

Sustainable Food Technology

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: L. F. Mejia-Avellaneda, E. Céspedes-Gutiérrez, D. F. Cortés-Rojas and L. Mesa, *Sustainable Food Technol.*, 2025, DOI: 10.1039/D5FB00684H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Sustainability Spotlight Statement

A native strain of *Pediococcus acidilactici* A40 was used to develop a dual-purpose fermentation process that enables the simultaneous production of bioinoculant and lactic acid. The partial replacement of yeast extract with corn steep liquor—an agro-industrial byproduct—reduces production costs and environmental impact, while valorizing regional microbial biodiversity. This strategy fosters local bioinput and bioproduct manufacturing and contributes to circular bioeconomy models. The innovation aligns with key United Nations Sustainable Development Goals (SDGs), particularly SDG 2 (Zero Hunger), SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action), offering a scalable and sustainable alternative for bioprocessing in agri-food and bio-based industries.

1 **Sustainable production of a bioinoculant and lactic acid from a native lactic acid strain**2 ***Pediococcus acidilactici* A40: The role of nitrogen sources.**

3

4 Luis Fernando Mejía-Avellaneda^{1,2} (ORCID: 0000-0002-5821-5050), Elizabeth Céspedes-
5 Gutiérrez² (0000-0002-8587-2152), Diego Francisco Cortés-Rojas² (0000-0002-5618-6284),
6 Leyanis Mesa² (ORCID: 0000-0003-4449-5239)7 ¹ Instituto de Ciencia y Tecnología de Alimentos (ICTA) – Facultad de Ciencias Agrarias –
8 Universidad Nacional de Colombia – sede Bogotá. Bogotá, D.C., Colombia9 ² Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, Departamento
10 de Bioproductos, Km 14 Bogotá-Mosquera, Mosquera, Cundinamarca, Colombia11 **Abstract**12 The development of cost-effective and sustainable microbial inoculants is essential to
13 promote environmentally friendly agricultural practices and circular bioeconomy strategies.14 In this study, a native strain of *Pediococcus acidilactici* A40 was cultivated using low-cost
15 organic nitrogen sources to produce viable biomass intended for application as a silage
16 bioinoculant, while simultaneously generating lactic acid (LA) as a value-added co-product
17 that can be further processed as an ingredient for food technology purposes. An experimental
18 mixture design (MD) was applied to evaluate yeast extract (YE), corn steep liquor (CSL),19 and hydrolysed soybean protein (HSP) as nitrogen sources. The influence of these sources
20 on cell viability and LA concentration was assessed, and a cost–benefit analysis (CBA) was
21 conducted to determine the most economically viable fermentation medium. Results showed
22 that the partial substitution of YE (40 %) with CSL (60 %) maintained high cell viability23 (>11 log CFU/g dry biomass (DB)) and acceptable LA concentrations. This combination
24 achieved a 22.85% reduction in medium cost and outperformed the YE-only medium in terms

1 of overall economic efficiency. Desirability analysis indicated that the CSL–YE combination
2 provided an optimal balance between performance and cost. This study contributes to the
3 valorisation of native microbial resources and agro-industrial byproducts, aligning with the
4 principles of bioeconomy. By addressing the need to explore alternative nitrogen sources in
5 biotechnological processes —a key strategy to enhance process sustainability—, the
6 proposed dual-purpose bioprocess supports the development of affordable, locally produced
7 bioinputs and bioproducts for agricultural and industrial sectors, offering a practical
8 alternative to reduce reliance on imported inputs and to strengthen circularity in production
9 chains.

10 **Keywords:** circular bioeconomy, mixture design, desirability function, cost-benefit analysis,
11 dual-purpose bioprocess, sustainable bioinput

12 **List of abbreviations**

13 Lactic acid bacteria (LAB)
14 General Recognized as Safe (GRAS)
15 Lactic acid (LA)
16 Yeast Extract (YE)
17 Corn steep liquor (CSL)
18 Hydrolysed Soy Protein (HSP)
19 De Man, Rogosa, Sharpe (MRS)
20 Mixture Design (MD)
21 Ordinary least squares (OLS)
22 Dry Biomass (DB)
23 Branched-chain amino acids (BCAA)
24 Cost-benefit Analysis (CBA)

1 Cost-benefit index (CB)

2 Introduction

3 The transition to sustainable food systems has become a global strategic priority, driving the
4 use and commercial production of bioinputs and bioproducts. In this context, the
5 development of more efficient, diversified and sustainable bioprocesses plays a key role, as
6 it aligns with the bioeconomy policies adopted by many countries. The feedstuff and
7 foodstuff sectors are seeking ingredients and inputs obtained through sustainable processes
8 that utilize native biodiversity resources within circular systems.^{1,2}

9 Lactic acid bacteria (LAB), microorganisms considered GRAS, are widely used as starters,
10 probiotics and bioinoculants and their bioprocesses yield numerous metabolites with
11 applications in the food, pharmaceutical, and agricultural industries. LAB has been
12 established as a natural technology for preserving food and fodder through fermentation,
13 including the silage process, which is essential for conserving plant biomass for animal feed.

14 The addition of LAB-based inoculants in silos significantly improves the aerobic stability,
15 nutritional value and microbiological safety of forage, reducing the proliferation of
16 pathogenic microorganisms and the need for chemical additives.^{3,4}

17 To enhance the sustainability and economic viability of LAB-based bioprocesses, it is
18 essential to recover and capitalise on all potential coproducts derived from fermentation in
19 complex growth media. Among these metabolites, lactic acid (LA) is one of the most
20 promising platform compounds in current bioeconomy because of its efficacy as a natural
21 preservative, acidulant, and antimicrobial agent.⁵ It is used in the food and beverage sector
22 as a preservative and pH-adjusting agent, and in the pharmaceutical, cosmetic, and chemical
23 industries as a solvent and starting material for the production of lactate esters. However, a
24 limiting factor for LA fermentations is the high cost of the media components, which

1 influences the total cost of the process.^{6,7} The integrated production of a viable LAB-based
2 bioinoculant and LA within a single fermentation process represents an innovative strategy
3 that improves technical feasibility and enhances bioprocess sustainability.^{8–10} This
4 diversified approach to bioprocessing maximizes the value of LAB by promoting multi-
5 product production schemes that enhance resource efficiency and support sustainable process
6 integration.

7 In the development of bioinoculants, it is essential that the selected microorganisms be
8 comprehensively characterized with respect to their genetic, morphological, and functional
9 traits and that their safety for human, animal, and plant health be established. Key
10 characteristics include a rapid and efficient conversion of water-soluble carbohydrates into
11 lactic acid, enabling a fast pH decline and early stabilization of the ensiling environment,
12 thereby limiting the growth of undesirable microorganisms. In addition, effective silage
13 inoculants require high tolerance to environmental stresses such as low pH, anaerobic
14 conditions, and fluctuating temperatures, as well as strong competitiveness against the
15 epiphytic microbiota naturally present on forages. In this context, *Pediococcus acidilactici* is
16 a Gram-positive LAB belonging to the *Lactobacillaceae* family, widely recognized for its
17 probiotic and antimicrobial properties, as well as its industrial applications.^{11–16} It can grow
18 on various substrates and produce LA under suitable conditions.^{17,18} Also, *Pediococcus*
19 *acidilactici* integrates stress tolerance mechanisms commonly observed in LAB with unique
20 genomic and metabolic features, conferring good adaptability and resilience under adverse
21 environmental conditions.¹⁹ The strain *P. acidilactici* A40, originally isolated from oat
22 forage²⁰ has been identified as a promising silage bioinoculant owing to its capacity for rapid
23 LA production and its antimicrobial properties which enhance fermentation quality while
24 inhibiting spoilage microorganisms. These attributes are in agreement with previous findings

1 reported for this strain.^{3,4} Moreover, *P. acidilactici* A40 exhibits potential for broader
2 applications as a bioinoculant, including its use as a plant biocontrol agent and as a plant
3 growth promoter.^{21,22} To ensure efficacy in agricultural settings, these microorganisms
4 require specialized formulation processes, typically as solid products, that preserve viability
5 during storage, facilitate handling, and allow uniform application upon dilution. Therefore,
6 the potential of native *P. acidilactici* strains utilized on regionally available forages
7 represents a sustainable alternative tailored to local conditions and resources, reducing
8 dependence on imported bioinputs and aligning with the principles of the bioeconomy.

9 A highly effective strategy for reducing fermentation media costs involves the valorisation
10 of agro-industrial residues as alternative substrates, thereby promoting a circular economy
11 framework. Residues such as sugarcane bagasse, fruit hulls, dairy by-products, molasses, by-
12 products from fish, chicken, brewer's spent yeast, and wheat bran have been proven to be
13 viable sources of carbon and nitrogen for LAB growth.^{17,23–26} This approach not only reduces
14 these costs, but also mitigates the environmental impact associated with waste disposal,
15 thereby strengthening the overall sustainability of the process. Carbon sources from agro-
16 industrial residues have been widely documented as substrates for LAB fermentation.
17 Sugars derived from lignocellulosic and agri-food residues are among the most
18 extensively studied.³⁰ However, nitrogen sources—although present in smaller proportions
19 in the fermentation medium—have not been studied as intensively as carbon sources, even
20 though they significantly influence production costs, particularly when the carbon source is
21 already derived from residual materials.^{31–33}
22 Despite the extensive research addressing the use of agro-industrial residues as alternative
23 carbon sources in LAB fermentations, there is a lack of systematic studies evaluating low-

1 cost alternative nitrogen sources in bioprocesses aimed at the simultaneous production of
2 highly viable LAB biomass and LA.

3 The objective of this study was to evaluate the technical feasibility and economic
4 sustainability of totally or partially replacing standard yeast extract (YE) with alternative
5 nitrogen sources—such as urea, corn steep liquor (CSL) and hydrolysed soy protein (HSP)—
6 in the fermentation of the native strain *Pediococcus acidilactici* A40, with the aim to
7 optimizing the simultaneous production of a bioinoculant for silage preservation and LA as
8 a co-product.

9 **Materials and Methods**

10 **Fermentation study and raw materials preliminary evaluation**

11 **Microorganisms:** *Pediococcus acidilactici* A40 was used as LAB strain, which were
12 supplied by the National Germplasm Bank (Mosquera, Colombia). The A40 strain was
13 isolated from oat silage collected in a Colombian Andean Highland region.²⁰ This strain was
14 initially stored at -80 °C and subsequently at -20 °C for immediate use. De Man, Rogosa,
15 Sharpe (MRS) broth and agar (OxoidTM, United Kingdom) were used for inoculum
16 preparation, and colony enumeration.

17 *Pediococcus acidilactici* A40, has been previously characterized at both genomic and
18 phenotypic levels. The complete genome sequence of strain A40 has been reported, revealing
19 no genes associated with virulence or known pathogenic determinants, and confirming its
20 taxonomic affiliation within a LAB species with a long history of safe use^{20,21} In addition,
21 phenotypic evaluations described in previous studies have demonstrated that strain A40
22 exhibits beneficial biological activities without evidence of pathogenic behaviour, supporting
23 its suitability for applied fermentation and bioprocessing systems.

24 **Reagents and raw materials**

1 Molasses used in this study was obtained from Riopaila-Castilla (Zarzal, Valle del Cauca,
2 Colombia) and contained 52.1% total sugars. The nitrogen sources employed included urea
3 (Cimpa S.A.S., Colombia), yeast extract (YE) (Oxoid™, United Kingdom), corn steep liquor
4 (CSL) (Sigma-Aldrich™, United States), and hydrolysed soy protein (HSP) (Tecnas S.A.,
5 Colombia).

