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We present five automated descriptors: Aggregate Detection Index (ADI); Sheet
Formation Index (SFl); Vesicle Formation Index (VFI); Tube Formation Index (TFl); and
Fibre Formation Index (FFl), that have been designed for analysing peptide self-
assembly in molecular dynamics simulations. These descriptors, implemented as
Python modules, enhance analytical precision and enable the development of
screening methods tailored to specific structural targets rather than general
aggregation. Initially tested on the FF dipeptide, the descriptors were validated using
a comprehensive dipeptide dataset. This approach facilitates the identification of
promising self-assembling moieties with nanoscale properties directly linked to
macroscale functions, such as hydrogel formation.

1 Introduction

Peptide self-assembly refers to the spontaneous organisation of short amino acid
sequences’ into ordered nanostructures® through non-covalent interactions such
as hydrogen bonding, m-m stacking, and hydrophobic effects.®* This behaviour
underlies the design and development of innovative biomaterials for drug
delivery, tissue engineering, and nanotechnology.

The resulting architectures vary in size and dimensionality. At the nanoscale,
the formation of three-dimensional micelles and vesicles (Fig. 1b) enables tar-
geted encapsulation and transport of therapeutic molecules.* These assemblies
provide essential platforms for building more complex structures, laying the
groundwork for advanced biomaterials with tunable functionalities.

As the size scale increases, one-dimensional fibres (Fig. 1c) and tubes (Fig. 1d)
emerge, offering robust scaffolds suitable for cell growth and tissue engineering.
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(a) Curved sheet: A planar 2D struc- (b) Vesicle cross-section: A bilayered, (c) Fibre cross-section: A cylindrical (d) Tube cross-section: A flexible,
ture hollow 3D spherical structure 1D structure hollow 1D structure.

Fig. 1 Snapshots of different self-assembled structures formed by FF dipeptides. The
backbone is represented by pink beads, while the side chain is represented by green beads.
Water beads are omitted.

Planar two-dimensional aggregates such as sheets (Fig. 1a) and bilayers provide
large surface areas that support cell attachment and proliferation. A thorough
understanding and classification of these structures facilitates rational design
strategies that link molecular properties to specific architectural outcomes.

Expanding into applied settings, peptide nanostructures have been incorpo-
rated into nanowires, nanotubes, and other constructs of interest in sensor
technology and biocompatible electronics.>® In biomedical contexts, peptide
hydrogels serve as controlled drug release platforms, where adjustable mechan-
ical and degradation properties enhance therapeutic efficacy. Continued research
in this direction contributes to refining predictive models and experimental
designs that meet clinical and technological demands.”

Increased emphasis on automation and computational methods offers
a pathway to more efficient materials discovery. By integrating structural
descriptors with high-throughput screening, large sets of peptide candidates
can be rapidly evaluated, accelerating the identification of promising sequences
for diverse applications. The development of automated descriptors of struc-
ture within simulations further enhances this process by enabling these
descriptors to serve as target properties in machine learning or screening
methods. This approach not only strengthens the connection between molec-
ular design and biomaterial performance but also expands the sequence space
available for exploration, unlocking new possibilities in the discovery and
design of functional peptides. Ultimately, access to automated classification
models shortens development cycles and drives innovation in biomaterials
research.

Current descriptors often underestimate the inherent complexity of peptide
self-assembly. Static metrics overlook the dynamic interplay of non-covalent
interactions and fail to represent mesoscale phenomena, aggregation kinetics,
and environmental factors such as solvents, pH, and temperature.*® Addressing
these limitations requires a more comprehensive framework that links molecular-
level events to emerging architectures.

The Aggregation Propensity (AP) score,' based on shifts in Solvent Accessible
Surface Area (SASA),"* serves as a useful starting point. However, AP focuses
predominantly on early events and solvent interactions while neglecting the
morphological intricacies of the aggregates (Fig. 2). The resulting shapes and
configurations that directly impact the final properties of the material remain
unspecified. This gap underscores the need for refined descriptors that highlight
structural features critical to guiding subsequent design strategies.
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(a) GV (AP=0.9) not aggregating (b) KF (AP=1.2) forms small aggre- (c) FL (AP=3.0) forms a single large (d) FF (AP=3.5) forms a complex

gates and sheets aggregate structure

Fig. 2 Dipeptides with different AP scores showing varying levels of aggregation.

