

Sustainable Food Technology

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Bhowmik, D. Agyei and A. Ali, *Sustainable Food Technol.*, 2025, DOI: 10.1039/D5FB00775E.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Sustainability spotlight[View Article Online](#)
DOI: 10.1039/D5FB00775E

This research focuses on the development of functional, non-toxic, and sustainable active packaging films made from chitosan blended with polyvinyl alcohol, chitooligosaccharides, and gallic acid. The resulting active films demonstrated strong antioxidant properties against DPPH and ABTS radicals. Additionally, they displayed significant antimicrobial activity against *E. coli*, *L. innocua*, and *S. cerevisiae*, along with strong biocompatibility with HaCaT and Caco-2 cells. These films effectively reduced weight loss in tomatoes and grapes, as well as minimised total volatile basic nitrogen production during the preservation of pearl fish fillets, highlighting their potential as functional packaging solutions for extending the shelf life of perishable foods.

1 **Antioxidant, antimicrobial, and cytotoxicity properties of chitosan-PVA film functionalised with** [View Article Online](#)
2 **chitooligosaccharide and gallic acid for shelf-life extension of perishable foods** [DOI: 10.1039/D5FB00775E](#)

3 **Shuva Bhowmik^{1,2,3}, Dominic Agyei⁴, Azam Ali^{1,2*}**

4 ¹Centre for Bioengineering and Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of
5 Otago, Dunedin 9016, New Zealand

6 ²Sir John Walsh Research Institute (SJWRI), Faculty of Dentistry, Division of Health Sciences, University of
7 Otago, Dunedin 9016, New Zealand

8 ³Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814,
9 Bangladesh

10 ⁴School of Chemistry, Faculty of Science, Monash University, Clayton VIC-3800, Australia

11

12 ***Corresponding author:** Azam Ali, Professor and Director-Bioengineering Academic Program, Centre for
13 Bioengineering & Nanomedicine, Faculty of Dentistry, Division of Health Sciences, University of Otago, 310
14 Great King Street North, Dunedin 9016, New Zealand, E-mail: azam.ali@otago.ac.nz, ORCID: 0000-0002-0136-
15 6800

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31 **Abstract**

32 Environment-friendly, non-toxic, and functional packaging films are gaining interest worldwide for extending the
33 shelf-life of perishable food items. Hence, this study explored the antioxidant, antimicrobial, and cytotoxicity
34 patterns of earlier fabricated chitosan films containing polyvinyl alcohol (PVA), chitooligosaccharide (COS), and
35 gallic acid (GA). In addition, the active properties of chitosan films were reconfirmed using tomatoes, green
36 grapes, and pearl fish fillets as model perishable food products. Chitosan films containing COS and GA
37 demonstrated strong DPPH ($99.48 \pm 0.24\%$) and ABTS ($98.06 \pm 0.91\%$) radicals scavenging capacity and robust
38 potentiality in ferric reducing activity (230.93 ± 1.42 , equivalent $\mu\text{M Fe}^{2+}/\text{g sample}$). Additionally, the inhibitory
39 rates of the fabricated films towards *Escherichia coli*, *Listeria innocua*, and *Saccharomyces cerevisiae* were 59.49
40 $\pm 9.17\%$, $79.29 \pm 0.94\%$, and $79.55 \pm 8.45\%$, respectively. Further, MTT assay exhibited that chitosan films were
41 biocompatible with viability greater than 90% on HaCaT cells and 75% on Caco-2 cells. The fabricated films
42 demonstrated non-cytotoxicity *in vitro* and show potential suitability for packaging applications. Moreover, the
43 application of chitosan films on tomatoes and green grapes showed the lowest weight loss compared to the control
44 film at room temperature (23°C) for up to 7 and 9 days, respectively. Additionally, these films also led to a
45 reduction in total volatile basic nitrogen (TVBN) levels in the preservation of pearl fish fillets, indicating the
46 potential for shelf-life extension.

47

48 **Keywords:** Chitosan films, Bioactive properties, Biocompatible.

49

50

51

52

53

54

55

56

57

58

59

60

61 **1. Introduction**View Article Online
DOI: 10.1039/D5FB00775E

62 Microbial contamination is a common phenomenon during the storage of perishable foods, leading to degraded
63 food quality and a threat to consumers' health¹. It is estimated that over 200 million tons of food could be wasted
64 by 2050 due to improper packaging and the short shelf-life of perishable food items². Additionally, the use of
65 petroleum-based materials in food packaging can lead to significant environmental pollution, posing a threat to
66 both terrestrial and aquatic life³. Moreover, the use of plastic in food packaging generates microplastics, which
67 accumulate in living terrestrial and aquatic environments through the food chain and enter humans through
68 biomagnification⁴. It is reported that microplastics have been detected in human blood, which can cause severe
69 health risks⁵. In this regard, using biodegradable and functional food packaging materials in the food industry
70 may protect food by preventing contamination, reducing food waste, ensuring food safety, and contributing to the
71 United Nations' Sustainable Development Goals (SDGs)^{6,7}.

72 Several polysaccharides, including chitosan, pectin, starch, and alginate, are considered suitable for
73 developing active food packaging materials⁸. Among them, chitosan is gaining interest in functional packaging
74 materials due to its film-forming capacity, antioxidant and antimicrobial activity, non-toxicity, biodegradability,
75 and biocompatibility properties^{9,10}. Although chitosan has functional properties in the development of packaging
76 film, it still has some drawbacks, including insufficient antioxidant and antimicrobial abilities, which greatly limit
77 the application of neat chitosan in active food packaging^{11,12}. Additionally, the incorporation of polyvinyl alcohol
78 (PVA) is increasing in the development of active chitosan films due to its excellent film-forming ability,
79 biocompatibility, and improved flexibility, although it offers fewer functional properties. Therefore, chitosan
80 derivatives and phenolic compounds are incorporated to fabricate functional chitosan films¹³.
81 Chitooligosaccharide (COS) and gallic acid are highly water-soluble and obtained from the enzymatic
82 depolymerisation of chitosan and secondary metabolites in plant materials (e.g., grapes, apples, blueberries, tea,
83 etc.), respectively¹⁴. Studies have reported that COS and gallic acid possess several functional activities, such as
84 antioxidant, antimicrobial, and antiviral properties¹⁵⁻¹⁷. The incorporation of COS in the development of active
85 chitosan films, through conjugation with caffeic acid, showed potential antioxidant activity, particularly in
86 scavenging DPPH radicals¹⁸. Additionally, the combination of gallic acid with corn starch and pullulan in the
87 production of functional films demonstrated both DPPH radical scavenging properties and antimicrobial activity
88 against *Escherichia coli*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa*¹⁹. Hence, there has been a
89 growing interest, including COS and gallic acid, in developing active food packaging materials.

90 In general, active food packaging materials come into direct contact with food and release bioactive
91 compounds to extend product shelf life, reducing lipid oxidation and microbial growth^{20, 21}. Even though using
92 biomaterials in the development of packaging film is safe, the interaction of raw materials during the film's
93 synthesis process could alter the packaging film's biocompatibility patterns²². Therefore, the cytotoxicity patterns
94 of packaging film need to be tested before practical application for extending food shelf-life. In addition, the
95 packaging materials in food applications should not release any toxic compounds that could harm human health,
96 as stated by the Food Safety Act, 1991, in EC 1935/2004²³. Thus, the main objective of the current study is to
97 explore the antioxidant, antimicrobial, and cytotoxicity patterns of developed chitosan films containing polyvinyl
98 alcohol, COS, and gallic acid.