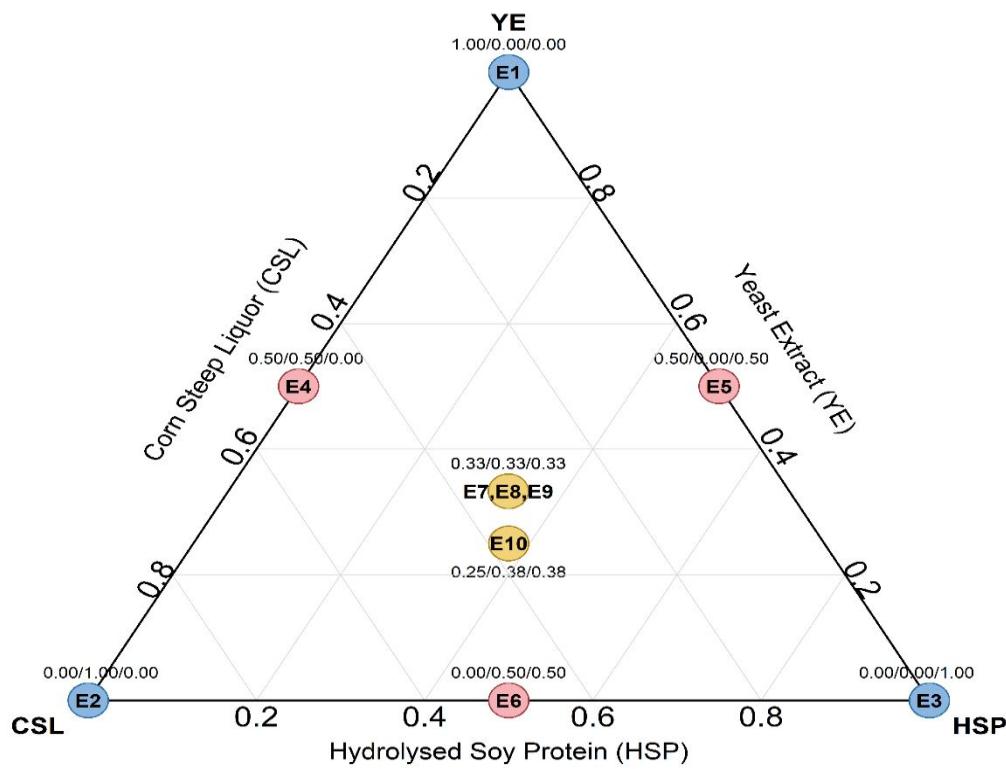
6 ***Inoculum preparation and medium composition***

7 *Pediococcus acidilactici* A40 strain was reactivated in 50 mL of MRS broth and incubated
8 for 8 h at 37 °C +/- 2 °C and 200 rpm in a shaking incubator (LabTech LSI-1005R, South
9 Korea). A subsequent transfer was made to the same volume of MRS broth and incubated
10 for 16 h under the same conditions. Fermentation was carried out in 250 mL Erlenmeyer
11 flasks at 5% (v/v) inoculum size, 5:2 C:N source, and 3:5 medium-to-flask volumetric ratio,
12 at 37°C and 200 rpm for 24 h in a shaking incubator. The fermentation media were formulated
13 with 100 g/L of total sugars from molasses (192 g/L of sugarcane molasses), and the nitrogen
14 sources were added according to the proportions and concentrations specified in each of the
15 experimental designs. pH was initially adjusted at 7.0 +/- 0.02 with 0.02 M NaH₂PO₄ -
16 Na₂HPO₄.7H₂O (Merck™, United States) buffer, with 1 N NaOH addition. The seal of the
17 Erlenmeyer flasks was made with cotton gauze swabs fixed with stretchable plastic film, to
18 favour microaerophilic conditions. Alternative nitrogen sources were tested to partially or
19 fully replace the amount of YE in the medium. First, urea—a low-cost nitrogen source—was
20 evaluated. Subsequently, two organic sources—CSL and HSP—were assessed as
21 supplementary nitrogen sources to YE.

22 **Effect of adding urea to the medium**

23 The impact of urea and YE in the culture medium were evaluated. For both nitrogen sources,
24 concentrations of 20 g/L and 40 g/L were used as the minimum and maximum levels,

1 respectively. A full factorial 2^2 experimental design was applied to assess the individual and
2 combined effects of these variables on bacterial biomass cell concentration and LA
3 concentration. The design included 8 experiments (one replicate per condition). The
4 randomized design matrix for these experiments is presented in Table 1.


5 **Effect of adding organic nitrogen sources to the medium**

6 Based on the results obtained from the preliminary factorial screening, urea was excluded
7 from further optimization, and subsequent experiments focused on organic nitrogen sources.
8 The effects of incorporating three organic nitrogen sources into the culture medium were
9 evaluated: YE, CSL, and HSP. An experimental mixture design (MD), specifically a simplex
10 centroid design based on Scheffé models, was employed to evaluate the combined effects of
11 three organic nitrogen sources. The total concentration of nitrogen sources was kept constant
12 at 40 g/L, and the experimental factors were expressed as relative proportions of each
13 component within the mixture. The design included 10 experiments, with 3 centre points as
14 shown in Figure 1. The randomized experimental matrix is shown in Table 2.

15

1

2 Fig. 1 Representation of the experimental points of the MD

3 The concentration of sugarcane molasses was kept constant across all experiments, and
 4 culture conditions followed those previously described. The response variables were cell
 5 viability on a dry weight basis (log CFU/g DB) and LA concentration (g/L). A special cubic
 6 Scheffé model was fitted for the analysis (see equation 1).

$$y = \sum_{i=1}^k \beta_i x_i + \sum_{i \leq j}^k \beta_{ij} x_i x_j + \sum_{i < j < l}^k \beta_{ijl} x_i x_j x_l + \epsilon \quad (\text{Eq. 1})$$

7 where y is the response variable, x represents the i -th, j -th, and l -th components, and ϵ is the
 8 model error term.

1 Prior to model fitting, an exploratory data analysis was conducted for each response to
 2 evaluate distributional properties and variance behavior. Normality (Shapiro–Wilk) and
 3 homoscedasticity (Breusch–Pagan) diagnostics indicated deviations from classical linear
 4 model assumptions for some responses. Therefore, a robust inference framework was
 5 adopted to ensure valid statistical conclusions without relying on strict normality or constant-
 6 variance assumptions. Model parameters and adjusted R^2 were estimated by ordinary least
 7 squares (OLS) and inference relied on robust “sandwich” standard errors chosen
 8 automatically. The variance–covariance matrix for inference was selected in a data-driven
 9 manner: HC3 when heteroskedasticity was indicated (Breusch–Pagan), Newey–West when
 10 autocorrelation was detected (Breusch–Godfrey/Durbin–Watson), and otherwise HC2.
 11 Statistical term significance was assessed via term-wise Wald F tests; p-values were
 12 multiplicity-adjusted with Holm within each response (to control FWER), and the classical
 13 overall model F was reported for context. Model adequacy was examined with studentized
 14 residuals, standard diagnostics and standard graphical checks. To visualize uncertainty, one-
 15 dimensional profile plots with Bonferroni simultaneous bands were produced. The validity
 16 of the model assumptions was verified at a 5% significance level. For the desirability
 17 analysis, the function proposed by Derringer and Suich (Equation 2) was applied, aiming to
 18 maximize both response variables ³⁴,
 19

$$D = \left[\prod_{i=1}^k (d_i^{w_i}) \right]^{1/a} \text{ donde } a = \sum_{i=1}^k w_i \quad (\text{Eq. 2})$$

20 where D is the overall desirability, d_i is the individual desirability of the i -th response
 21 variable, and w_i is the weighting factor assigned to each i -th response. Additionally, the cost

1 of the fermentation medium per litre (USD/L)—combining both the carbon and the nitrogen
 2 sources—was included as a variable, as defined by the function presented in Equation 3. This
 3 cost was calculated using normalized selling prices in USD, obtained from commercial
 4 suppliers, as described in the Cost-Benefit Analysis section below.

$$C = 0.0225 + 0.6 * YE + 0.36 * CSL + 0.24 * HSP \quad (\text{Eq. 3})$$

5 The weights assigned to the response variables for calculating global desirability were
 6 defined as $w_1 = 3$, $w_2 = 3$, and $w_3 = 1$, corresponding to biomass viability, LA concentration
 7 and medium cost, respectively, in order to prioritize technological variables. The individual
 8 desirability values for each response variable were maximized according to the following
 9 function (Eq. 4):

$$d_j(\hat{Y}_j) = \begin{cases} 0 & \text{si } \hat{Y}_j \leq L_j \\ \left(\frac{\hat{Y}_j - L_j}{T_j - L_j} \right)^{s_j} & \text{si } L_j < \hat{Y}_j < T_j \\ 1 & \text{si } \hat{Y}_j \geq T_j \end{cases} \quad (\text{Eq. 4})$$

10 where \hat{Y}_j is the predicted value of the j -th response variable, L_j is the acceptable lower limit
 11 for \hat{Y}_j , T_j is the target (maximum desired) value, and s_j is a shape parameter, which was
 12 set to 1 in this case. The medium cost was minimized by maximizing $-d_j$, using an acceptable
 13 upper limit and a defined minimum target value.³⁵ The global desirability function was
 14 interpolated to obtain the response values and generate the corresponding contour plot.
 15 Representative points with component proportions were selected based on their desirability
 16 scores. The EMD and subsequent data analysis were performed using R software version
 17 4.4.2³⁶ and RStudio version 2024.12.1 Build 563³⁷, including the generation of graphical
 18 outputs.

19 Analysis Methods

20 Determination of cell concentration in dry basis

1 At the end of the 24 h fermentation, triplicate samples of the fermentation broth were
2 analysed for cell concentration using a modified Neubauer counting chamber (BrandTM
3 GmbH + Co, Germany).³⁸ A volume of 10 µL from each selected dilution was loaded into
4 each chamber section, and two sets of ten randomly selected type #3 squares were counted.
5 Decimal dilutions were prepared in 0.9% saline solution, and counts were performed with a
6 microscope (OlympusTM BX53, Germany) under a 40× objective lens. Equation 5 was used
7 to calculate cell concentration:

$$C = \frac{N_{cells}}{N_{squares}} \times 250.000 \times \frac{1}{10^d} \quad (\text{Eq. 5})$$

8 where C is the cell concentration (cells/mL), N_{cells} is the number of counted cells, N_{squares} is
9 the number of squares counted, and d is the dilution factor, expressed as a negative exponent.
10 To account for differences in the total solids present in each nitrogen source, cell
11 concentration was converted to cells/g DB, using gravimetric determination. Biomass was
12 quantified from 2 mL of culture, which was centrifuged (SorvallTM Biofuge PrimoTM R,
13 Thermo ScientificTM, United States) at 8000×g for 10 minutes at 4 °C to separate the cell-
14 free supernatant. The resulting biomass was dried at 65 °C (E&QTM, Colombia) until constant
15 weight, then equilibrated at room temperature in a silica gel desiccator (SupelcoTM, United
16 States) prior to weighing (RadwagTM AS R2 series, Poland).

17 *Determination of viability in dry basis*

18 After 24 h fermentation, viability was determined from triplicate samples of the fermentation
19 broth using the spread plate method with decimal dilutions in 0.9% saline solution on MRS
20 agar³⁹. Plates were incubated anaerobically (AnaeroGenTM, OxoidTM, United Kingdom) at
21 37 °C for 48 h (Isotherm® Forced Convection Lab Incubator IFA-54-9, EscoTM Lifesciences
22 Group, Singapore) and colonies were counted in CFU/mL. As well as with the cell

1 concentration, viability was converted into CFU/g biomass in dry basis using the
2 corresponding values of DB.