Although complete exploration of the dipeptide and tripeptide space has been
achieved, the challenge grows as the sequences lengthen and functionalities
diversify.>** Traditional brute-force scanning is no longer feasible, prompting the
integration of machine learning methods that efficiently pinpoint promising
sequences from vast combinatorial landscapes.*** The ability to train algorithms
using meaningful structural descriptors expands the search horizon and
streamlines the discovery of peptides tailored for advanced hydrogel formation
and beyond.

This work introduces five computational descriptors that capture essential
features of peptide self-assembly, guiding the analysis beyond initial aggregation
trends and toward the full landscape of resulting morphologies.”> Each metric is
designed for efficiency and consistency, enabling comparisons across diverse
peptide systems and simulation conditions without relying on manual
inspection.

The descriptors offer standardised, quantitative measurements that unify data
evaluation procedures, improving reproducibility and interpretability across
research efforts. Moreover, we envision that these descriptors will be critical
features in downstream machine learning approaches aimed at sequence
discovery, structural optimisation, and the targeted synthesis of next-generation
peptide-based biomaterials.

2 Results and discussion
2.1 Simulation setup

This study used coarse-grained molecular dynamics (CGMD) simulations
employing the MARTINI 2.1 force field'®" to investigate the self-assembly
behaviour of dipeptides. The MARTINI force field's simplified representation of
biomolecules, grouping atoms into larger beads, enables efficient simulations of
larger systems over extended timescales, making it particularly suitable for
studying the self-assembly of large numbers of peptide in order to investigate
their higher-order structure formation.

All simulations were conducted using the GROMACS 2020.7 simulation
package™ on a high-performance computing cluster. Each simulation was ini-
tialised within a cubic box measuring 21.5 nm x 21.5 nm x 21.5 nm, containing
1200 randomly distributed dipeptide molecules explicitly solvated with MARTINI
coarse-grained water. The systems underwent energy minimisation using the
steepest descent algorithm, followed by a 1 ns equilibration under constant
volume and temperature (NVT) conditions and an additional 1 ns equilibration
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under constant pressure and temperature (NPT) conditions. All CGMD simula-
tions were carried out with a time step of 25 fs, employing periodic boundary
conditions in all directions.

Temperature was maintained at 303 K using the velocity-rescale thermostat*®
with a coupling constant of 1.0 ps. The pressure was coupled isotropically at 1 bar
using the Berendsen barostat® with a coupling constant of 12 ps. Checkpointing
was performed every 5000 steps to ensure computational efficiency and data
integrity. All simulation parameters adhered to standard MARTINI protocol
guidelines.'*"

Initially, we conducted simulations of all 400 dipeptide systems for 6 million
steps with a time step of 25 fs, resulting in a total simulation time of 150 ns. The
MARTINI coarse-grained model accelerates dynamics by a factor of 4 compared to
atomistic simulations. Therefore, our formal simulation time of 150 ns corre-
sponds to an effective time of 600 ns. All times reported in this paper refer to this
effective timescale. Among the 400 dipeptides in the sequence space, 29 fell
within the mid AP range (1.1-1.9, Table 1) and 30 within the high AP range (2-3.7,
Table 2). We then selected these 59 dipeptides for further analysis, running
simulations for 60 million steps (1.5 ps), corresponding to an equivalent duration
of 6.5 pus.

2.2 Implementation of shape descriptors

The FF dipeptide system was selected for validating the descriptors due to its
extensively documented capacity to self-assemble into a variety of nanostructures,
as illustrated in Fig. 1.>* The five descriptors are implemented as Python modules
within a Conda environment. Scientific libraries such as MDAnalysis** were uti-
lised for loading trajectories, while libraries such as scikit-learn,”® SciPy,**
NumPy,” and Pandas® were used for mathematical calculations. Visualisation
modules such as Matplotlib®* and Seaborn*® were used for generating plots.
Through rigorous geometric, topological, and density-based analyses, these
descriptors were designed to capture a broad range of molecular assemblies,
including aggregates, sheets, vesicles, tubes, and fibres.

Each descriptor provides distinct insights into the self-assembly process of FF
dipeptides. The initial stages are characterised by significant reorganization, with
various shapes forming and dissociating dynamically. To highlight this behav-
iour, the plots include a marked transient region. Together, these descriptors
comprehensively classify and quantify the diverse morphologies observed in FF
dipeptide self-assembly.