99

100 **2. Materials and methods**

101

102 **2.1 Materials**

103 Chitosan (91% degree of deacetylation and 503 kDa molecular weight, Mw) was acquired from Weseta
104 International in Shanghai, China. Chitooligosaccharide (COS) was synthesised following the method of Rajabi et
105 al.²⁴. Polyvinyl alcohol (\geq 99% hydrolysed and 89,000-98,000 g/mol Mw) and gallic acid (97.5% and 170 g/mol
106 Mw) were provided by Sigma-Aldrich, New Zealand. TPTZ (2,4,6-Tris(2-pyridyl)-s-triazine), Mw: 312.33, and
107 \geq 98%), ABTS (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid, Mw: 548.68 g/mol, and \geq 98%), and
108 DPPH (2, 2-Diphenyl-1-picrylhydrazyl and molecular weight: 394.32,) were obtained from Sigma-Aldrich,
109 Switzerland, Canada, and Germany respectively. Potassium persulfate (Mw: 270.32 and \geq 99%) was procured
110 from Sigma-Aldrich, methanol (CAS-No: 67-56-1, >99.8%, and Mw: 32.04) supplied by Fisher Scientific, UK,
111 Ltd., India, glacial acetic acid (CAS No: 64-19-7 and >99.7%), sodium acetate trihydrate (Mw: 136.08, and 99%
112 from Biolab (Aust) Ltd.), ferrous sulphate (CAS No: 7782-63-0 and 99%), iron (III) chloride hexahydrate (CAS
113 No: 10025-77-1, Mw: 270.30 g/mol, and 97%) were also obtained from Sigma-Aldrich, USA for the study.
114 *Escherichia coli* (ESR 916), *Saccharomyces cerevisiae* (ICMP 10067), and *Listeria innocua* (ESR 3024) were
115 acquired from the Microbiological Lab culture collection of the Department of Food Science, University of Otago.
116 Luria broth (LB), nutrient yeast peptone dextrose broth (YPD), and tryptic soy broth (TSB) were supplied by
117 Becton, Dickinson, and Company, Le Pont de Claix, France. The Caco-2 cells (P6, human colon cells) and HaCaT
118 cells (P38, human keratinocyte skin cells) were obtained from the American Type Culture Collection (ATCC,
119 Manassas, VA, USA). DMEM (Dulbecco's modified eagle medium), FBS (fetal bovine serum), anti-anti

120 (Antibiotic-antimycotic), 0.25% trypsin-EDTA, DPBS (Dulbecco's phosphate buffered saline), calcein AM^{view Article Online}
121 propidium iodide were obtained Gibco (Life Technologies Corporation, Grand Island, USA). Additionally,
122 ethylene tetrazolium bromide (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H, MTT) was purchased from Thermo
123 Fisher Scientific (Life Technologies Corporation, Eugene, USA) and dimethyl sulfoxide (CAS No: 67-68-5,
124 molecular weight: 78.13 g/mol, and \geq 99.7%, DMSO) procured from Sigma-Aldrich, USA. Potassium carbonate
125 anhydrous (K_2CO_3 , Mw: 138.21, 99% assay) was purchased from M & B Laboratory Chemicals (May & Baker
126 Ltd., Dagenham, England). Methyl red ($C_{15}H_{15}N_3O_2$), bromocresol green ($C_{21}H_{14}Br_4O_5S$), and phenolphthalein
127 ($C_{20}H_{14}O_4$) were acquired from Hopkin & Williams Ltd., Chadwell Heath, Essex, England. Boric acid (H_3BO_3 ,
128 Mw: 61.83, 99.5% assay) was supplied by Ajax Chemicals, Auburn, Australia. The analytical grade ethanol
129 (C_2H_5OH , 99.5%) was procured from the Department of Chemistry, University of Otago. Analytical reagent grade
130 hydrochloric acid (HCl, Mw: 36.46, CAS-No: 7647-01-0, and 37%) was supplied by Fisher Scientific, UK.
131 Sodium hydroxide (NaOH, CAS-No: 1310-73-2, Mw: 40, and \geq 98% assay) was provided by Sigma-Aldrich, New
132 Zealand. Fresh tomatoes, green grapes, and pearl fish fillets were purchased from the local supermarkets in
133 Dunedin, New Zealand.

134

135 **2.2 Chitosan film fabrication**

136 The chitosan films were fabricated using the solvent casting method, following the process established by
137 Bhowmik et al. ²⁵. Briefly, 2% chitosan (CH) solution was obtained by mixing 0.4 g of CH in 2% of 20 mL acetic
138 acid solution. After that, 0.2 g (50% based on CH) of polyvinyl alcohol (PVA), 0.02-0.04 g (5-10% based on CH)
139 of chitooligosaccharide (COS), and 0.02-0.04 g (5-10% based on CH) of gallic acid (GA) were added and stirred
140 for 30 min at room temperature (23°C). Then, the film-forming solution was poured into square Petri dishes (10
141 cm x 10 cm) and kept for 72 h at 23 °C. The fabricated films were manually separated from the Petri dishes. The
142 film containing only chitosan was regarded as CH film, followed by CP2 (CH + 0.2g PVA), CP5 (CH + 0.2g PVA
143 + 0.02 g COS), CP6 (CH + 0.2g PVA + 0.04 g COS), CP7 (CH + 0.2g PVA + 0.02 g GA), CP8 (CH + 0.2g PVA
144 + 0.04 g GA), CP9 (CH + 0.2g PVA + 0.02 g COS + 0.02 g GA), CP10 (CH + 0.2g PVA + 0.04 g COS + 0.04 g
145 GA), CP11 (CH + 0.2g PVA + 0.04 g COS + 0.02 g GA) and CP12 (CH + 0.2g PVA + 0.02 g COS + 0.02 g GA)
146 film based on previous work (**Table S1**), where the physical, mechanical, structural, thermal, and biodegradation
147 properties of films were included ²⁵.

148

149 **2.3 Antioxidant activity of developed chitosan films**

150 2.3.1 DPPH (2,2-diphenyl-1-picrylhydrazyl) assay

151 The DPPH assay, with some modifications, was used to measure the antioxidant properties of the fabricated
152 chitosan films ²⁶. In short, 7.88 mg of DPPH powder was dissolved in 100 mL of 99.8% methanol to create 0.2
153 mM DPPH solution. After that, the film sample (5 mg) was mixed with 1.5 mL of DPPH solution and stored at
154 22 °C. A UV/Visible Spectrophotometer (Ultrospec 3300 Pro, Biochrom Ltd., Cambridge, England) was then
155 used to test the mixture's absorbance at 517 nm across a range of time intervals (0.5–16 h). The scavenging
156 capacity of DPPH free radicals was determined in triplicate, and the mean values are presented as per equation 1.

$$Scavenging\ ability\ (\%) = [1 - \frac{(A_1 - A_2)}{A_0} \times 100] \dots \dots \dots (1)$$

158 Where, A_0 is the absorbance of DPPH solution, A_1 is the absorbance of a film sample with DPPH solution, and
159 A_2 is the absorbance of a film sample with methanol.

160

161 2.3.2 ABTS assay

162 The scavenging property of ABTS free radicals of the developed chitosan films was evaluated using the Božić et
163 al.²⁷ and Riaz et al.²⁶ methods with some modifications. In summary, 384 mg of ABTS powder and 66 mg of
164 potassium persulfate were separately dissolved in 100 mL of distilled water to create a 7 mM ABTS solution and
165 2.45 mM K₂S₂O₈ solution. After that, the same volume of ABTS and K₂S₂O₈ solution were mixed and left in the
166 dark for 16 h at 22 °C. Subsequently, the combined solution was diluted 1:10 with a 50% methanol solution to
167 create a workable solution. The absorbance of the working solution at 734 nm using a UV/Visible
168 Spectrophotometer (Ultrospec 3300 Pro, Biochrom Ltd., Cambridge, England) was measured and found to be
169 0.96 (<1). After that, 1.5 mL of working solution and 5 mg of film sample were mixed, and the mixture was left
170 in the dark. At various times (6 min–4 h), the absorbance at 734 nm was measured. Antioxidant ability was
171 calculated in triplicate samples using the following equation: 2.

$$Scavenging\ ability\ (\%) = [1 - \frac{(A_s - A_m)}{A_m} \times 100] \dots \dots \dots (2)$$

173 Where, A_w is the absorbance of a working solution, A_s is the absorbance of a film sample with a working solution,
174 and A_c is the absorbance of a film sample with methanol.