3 *Determination of LA concentration*

4 A separate set of duplicate samples of the fermentation broth were centrifuged at $8000 \times g$ for
5 10 min (SorvallTM Biofuge PrimoTM R, Thermo ScientificTM, United States). The resulting
6 cell-free supernatant was collected and filter-sterilized using 0.22 μm pore size
7 polyethersulfone (PES) filters (MillexTM GP, MilliporeTM, United States) for LA
8 concentration analysis. Quantification was performed by HPLC with refractive index
9 detection (Waters IR 2414, Waters AcquityTM, United States) using a Biorad HPX-87H
10 HPLC column (BioRadTM, United States). The mobile phase consisted of 5 mM H₂SO₄, with
11 an oven temperature of 65 °C, detector temperature of 40 °C, and a flow rate of 0.6 mL/min.
12 Analyses were conducted on a UPLC Waters AcquityTM system (WatersTM, United States).

13 *Formulation of the viable cell biomass for inoculant prototype*

14 For final bioinoculant formulation, the fermentation broth was centrifuged at 4500 rpm at 25
15 °C (RotinaTM 420 Hettich 4701- 01, Andreas HettichTM GmbH, Germany) to separate the
16 biomass from the cell-free supernatant. The recovered biomass was mixed with an excipient
17 at a 1:2 biomass-to-excipient ratio, granulated, and dried in a fluidized bed dryer (GlattTM
18 Uni-glatt 8512, Germany) at 35 °C to achieve a final moisture content below 8%. The
19 biomasses obtained from the fermentation broth using CSL and YE as nitrogen sources were
20 used to formulate solid prototypes, which were stored at 25°C for 90 days. Microbial viability
21 was assessed over time to evaluate the effect of the nitrogen source on prototype stability.

22 *Cost-benefit Analysis (CBA)*

23 A preliminary CBA was conducted based on raw material costs and estimated revenues from
24 the bioinoculant and LA. Although this evaluation does not account for capital or operational

1 expenditures, it offers an initial indication of the economic feasibility of the process. The
 2 costs of raw materials considered for CBA is shown in Table 1. The estimated market prices
 3 for the bioinoculant and LA were 90 USD/kg and 2 USD/kg, respectively. Equation 6 was
 4 used to calculate the cost–benefit index (CB). Product prices were based on market data,
 5 adopting the most conservative available values.

6 Table 1. Raw materials costs

Raw material costs	USD/kg
YE	15
CSL	9
HSP	6
Molasses	0.3

$$7 \quad CB = \frac{(P_{inoc} \times Y_{inoc}) + (P_{LA} \times Y_{LA})}{Cost \ of \ fermentation \ medium \ (\frac{USD}{L})} \quad (\text{Eq. 6})$$

8 Where:

9 P_{inoc} : Estimated price of the bioinoculant (USD/kg)

10 Y_{inoc} : Formulated bioinoculant based of biomass yield (kg)

11 P_{LA} : Estimated price of LA (USD/kg)

12 Y_{LA} : Yield of LA per Liter of medium (kg)

13 RESULTS AND DISCUSSION

14 The production of bioinputs and bioproducts must fulfill the requirement of economic
 15 competitiveness. Among the main factors influencing total production costs, the fermentation
 16 medium represents a significant component. In this study, although molasses had already
 17 been selected as a cost-effective carbon source⁴⁰, the high proportion of YE used still

1 contributed substantially to the overall medium cost. Therefore, a strategy was developed to
 2 totally or partially replace YE. The analysis began with the evaluation of urea, a low-cost
 3 non-protein nitrogen source commonly used in industrial fermentation processes.
 4 Nevertheless, its use resulted in decreased cell concentration and LA production.
 5 Consequently, the study proceeded with the evaluation of organic nitrogen sources in
 6 combination with YE—specifically, CSL and HSP—which led to improved performance
 7 compared to urea.

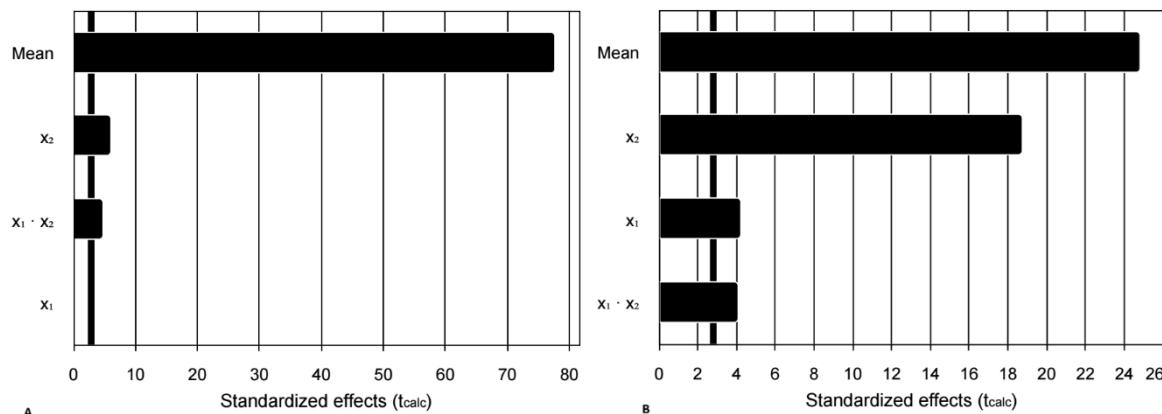
8 **Evaluation of urea as N source**

9 Urea has been utilised as a nitrogen source in bioprocesses, offering a cost-effective and
 10 widely available alternative to conventional inorganic compounds. Its combination with YE
 11 has been shown to enhance LA production by *Lactobacillus delbrueckii* NCIM 2025,
 12 demonstrating the potential of mixed nitrogen strategies to optimize nutrient utilization and
 13 process performance.^{5,41} The results of biomass cell concentration and LA concentration are
 14 presented in Table 2.

15 **Table 2. Real and coded values of the nitrogen sources studied in the full 2² factorial
 16 design and the corresponding response parameter values.**

Trials	Variables		Response parameters		
	X ₁ (YE concentration, g/L)	X ₂ concentration, g/L)	(Urea (log cells/g DB)	Cell concentration (g/L)	LA concentration (g/L)
1	1 (40)	1 (40)	9.13 ± 0.41	1.91 ± 0.057	
2	1 (40)	-1 (20)	12.08 ± 0.092	16.09 ± 1.74	
3	-1 (20)	1 (40)	10.53 ± 0.622	1.85 ± 0.021	

4	-1 (20)	-1 (20)	10.83 ± 0.191	10.94 ± 0.149
---	---------	---------	-------------------	-------------------


1

2 Experiment 2 yielded the highest LA concentration (16.09 g/L) and the highest cell viability.
 3 In contrast, experiments 1 and 3, both of which involved high levels of urea, showed a marked
 4 decrease in LA concentration. Cell concentration of the biomass in experiment 1 remained
 5 relatively low, where the urea level was the highest, reaching only log 9 cells/g DB. This
 6 result suggests an inhibitory effect of urea on the growth of the strain. The resulting models
 7 for cell concentration (Y_1) and LA concentration (Y_2) obtained from the statistical analyses
 8 are shown in equations 7 and 8:

$$Y_1 = 10.64 - 0.03X_1 - 0.81X_2 - 0.67X_1X_2 \quad (\text{Eq. 7})$$

$$Y_2 = 7.70 - 1.31X_1 - 5.82X_2 - 1.27X_1X_2 \quad (\text{Eq. 8})$$

9

10

11 **Fig. 2. Pareto graph of cell concentration (A) and LA concentration (B) in the 2^2 full
 12 factorial experiment.**

13 According to Figure 2 and Equations 7 and 8, urea had a statistically significant effect on
 14 both response variables, with a negative coefficient. This indicates that, within the tested
 15 concentration range, urea significantly reduced LA production to very low levels (1.85 g/L)

1 and decreased cell concentration from 12 to 9.13 log cells/g DB. The inhibitory effect of urea
2 on LA production by *Lactobacillus casei* has been previously reported.⁴² Despite these
3 results, certain non-protein nitrogen sources such as ammonium sulphate and urea can
4 partially replace costly YE without significantly reducing LA production when used in
5 combination with organic sources or supplemented with B vitamins.⁴³ Regression and
6 ANOVA analyses are presented in Supplementary Material 1 (SM 1). The use of YE led to
7 a significant increase in both response variables. Other protein nitrogen sources, such as meat
8 extract and peptone, are also relevant, as they not only supply nitrogen, but also provide
9 essential vitamins that support cell growth and metabolic activity. In particular, the relevance
10 of YE during the initial stages of fermentation is attributed to its high content of amino acids,
11 peptides, and B-complex vitamins, which stimulate microbial proliferation and enhance LA
12 production.^{44,45}

13 The obtained results indicate that the use of urea as a partial replacement for YE as a nitrogen
14 source in the fermentation medium must be carefully evaluated. High urea concentrations
15 negatively affected LA production and inhibited cell proliferation to some extent. The most
16 favourable outcome was achieved with high YE concentration (40 g/L) and low urea
17 concentration (20 g/L), resulting in both high cell concentration and LA production.
18 Accordingly, urea levels should be carefully optimized. A balanced combination of protein
19 and non-protein nitrogen sources may enhance process efficiency while reducing production
20 costs.

21 In the present study, bacterial biomass is one of the target products for recovery, intended for
22 use as a bioinoculant for silage preservation. Therefore, maintaining high viability is essential
23 to ensure its biological activity during subsequent formulation steps. When urea is included
24 in the fermentation medium, a considerable increase in total biomass is observed (data not

1 shown), which comprises both LAB biomass and residual medium components. This
2 increase, however, negatively impacts biomass viability. Consequently, downstream
3 formulation processes and the overall effectiveness of the bioinoculant may be compromised.
4 Typically, *Pediococcus acidilactici* is not expected to possess urease activity, in contrast to
5 some foodstuff and feedstuff pathogens that do; this enzymatic activity can be detrimental
6 for the ensiling process.^{46,47} Therefore, the effectiveness of urea depends on its concentration
7 and the overall nutritional balance of the medium. While it can contribute non-protein
8 nitrogen, it cannot fully replace the nutrients provided by organic sources.⁴⁸ For this reason,
9 we decided not to continue with the optimization of partial YE substitution by urea.
10 Following the evaluation of urea as a partial substitute for YE in the diversified fermentation
11 of *Pediococcus acidilactici* A40, other organic nitrogen sources—such as CSL and HSP—
12 were subsequently assessed. These alternatives were selected due to their lower cost and their
13 proven effectiveness in supporting microbial growth across various fermentation processes.
14 49,50

15 **Results of the use of organic nitrogen sources**

16 An MD was used to evaluate the effects of different organic nitrogen sources. This type of
17 design is commonly applied to assess the composition of culture media components, such as
18 sugar sources, residues, and other nutrient mixtures.^{51–53} Table 3 presents the results for each
19 experimental combination. The replicate at the central point exhibited low variability for both
20 response variables ($\log 10.85 \pm 0.04$ CFU/g DB; 17.34 ± 0.23 g/L LA). The highest LA
21 concentrations were observed in treatments containing YE, supporting the findings
22 previously discussed. In contrast, the combinations that included HSP showed the lowest
23 performance in terms of LA production and viable biomass. A possible explanation for this
24 preliminary observation is that HSP is not a significant source of B-complex vitamins, unlike

1 YE and CSL.⁵⁴ Additionally, variability in the production processes of HSP may affect the
2 presence of components that promote cell growth and LA formation.⁵⁵

3 **Table 3. Experimental matrix and response parameters values evaluated in the MD**