Table 1 Dipeptides with mid AP scores

AP score Dipeptides

1.1 FC, FD, FH, HF, HS, HT, HW, KD, RD, RF, SY, WH, WK, WR, YC
1.2 KF, RW, SH, YS

1.3 Kw

1.6 MW, WM, WY

1.7 YW

1.9 FM, MF, PW, WL, YF
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Table 2 Dipeptides with high AP scores

AP score Dipeptides

2.0 WP

2.1 FP, LW, PF

2.2 CW, FT, FY, TF
2.3 VW

2.4 CF, SF, TW, VF, WC, WV
2.5 FS, FV, WT

2.6 W, WI

2.7 LF

2.9 FI, WS

3.0 FL

3.1 IF, SW

3.2 WW

3.3 WF

3.5 FF

3.7 Fw

2.2.1 Aggregate Detection Index (ADI). Unlike traditional methods that use
fixed cutoff distances, ADI employs adaptive cutoff distances derived from the
Radial Distribution Function (RDF).>® By identifying the first minimum after the
first peak in the RDF, ADI calculates a cutoff value specific to the peptide envi-
ronment, enhancing the detection of transient or weak interactions.

The RDF g(r) is calculated as:

1 N
glr) = — o(r = rr)> @)
where p is the number density, N is the number of particles, and r;; is the distance
between particles i and j.

The adaptive cutoff distance de,ofr is determined by finding the first minimum
in the RDF g(r) after the first peak:

dcutoff = mln{rlg(r) = mln(g(r)) for r > rpeak} (2)

where rpeak is the position of the first peak in the RDF.

The ADI workflow begins with preprocessing the simulation trajectory to
account for periodic boundary conditions and ensure accurate spatial relation-
ships. This involves unwrapping and centring the peptide beads within the
simulation box to enable precise and reliable shape calculations. The RDF
between peptide beads is computed over a specified distance range, providing
a detailed profile of inter-peptide distances. The adaptive cutoff distance obtained
from the RDF is then utilised to construct an adjacency matrix, indicating
contacts between peptides when their separation is below the cutoff.

The adjacency matrix A is constructed as follows:

A = 1 if dij = dculoff
Y710 otherwise

where dj; is the distance between peptide i and peptide j.
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Graph theory is applied to identify and characterize aggregates within the
peptide system. Peptides are represented as nodes and their interactions as edges
in a graph. Connected components are efficiently detected using algorithms from
the NetworkX library.*® This graph-based approach allows for the flexible identi-
fication of clusters of varying sizes and complexities, accommodating dynamic
changes in the system's topology over time. Consequently, ADI enables the
detection of both small oligomers and larger aggregates, providing a compre-
hensive overview of the aggregation landscape.

The size of each aggregate is determined by the number of nodes in each
connected component. To analyse the persistence of aggregates, we define
a contact persistence criterion. A contact between two peptides is considered
persistent if it exists for at least 5 frames (P, = 5). The persistence of an
aggregate is then calculated as the fraction of frames in which the aggregate
exists.

Fig. 3 provides a comprehensive visualization of ADI results, highlighting the
dynamic evolution of self-assembly patterns in the FF dipeptide system. Over the
time course of the simulation, smaller aggregates consolidate into larger aggre-
gates as evidenced by the increase in the average number of dipeptides per
aggregate and concomitant decrease in the number of aggregates identified.

2.2.2 Sheet Formation Index (SFI). The Sheet Formation Index (SFI) is
a comprehensive metric used to quantify the formation and stability of sheet
structures in peptide simulations. The SFI leverages several advanced computa-
tional techniques to provide a detailed analysis of both planar and curved sheet
structures. Below, we describe the theoretical background and the formulas used
for each descriptor.

For planar sheets, the SFI leverages the Radial Distribution Function (RDF) to
analyze the spatial distribution of peptide beads. By examining the RDF, the SFI
determines characteristic peaks corresponding to the regular spacing of peptides
in a flat sheet conformation. This method allows for the accurate detection of
planar sheets by identifying regions where the RDF indicates a consistent and
repeating pattern of inter-peptide distances, which are indicative of stable, flat
sheet structures.