175

176 2.3.3 FRAP assay

177 The ferric-reducing antioxidant power (FRAP) assay was conducted following the method of Gulzar et al.²⁸ with
178 some modifications to measure the capacity of the fabricated chitosan films to transform ferric iron (Fe^{3+}) to
179 ferrous (Fe^{2+}) iron. Concisely, 300 mM acetate buffer ($\text{pH} < 3.6$) was prepared by dissolving $\text{CH}_3\text{COONa} \cdot 3\text{H}_2\text{O}$

180 in 100 mL ultrapure water containing 1.6 mL CH₃COOH, stored at 22°C using an amber flask. Thereafter, a 10 View Article Online
181 mM HCl solution was prepared by mixing 40 µL 37% HCl in 10 mL ultrapure water; after that, 10 mM 2,4,6- DOI: 10.1039/D5FB00775E
182 Tris(2-pyridyl)-s-triazine (TPTZ) solution was prepared by adding 31 mg TPTZ in 10 mM HCl solution. A 20
183 mM FeCl₃.6H₂O solution was also prepared by dissolving 54.1 mg FeCl₃.6H₂O in 10 mL ultrapure water.
184 Relatedly, 2000 µM FeSO₄.7H₂O solution was made by mixing 55.6 mg FeSO₄.7H₂O in 100 mL ultrapure water.
185 A 72 mL working solution was prepared, mixing 6 mL FeCl₃.6H₂O and 6 mL TPTZ with 60 mL acetate buffer.
186 Then, 5 mg of film sample was mixed with 0.9 mL of working solution and incubated in a water bath (TECHNE,
187 TE-10A Tempette, Total Lab Systems Ltd.) at 37°C for 15 min. The Fe²⁺ TPTZ complex was assessed by taking
188 absorbance at 593 nm and calculating its activity in triplicate samples by using the equation (Y = 0.0008x + 0.1303
189 and R² = 0.99) from the generated standard curve using FeSO₄.7H₂O (0-2000 µM) and represented as µM of Fe²⁺
190 equivalents/g of the film sample.

191

192 2.4 Antimicrobial properties of film

193 The antimicrobial activities and integrity of microbial cell membranes of chitosan films were assessed towards
194 Gram-positive bacteria (*Listeria innocua*), Gram-negative bacteria (*Escherichia coli*), and yeast (*Saccharomyces*
195 *cerevisiae*) following the method of Bi et al.²⁹ and Sadiq et al.³⁰ with some modifications. The *E. coli* and *L.*
196 *innocua* were cultured in liquid Luria broth and tryptic soy broth medium at 37 °C to logarithmic phase, and *S.*
197 *cerevisiae* was cultured in yeast peptone dextrose medium at 30 °C. After that, 0.2 mL microbial suspensions
198 (with an initial absorbance of 1 at OD₆₀₀) of *E. coli*, *S. cerevisiae*, and *L. innocua* was diluted 50 times using 10
199 mL of LB, YPD, and TSB medium, respectively and incubated with the films (6 mm x 6 mm) with 0.2 mL liquid
200 medium for 24 h. Then, the optical density at 600 nm was measured using a plate reader (CLARIOstar^{Plus}, BMG
201 LABTECH, Germany) at different time intervals (0-24 h), and the antimicrobial rate was analysed in triplicate
202 samples using the following equation 3.

$$203 \text{Antimicrobial rate (\%)} = (OD_1 - OD_2)/OD_1 \times 100 \dots \dots \dots (3)$$

204 Where, OD₁ is the microbial optical density of the control group (without film), and OD₂ is the microbial optical
205 density treated with developed films.

206 To assess the integrity of microbial cell membranes, 0.15 mL of microbial suspension was obtained after 24 hours,
207 and it was centrifuged (1-16K, SIGMA, Germany) at 11000 × g for five minutes. Utilising 0.1 mL of supernatant,
208 the quantities of cellular constituents were assessed as proposed by Bi et al.²⁹ by determining the absorbance at

209 260 nm with a plate reader (CLARIOstarPlus, BMG LABTECH, Germany). The control group consisted of the
210 microbial suspension supernatant that had not been film-treated.

211

212 **2.5 Cell assay, viability, and proliferation assays**

213 **2.5.1 Cell assay**

214 The frozen stocks of HaCaT cells (P38, human keratinocyte skin cells) and Caco-2 cells (P6, human colon cells)
215 were removed from liquid nitrogen and warmed in a water bath at 37 °C and thawed for 50 seconds. Then, HaCaT
216 and Caco-2 cells were grown in T-75 cm² flasks in complete DMEM (cDMEM) media containing 10% fetal
217 bovine serum and 1% antibiotic-antimycotic (penicillin-streptomycin). Then, the culture flasks were kept in a
218 humidified atmosphere of 95% air and 5% CO₂ using a cell incubator (MCO-19AIC (UV), CO₂ incubator,
219 SANYO Electric Co., Ltd., Japan), maintained at 37 °C. The cDMEM was replaced every three days during the
220 culture periods. Additionally, HaCaT and Caco-2 cells were passaged to maintain their proliferative state when
221 they reached 70-90% confluence through trypsinisation. The cell counting was performed using SepterTM Sensors
222 (60 µm), EMD Millipore Corporation, Burlington, USA.

223

224 **2.5.2 Cell viability assay**

225 The toxicity and biocompatibility of developed chitosan films were evaluated using LIVE/DEAD[®] assay which
226 determine cytotoxicity/cell viability^{31, 32}. Concisely, sterile film samples (6 mm x 6 mm) were immersed in
227 cDMEM, and both the HaCaT and Caco-2 cells were seeded separately per well and incubated at 37 °C for 24 h,
228 48 h and 72 h. The cDMEM with cells but without film was considered a control. The assay staining was prepared
229 using 8 mL DPBS, 12 µL calcein AM, and 24 µL propidium iodide. After 24 h, 48 h, and 72 h, the medium was
230 removed from the well plate, and 100 µL assay solution was added to each well and incubated at 37 °C for 10
231 min. After that, cells were observed under a fluorescence microscope (EVOS M5000, ThermoFisher, Waltham,
232 USA) using EVOSTM M5000 software. The enzymatic conversion of calcein AM to calcein (excitation 494 nm,
233 emission 517 nm) allowed for identifying living cells³³. The nucleic acids of cells with damaged cell membranes
234 bound to propidium iodide indicate dead cells (excitation 528 nm, emission 617 nm). The number of living and
235 dead cells was counted using Image J software (US National Institutes of Health) with a plugin³⁴. The fluorescent
236 images of each cell, captured at different culture periods, were converted to greyscale using ImageJ, resulting in
237 monochromatic 16-bit images. This process transformed the pixels into individual data points. Next, we calculated
238 the number of pixels representing dead (red) cells and live (green) cells. The percentage of live cells was then

239 determined relative to the total number of cells in each image. To calculate the average value, three images of
View Article Online
240 each cell from every culture period and each film were used, maintaining consistent settings applied across all
DOI: 10.1089/DSFB00775E
241 images to ensure uniformity. The percentage of cell viability, which was calculated in triplicate samples using
242 equation 4.

$$243 \quad \text{Cell viability (\%)} = \text{Number of live cells/Total cell number} \times 100 \dots \dots \dots (4)$$

244

245 **2.5.3 Cell proliferation assay**

246 The cell proliferation of HaCaT and Caco-2 cells was measured at 24 h, 48 h, and 72 h calorimetrically using
247 ethylene tetrazolium bromide (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H, MTT) assay ³⁵. Briefly, 12 mM
248 MTT stock solution was prepared by dissolving 50 mg MTT powder in 10 mL sterile DPBS and kept at -20°C.
249 The HaCaT and Caco-2 cells were seeded separately (5×10^3 cells) per well-containing chitosan film samples (6
250 mm x 6 mm) and incubated at 37 °C for 24 h, 48 h and 72 h in quadruplicate. After 24 h, 48 h, and 72 h, the
251 medium was removed from the well plate, and 100 µL MTS reagent (earlier prepared 7 mL by dissolving 1.4 mL
252 MTT solution with 5.6 mL cDMEM) was added to each well and kept in a humidified incubator for 4 h. Then,
253 the medium was removed from the well plate, and 50 µL dimethyl sulfoxide (DMSO) was added to each well.
254 DMSO with HaCaT and Caco-2 cells were transferred to new well plates, and absorbance was taken at 540 nm
255 using a plate reader (CLARIOstar^{Plus}, BMG LABTECH, Germany). Standard curves (**Fig. S1**) were used to detect
256 the unknown cell numbers of HaCaT and Caco-2 cells treated with films.