Treatment	Variables			Response parameters	
	X ₁ (YE)	X ₂ (CSL)	X ₃ (HSP)	Cell viability	LA
				(log	concentration*
Treatment	X ₁ (YE)	X ₂ (CSL)	X ₃ (HSP)	DB)	(g/L)
1	1 (40)	0	0	11.83	18.32
2	0	1 (40)	0	11.59	11.82
3	0	0	1 (40)	10.72	6.85
4	0.5 (20)	0.5 (20)	0	11.62	18.15
5	0.5 (20)	0	0.5 (20)	11.53	13.69
6	0	0.5 (20)	0.5 (20)	11.14	8.76
7	0.33 (13.2)	0.33 (13.2)	0.33 (13.2)	10.88	17.60
8	0.33 (13.2)	0.33 (13.2)	0.33 (13.2)	10.88	17.14
9	0.33 (13.2)	0.33 (13.2)	0.33 (13.2)	10.80	17.29
10	0.25 (10)	0.38 (15.2)	0.38 (15.2)	10.74	15.43

4

5 *Results of the chromatograms of LA are presented in SM2

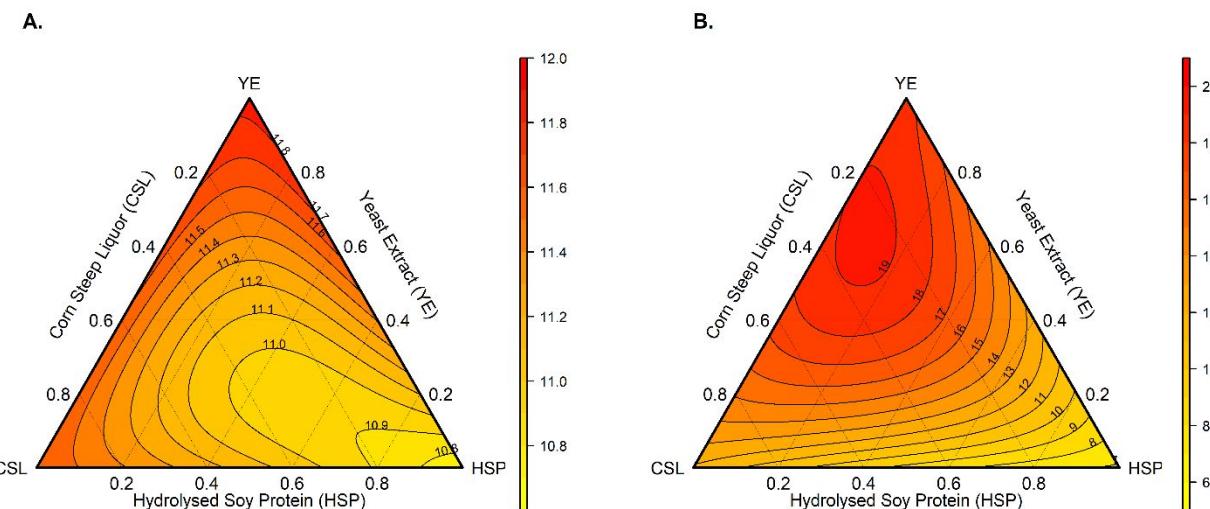
6 **Table 4. Cell Viability Regression analysis of the MD**

Cell Viability, log UFC/gDB					
Variables	Estimate	Std.err	t-value	F-Wald	p Holm
YE	11.83	0.039	299.48	8.21E-08	5.75E-07*

CSL	11.59	0.039	293.328	8.74E-08	5.75E-07*
HSP	10.71	0.039	271.278	1.1E-07	5.75E-07*
YE:CSL	-0.36	0.193	-1.891	0.155	0.31
YE:HSP	1.03	0.193	5.312	0.013	0.0391*
CSL:HSP	-0.011	0.193	-0.061	0.955	0.955
YE:CSL:HSP	-11.62	1.624	-7.142	0.0056	0.0226*
R ²		0.99			
R ² adjust		0.99			

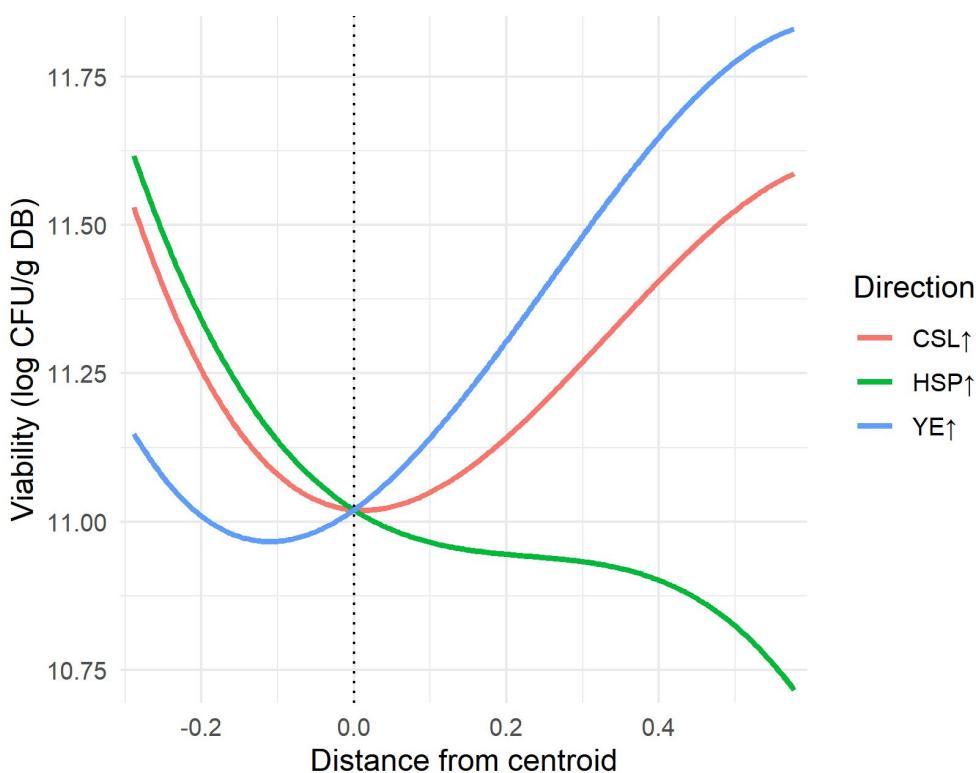
$$Cell\ viability, \log CFU/gDB = 11.830X_1 + 11.587X_2 + 10.716X_3 + 1.028X_2X_3 - 11.616X_1X_2X_3 \quad (Eq. 9)$$

4 The fitted Scheffé mixture model (Eq. 9) describing biomass viability exhibited excellent
5 statistical performance and predictive reliability. The coefficient of determination ($R^2 = 0.99$)
6 and adjusted R^2 (0.99) indicate that nearly all the experimental variability in biomass viability
7 was explained by the model, with no evidence of overfitting. Model precision was further
8 supported by a low root mean square error ($RMSE = 0.053 \text{ log CFU} \cdot \text{g}^{-1} \text{ DB}$) and a small
9 residual standard deviation ($\sigma = 0.0978$), confirming minimal unexplained variability within
10 the experimental domain. Information criteria values ($AIC = -14.19$; $BIC = -11.77$) further
11 indicate that the selected model achieves an optimal balance between goodness of fit and
12 parsimony.


13 The regression model for dry-based cell viability (Eq. 9) indicates that all components
14 had individually statistically significant linear effects, with YE exerting the highest
15 influence (see Table 4). Nonetheless, its effect was only marginally greater, as the linear
16 coefficients for all components were very similar. Only the binary interaction between

1 CSP and HSP was significant, and the ternary interaction effect is negative and of high
2 magnitude in the model. This indicates that the synergy of the three components may
3 cause a significant decrease in viability.

4 Figure 3A shows that cell viability increases with increasing proportions of YE, reaching a
5 maximum of approximately $\log 11.8$ CFU/g DB near the upper vertex. The lowest values are
6 observed in the centre and toward the lower right vertex of the diagram, corresponding to
7 regions where HSP is predominant. The difference between the minimum and maximum
8 values is approximately $\log 1$ CFU/g DB. The effect plot along the Cox direction for the
9 fitted cell viability model in Figure 4 shows that YE is the most statistically significant
10 positive component of the mixture in terms of cell viability, while HSP exerts a statistically
11 significant negative effect, continuously decreasing cell viability as its proportion in the
12 mixture increases, until reaching a value near $\log 10.75$ CFU/g DB, which is considered
13 acceptable for formulation. This suggests that HSP is not highly unfavourable for viable
14 biomass formation, as cell viability remains above $\log 10$ CFU/g DB, although YE yields
15 superior results. The use of HSP with an 85.14% degree of hydrolysis as a nitrogen source
16 resulted in satisfactory viability ($\log 9.45$ CFU/mL), comparable to that achieved with the
17 standard microbiological medium (MRS) ($\log 9.73$ CFU/mL) for *Lactobacillus plantarum*
18 Dad 13 in a complex medium also containing coconut milk, soybean sprout extract, and
19 tomato extract.⁵⁶ CSL also supports the growth of LAB, as mixtures near the lower left vertex
20 display viability values exceeding $\log 11$ CFU/g DB. Another study involving batch
21 fermentation of *Lactococcus lactis* subsp. *lactis* var. *diacetylactis* (SLT 6) using 12 g/L CSL
22 supplemented with 2 g/L YE reported a final cell concentration of $\log 9.97$ CFU/mL.⁵⁷



1 Similarly, CSL was found to significantly enhance biomass production in batch fermentation
2 of *Lactobacillus casei* KH-1.⁵⁸
3

4 **Fig. 3 Effect of nitrogen sources on (A.) cell viability (log CFU/g DB) and (B.) LA**
5 **concentration (g/L)**

6

1 **Fig. 4 Effect plot along the Cox direction for the cell viability model**

2 Biomass with high viability levels ($> \log 10 \text{ CFU/g DB}$) ensures that, during the formulation
 3 operation, cell viability remains above $\log 10 \text{ CFU/g}$ formulated product. This guarantees the
 4 delivery of a sufficient number of viable cells upon application to dominate the fermentation
 5 process in the silage. Such high concentrations facilitate achieving the recommended
 6 effective inoculation dose ($\geq 10^5\text{--}10^6 \text{ CFU}$ of LAB per gram of forage). As a result, a rapid
 7 and efficient LA fermentation is established, which is essential for abundant LA production,
 8 a swift pH drop, and the inhibition of undesirable microorganisms. These effects enhance
 9 aerobic stability and help preserve the nutritional value of the silage.^{59,60}

10 Statistical analysis of the MD for LA concentration showed that all linear terms in the model
 11 (Eq. 10) were statistically significant ($p < 0.05$) (see Table 5), along with the ternary
 12 interaction, all of them with positive terms. These results indicated that YE was the most
 13 influential independent variable, followed by CSL and HSP (YE > CSL > HSP). Figure 3B

1 shows a region where the maximum LA concentration is found adjacent to high proportions
 2 of YE and lower proportions of CSL, while the lowest concentrations are located near the
 3 HSP vertex. The effect plot in the Cox direction shown in Figure 5 indicates that higher
 4 proportions of YE promote LA concentration, whereas higher proportions of HSP have the
 5 opposite effect, and CSL appears to have a detrimental effect when its proportion increases.
 6 This finding aligns with the well-established role of YE as a rich nutrient source, containing
 7 free amino acids, peptides, B-complex vitamins, and other essential growth factors that
 8 support LAB metabolism and LA synthesis.⁶¹ However, the relatively strong performance of
 9 the alternatives containing CSL suggests its potential as a partial substitute for YE. This is
 10 particularly relevant in the context of cost reduction, as it may allow for a significant decrease
 11 in medium costs without compromising cell viability or LA production. The response surface
 12 illustrated in Figure 3B supports this interpretation, showing high LA concentrations near the
 13 upper vertex (YE) and notably competitive values along the CSL axis, while lower
 14 concentrations are associated with regions where HSP is present in higher proportions.