To identify curved sheets, the SFI employs quadratic fitting techniques. This
approach involves fitting a quadratic surface to the spatial coordinates of peptide
beads, thereby capturing the inherent curvature of non-planar aggregates. The
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Fig. 3 Aggregate Detection Index (ADI) results for FF dipeptides, showcasing assembly
evolution.
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quadratic fit quantifies the degree of curvature, enabling the differentiation
between flat and curved sheets. By assessing the root mean square deviation
(RMSD) of peptide positions from the fitted quadratic surface, the SFI can
effectively classify aggregates as either planar or curved, providing a nuanced
understanding of the sheet morphologies present in the system.

The quadratic surface is fitted using the equation:

z=ax*+ by +exy+detey+f (4)

where x, y, and z are the coordinates of the peptide beads, and a, b, , d, e, and fare
the fitting parameters.
The RMSD from the quadratic surface is calculated as:

RMSD = (5)

where z; are the actual z-coordinates and zg; are the fitted z-coordinates.

SFI also utilizes computational topology, specifically through the calculation
of the Euler characteristic. The Euler characteristic serves as a topological
invariant that quantifies the connectivity of a structure, allowing the SFI to
distinguish between single-layer and multilayered sheet formations. By
computing the Euler characteristic for each detected sheet structure, the SFI
can assess the complexity of the aggregate, identifying whether a sheet is
composed of a single layer of peptides or multiple interacting layers. This
topological analysis complements the geometric assessments provided by the
RDF and quadratic fitting, enhancing the robustness and accuracy of sheet
detection.

The Euler characteristic x is calculated as:

xX=V—E+F (6)

where V is the number of vertices, E is the number of edges, and F is the number
of faces in the structure.

The potential development, variation, and evolution of sheets on the nano-
scale is a key feature in the FF dipeptide self-assembly pathway. A detailed
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Fig.4 Sheet Formation Index (SFl) results for FF dipeptides, showcasing planar and curved
sheet formation.
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visualization of the SFI results is provided in Fig. 4, illustrating the progression of
planar and curved sheet structures in the FF dipeptide system. Initially, there is
a high occurrence of smaller sheet structures, which are rapidly reorganized. This
transient phase is highlighted in the plot.

2.2.3 Vesicle Formation Index (VFI). The Vesicle Formation Index (VFI) is
a comprehensive metric used to quantify the formation and stability of vesicles in
peptide simulations. The VFI leverages several advanced computational tech-
niques to provide a detailed analysis of vesicle structures. Below, we describe the
theoretical background and the formulas used for each descriptor.

VFI employs radial density profiling (RDP) to distinguish hollow vesicles from
solid aggregates by analyzing the distribution of peptide beads relative to the
aggregate's center of mass. A significant density gap detected by the RDP indicates
the presence of a hollow core, characteristic of vesicles.

The radial density p(r) is calculated as:

o(r) = Vtr) Zmié(r —r) (7)

where V(1) is the volume of the spherical shell at distance r, m; is the mass of the i-
th particle, and r; is the distance of the i-th particle from the center of mass.

To further characterize vesicle morphology, VFI utilizes surface mesh gener-
ation to calculate surface area and volume, enabling the assessment of sphericity
and the detection of structural deviations from ideal vesicle shapes.

The sphericity ¥ is calculated using the formula:

_ wBer)
V= (8)

where V is the volume enclosed by the convex hull and 4 is the surface area of the
convex hull.

Internal void analysis is performed using voxelization and flood-fill algo-
rithms,* which quantify the size and presence of internal cavities, thereby
providing precise measures of vesicle integrity.

The hollowness ratio H is calculated as:

H = Vtotal - Vnccupicd (9)
Vlolal

where Vi is the total volume of the vesicle and Viccupiea i the volume occupied
by the particles.

Additionally, asphericity and acylindricity derived from the gyration tensor of
the aggregates are used to capture the geometric complexity of vesicles. These
descriptors offer insights into the overall shape and symmetry, facilitating the
differentiation between perfectly spherical vesicles and those exhibiting irregular
or partially collapsed structures.