257

258 **2.6 Evaluation of storage quality of tomato and green grape**

259 The storage qualities of tomatoes and green grapes were considered model food products and studied to investigate
260 the active properties of the developed films (CH, CP9, and CP10). The prepared tomatoes (3.2-3.5 g) and green
261 grapes (3.1-3.3 g) were kept in a Petri dish (3.5 cm x 3.5 cm) covered with a lid. The films (1.3 cm x 1.3 cm) were
262 inserted inside the Petri dish, and the setup with the tomatoes and grapes, stored for 7 and 9 days, respectively, at
263 room temperature (23 °C, relative humidity 46%). Tomatoes and green grapes in the Petri dish without film were
264 regarded as control, and those without a lid and film were designated as non-packaging (NP). The Petri dish was
265 weighed every day, and the weight was recorded. The weight loss of tomatoes and grapes were measured in
266 triplicate samples using equation 5 ³⁶.

$$267 \quad \text{Weight loss (\%)} = (W_1 - W_2)/W_1 \times 100 \dots \dots \dots (5)$$

268 Where, W_1 is the initial weight of tomatoes and grapes in a Petri dish, and W_2 is the weight on the day of
269 measurement.

270

271 2.7 Evaluation of storage quality of pearl fish fillet

272 The purchased pearl fish fillets were cut (20-25 g) and kept in a Petri dish with films (1.3 cm x 1.3 cm) separately
273 at room temperature (23°C, relative humidity 46%). The pH, drip loss, and total volatile basic nitrogen (TVBN)
274 were measured daily in triplicate samples to detect the storage quality of pearl fish fillets. The pearl fish fillet
275 without film was considered the control, and the one without film and lid was regarded as the NP group.

276 The pH of pearl fish fillet was detected, following the method of Pang et al.³⁷ with some modifications.
277 Five (5) grams of pearl fish fillet were vigorously homogenised in 45 mL of distilled water. After that, the pH of
278 the pearl fish fillet filtrate was measured in triplicate samples using a pH meter (HI 5222, Hanna Instruments,
279 USA). Additionally, the drip loss of packaged pearl fish fillets with films in a Petri dish was assessed using the
280 weighing method³⁶. The pearl fish fillets in a Petri dish were weighed daily using an analytical balance, and the
281 following equation 6 was used to calculate the drip loss.

283 Where W_1 is the initial weight of pearl fish fillets in a Petri dish, and W_2 is the weight on the measurement day.

The TVBN of pearl fish fillets was measured, following the method of Lee et al.³⁸ with some modifications. Briefly, 5 g of ground pearl fish fillets were inserted in a 50 mL Falcon tube containing 45 mL distilled water and kept at room temperature (23°C) for approximately 35 min. After that, Whatman No. 1 filter paper was used to filter the samples, and the supernatant was analysed. Before sample analysis, the Conway indicator solution was prepared by dissolving 66 mg of bromocresol green and 66 mg of methyl red in 100 mL of ethanol (99.5%). Additionally, a 0.01 N boric acid solution was prepared by dissolving 0.3 g boric acid in 150 mL of ethanol, and the volume was increased to 500 mL using 350 mL of distilled water. Also, a 50% potassium carbonate solution was made by dissolving 50 g K₂CO₃ in 100 mL of distilled water. In the analysis of TVBN in pearl fish fillets, 1 mL H₃BO₃ and 100 µL of indicator solution were included in the inner part of the Conway unit, and 1 mL of supernatant and 1 mL of K₂CO₃ solution were added in the outer chamber of the Conway unit. Then, the Conway unit was kept at 37°C for 2 h in an oven (THERMOTEC 2000, Lower Hutt, New Zealand). After that, 0.01 N HCl was incorporated into the inner part of the Conway unit until the formation of the pink colour. The content TVBN was calculated in triplicate samples using the following equation 7.

$$TVBN \text{ (mg/100g)} = 0.14 \times (b - a) \times f \times d/W \times 100 \quad \dots \dots \dots (7)$$

298 Where b and a are the titration volumes (mL) of HCl for a sample and blank, respectively, f is the concentration
299 of HCl (0.01 N), d is the dilution factor (45 mL), and W is the pearl fish fillet weight (5 g).

300

301 **2.8 Statistical analysis**

302 The statistical analysis used GraphPad Prism version 9.4.1 (GraphPad Software, Boston, USA). The obtained data
303 from at least three replicates are presented as mean \pm standard deviation (SD). To look for significant differences
304 ($P \leq 0.05$) in the generated films, cell viability, and total cell number, Tukey's test and ordinary one-way analysis
305 of variance (ANOVA) were employed.

306

307 **3. Results and discussion**

308

309 **3.1 Antioxidant activity of developed chitosan films**

310 The antioxidant activity of fabricated chitosan films is presented in **Fig. 1**. In the DPPH scavenging assay; the
311 fabricated films showed different activities during 0.5-16 h. Films CP8 (95.37 ± 0.57 – $95.51 \pm 0.56\%$), CP10
312 (91.37 ± 5.52 – $95.38 \pm 0.08\%$), and CP12 (88.30 ± 9.51 – $95.44 \pm 0.25\%$) exhibited the highest DPPH scavenging
313 activities with greater consistency during the time periods, whereas CP7 (46.80 ± 1.44 – $94.12 \pm 1.85\%$), CP9
314 (69.82 ± 5.48 – $96.30 \pm 0.04\%$), and CP11 (41.31 ± 6.14 – $99.48 \pm 0.24\%$) demonstrated linearity in different
315 time intervals. CH (8.31 ± 0.43 – $13.13 \pm 4.26\%$), CP2 (6.88 ± 0.17 – $14.80 \pm 2.45\%$), CP5 (2.76 ± 1.79 – $7.16 \pm$
316 3.13%), and CP6 (3.13 ± 0.21 – $8.24 \pm 2\%$) films presented the lowest percentage of DPPH scavenging activities.
317 These research findings are consistent with Zhang et al.³⁹, who reported that neat chitosan film (15%)
318 demonstrated the lowest DPPH scavenging capacity compared to gallic acid-loaded film (50-83%), indicating that
319 the addition of gallic acid in chitosan film enhanced antioxidant activity due to the interaction of native antioxidant
320 properties gallic acid moieties on chitosan backbone. The addition of PVA and COS in the chitosan film did not
321 improve the DPPH radical scavenging activity in the chitosan films. However, the inclusion of gallic acid and
322 COS significantly enhanced the DPPH radical scavenging capacity of the chitosan-PVA films labelled CP9-CP12.
323 These findings align with the research conducted by Yuan et al.¹⁸ who elucidated that COS and caffeic acid-
324 loaded chitosan films significantly increased scavenging ability (93.43%) compared to the control film (10%).
325 Additionally, similar studies reported by Lee et al.⁴⁰, indicated that including gallic acid in the preparation of
326 chitosan active film exhibited a strong scavenging property (95.7%) due to the presence of a phenolic hydroxyl
327 group.

Web Article Online
DOI: 10.1039/D5FB00775E

328 Similarly, in the ABTS scavenging assay, CP10 (97.85 ± 1.01 – $98.06 \pm 0.91\%$), CP12 (97.41 ± 0.69 ^{Accepted Article Online}
DOI: 10.1039/D5FB00775E

329 $97.57 \pm 0.53\%$), CP8 (94.12 ± 5.05 – $95.79 \pm 2.63\%$), and CP11 (94.34 ± 2.87 – $96.68 \pm 0.38\%$) showed the
330 highest percentage of ABTS scavenging properties, whereas CP7 (84.23 ± 9.09 – $96.50 \pm 0.38\%$) and CP9 (85.60
331 ± 5.59 – $93.87 \pm 0.67\%$) demonstrated different activity with linearity in the experimental time, followed by CH
332 (20.76 ± 7.30 – $80.99 \pm 1.28\%$), CP2 (12.80 ± 0.07 – $91.90 \pm 4.81\%$), CP5 (14.23 ± 10.02 – $90.94 \pm 4.81\%$), and
333 CP6 (11.48 ± 8 – $87.06 \pm 12.72\%$). Similar findings were stated by Zhao et al. ¹¹, who described chitosan film
334 (22%) as having the lowest ABTS scavenging activity, whereas adding gallic acid to chitosan film enhanced
335 hydrogen supply capacity, improving ABTS radical scavenging capacity (85%).

