ignored here, e.g. by
assuming that some elements are added sequentially rather than
simultaneously.

Finally, on a very fundamental side, it would be useful to es-
tablish analytical estimates of the statistics of disconnected frag-
ments for the noninteracting systems, possibly for the simple cu-
bic lattice rather than the present realistic geometries, to improve
over the current numerical determination and address in more
details the effects of size, composition, and dimensionality.
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