Asphericity 4 is defined as:

1
Al — E(Az-ﬁ-ﬂ_})
d= —=—

10
A +A+ A (10)

where 4, 4,5, and A; are the eigenvalues of the gyration tensor, with A; = 4, = A;.
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Acylindricity A, is defined as:

A —23

=25 11
A+ A+ A3 (1)

Following the development of sheet-like structures, FF continues to evolve and
the sheets wrap up to form vesicle structures. This is highlighted in Fig. 5, which
shows the VFI results. The initial transient region is shorter compared to sheets;
however, vesicles dominate the later stages of the simulation, indicating their
metastable state.

2.2.4 Fibre Formation Index (FFI). The Fibre Formation Index (FFI) is
a comprehensive metric used to quantify the formation and stability of fibre
structures in peptide simulations. The FFI leverages several advanced computa-
tional techniques to provide a detailed analysis of fibre structures. Below, we
describe the theoretical background and the formulas used for each descriptor.

By utilizing moments of inertia,** the FFI classifies the three-dimensional
geometry of aggregates, determining properties such as elongation and line-
arity that are characteristic of fibre structures. This geometric classification
enables the differentiation of elongated, linear assemblies from more compact or
irregular aggregate forms.

The moments of inertia I are calculated using the inertia tensor I:

I= Zm;(r; 'l','I —I; ®l',‘) (12)
i
where m; is the mass of the i-th particle, r; is the position vector of the i-th particle
relative to the center of mass, and I is the identity matrix.

The shape ratios are then calculated from the eigenvalues A4, 45, A3 of the
inertia tensor:

. A
Shape ratio 1 = /\_ (13)

A
Shape ratio 2 = T (14)

where A, = 4, = 4;.
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Fig. 5 Vesicle Formation Index (VFI) results for FF dipeptides, emphasizing vesicle
formation and hollow core analysis.
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Orientation distribution analysis within the FFI framework provides insights
into the alignment of peptides along the principal axis of the fibre. This analysis
assesses the degree of internal ordering, which is essential for understanding the
mechanical properties and stability of the fibres.

The orientation of each peptide is represented by a vector v;. The alignment of
these vectors with the principal axis p is quantified using the cosine of the angle 6;
between v; and p:

Vi'p
cos(#;)) = ————— 15
@) = el (15)

The mean and standard deviation of the angles 6, are then calculated to assess
the alignment.

Additionally, cross-sectional profiling examines the uniformity and consis-
tency of the fibre's structure along its length, identifying variations that may
indicate deviations from ideal fibre morphologies. By incorporating shape
anisotropy metrics derived from the gyration tensor, the FFI also captures the
geometric complexity and symmetry of fibre assemblies.

The cross-sectional area A at a position z along the fibre is calculated using the
convex hull of the projected positions onto the plane perpendicular to the prin-
cipal axis:

A(z) = ConvexHull({r;-p = z}) (16)

Fig. 6 displays the FFI results, detailing the formation of elongated, linear
assemblies and characterizing their structural progression in the FF dipeptide
system. As expected, their occurrence is limited in the case of FF, which is well-
known to form nanotubes.

2.2.5 Tube Formation Index (TFI). The Tube Formation Index (TFI) is
a comprehensive metric used to quantify the formation and stability of tube
structures in peptide simulations. The TFI leverages several advanced
computational techniques to provide a detailed analysis of tube structures.
Below, we describe the theoretical background and the formulas used for each
descriptor.
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Fig. 6 Fibre Formation Index (FFI) results for FF dipeptides, detailing elongated and linear
assembly behaviour.
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TFI employs cylindrical harmonic analysis to transform peptide positions into
cylindrical coordinates, facilitating the detection of both straight and curved
tubular structures. This transformation allows for the accurate identification of
the principal axis of the tube and the assessment of its geometric properties.

The cylindrical coordinates (r,6,z) are calculated as:

ri =1/ X,‘2 +y,'2 (17)

0; = arctan2(y;x;) (18)
Z; = z; (19)

where (x;, y;, 2;) are the Cartesian coordinates of the i-th particle.

To effectively capture variations in tube structure, TFI implements segment-
based analysis. The segment-based analysis involves dividing the tube into
segments of length L and performing cylindrical harmonic analysis on each
segment. By dividing the tube into smaller segments, TFI can accommodate local
irregularities and curvature, ensuring the detection of long, curved tubes and
identifying deviations from ideal cylindrical shapes. This localized approach
enhances the ability to recognize complex tube morphologies that may arise
during peptide self-assembly.