336 Likewise, the highest FRAP (equivalent $\mu\text{M Fe}^{2+}/\text{g sample}$) was obtained from CP10 (230.93 ± 1.42)
337 film, followed by CP12 (229.13 ± 4.20), CP8 (228.69 ± 0.49), CP9 (222.88 ± 4.76), CP7 (220.73 ± 1.36) and
338 CP11 (218.11 ± 0.24), whereas the lowest FRAP was exhibited by CP6 (54.66 ± 1.11), CH (33.88 ± 1.79), CP5
339 (25.04 ± 0.06), and CP2 (24.43 ± 4.39) films. Adding COS and gallic acid to the chitosan-PVA film enhanced its
340 ability to reduce Fe^{3+} to Fe^{2+} , potentially indicating synergistic effects. The findings align with Gulzar et al. ²⁸,
341 who reported that adding COS and tannic acid to chitosan film demonstrated the highest FRAP activity, which
342 depends on the amounts of COS and tannic acids in film development. A film with the capacity to convert ferric
343 to ferrous ions and delay the production of free radicals, which might delay the lipid oxidation of foods and avoid
344 oxidative stress ⁴¹. The highest FRAP activities by incorporating COS and gallic acid reconfirmed their active role
345 in developing chitosan films with effective antioxidant properties.

347 **Fig. 1.** Scavenging capacity of fabricated films towards DPPH (A), ABTS (C), and FRAP (E) radicals, colour
 348 changes of working solution observed during the experiment (B, D, and F). FRAP: Ferric reducing antioxidant
 349 power. Bars represent mean \pm SD with different letters (A-D) are significantly different at $p < 0.05$, $n = 3$.

351 3.2 Antimicrobial properties of fabricated film

352 The antimicrobial activity of developed chitosan film towards *Escherichia coli* (Gram-negative bacteria), *Listeria*
 353 *innocua* (Gram-positive bacteria), and *Saccharomyces cerevisiae* (Yeast) is presented in **Fig. 2**. Overall, the COS
 354 and gallic acid loaded chitosan films showed higher antimicrobial activity and leakage of greater intracellular
 355 substances compared to neat chitosan film. These findings suggested that adding COS and gallic acid effectively
 356 improved the antimicrobial properties of chitosan film. The inclusion of COS and gallic acid in chitosan film
 357 resulted in $59.49 \pm 9.17\%$ (CP10), $79.29 \pm 0.94\%$ (CP10), and $79.55 \pm 8.45\%$ (CP9) antimicrobial capacity of
 358 chitosan film. The findings of the study are in line with Zhao et al.¹¹ who demonstrated that the addition of gallic

359 acid improved antimicrobial activity towards Gram-positive (*Staphylococcus aureus*) and Gram-negative
360 (*Escherichia coli*) bacteria due to the synergistic effect of the positively charged amino group of chitosan and
361 gallic acid, which disrupts bacterial cell wall and results in bacteria death. Adding PVA and COS alone in chitosan
362 film did not significantly improve the antimicrobial properties of chitosan film. The findings are consistent with
363 Gulzar et al.²⁸ and Kanatt et al.⁴², who reported that elevated concentrations of COS in the film failed to inhibit
364 the growth of microbes (*Listeria monocytogenes* and *Escherichia coli*) effectively, and PVA in chitosan film did
365 not show any significant changes in microbial growth (*Staphylococcus aureus* and *Bacillus cereus*), respectively.
366 However, combining COS and gallic acid in chitosan film improved antimicrobial activity in the current study
367 due to the synergistic interaction with chitosan. Additionally, the release of cellular components is higher in COS
368 and gallic acid-loaded films (CP7-CP12 (*Escherichia coli*), CP8-CP10 (*Listeria innocua*), and CP8, CP9, and
369 CP12 (*Saccharomyces cerevisiae*)) than in chitosan film. This could have happened due to the presence of an
370 abundance of free amino groups, contributed by COS, in the film matrix, leading to electrostatic interactions with
371 the phosphate groups of the microbial cell membrane to damage membrane integrity, resulting in the release of
372 intercellular substances^{29, 43}. Additionally, the potential interaction of GA with the chitosan film matrix caused
373 membrane pores of microbes to destroy cell membranes and enhance their cell permeability, resulting in leakage
374 of cell constituents⁴⁴. Also, we hypothesise that the inclusion of COS and gallic acid in the chitosan film acts
375 synergistically to improve membrane permeability and physical disruption of microbial cells, leading to death.
376 These findings are consistent with those of Hou et al.¹⁷, who reported that incorporating gallic acid and tannic
377 acid into a cellulose/chitosan film matrix created an active film with enhanced antimicrobial activity against
378 *Escherichia coli* and *Staphylococcus aureus* due to their synergistic interactions. Therefore, the OD₂₆₀ values of
379 COS and gallic acid-loaded chitosan films were higher than those of the neat chitosan film, reconfirming the
380 enhancement of antimicrobial activity in the fabricated films of the current study.

381

382 **Fig. 2.** Antimicrobial rate of fabricated chitosan films towards *Escherichia coli* (A), *Listeria innocua* (C), and
 383 *Saccharomyces cerevisiae* (E), and leakage of cell constituents of microbes after 24 h (B, D, and F). Bars represent
 384 mean \pm SD with different letters (A-D) are significantly different at $p < 0.05$, $n = 3$.

385

386 3.3 Cytotoxicity patterns of chitosan films

387 3.3.1 Cell viability of HaCaT cells

388 The cell viability profile of HaCaT cells is presented in **Fig. 3**. The green and red fluorescence demonstrated live
 389 and dead cells, respectively. The higher proportion of live cells than dead cells confirmed the positive viability of
 390 HaCaT cells toward CH, CP9, and CP10 films. The HaCaT cells exhibited excellent viability, more than 90% in
 391 all tested films. There were no significant differences ($p > 0.05$) between control and developed films at 24, 48,
 392 and 72 h, except CP10 film at 24 h. Following ISO 10993-5, a biological material is considered non-toxic if the
 393 cell survival rate is more than 70% during the culture period. Hence, the film developed with chitosan, polyvinyl
 394 alcohol, COS, and gallic acid is considered a safe food packaging material. Yang et al.⁴⁵ fabricated packaging
 395 film containing polyvinyl alcohol, hexamethylene guanidine, and gallic acid and characterised their cytotoxicity.

396 Research findings of their studies showed that the developed film had good biocompatibility, and the cell viability
 397 of mouse fibroblast (L929) cells of the gallic acid-loaded film was greater than 70%. Riaz et al.⁴⁶ studied the
 398 safety of gallic acid in developing film containing agarose and showed more than 75% cell viability towards L929
 399 cells. The current study findings demonstrated that adding GA to the chitosan film is non-toxic to HaCaT cells.

400
 401 **Fig. 3.** Dye-based fluorescent microscopy images (A) and cell viability (B) of HaCaT cells after 24, 48, and 72 h
 402 of incubation with CH, CP9, and CP10 films. Bars represent mean \pm SD with different letters (A-B) are
 403 significantly different at $p < 0.05$, $n = 3$.

404

405 **3.3.2 Cell proliferation of HaCaT cells**

406 The cell proliferation of HaCaT cells is illustrated in **Fig. 4**. The results showed that the number of HaCaT cells
 407 increased from 24 h to 72 h, and no significant differences existed between control and treated HaCaT cells after
 408 24, 48, and 72 h, except for the CH film at 72 h. The results suggest that including PVA, COS, and gallic acid
 409 does not hinder the growth of cell numbers but rather increases HaCaT cell numbers, reconfirming the non-toxic
 410 properties of the developed films.

411

412
 413 **Fig. 4.** Cell proliferation of HaCaT cells after 24, 48, and 72 h of incubation with CH, CP9, and CP10 films. Bars
 414 represent mean \pm SEM (Standard Error of the Mean) with different letters (A-B) that are significantly different at
 415 $p < 0.05$, $n = 4$.