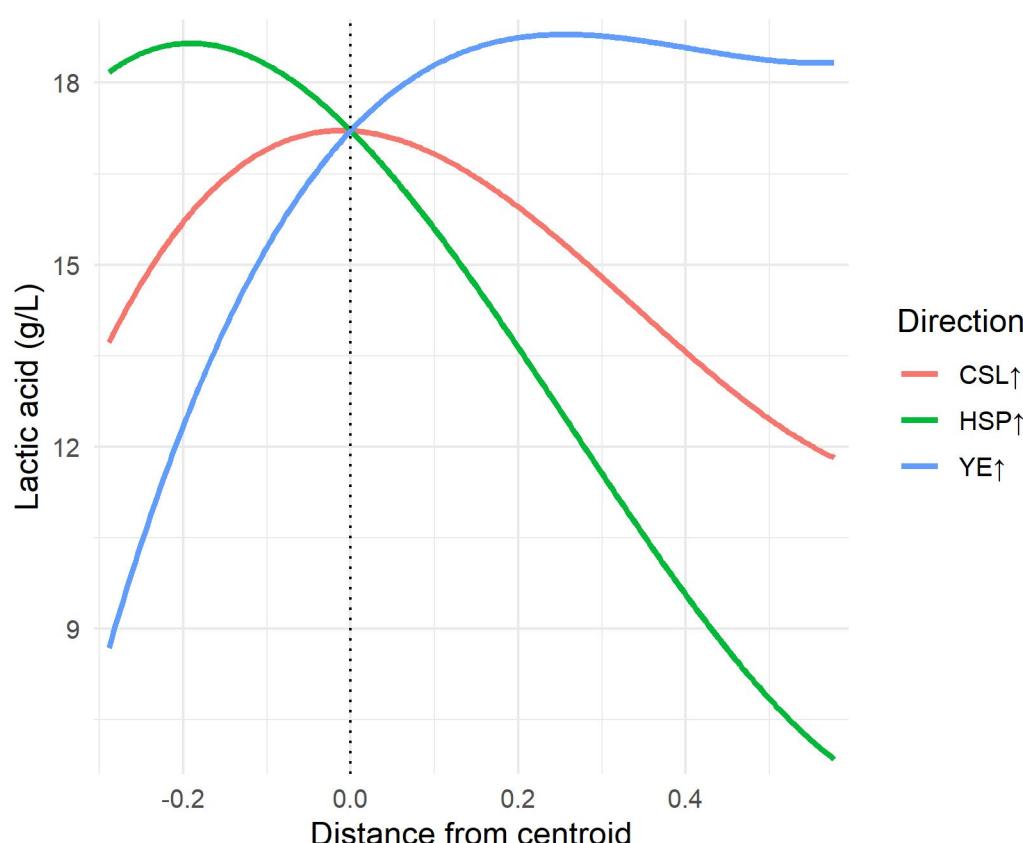
15 **Table 5. LA regression analysis of the MD**

Lactic Acid, g/L					
Variables	Estimate	Std.err	t-value	F-wald	P Holm
YE	18.33	0.571	32.075	1028.82	0.0005*
CSL	11.82	0.572	20.673	427.368	0.0015*
HSP	6.84	0.572	11.976	143.413	0.0063*
YE:CSL	12.39	2.799	4.429	19.614	0.0642
YE:HSP	4.52	2.799	1.614	2.606	0.41
CSL:HSP	-2.56	2.786	-0.921	0.848	0.425

YE:CSL:HSP	88.66	13.31	6.661	44.372	0.0276*
R ²	99.99 %				
R ² adjust	99.99 %				

1

$$LA, g/L = 18.332X_1 + 11.817X_2 + 6.845X_3 + 8.667X_1X_2X_3 \quad (\text{Eq. 10})$$


2 The fitted Scheffé mixture model describing LA concentration (Eq. 10) demonstrated strong
3 statistical performance and high explanatory power. Both the coefficient of determination
4 ($R^2 = 0.99$) and the adjusted R^2 (0.99) indicate that the model explains nearly all the
5 experimental variability in LA production, confirming the relevance of the selected mixture
6 terms and the absence of overfitting.

7 The model exhibited a RMSE of $0.208 \text{ g}\cdot\text{L}^{-1}$ and a residual standard deviation (σ) of 0.3812
8 $\text{g}\cdot\text{L}^{-1}$, which are low relative to the observed range of LA concentrations. These values
9 indicate good predictive accuracy, although they are higher than those obtained for biomass
10 viability, reflecting the intrinsically higher biological and analytical variability associated
11 with metabolite production compared to cell viability.

12 Information criteria analysis yielded AIC and BIC values of 13.05 and 15.47, respectively.
13 While these absolute values are not directly interpretable in isolation, they indicate that the
14 selected model provides an adequate balance between goodness of fit and model complexity
15 when compared with alternative formulations. The higher corrected Akaike Information
16 Criterion ($AICc = 157.05$) reflects the limited sample size typical of mixture designs and the
17 greater sensitivity of metabolite-related responses to experimental variability.

1

2 **Fig. 5 Effect plot along the Cox direction for the LA concentration model**

3 The validation graphics for Models 9 and 10 are presented in Supplementary Material 3
 4 (SM3). In the model (Eq. 10), the effect of YE was nearly three times greater than that of
 5 HSP, confirming its superior suitability for achieving higher LA concentrations. However,
 6 the results also indicate that replacing YE with alternative nitrogen sources tends to reduce
 7 LA production to some extent. Previous studies provide a nuanced view of these alternatives.
 8 For instance, CSL has been reported to have no significant impact on LA production by
 9 *Lactobacillus casei* KH-1, regardless of its association with cellular growth.⁵⁸ In contrast,
 10 other findings suggest that LA production by *Lactobacillus* SMI8 increases proportionally
 11 with the concentration of CSL used⁵⁴, highlighting the strain-specific nature of these
 12 responses. Similarly, while HSP has been considered a satisfactory nitrogen source for LAB

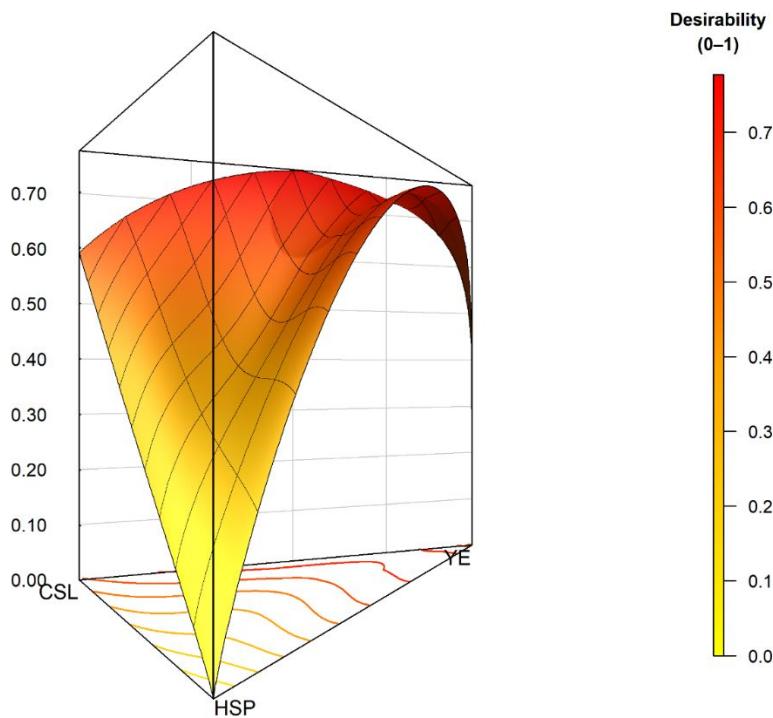
1 growth, its efficacy in promoting LA synthesis depends strongly on its degree of hydrolysis.
2 For example, in the fermentation process using *Lactobacillus amylovorus* NRRL B-4542,
3 peptides with an average molecular weight of ~700 Da at 3% concentration were found to be
4 optimal for LA production.⁶² This suggests that not only the nitrogen source, but also the
5 degree of protein hydrolysis is directly related to its effectiveness as a nitrogen source in LA
6 production.

7 In a previously published study, CSL emerged as the most effective alternative to YE,
8 offering both strong technical performance and economic viability. This low-cost byproduct
9 of wet corn milling supplies key nutrients, including amino acids, vitamins, and minerals,
10 that can partially sustain LA production, with productivities comparable to or even exceeding
11 those achieved with YE.⁶³ In contrast, although HSP is less expensive than both YE and CSL
12 and can be nutritionally adequate when properly processed, it showed inferior performance
13 in this study. This may be attributed to the compositional variability of HSP and the possible
14 lack of essential nutrients required by the *Pediococcus acidilactici* A40 strain.

15 Although all three nitrogen sources supply branched-chain amino acids (BCAA), the relative
16 balance of amino acids and peptide sizes differs substantially, which can influence metabolic
17 regulation in LAB. Essential and BCAA such as valine have been implicated in modulation
18 of glycolytic flux and cofactor balances in LAB, potentially diverting carbon away from
19 lactate formation under conditions of imbalance or excess of certain peptides or amino acids.
20 These metabolic adjustments may preserve cellular viability (growth and maintenance) even
21 when LA production is reduced due to altered enzymatic activity or redox balance under
22 specific nitrogen profiles.⁶⁴ In this context, CSL and HSP may support biomass viability, but
23 result in lower LA yields compared with YE because of differences in amino acid proportions
24 and availability to central metabolic pathways.

1 These findings reinforce the strategic importance of identifying cost-effective nitrogen
2 sources that maintain high LA yields without compromising LAB viability. While YE
3 remains the most effective component in terms of fermentative performance, the partial
4 substitution with CSL presents a viable alternative for reducing medium costs. However,
5 achieving consistent outcomes with HSP may require further optimization of its
6 physicochemical properties, particularly regarding peptide size distribution and degree of
7 hydrolysis. In this context, a more detailed evaluation of cell viability and LA production
8 becomes essential to assess the overall suitability of these alternative nitrogen sources within
9 an industrial fermentation framework.

10 Recently, various residual nitrogen sources have been evaluated as suitable alternatives for
11 LAB-based bioprocesses. These include dairy by-products, such as whey, which provides
12 peptides and amino acids and can enhance yields when supplemented with YE or peptone⁶;
13 agricultural and food industry residues, including date palm by-products, barley sprouts, and
14 liquid potato waste^{7,65}; and animal-derived materials, such as chicken feather hydrolysates⁶⁶
15 and fish-processing residues⁶⁷ (e.g., tuna heads, self-hydrolyzed viscera, and stingray
16 viscera). All these sources are rich in amino acids and can effectively support the growth of
17 LAB. Although some may yield lower productivity compared to conventional media, their
18 use represents a cost-effective and environmentally sustainable alternative for LA
19 fermentation.⁶⁷ Insect-processing residues have also been explored as a nitrogen source for
20 producing LAB biomass without the addition of an external carbon source, representing a
21 novel and innovative approach that has shown promising results and opens up further
22 possibilities for application.⁶⁸


23 **Selection of the Optimal Condition Maximizing Response Parameters and Minimizing
24 Cost: Application of the Desirability Function**

1 According to the MD, the highest cell viability and LA concentration were achieved at the
2 highest levels of YE. However, the primary objective of this study was to develop a cost-
3 efficient production of a bioinoculant and LA. Since LA is the main coproduct generated by
4 *P. acidilactici* A40 during bioinoculant production and given its importance for downstream
5 recovery and applications, as well as the need to produce LA as a food preservation
6 bioproduct at a competitive cost, a desirability function was applied. This approach enabled
7 the identification of an optimal medium that balances maximizing viable cell in biomass and
8 LA concentration while minimizing fermentation medium costs.