TFI utilizes Radial Density Profiling (RDP) to verify the hollowness of detected
tube structures. By calculating the distribution of peptide beads relative to the
central axis of the tube, TFI identifies density gaps indicative of hollow cores,
distinguishing vesicular tubes from solid cylindrical aggregates. This analysis
provides critical insights into the internal geometry of the tubes, enabling the
differentiation between various aggregate types.

TFI also incorporates shape anisotropy analysis using the gyration tensor to
compute asphericity and acylindricity. These descriptors offer insights into the
overall shape and symmetry, facilitating the differentiation between perfectly
cylindrical tubes and those exhibiting irregular or partially collapsed structures.

Fig. 7 illustrates TFI results, showcasing the emergence of cylindrical struc-
tures in the FF dipeptide system. Initially, there is low confidence in the
detection due to rapid reorganization and false positives caused by elongated
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Fig.7 Tube Formation Index (TFI) results for FF dipeptides, capturing cylindrical structures
with internal hollowness.
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vesicles; however, during the later stages, only one tube is observed, alternating
with fibres and vesicles. While it is well known that FF forms tubes, the interplay
between fibres, vesicles, and tubes observed in the latter stages of the simulation
highlights the truly dynamic nature of the nanostructure. Compression of a tube
at some stage can result in its reclassification as a fibre, while an expansion of
a tube may lead to its reclassification as a vesicle. Similarly, in the final snap-
shots of the simulation (Fig. 2d) the wrapping of the tube-like structure into
a doughnut shape can again result in the classification of the structure as
a vesicle. These observations underscore the inherent relationship between
these structures and the degree of subjectivity involved in their classification.
However, while thresholds can be defined to ensure the average structure aligns
with visual classifications or to report only a dominant structure, we have
allowed structures to be classified under multiple shapes if they meet the
criteria. This approach ensures we capture transient structures that may occur
simultaneously along the assembly pathway, providing a more comprehensive
understanding of the system's dynamics.

2.3 Assembly pathway

In addition to analysing the individual structural descriptors, it is possible to plot
the individual shapes that occur along the self-assembly pathway. Fig. 8 illustrates
the evolution of FF self-assembly over the simulation time, highlighting the
dynamic reorganization of different structures before achieving stabilisation.
This progression underscores the intricate self-assembly mechanisms that can
lead to a variety of morphologies, such as aggregates, sheets, vesicles, and tubes.

Following the successful validation using the FF dipeptide, we extended our
analysis to include all 59 dipeptide candidates to evaluate their self-assembly
behaviours. Among these candidates, several exhibited significant reordering
dynamics. Fig. 9 displays the WI dipeptide, which achieved an AP score of 2.6. WI

a) Sheets = —— Fibers = —— Vesicles Tubes Transient

Structure Population Fraction

oA

0 250 500 750 1000 1250 1500
Time (ns)

Fig. 8 Validation of descriptors on candidate FF, indicative of complex reorganization of
different shapes before stabilizing. Inset (a) shows the evolution map, while inset (b)
highlights the dominant structure in each frame.
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Fig. 9 Reordering dynamics of candidate WI, achieving an AP score of 2.6, indicative of
rapid self-organization into structured assemblies. Dotted grey lines denote the regions
undergoing reordering. Inset (a) shows the evolution map, while inset (b) highlights the
dominant structure in each frame.

has an initial period of rapid reorganization, however, after 750 ns there is a clear
stabilization of the system, with a dominant vesicle structure being formed.

Conversely, other candidates demonstrated early stabilization with minimal
reorganization. Fig. 10 shows RF dipeptide with a lower AP score, reflecting its
tendency to quickly reach a stable configuration without extensive structural
changes. These contrasting behaviours highlight the diversity in self-assembly
mechanisms among the candidates, providing valuable insights for selecting
optimal dipeptides for specific nanostructure applications.
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Fig.10 Reordering dynamics of candidate RF, exhibiting early stabilization with a lower AP
score, indicative of minimal further reorganization. Inset (a) shows the evolution map,
while inset (b) highlights the dominant structure in each frame.
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2.4 High-throughput screening

The descriptors developed are capable of tracking the evolution of nanostructures
throughout the self-assembly pathway, providing invaluable insights into peptide
self-assembly. The ultimate objective is to utilize these descriptors to predict the
final self-assembled structure from a simulation, enabling the targeting of
specific architectures as a design property. To this end, we have applied these
descriptors to the mid- and high-AP score dipeptides identified during the initial
screen. The final frames of each simulation were categorized into one of four
shapes: sheet, vesicle, fibre, and tube, with a fifth classification of ‘undetermined’
if no clear shape could be evaluated.