416

417 3.3.3 Cell viability of Caco-2 cells

418 The cell viability of Caco-2 cells is shown in **Fig. 5**. The green and red fluorescence showed live and dead cells,
 419 respectively. The higher number of live cells than dead cells in the graph confirmed the positive viability of Caco-
 420 2 cells toward CH, CP9, and CP10 films. The Caco-2 cells exhibited good viability, more than 75% after 24 h and
 421 80% at 48 and 72 h in all tested films. Additionally, no significant differences ($p < 0.05$) exist between the control
 422 and developed films at 72 h, except for the CP10 film. The current research findings are consistent with Liu et al.
 423⁴⁷, who reported that adding gelatine and 3-phenyllactic acid in the development of chitosan film demonstrated
 424 good biocompatibility on Caco-2 cells. The concentration of gallic acid in the chitosan film could affect the cell
 425 viability of Caco-2 cells; therefore, the percentage of live cells was significantly reduced in the CP10-treated film
 426 compared to the control, CH, and CP9 films. Forester & Waterhouse⁴⁸ reported that the increasing gallic acid
 427 concentration significantly inhibits the growth of Caco-2 cells. However, in the present study, all films, including
 428 CP10, showed more than 75% cell viability, revealing that the fabricated films are suitable for packaging.

429

430 **Fig. 5.** Dye-based fluorescent microscopy images (A) and cell viability (B) of Caco-2 cells after 24, 48, and 72 h
 431 of incubation with CH, CP9, and CP10 films. Bars represent mean \pm SD with different letters (A-B) are
 432 significantly different at $p < 0.05$, $n = 3$.

433

434 **3.3.4 Cell proliferation of Caco-2 cells**

435 The cell proliferation of Caco-2 cells is shown in **Fig. 6**. The results depict that the number of HaCaT cells
 436 increased from 24 h to 72 h in the control compared to film-treated Caco-2 cells. However, no significant
 437 differences ($p > 0.05$) were observed between control and film-treated Caco-2 cells at 24 and 48 h, except for the
 438 CH film at 48 h. At 72 h, Caco-2 cells treated with films exhibited significantly less proliferation than control.
 439 The proliferation of Caco-2 cells depends on the viscosity and molecular weight of chitosan and the film-forming
 440 matrix^{49, 50}. Additionally, the gallic acid content in the chitosan film could be attributed to minimising the
 441 proliferation of Caco-2 cells. Some studies stated that gallic acid demonstrated anti-proliferative effects towards
 442 colorectal cancer cell models, including Caco-2 cells^{48, 51}. Chitosan film containing gallic acid in DMEM media
 443 may generate H_2O_2 , increasing cell auto-oxidation and reducing cell proliferation. The findings coincided with
 444 Mu & Kitts⁵² who described that phenolic acid, especially gallic acid showed the greatest anti-proliferation
 445 properties against Caco-2 cells by generating H_2O_2 in DMEM media. Some researchers reported that gallic acid
 446 did not affect the proliferation of the normal cell lines compared to cancer cells⁵³. Thus, fabricated films could
 447 be suitable as food packaging materials. While our current findings suggest suitability for packaging applications,
 448 we do not establish a safety margin for oral exposure at this stage. Therefore, the developed material cannot yet
 449 be classified as edible packaging, and comprehensive *in vivo* testing together with exposure-based risk assessment
 450 is required to confirm its safety for human consumption.

451

452

453 **Fig. 6.** Cell proliferation of Caco-2 cells after 24, 48, and 72 h of incubation with CH, CP9, and CP10 films. Bars
 454 represent mean \pm SEM with different letters (A-B) are significantly different at $p < 0.05$, $n = 4$.

455

456 3.4 Application of film in tomato and green grape packaging

457 The appearance and weight loss of tomatoes under different pack-film conditions are presented in **Fig. 7A and**
 458 **7B**. It was observed that the NP tomatoes gradually lost their appearance, and the surface became wrinkly due to

459 the loss of turgidity in the cells. However, no microbial growth was seen in NP tomatoes compared to other film
460 packed groups. This observation could be explained by the fact that the NP samples, being without lid and film,
461 did not accumulate moisture droplets from the respiration of the tomatoes. The development of humidity inside
462 the film-packed (Control-CP10), which created a suitable atmosphere for the growth of microbes. In the case of
463 the control group, microbial growth was observed on day 2. In contrast, the development of microbes in the film-
464 packed tomatoes with CH, CP9, and CP10 films was detected on days 3, 4, and 5, respectively. In other words,
465 films such as CP10 delayed the onset of microbial growth. The current research findings confirm the point that
466 the fabricated films had antimicrobial ability that extended the shelf life of the tomatoes. On day 1, all the tomatoes
467 (NK: $3.48 \pm 1.76\%$, control: $2.30 \pm 0.38\%$, CH: $1.64 \pm 0.38\%$, CP9: $1.94 \pm 0.04\%$, CP10: $1.25 \pm 0.07\%$) showed
468 more or less similar weight loss. However, by day 7, the NK group demonstrated the highest weight loss ($37.5 \pm$
469 1.32%), followed by control ($16.57 \pm 1.11\%$), CH ($14.29 \pm 1.25\%$), CP9 ($13.56 \pm 1.5\%$), and CP10 ($9.63 \pm 0.55\%$).
470 The findings are similar to those of Gasti et al.⁵⁴ who reported unpacked green chillies demonstrating the highest
471 weight loss compared to chitosan and gallic acid-loaded chitosan film-packed green chillies.

472 A similar observation was made for the grape samples. Non-packaged green grapes demonstrated the
473 highest weight loss ($27.11 \pm 0.62\%$) and shrivelling during the storage periods compared to film-packed green
474 grapes (Control: $15.95 \pm 0.25\%$, CH: $14.77 \pm 1.2\%$, CP9: $13.1 \pm 0.94\%$, and CP10: $13.54 \pm 0.47\%$) (**Fig. 7C and**
475 **7D**). The current research findings align with Zhao et al.¹¹ who observed the highest percentage of fresh-cut apple
476 weight loss in an unpacked group compared to apple storage with chitosan film and PVA-gallic acid incorporated
477 chitosan film. Another study reported that non-packaged kiwifruit demonstrated shrinking and the highest weight
478 loss compared to packing kiwifruit with polylactic acid film containing chitosan and alizarin³⁶. The growth of
479 microbes was not observed with the naked eye in green grapes during the entire storage. This could be possible
480 due to the presence of phenolic compounds, including tannins, anthocyanins, and flavonols, in grapes, which have
481 preventive ability towards microbial growth⁵⁵. Sun et al.⁵⁶ reported that unpacked grapes (*Vitis vinifera* L. Kyoho)
482 demonstrated microbial growth and spoilage signs after 14 days of storage periods. In contrast, grapes packaged
483 with chitosan enriched with montmorillonite and lauroyl arginate ethyl showed no microbial growth up to 20 days
484 of storage periods.

485

486 **Fig. 7.** Application of chitosan films (CH, CP9, and CP10) in freshness evaluation of tomatoes (A) and green
487 grapes (D) stored at room temperature (23°C) for 7 and 9 days, respectively and their changes of weight loss (B

488 and C). Non-packaging (NP): Tomatoes or green grapes without a lid and film. Control: Tomatoes or green grapes
489 in a Petri dish without film. CH: Tomatoes or green grapes with a lid and chitosan film.

490

491 3.5 Application of film in pearl fish fillet packaging

492 The appearance, drip loss, pH, and TVBN value of pearl fish fillets under film-packed are presented in **Fig. 8**. It
493 can be seen that the pearl fish fillets look shiny and show a 'fresh' colour on day 0 compared to day 2. Also, the
494 shrinkage of pearl fish fillets was observed from day 2, especially in the NP group (**Fig. 8A**). There were
495 significant differences in the drip loss of pearl fish fillets between the NP group and the film-packed group (**Fig.**
496 **8B**). The non-packaging and control pearl fish fillets demonstrated 16.27% and 3.33% drip loss on day 2,
497 respectively, whereas film-packed group showed below 3.22% drip loss. However, there are no significant
498 differences in the drip loss of pearl fish fillets between the control and film-packed groups. This observation could
499 be attributed to the fact that, in the current study, a small portion of the films was used, as compared to other
500 studies where whole fish fillets were wrapped in the packaging film ^{36, 57}.

501 The pH of fresh pearl fish fillets was 6.7 ± 0.02 , and it can be seen from **Fig. 8C** that the pH of both the
502 film-packed and NP groups of pearl fish fillets increased during storage. The pH of the non-packaging group pearl
503 fish was increased to 8.92 ± 0.03 on day 2, followed by control (8.82 ± 0.01), CH (8.76 ± 0.03), CP9 ($8.64 \pm$
504 0.01), and CP10 (8.61 ± 0.01) films. The pH value of pearl fish fillets was significantly lower in the CP9 and
505 CP10 film-packed fish compared to the NP, control, and CH packaging groups. The findings indicate that CP9
506 and CP10 films in packaging pearl fish could minimise the microorganism action and inhibit chemical
507 deteriorative action, resulting in lower pH compared to other groups. The findings are consistent with the work of
508 Yan et al. ⁵⁸, Amaregouda et al. ⁵⁹, and Wu et al. ³⁶.