9 It is evident that efforts to reduce costs by limiting the use of YE result in LA concentrations
10 that are not the highest observed. Therefore, it is essential to achieve a compromise between
11 minimizing costs and maintaining cell viability and LA concentration within acceptable
12 ranges. To address this, a desirability analysis using the Derringer and Suich function (Eq. 6)
13 was conducted within the experimental design space. The resulting surface plot, along with
14 the contours for global desirability at the base, is presented in Figure 6. It shows that the most
15 desirable mixtures are located in the regions along the lateral borders of the diagram, closer
16 to YE, with proportions above 40 %. In contrast, the use of HSP at proportions greater than
17 30% is not recommended, based on the observed performance in the plot. The combined use
18 of CSL and YE, or HSP and YE, results in higher desirability values compared to the
19 combination of all three components of the mixture simultaneously.

1
2 **Fig. 6 Global desirability of the experiment maximizing cell viability and LA**
3 **concentration, while minimizing culture medium cost.**

4 Therefore, the strategy was to identify the highest desirability values within the feasible
5 region, prioritizing combinations with lower YE proportions, while still remaining within the
6 high-desirability zone. This approach aligns with the study's objective of reducing
7 fermentation medium costs. To determine the most suitable composition, an analysis of the
8 global desirability behaviour across the proportions of each component was conducted, as
9 shown in Figure 7. Additionally, representative points with varying component proportions
10 were selected based on their global desirability values, as presented in Supplementary
11 Material 4 (SM4).

1

2 **Fig. 7. Desirability profile (individual for each variable and global) along the**
 3 **proportions of YE, CSL and HSP.**

1 The desirability profile indicates that higher global desirability values, ranging from 0.60 to
2 0.80, were generally associated with YE and CSL proportions between 40% and 60%. Within
3 this high-desirability range, LA concentrations reached up to 16.81 g/L. Cell viability
4 remained consistently above $\log 11$ CFU/g DB (considered suitable for the formulation
5 operations) across the proportions of YE and CSL, while the inclusion of HSP decreased it.
6 Additionally, the cost of the culture medium ranged from 0.48 to 0.57 USD/L in the most
7 suitable desirability combinations.

8 It is worth noting that, in most of the most desirable combinations, CSL or HSP were present
9 in minimal proportions. From a practical perspective, it would be expected that the
10 synergistic effects of ternary mixtures outperform binary ones in balancing the desired
11 responses. However, in this case, the latter achieved comparable or even superior response
12 values to the ternary mixtures at reduced costs, which, theoretically, is not ideal.

13 The selection of an alternative nitrogen source to partially replace YE within the region of
14 highest desirability is particularly relevant, as these conditions offer balanced performance
15 by maintaining adequate LA concentrations that support downstream process efficiency,
16 while moderately reducing medium costs. Considering the region of highest global
17 desirability rather than a single optimum point, and with the aim of reducing medium costs,
18 the mixture comprising 40% YE and 60% CSL was selected as a representative condition
19 within this optimal region to experimentally validate the partial replacement of YE in the
20 fermentation medium (see SM4). In the validation experiment, a biomass viability of 12.23
21 \log CFU/g DB was obtained, corresponding to approximately 10–11 g of viable biomass per
22 liter of fermentation medium, together with a LA concentration of 14.54 g/L. The
23 corresponding values predicted by the fitted Scheffé mixture model were 11.68 \log CFU/g
24 DB and 14.42 g/L, respectively, resulting in relative prediction errors of 4.7% for biomass

1 viability and 0.8% for LA concentration. The close agreement between experimental and
2 predicted values (< 10%) for both responses confirms the robustness and predictive capability
3 of the mixture model and supports its suitability for medium optimization purposes.

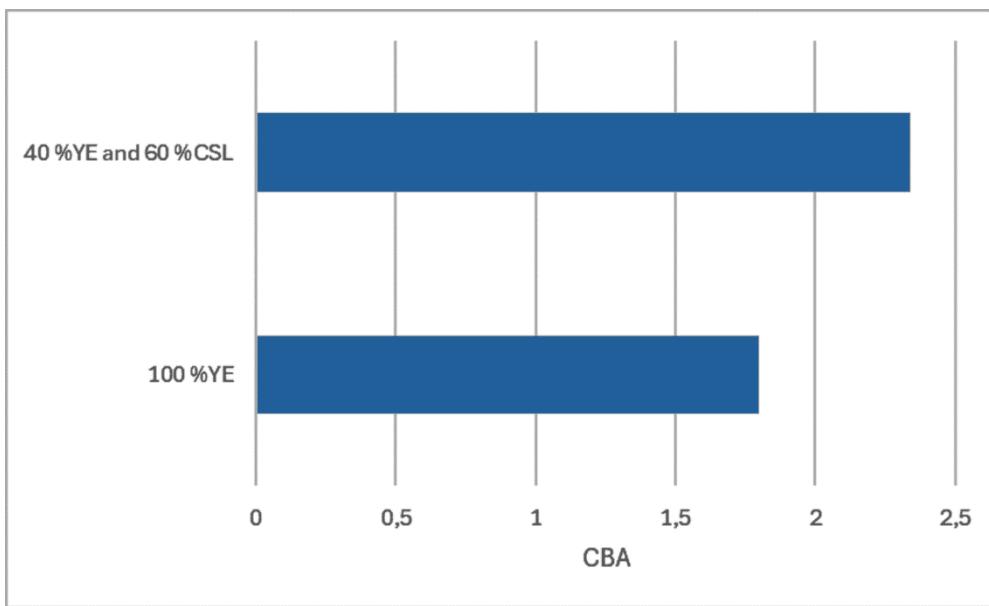
4 **Preliminary evaluation of biomass formulation**

5 The fermentation medium composition and the process conditions can have a direct impact
6 on bacterial cell resistance. Factors such as pH, osmotic pressure, temperature, and salinity,
7 are known to promote the production and accumulation of compounds that enhance cellular
8 resistance.^{69,70} *Pediococcus* sp. has been reported to undergo changes in membrane fatty acid
9 composition depending on growth conditions.⁷¹ Since drying and formulation operations can
10 compromise cell viability, having cells with greater resistance is particularly important in the
11 development of bioinoculants. LAB viability is critical for a successful establishment in
12 silage and for preventing contamination by moulds and yeasts through rapid pH reduction.
13 During formulation, protectants and conditioners are added to shield cell membranes and
14 structures from stressors such as temperature, pH, and osmotic pressure.⁷² In this context, it
15 was important to assess whether changes in the fermentation medium—specifically the
16 partial replacement of YE with CSL—would affect the viability and storage stability of the
17 formulated prototype.

18 The combination of YE and CSL in the fermentation medium had no effect on the microbial
19 viability of the prototype, during storage for up to 90 days. The initial viability of the
20 formulated prototype was 3.24×10^{11} CFU/g for the medium containing only YE as nitrogen
21 source, and 1.86×10^{11} CFU/g for the medium containing 40% YE and 60% CSL. After 90
22 days of storage at 25 °C, viability decreased to 7.50×10^7 CFU/g and 5.73×10^7 CFU/g,
23 respectively. These results indicate that, under the evaluated conditions, the nitrogen source
24 composition of the fermentation medium did not substantially affect the survival of strain

1 A40 over the 90-day storage period. The fluidized bed drying operation must be optimized,
2 as the technological properties of LAB may be compromised by exposure to drying
3 conditions in such systems. The selection of protective agents helps overcome the challenges
4 associated with maintaining LAB viability during and after drying. These viability losses
5 have already been reported when spray drying is applied to LAB cultures.⁷⁰ Nevertheless,
6 the results suggest that further improvement and optimization of the overall formulation
7 scheme is still necessary.

8 **Cost-Benefit analysis**


9 CBA evaluates the effects of implemented measures on costs and benefits in monetary terms,
10 serving as an important source of information for companies in their decision-making
11 processes from the early stages of research. The most significant cost in industrial microbial
12 processes is associated with the production phase, particularly the culture medium, followed
13 by purification, formulation, packaging, safety testing, and transportation.⁷³ Hence, the use
14 of agricultural byproducts and residual materials has been proposed as a viable and
15 sustainable strategy to reduce the cost of the culture medium.

16 The benefits are influenced by various consumer-related factors, which vary depending on
17 the society to which the consumers belong. Consumer decisions depend not only on their
18 willingness to pay, but also on broader social demands, such as the fulfilment of the
19 Sustainable Development Goals (SDGs). In this sense, understanding market trends becomes
20 essential for accurately assessing the potential benefits of a given biotechnological process.

21 The silage bioinoculant sector is experiencing sustained growth due to its ability to improve
22 forage quality, stability and preservation—key aspects in animal nutrition. In 2024, the global
23 market for silage inoculants and additives was valued at USD 1.2 billion, and it is projected
24 to reach USD 2.0 billion by 2033, with a compound annual growth rate (CAGR) of 6.5%

1 between 2026 and 2033. This growth is driven by an increasing global demand for efficient
2 animal feed, along with a rising preference for sustainable, biologically based solutions.
3 Particularly, LAB-based inoculants are gaining prominence in regions with intensive
4 livestock production, such as North America, Europe, and Asia-Pacific.⁷⁴
5 The LA market, on the other hand, was valued at USD 511.11 million in 2024 and is projected
6 to reach USD 624.54 million by 2029, with a CAGR of 4.09%. This growth is driven by the
7 rising demand for food-grade acidulants, its widespread use as an internationally approved
8 preservative and its role as a key precursor of polylactic acid (PLA), a compostable bioplastic
9 that is gaining increasing commercial and environmental relevance.⁷⁵
10 Figure 8 illustrates the net value derived from the CB analysis (Eq. 6). The results reveal that
11 employing a combination of YE and CSL as nitrogen sources yields a higher economic return
12 (2.34) compared to using a fermentation medium with YE alone (1.8). The combination of
13 40% YE and 60% CSL reduced the culture medium cost to 0.486 USD/L, representing a
14 22.85% decrease relative to the YE-only medium.

15
16 **Fig. 8 CBA for the nitrogen sources combination in the fermentation medium**

1 Although this combination of nitrogen sources led to a slight reduction in LA concentration,
2 the overall economic benefit was greater, as demonstrated by the CB index. This finding is
3 particularly relevant considering that LA concentrations were only marginally affected, while
4 viable biomass levels—crucial for bioinoculant functionality—remained stable and even
5 showed a slight increase in the medium containing the combined nitrogen sources. A similar
6 trend was reported in the development of a process to produce prodigiosin from *Serratia*
7 *marcescens*, where modifications to the culture medium resulted in an increase in the saleable
8 value compared to commercial production, as demonstrated through a CBA.⁷⁶

9 In this analysis, the selling price of the bioinoculant was estimated at 90 USD/kg. In the
10 Colombian market, the price of bioinoculants, such as Magniva® (Lallemand, Canada)
11 ranges from approximately 50 to 80 USD per 100 g bag, with variable availability. The
12 considered cost of the bioinoculant significantly surpasses that of LA, which was estimated
13 at 2 USD/kg. In the market, the price of LA fluctuates between 2 and 15 USD/L depending
14 on its purity and final application. The lower price used for LA in this study was based on a
15 final concentration of 40–50 g/L after the separation process, with a purity of 50–60%,
16 corresponding to applications in the food, pharmaceutical, or industrial-grade sectors.
17 Consequently, the bioinoculant represents the major contributor to the overall process value
18 due to its higher unit price. Importantly, *Pediococcus acidilactici* A40 is a native strain, and
19 the bioprocess was specifically designed to enable the dual production of viable biomass and
20 LA; therefore, preserving cell integrity is essential. Previous studies have demonstrated that
21 stress factors, such as acidic conditions, can impair cell viability due to acid stress.⁷⁷ While
22 nutrient availability plays a key role in microbial performance, environmental stress factors
23 such as acidification and osmotic pressure also influence the viability of *Pediococcus*
24 *acidilactici*.^{19,78,79} This species is known to activate protective responses that help maintain

1 intracellular homeostasis under adverse conditions.⁷⁸ Consistent with these mechanisms, the
2 results showed that strain *P. acidilactici* A40 was able to maintain high viability ($>\log 10^9$
3 CFU/mL when cultivated as free cells), under uncontrolled pH conditions, and without LA
4 removal. Notably, in all fermentations the final pH reached values close to 4, yet the strain
5 demonstrated a remarkable capacity to tolerate the combined effects of acid and osmotic
6 stress.