Table 3 presents the distribution output, illustrating the normalized occur-
rence of different shapes among the 59 candidates. This provides valuable
insights into the prevalence of various structural formations and can aid in
feature selection, enabling the identification of specific shapes as desirable
targets for diverse applications.

2.5 Limitations

The descriptor hyperparameters (such as the minimum tube size and RDF range)
used in this study have been selected to reflect the force field, type of molecule
and methods of simulations we are performing and may need to be changed in
future studies where different, possibly all-atom, force fields are used. Parameters
such as the minimum fibre length and asphericity threshold require careful
calibration when applied to higher sequence spaces and larger systems. While the
current framework is adaptable to larger peptides, empirical validation for these
extended sequences remains to be conducted in future studies.

Currently, the Python modules developed are utilising only a single CPU core,
which hampers the processing of thousands of frames. Implementing parallel

Table 3 Dipeptide distribution by shapes: vesicles (V), tubes (T), and sheets (S). This
distribution is calculated by the average of shapes over the last 100 frames. The final
snapshot of each dipeptide simulation is added to the ESI}

Shape distribution Dipeptides

V(99%), S(1%) IF, FI, FL, FY, FT, FW, SF, CW, PF, WT, WW, LW, FF,

FS, VW, FV, WC, WF, WS, WI, WV, LF, TW, IW, FP,

V(98%), S(2%)
V(98%), T(2%), S(1%)

SW, WP, TF, YW, SH, MW, WL, WY, YS, SY

VF, CF, HS, YF, PW
KF

V(97%), S(3%) FM

S(100% MF

V(97%), T(3%), S(1%) RF, FH

V(96%), T(3%), S(1%) FD, RD

V(4%), T(3%), S(96%) WM

V(95%), T(4%), S(1%) HF, FC, KD, RW
V(94%), T(5%), S(1%) HT, HW
V(93%), T(6%), S(1%) KW, WH, WK
V(92%), T(8%) WR

V(84%), T(16%), S(1% YC
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processing would substantially reduce analysis time. The calculation of RDF
across all frames is time-consuming, with average RDF cutoff distances ranging
from 6.2 A to 6.6 A. In smaller systems, a static cutoff of 4.5 A is effective, reducing
computational load without compromising accuracy.

3 Conclusions

This study successfully introduced and validated five automated descriptors for
analyzing peptide self-assembly in molecular dynamics simulations. These
descriptors demonstrated robust performance in characterizing diverse
morphologies, including aggregates, sheets, vesicles, tubes, and fibers, and
facilitated high-throughput screening of dipeptide systems. By addressing exist-
ing limitations in computational analysis, this approach advances the discovery
of peptide-based biomaterials, offering a scalable and efficient framework for
future applications in drug delivery, tissue engineering, and beyond.

In addition, we have demonstrated the ability to apply these descriptors to
follow the assembly pathway of nanostructures during extended MD simulations.
This capability was showcased in the case of FF, where a variety of structures are
formed throughout the assembly mechanism, as well as in rapidly forming
structures like RF, which adhere to a single shape class. Furthermore, we have
shown that these descriptors can not only track the entire assembly evolution but
also quantify the amount of sheet, vesicle, fiber, and tube characteristics in the
final snapshot of the simulation.

Our ultimate goal is to leverage these descriptors in machine learning methods
to target specific molecular nanostructures, enabling the design of macroscale
functional materials such as soft materials, gels, and emulsions. By character-
izing and measuring the development of nanostructures, this work represents
a significant step toward the development of an efficient machine learning search
algorithm to discover novel peptide-based supramolecular gels.

Data availability

The code supporting this study is openly available on the Tuttlelab GitHub
repository (https://github.com/Tuttlelab/Descriptors). The simulation datasets
for the five selected dipeptide systems (FF, WI, RF, KF, and FL) are available via
the PURE Portal (https://doi.org/10.15129/e4a8a70c-9e37-44ed-896e-
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