509 The TVBN (mg/100g) of fresh pearl fish fillets was 5.04 ± 0.01 . The TVBN of NP and film-packed pearl
510 fish fillets was increased during storage (**Fig. 8D**). The TVBN value of NP (31.08 ± 1.45) and control ($27.72 \pm$
511 2.52) pearl fish fillets was significantly higher than that of CH (23.51 ± 1.44), CP9 (24.36 ± 1.44), and CP10
512 (19.32 ± 1.46) film-packed fish fillets on day 1. However, the TVBN value increased to 57.96, 47.04, and 47.88
513 on day 2 in NP, control, and CH-packed pearl fish fillets, respectively, which is significantly higher than the
514 changes observed in CP9 (45.36) and CP10 (41.16) films. The findings imply that fabricated films could minimise
515 the decomposition of pearl fish fillets by diminishing antimicrobial action and lipid oxidation ⁶⁰. The findings in
516 this study align with Chen et al. ⁶¹ and Dong et al. ⁶² develop active packaging film for hairtail fish and shrimp
517 for shelf life extension an identified lowered TVBN compared to control, respectively. Also, several research

518 articles stated that fish are considered spoiled when the TVBN value exceeds 30 mg/100g^{63, 64}. In the current
 519 study, the TVBN value of pearl fish fillets was much lower in CP9 and CP10 film-packed fish on day 1; however,
 520 it exceeded the 30 mg/100g cutoff value on day 2. These findings indicate that the films can potentially extend
 521 the shelf life of pearl fish fillets.

522

523 **Fig. 8.** Application of chitosan films in freshness evaluation of pearl fish fillet (A) stored at room temperature
524 (23°C) for two days, and their changes of drip loss (B), pH (C), and TVBN (D). Non-packaging (NP): Pearl fish
525 fillet without a lid and film, Control: Pearl fish fillet in the Petri dish without film, and CH: Pearl fish fillet with
526 a lid and chitosan film.

527

528 **4. Conclusion**

529 In the present research work, the functional properties of chitosan films containing PVA, COS, and gallic acid
530 were investigated and evaluated. The COS and gallic acid-loaded chitosan-PVA films showed the highest
531 scavenging capacity towards DPPH and ABTS radicals, and the highest FRAP was obtained from the film
532 containing 10% COS and 10% gallic acid (CP10). In addition, CP10 film demonstrated the highest antimicrobial
533 efficacy towards *Escherichia coli* and *Listeria innocua*, and CP9 exhibited the highest leakage of cellular
534 components towards *Saccharomyces cerevisiae*. Also, the highest cell viability of HaCaT and Caco-2 cells was
535 observed on CH and CP9 films compared to CP10. Moreover, the application of CP9 and CP10 films on tomatoes
536 and green grapes showed the lowest weight loss, and pearl fish fillets demonstrated the lowest pH and TVBN
537 compared to CH, control, and no-packaging groups. Based on current research findings, chitosan films containing
538 PVA, COS, and gallic acid could be considered functional and suitable packaging materials to extend the shelf
539 life of perishable foods. Further studies may be necessary to examine the release profile of COS and gallic acid,
540 focusing on their effects on cellular responses, microbial load data, and the quality indices of tomatoes and green
541 grapes. Furthermore, a shelf ageing study of the packaging film could be conducted to evaluate the long-term
542 stability of its functional properties during storage. This research could improve the understanding of the film's
543 functional performance and the synergistic interactions between COS and gallic acid in practical food packaging
544 applications.

545

546 **Data availability**

547 The authors affirm that the data supporting this study's findings are available within the research article and will
548 also be shared upon request.

549

550 **Author contribution**

551 **Shuva Bhowmik:** Conceptualization, Investigation, Methodology, Data curation, Visualization, Writing-Original
552 draft. **Dominic Agyei:** Supervision, Writing-review & editing. **Azam Ali:** Supervision, Conceptualization, Project
553 Administration, Writing-review & editing.

554

555 **Acknowledgements**

556 Shuva Bhowmik would like to acknowledge the University of Otago, Dunedin, New Zealand, for supporting the
557 PhD research and studies through the Otago Doctoral Scholarship.

558

559 **Declaration of competing interest**

560 The authors declare that they have no conflict of interest.

561

562

563 **References**

- 564 1. F. Ghaderi, A. Shakerian, Z. Mashak, E. Rahimi and S. M. Jafari, *Journal of Food Measurement and
565 Characterization*, 2024, 1–18.
- 566 2. V. Guillard, S. Gaucel, C. Fornaciari, H. Angellier-Coussy, P. Buche and N. Gontard, *Frontiers in
567 nutrition*, 2018, **5**, 121.
- 568 3. Y. Yin and M. W. Woo, *Sustainable Food Technology*, 2024.
- 569 4. K. Ma, F. Li, T. Zhe, X. Sun, X. Zhang, P. Wan, H. Na, J. Zhao and L. Wang, *Food Chemistry*, 2024,
570 **435**, 137552.
- 571 5. H. A. Leslie, M. J. Van Velzen, S. H. Brandsma, A. D. Vethaak, J. J. Garcia-Vallejo and M. H. Lamoree,
572 *Environment international*, 2022, **163**, 107199.
- 573 6. I. Hamed, A. N. Jakobsen and J. Lerfall, *Comprehensive Reviews in Food Science and Food Safety*,
574 2022, **21**, 198–226.
- 575 7. J. Paul, J. Jacob, M. Mahmud, M. Vaka, S. G. Krishnan, A. Arifutzzaman, D. Thesiya, T. Xiong, K.
576 Kadirkama and J. Selvaraj, *International Journal of Biological Macromolecules*, 2024, 130850.
- 577 8. Q.-b. Yao, F. Huang, Y.-h. Lu, J.-m. Huang, M. Ali, X.-Z. Jia, X.-A. Zeng and Y.-y. Huang, *Trends in
578 Food Science & Technology*, 2024, 104390.
- 579 9. S. Bhowmik, D. Agyei and A. Ali, *Food Packaging and Shelf Life*, 2022, **34**, 100962.

580 10. A. A. Hunashyal, S. P. Masti, L. K. Kurabetta, M. N. Gunaki, S. Madihalli, J. P. Pinto, *New Article Online*
581 Megalamani, B. Thokchom, R. B. Yarajarla and R. B. Chougale, *Sustainable Food Technology*, 2025,
582 3, 2088–2107.

583 11. Y. Zhao, L. Yang, M. Xu, H. Wang, X. Gao, B. Niu and W. Li, *International Journal of Biological
584 Macromolecules*, 2022, **222**, 2987–3000.

585 12. J. P. Pinto, M. H. Anandalli, A. A. Hunashyal, Priyadarshini, S. P. Masti, R. B. Chougale, V. Gudihal
586 and R. F. Bhajantri, *Journal of Materials Science: Materials in Electronics*, 2025, **36**, 1035.

587 13. Q. Zhou, W. Lan and J. Xie, *International Journal of Biological Macromolecules*, 2024, **254**, 127917.

588 14. A. Singh, A. Mittal and S. Benjakul, *Food reviews international*, 2023, **39**, 2297–2319.

589 15. Y. Sun, J. Cui, L. Tian, Y. Mi and Z. Guo, *Marine Drugs*, 2023, **21**, 535.

590 16. W. Weian, Y. Yunxin, W. Ziyan, J. Qianzhou and G. Lvhua, *Biomaterials Science*, 2024.

591 17. T. Hou, R. Venkatesan, T. Dhilipkumar, V. Mayakrishnan, C. J. Raorane, S. S. Sana, M. A. Ansari and
592 S.-C. Kim, *International Journal of Biological Macromolecules*, 2025, **285**, 138276.

593 18. Y. Yuan, W. Tan, C. Lin, J. Zhang, Q. Li and Z. Guo, *Food Hydrocolloids*, 2023, **138**, 108431.

594 19. M. Zhang, B. Yang, Z. Yuan, Q. Sheng, C. Jin, J. Qi, M. Yu, Y. Liu and G. Xiong, *Food Chemistry: X*,
595 2023, 100782.