7 In this context, several strategies—such as cell immobilization²⁴ or metabolic
8 engineering^{5,80,81}—have been proposed to increase LA yields and, consequently, improve the
9 cost-benefit ratio of fermentation processes. However, these approaches could not be
10 implemented in this study, as the process was intentionally designed to recover both viable
11 biomass and coproducts. Moreover, recombinant microbial bioinputs may have adverse
12 effects on customer preferences, especially in the agricultural, cosmetic and food industries.⁷³
13 Additionally, regulatory restrictions in many countries regarding the use of genetically
14 modified strains in bioinput production further limit the applicability of such strategies.

15 In this regard, future scale-up studies should evaluate bioprocess strategies to increase LA
16 titers, such as fed-batch operation^{66,82}, extractive fermentation using resins for LA
17 recovery,⁸³ and *in-situ* LA removal via membrane-based bioprocesses.^{84–89} The recovery of
18 organic acids from fermentation broths is widely recognized as a major technical and
19 economic challenge, particularly under dilute product conditions. Downstream processing
20 can account for more than 50% of total process costs due to the high water content and
21 complexity of fermentation media, as well as the limitations of both conventional and
22 emerging separation technologies.⁹⁰ Nevertheless, downstream technologies for LA recovery
23 have advanced to enable recovery from lower LA concentrations. For example, ion-exchange
24 technology has reported recovery efficiencies above 80 % at LA concentrations of

1 approximately 10 g/L⁹¹, facilitating processing at lower titers. Similarly, a separate five-step
2 lactic acid recovery process applied to broths with ≈3 g/L, associated with cultured-meat
3 production, reported a net recovery cost of US\$0.71 per kg of 88% LA and a simple payback
4 period of 7.5 years.⁹²

5 Amid the growing global demand for both products, the initial CBA analysis—focused on
6 the fermentation medium cost—one of the main factors influencing variable costs, provides
7 insights into the future economic feasibility of dual production processes for bioinputs and
8 bioproducts. The results obtained from the CBA at this early research stage show values close
9 to 2, indicating a margin that allows for the inclusion of additional parameters in subsequent
10 stages. In particular, further CBAs in more advanced research phases could integrate
11 additional factors from the techno-economic analysis that have an effect on the overall
12 assessment.

13 Capital expenditures (CAPEX) are largely determined by the choice of process equipment
14 and the installed capacity, while operating expenses (OPEX) encompass utilities and labour.
15 The CBA may also be affected by fluctuations in the prices of the fermentation medium and
16 final products, which should be examined through sensitivity analysis. Although the present
17 analysis focuses on fermentation medium costs and product pricing, future studies should
18 expand the economic scope to include CAPEX, OPEX, sensitivity analysis, and net present
19 value (NPV) to provide a more comprehensive techno-economic evaluation. The
20 demonstrated profitability of simultaneous production of a bioinoculant and LA using a low-
21 cost fermentation medium underscores the strategic relevance of this approach for meeting
22 growing market demand while promoting process sustainability.

23 **Conclusions**

1 This study demonstrates that partially replacing YE with CSL in the fermentation medium
2 (40% YE, 60% CSL) enabled the co-production of highly viable bacterial biomass (log 12.23
3 CFU/g DB), with approximately 20% lower LA concentration relative to the maximum
4 observed when using only YE. This reduction remained within the high- desirability region
5 and was offset by improved economics. This outcome is critical for developing a dual-
6 purpose bioprocess that yields both a silage bioinoculant and LA for food applications. A
7 CBA confirmed that the YE-CSL combination provided a more favourable economic return
8 than YE alone: the medium cost was reduced by 22.85%, and overall economic performance
9 improved. Within the explored design space—and using a desirability function that weighted
10 the technological variables (viability and LA) threefold relative to cost ($w_{viability} = w_{LA}$
11 $= 3$; $w_{cost} = 1$)—the YE-CSL blend emerged as the most suitable combination. During 90-
12 day storage, no differential effect attributable to the nitrogen source was detected, although
13 formulation (drying/protectants) still requires optimisation. Urea showed inhibitory effects
14 in the tested range and HSP underperformed relative to YE and CSL.

15 Beyond its technical and economic relevance, this approach advances bioeconomy principles
16 in two key aspects: it valorises a native microbial resource, *Pediococcus acidilactici* A40,
17 and integrates the production of bacterial biomass for a bioinoculant and LA within a single
18 process. Notably, this co-production was achieved by partially replacing YE with CSL, an
19 agro-industrial residue used here as an alternative organic nitrogen source, thereby improving
20 process sustainability and cost-effectiveness. This integrated strategy enhances resource
21 efficiency, potentially reduces reliance on imported inputs where CSL is locally available,
22 and contributes to sustainable, circular bioprocesses tailored to local needs. Although further
23 work is needed to optimise formulation conditions and improve long-term biomass stability,

1 the findings provide a strong basis for developing cost-competitive bioinputs and bioproducts
2 for the local market.

3 **Author Contribution**

4 **LFMA:** Conceptualization, Methodology, Software, Formal analysis, Investigation, Data
5 Curation, Writing - Original Draft, Writing - Review & Editing, Visualization; **ECG:**
6 Investigation; **DFCR:** Investigation; **LM:** Conceptualization, Methodology, Formal
7 analysis, Data Curation, Writing - Original Draft, Writing - Review & Editing, Visualization,
8 Supervision, Project administration. All authors have read and agreed to the published
9 version of the manuscript.

10 **Conflict of Interest**

11 The authors declared that this work was performed without any commercial or financial
12 relationships, and thus there is no conflict of interest.

13 **Data availability**

14 All data regarding this research work are available through the manuscript.

15 **References**

- 16 1 T. H. Nguyen, X. Wang, D. Utomo, E. Gage and B. Xu, *Cleaner and Circular*
17 *Bioeconomy*, 2025, 11, doi.org/10.1016/j.clcb.2025.100145.
- 18 2 M. Rajković, D. Popović-Minić, D. Milinčić and M. Zdravković, *Zastita materijala*,
19 2020, 61, 229–250.
- 20 3 H. Alhaag, X. Yuan, A. Mala, J. Bai and T. Shao, *Applied Sciences (Switzerland)*,
21 2019, 9, doi:10.3390/app9061247.
- 22 4 A. Sifeeldein, X. Yuan, Z. Dong, J. Li and T. Shao, *Kafkas Univ Vet Fak Derg*,
23 2018, 24, 371–378.
- 24 5 E. Abedi and S. M. B. Hashemi, *Helijon*, 2020, 6, e04974.
- 25 6 G. Juodeikiene, D. Zadeike, E. Bartkiene and D. Klupsaitė, *LWT*, 2016, 72, 399–406.

1 7 G. Juodeikiene, D. Klupsaite, D. Zadeike, D. Cizeikiene, I. Vidziunaite, E. Bartkiene
2 and D. Cernauskas, *Int J Food Sci Technol*, 2016, 51, 2682–2691.

3 8 J. A. Mora-Villalobos, J. Montero-Zamora, N. Barboza, C. Rojas-Garbanzo, J.
4 Usaga, M. Redondo-Solano, L. Schroedter, A. Olszewska-Widdrat and J. P.
5 López-Gómez, *Fermentation*, 2020, 6, 1–21.

6 9 Z. Y. Zhang, B. Jin and J. M. Kelly, *World J Microbiol Biotechnol*, 2007, 23, 229–
7 236.

8 10 L. F. Mejía-Avellaneda, H. Suárez, H. Jiménez and L. Mesa, *Crit Rev Biotechnol*,
9 2022, 42, 1028–1044.

10 11 J. I. I. Fugaban, J. E. Vazquez Bucheli, Y. J. Park, D. H. Suh, E. S. Jung, B. D. G. de
11 M. Franco, I. V. Ivanova, W. H. Holzapfel and S. D. Todorov, *J Appl Microbiol*,
12 2022, 132, 311–330.

13 12 J. Barbosa, S. Borges and P. Teixeira, *Int J Food Sci Technol*, 2015, 50, 1151–1157.

14 13 M. C. W. Porto, T. M. Kuniyoshi, P. O. S. Azevedo, M. Vitolo and R. P. S. Oliveira,
15 Elsevier Inc., 2017, preprint, DOI: 10.1016/j.biotechadv.2017.03.004.

16 14 L. Biliavská, Y. Pankivska, O. Povnitsa and S. Zagorodnya, *Medicina (B Aires)*,
17 2019, 55, doi:10.3390/medicina55090519.

18 15 Y. Qi, L. Huang, Y. Zeng, W. Li, D. Zhou, J. Xie, J. Xie, Q. Tu, D. Deng and J. Yin,
19 *Front Microbiol*, 2021, 12, 10.3389/fmicb.2021.762467.

20 16 B. F. Carvalho, G. F. C. Sales, R. F. Schwan and C. L. S. Ávila, *J Appl Microbiol*,
21 2021, 130, 341–355.

22 17 H. Katepogu, Y. J. Wee, K. Anu Appaiah, S. V. Chinni, S. C. B. Gopinath, A. Syed,
23 M. Verma and V. R. Lebaka, *Biomass Convers Biorefin*, 2023,
24 doi.org/10.1007/s13399-023-04481-6.

25 18 Z. Zhang, Y. Li, J. Zhang, N. Peng, Y. Liang and S. Zhao, *Microorganisms*, 2020, 8,
26 1–9.

27 19 T. Aziz, M. Naveed, M. A. Shabbir, J. Naseeb, A. Sarwar, L. Zhao, Z. Yang, C.
28 Haiying, L. Lin, A. Shami and F. Al-Asmari, *Sci Rep*, DOI:10.1038/s41598-025-
29 90633-9.

30 20 C. Vargas, D. Bautista, H. Jimenez, M. Soto-Suarez, S. Restrepo, C. Gonzalez and P.
31 Zuluaga, *Microbiol Resour Announc*, 2023, 12, 10.1128/MRA.00530-23.

32 21 C. Vargas, L. Botero, E. Rodriguez, L. Dávila, C. Racedo, C. Barrera, A. J. Bernal,
33 H. Jiménez, P. Zuluaga and C. González, *Eur J Plant Pathol*, 2025, 172, 7–22.

1 22 C. Vargas, H. R. Jiménez, C. G. Almario and A. G. Almario, *J Appl Microbiol*,
2 DOI:10.1093/jambo/lxac053.

3 23 Y. Sun, Z. Xu, Y. Zheng, J. Zhou and Z. Xiu, *Process Biochemistry*, 2019, 81, 132–
4 138.

5 24 A. Thakur, P. S. Panesar and M. S. Saini, *Waste Biomass Valorization*, 2019, 10,
6 1119–1129.

7 25 H. Xu, D. Li, X. Jiang, Q. Pei, Z. Li, P. Madjirebaye, M. Xie, T. Xiong and Z. Liu,
8 *Foods*, 2025, 14, doi.org/10.3390/foods14020150.

9 26 J. R. Ngouénam, P. M. Kaktcham, C. H. Momo Kenfack, E. M. Foko Kouam and F.
10 Z. Ngoufack, *Int J Food Sci*, 2021, 2021, doi.org/10.1155/2021/1742018.

11 27 J. Campos, J. Bao and G. Lidén, *J Biotechnol*, 2021, 335, 1–8.

12 28 B. Savithra Krishna, N. K. Saibaba, S. Sai Nikhilesh Gantala, B. Tarun, G. Sarva Sai
13 Nikhilesh, N. K. Saibaba V and R. Gopinadh, *International Journal of Biotech
Research*, 2018, 1, 42–54.