596 20. E. Messinese, O. Pitirollo, M. Grimaldi, D. Milanese, C. Sciancalepore and A. Cavazza, *Food and
597 Bioprocess Technology*, 2024, **17**, 606–627.

598 21. M. N. Gunaki, S. P. Masti, L. K. Kurabetta, S. Madihalli, A. A. Hunashyal, R. B. Chougale, V.
599 Holeyannavar and S. kumar Vootla, *Journal of Environmental Chemical Engineering*, 2025, 118397.

600 22. B. Tian, J. Liu, W. Yang and J.-B. Wan, *Journal of Agricultural and Food Chemistry*, 2023, **71**, 1325–
601 1347.

602 23. N. Kumar, Pratibha, J. Prasad, A. Yadav, A. Upadhyay, Neeraj, S. Shukla, A. T. Petkoska, Heena and S.
603 Suri, *Food Engineering Reviews*, 2023, **15**, 718–747.

604 24. M. Rajabi, J. Cabral, S. Saunderson and M. A. Ali, *Carbohydrate Polymers*, 2022, **295**, 119884.

605 25. S. Bhowmik, D. Agyei and A. Ali, *Cellulose*, 2024, 1–17.

606 26. A. Riaz, S. Lei, H. M. S. Akhtar, P. Wan, D. Chen, S. Jabbar, M. Abid, M. M. Hashim and X. Zeng,
607 *International journal of biological macromolecules*, 2018, **114**, 547–555.

608 27. M. Božič, S. Gorgieva and V. Kokol, *Carbohydrate Polymers*, 2012, **87**, 2388–2398.

Open Access Article. Published on 20 December 2025. Downloaded on 1/13/2026 8:43:27 PM.
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

609 28. S. Gulzar, M. Tagrida, K. Nilsuwan, T. Prodpran and S. Benjakul, *Food Hydrocolloids*, 2022, **133**, Article Online
610 107916. DOI: 10.1039/D5FB00775E

611 29. J. Bi, C. Tian, G.-L. Zhang, H. Hao and H.-M. Hou, *Food Chemistry*, 2021, **365**, 130534.

612 30. M. B. Sadiq, J. Tarning, T. Z. Aye Cho and A. K. Anal, *Molecules*, 2017, **22**, 47.

613 31. S. S. Sali, M. L. Gould, M. Qasim and M. A. Ali, *Journal of Materials Chemistry B*, 2021, **9**, 1557–1567.

614 32. D. S. B. Anugrah, G. Delarosa, P. Wangker, R. Pramitasari and D. Subali, *Packaging Technology and
615 Science*, 2023.

616 33. M. L. Gould, J. T. Ratnayake, N. Ramesh, T. J. Powlay, O. J. Curnow, M. P. Staiger and G. J. Dias,
617 *Journal of Polymers and the Environment*, 2023, **31**, 1335–1350.

618 34. B. Mahaling, N. Pandala, H.-C. Wang and E. B. Lavik, *ACS bio & med Chem Au*, 2022, **2**, 499–508.

619 35. X. Deng, M. Gould, R. Katare and M. Ali, *Biomedical Materials*, 2024, **19**, 055007.

620 36. Y. Wu, Y. Ma, Y. Gao, Y. Liu and C. Gao, *International Journal of Biological Macromolecules*, 2022,
621 **214**, 348–359.

622 37. G. Pang, C. Zhou, X. Zhu, L. Chen, X. Guo and T. Kang, *Journal of Food Safety*, 2023, **43**, e13045.

623 38. H. Lee, M. S. Kim, W.-H. Lee and B.-K. Cho, *Sensors and Actuators B: Chemical*, 2018, **259**, 532–539.

624 39. X. Zhang, J. Liu, C. Qian, J. Kan and C. Jin, *Food hydrocolloids*, 2019, **89**, 1–10.

625 40. C. R. Lee, S. J. Lee, T. I. Kim, K. Chathuranga, J. S. Lee, S. Kim, M. H. Kim and W. H. Park, *Food
626 Chemistry*, 2025, **463**, 141322.

627 41. A. Mittal, A. Singh, S. Benjakul, T. Prodpran, K. Nilsuwan, N. Huda and K. de la Caba, *Food
628 hydrocolloids*, 2021, **111**, 106384.

629 42. S. R. Kanatt, M. Rao, S. Chawla and A. Sharma, *Food hydrocolloids*, 2012, **29**, 290–297.

630 43. Z. Fang, W. Cong, H. Zhou, J. Zhang and M. Wang, *Journal of Functional Foods*, 2024, **116**, 106219.

631 44. S. Keyvani-Ghamsari, M. Rahimi and K. Khorsandi, *Food Science & Nutrition*, 2023, **11**, 5856–5872.

632 45. X. Yang, B. Wang and D. Sha, *Journal*, 2021.

633 46. Z. Riaz, S. Baddi, F. Gao and C.-L. Feng, *European Polymer Journal*, 2024, **206**, 112778.

634 47. Y. Liu, R. Wang, D. Wang, Z. Sun, F. Liu, D. Zhang and D. Wang, *Food Hydrocolloids*, 2022, **127**,
635 107546.

636 48. S. C. Forester and A. L. Waterhouse, *Journal of agricultural and food chemistry*, 2010, **58**, 5320–5327.

637 49. I. Salcedo, C. Aguzzi, G. Sandri, M. C. Bonferoni, M. Mori, P. Cerezo, R. Sánchez, C. Viseras and C.
638 Caramella, *Applied clay science*, 2012, **55**, 131–137.

639 50. M. C. Di Santo, A. Alaimo, A. P. D. Rubio, R. De Matteo and O. E. Pérez, *Biochemistry and biophysics reports*, 2020, **24**, 100842.

640 51. I. Y. Ho, A. Abdul Aziz and S. Mat Junit, *Scientific reports*, 2020, **10**, 9987.

641 52. K. Mu and D. D. Kitts, *Journal of Agricultural and Food Chemistry*, 2023, **71**, 3022–3032.

642 53. E.-B. Ko, Y.-G. Jang, C.-W. Kim, R.-E. Go, H. K. Lee and K.-C. Choi, *Biomolecules & Therapeutics*, 2021, **30**, 151.

643 54. T. Gasti, S. Dixit, R. B. Chougale and S. P. Masti, *Sustainable Food Technology*, 2023, **1**, 390–403.

644 55. S. Augustine, V. Kudachikar, V. Vanajakshi and R. Ravi, *Journal of food science and technology*, 2013, **50**, 332–338.

645 56. Z. Sun, J. Hao, H. Yang and H. Chen, *Food and Bioprocess Technology*, 2018, **11**, 1853–1862.

646 57. L. Zhang, D. Yu, Y. Xu, Q. Jiang, W. Xia and D. Yu, *Food Bioscience*, 2023, **54**, 102941.

647 58. J. Yan, R. Cui, Y. Qin, L. Li and M. Yuan, *International Journal of Biological Macromolecules*, 2021, **177**, 328–336.

648 59. Y. Amaregouda, K. Kamanna and T. Gasti, *International Journal of Biological Macromolecules*, 2022, **218**, 799–815.

649 60. W.-Y. J. Kam, H. Mirhosseini, F. Abas, N. Hussain, S. Hedayatnia and H.-L. F. Chong, *Food Control*, 2018, **90**, 66–72.

650 61. M. Chen, T. Yan, J. Huang, Y. Zhou and Y. Hu, *International Journal of Biological Macromolecules*, 2021, **179**, 90–100.

651 62. S. Dong, Y. Zhang, D. Lu, W. Gao, Q. Zhao and X. Shi, *Food Packaging and Shelf Life*, 2023, **35**, 101022.

652 63. F. Wang, C. Xie, H. Tang, H. Li, J. Hou, R. Zhang, Y. Liu and L. Jiang, *International Journal of Biological Macromolecules*, 2023, **252**, 126423.

653 64. Y. Liu, J. Chen, H. Li and Y. Wang, *International Journal of Biological Macromolecules*, 2024, **259**, 128934.

654

655

656

657

658

659

660

661

662

663

664

Data availability

[View Article Online](#)
DOI: 10.1039/D5FB00775E

The authors affirm that the data supporting this study's findings are available within the research article and will also be shared upon request.