15 29 P. S. Panesar and S. Kaur, *Int J Food Sci Technol*, 2015, 50, 2143–2151.

16 30 J. R. Xavier, I. Nallamuthu and O. P. Chauhan, *Sustainable Food Technology*, 2024,
17 2, 741–749.

18 31 M. Altaf, B. J. Naveena and G. Reddy, *Bioresour Technol*, 2007, 98, 498–503.

19 32 L. F. Coelho, C. J. B. De Lima, M. P. Bernardo and J. Contiero, *Appl Biochem
Biotechnol*, 2011, 164, 1160–1171.

21 33 F. Hernández-Rosas, J. D. Castilla-Marroquín, J. M. Loeza-Corte, M. A. Lizardi-
22 Jiménez and R. Hernández-Martínez, *Revista Mexicana de Ingeniería Química*, 2021,
23 20, Bio2429.

24 34 G. C. Derringer, *Rubber Chemistry and Technology*, 1988, 61, 377–421.

25 35 G. Derringer and R. Suich, *Journal of Quality Technology*, 1980, 12, 214–219.

26 36 R Core Team, *The R Foundation for Statistical Computing*, 2024, preprint, The R
27 Foundation for Statistical Computing:4.4.2, <https://www.R-project.org/>.

28 37 RStudio Team, *Posit Software, PBC*, 2025, preprint, <https://posit.co/products/open-source/rstudio/>.

30 38 N. J. Krüger, C. Buhler, A. N. Iwobi, I. Huber, L. Ellerbroek, B. Appel and K.
31 Stingl, *PLoS One*, 2014, 9, e88108.

32 39 J. C. De Man, M. Rogosa and M. E. Sharpe, *J. oppl. Bact*, 1960, 23, 130–135.

1 40 L. F. Mejía-Avellaneda, F. Romero-Perdomo, V. Chavarro-Anzola and L. Mesa,
2 *Circular Economy and Sustainability*, 2025, 10.1007/s43615-025-00621-4.

3 41 S. M. Bhatt and S. K. Srivastava, *Food Biotechnol*, 2008, 22, 115–139.

4 42 N. Nancib, A. Nancib, A. Boudjelal, C. Benslimane, F. Blanchard and J. Boudrant,
5 *Bioresour Technol*, 2001, 78, 149–153.

6 43 A. Nancib, N. Nancib, D. Meziane-Cherif, A. Boubendir, M. Fick and J. Boudrant,
7 *Bioresour Technol*, 2005, 96, 63–67.

8 44 M. Hujanen and Y.-Y. Linko, *Appl Microbiol Biotechnol*, 1996, 45, 307–313.

9 45 Y. H. Lim, H. L. Foo, T. C. Loh, R. Mohamad and R. A. Rahim, *Molecules*, 2020,
10 25, 10.3390/molecules25040779.

11 46 D. Mora and S. Arioli, *PLoS Pathog*, 2014, 10, e1004472.

12 47 S. Arioli, G. Della Scala, A. Martinović, L. Scaglioni, S. Mazzini, F. Volonté, M. B.
13 Pedersen and D. Mora, *Microbiol Spectr*, 2022, 10, e02760-21.

14 48 N. M. Salatein, R. K. Hassan, R. Adel, S. Desouky, N. M. Salatein, R. A. Ibrahim, S.
15 E. Desouky, E. F. El-Belely, M. A. Abdel-Rahman and I. Fahim, *Results in
16 Engineering*, 2025, 105161.

17 49 L. Yu, T. Lei, X. Ren, X. Pei and Y. Feng, *Biochem Eng J*, 2008, 39, 496–502.

18 50 Z. Bai, Z. Gao, J. Sun, B. Wu and B. He, *Bioresour Technol*, 2016, 207, 346–352.

19 51 Y. Lamas, A. C. de Armas, Y. Albernas and E. González, *Centro Azúcar*, 2023, 50,
20 e1035.

21 52 P. da Silva Delabona, C. Sanchez Farinas, D. J. da Silva Lima and J. G. Da Cruz
22 Pradella, *Bioresour Technol*, 2013, 132, 401–405.

23 53 H. Yin, Z. Chen, Z. Gu and Y. Han, *LWT*, 2009, 42, 327–331.

24 54 C. J. Bolner De Lima, L. Fontes Coelho, K. C. Blanco and J. Contiero, *Afr J
25 Biotechnol*, 2009, 8, 5842–5846.

26 55 L. Djemal, J. von Hagen, H. Kolmar and V. Deparis, *Biotechnol Prog*, 2021, 37,
27 10.1002/btpr.3147.

28 56 T. Utami, E. N. , Kusuma, R. Satiti, E. S. Rahayu and M. N. Cahyanto, *Int Food Res
29 J*, 2019, 26, 117–122.

30 57 M. Hamdi, S. Hamza, N. Mtimet, N. Hmida, C. Cornelius, S. Zgouli, A. Mahjoub
31 and P. Thonart, *Bioprocess Engineering*, 2000, 22, 23–27.

1 58 S. Kim, Y. Lee, M. Kim and S. Kim, *J Biosci Bioeng*, 2003, 96, 134–140.

2 59 X. Guo, D. Xu, F. Li, J. Bai and R. Su, *Microb Biotechnol*, 2023, 16, 67–87.

3 60 C. O. Okoye, Y. Wang, L. Gao, Y. Wu, X. Li, J. Sun and J. Jiang, *Microbiol Res*, 2023, 266, doi.org/10.1016/j.micres.2022.127212.

5 61 Z. Tao, H. Yuan, M. Liu, Q. Liu, S. Zhang, H. Liu, Y. Jiang, D. Huang and T. Wang, *J Microbiol Biotechnol*, 2023, 33, 151–166.

7 62 C. M. Hsieh, F.-C. Yang and E. L. Iannotti, *Process Biochemistry*, 1999, 34, 173–179.

9 63 X. Li, W. Xu, J. Yang, H. Zhao, H. Xin and Y. Zhang, *Animal Nutrition*, 2016, 2, 345–350.

11 64 Y. Zhou, X. Zhang, Y. Wang and H. Liu, *Fermentation*, DOI:10.3390/fermentation10040179.

13 65 Z. Zhang, Y. Li, J. Zhang, N. Peng, Y. Liang and S. Zhao, *Microorganisms*, 2020, 8, 1–9.

15 66 L. Paulova, J. Chmelik, B. Branska, P. Patakova, M. Drahokoupil and K. Melzoch, *Brazilian Archives of Biology and Technology*, DOI:10.1590/1678-4324-2020190151.

18 67 P. J. Yeboah, S. A. I. 1✉ and A. Krastanov, *Food Science and Applied Biotechnology*, 2023, 2023, 215–240.

20 68 A. Vilas-Franquesa, C. Lakemond and M. Mishyna, *Bioresour Technol*, DOI:10.1016/j.biortech.2024.131540.

22 69 P. B. Conrad, D. P. Miller, P. R. Cielenski and J. J. De Pablo, *Cryobiology*, 2000, 41, 17–24.

24 70 M. T. C. Moreira, E. Martins, Í. T. Perrone, R. de Freitas, L. S. Queiroz and A. F. de Carvalho, *Compr Rev Food Sci Food Saf*, 2021, 20, 3267–3283.

26 71 B. A. Annous, M. F. Kozempel and M. J. Kurantz, *Appl Environ Microbiol*, 1999, 65, 2857–2862.

28 72 I. Coulibaly, R. Dubois-Dauphin, S. Danthine, L. Majad, T. Mejoub, J. Destain, F. Béra, J.-P. Wathelet and P. Thonart, *Biotechnol. Agron. Soc. Environ*, 2011, 15, 287–299.

31 73 K. Fukuda and H. Kono, in *Microbial Exopolysaccharides as Novel and Significant Biomaterials*, eds. A. Kumar, K. V. Sajna and S. Sharma, Springer Nature, Switzerland, 1st edn., 2021, pp. 303–339.

1 74 Verified Market Research, *Global Business Solutions Global Silage Inoculant and*
2 *Additive Market*, 2025.

3 75 Mordor Intelligence, *Tamaño del mercado de ácido láctico y análisis de*
4 *participación tendencias de crecimiento y pronósticos (2024-2029)*, 2023.

5 76 T. Paul, A. Mondal, T. K. Bandyopadhyay and B. Bhunia, *Biomass Convers*
6 *Biorefin*, 2024, 14, 4091–4110.

7 77 K. Papadimitriou, Á. Alegría, P. A. Bron, M. de Angelis, M. Gobbetti, M.
8 Kleerebezem, J. A. Lemos, D. M. Linares, P. Ross, C. Stanton, F. Turroni, D. van
9 Sinderen, P. Varmanen, M. Ventura, M. Zúñiga, E. Tsakalidou and J. Kok,
10 *Microbiology and Molecular Biology Reviews*, 2016, 80, 837–890.

11 78 A. S. Derunets, A. I. Selimzyanova, S. V. Rykov, A. E. Kuznetsov and O. V.
12 Berezina, *Springer Science and Business Media B.V.*, 2024, preprint, DOI:
13 10.1007/s11274-024-03905-3.

14 79 M. Othman, A. B. Ariff, H. Wasoh, M. R. Kapri and M. Halim, *AMB Express*,
15 DOI:10.1186/s13568-017-0519-6.

16 80 L. Liu, D. Yang, Z. Zhang, T. Liu, G. Hu, M. He, S. Zhao and N. Peng, *Appl*
17 *Environ Microbiol*, 2021, 87, 1–13.

18 81 X. Yi, P. Zhang, J. Sun, Y. Tu, Q. Gao, J. Zhang and J. Bao, *J Biotechnol*, 2016,
19 217, 112–121.

20 82 J. Campos, L. G. Tejada, J. Bao and G. Lidén, *Process Biochemistry*, 2023, 125,
21 162–170.

22 83 M. Othman, A. B. Ariff, M. R. Kapri, L. Rios-Solis and M. Halim, *Front Microbiol*,
23 DOI:10.3389/fmicb.2018.02554.

24 84 J. Sikder, S. Chakraborty, P. Pal, E. Drioli and C. Bhattacharjee, *Biochem Eng J*,
25 2012, 69, 130–137.

26 85 M. Boonmee, O. Cotano, S. Amnuaypanich and N. Grisadanurak, *Arab J Sci Eng*,
27 2016, 41, 2067–2075.

28 86 M. Othman, A. B. Ariff, L. Rios-Solis and M. Halim, *Frontiers Media S.A.*, 2017,
29 preprint, DOI: 10.3389/fmicb.2017.02285.

30 87 M. Othman, A. B. Ariff, H. Wasoh, M. R. Kapri and M. Halim, *AMB Express*,
31 DOI:10.1186/s13568-017-0519-6.

32 88 N. Phanthumchinda, S. Thitiprasert, S. Tanasupawat, S. Assabumrungrat and N.
33 Thongchul, *Process Biochemistry*, 2018, 68, 205–213.

1 89 M. Othman, A. B. Ariff, M. R. Kapri, L. Rios-Solis and M. Halim, *Front Microbiol*,
2 DOI:10.3389/fmicb.2018.02554.

3 90 A. A. Kiss, J. P. Lange, B. Schuur, D. W. F. Brilman, A. G. J. van der Ham and S. R.
4 A. Kersten, *Biomass Bioenergy*, 2016, 95, 296–309.

5 91 X. Vecino, M. Reig, C. Valderrama and J. L. Cortina, *Water (Switzerland)*,
6 DOI:10.3390/w13111572.

7 92 J. Wimble, R. Ashizawa and E. W. Swartz, *Biotechnol Prog*,
8 DOI:10.1002/btpr.70094.

9

Data availability Statement

All data regarding this research work are available through the manuscript.

