

Sustainable Food Technology

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: S. Khongtongsang, M. Fikry, S. Jafari, S. Chheng, I. Kijpatanasilp and K. Assatarakul, *Sustainable Food Technol.*, 2025, DOI: 10.1039/D5FB00648A.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Sustainability Spotlight Statement

This study highlights a sustainable microencapsulation approach using plant-based, biodegradable wall materials (gum arabic and resistant maltodextrin) to enhance the shelf life and stability of kratom leaf extract. By optimizing spray drying conditions, the process achieves efficient bioactive preservation through low-energy input and minimal resource use. The findings promote reduced food waste, extended product usability, and environmentally responsible formulation practices, supporting the advancement of green technologies in functional food and nutraceutical production.

Microencapsulation of Kratom Leaf Extract via Spray Drying: Impact of Inlet Temperature and Wall Materials on Stability and Shelf Life

Supanit Khongtongsang^a, Mohammad Fikry^{a,b}, Saeid Jafari^a, Sochannet Chheng^{a,c},

Isaya Kijpatanasilp^a and Kitipong Assatarakul^{a*}

^a Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand, 10330

^b Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh, Egypt, 13736

^d Department of Food Chemical Engineering, Kampong Speu Institute of Technology, Kampong Speu 050601, Cambodia

*Corresponding author: Kitipong Assatarakul (Ph.D.);

Email: Kitipong.A@chula.ac.th; Tel. 0-2218-5328

23 **Abstract**

24 Microencapsulation offers a sustainable approach to improving the stability, functionality,
25 and shelf life of bioactive compounds in food systems, reducing product waste and enhancing
26 resource efficiency. The objectives of this study were to microencapsulate kratom leaf extract
27 (KLE) using spray drying with gum arabic (GA) and resistant maltodextrin (RMD) at two inlet
28 temperatures (150 and 160 °C), to evaluate the resulting microcapsules in terms of their
29 physicochemical properties and assess bioactive retention, specifically total phenolic and
30 flavonoid contents, as well as antioxidant activity, and to investigate stability and shelf-life
31 prediction using kinetic modeling. The resulting microcapsules were evaluated for
32 physicochemical properties, bioactive retention, antioxidant activity, and storage stability.
33 Encapsulation yield ranged from 45.3–62.7%, while encapsulation efficiency was 70.8–83.5%,
34 with GA at 160 °C showing the highest performance. Moisture content remained within 2.1–
35 3.6%, and solubility ranged from 82.4–92.1%, with RMD providing greater solubility and lower
36 residual moisture. Total phenolic content retention ranged from 65.2–79.6%, while total
37 flavonoid retention was 61.4–76.8%. Antioxidant activity (DPPH inhibition) decreased by
38 approximately 20% during processing, with GA at 160 °C preserving the highest activity.
39 Storage studies showed that water activity remained below the stability threshold ($a_w = 0.30$),
40 and first-order kinetic modeling predicted a shelf-life extension of up to 90 days under ambient
41 conditions. Morphological analysis revealed spherical particles with smooth surfaces at 160 °C,
42 whereas higher temperatures induced surface collapse and shrinkage. Overall, GA provided
43 superior protection of phenolics and antioxidants, while RMD enhanced solubility and reduced
44 residual moisture. The findings highlight the potential of using food-grade wall materials and

45 optimized spray drying conditions for scalable production of stable KLE microcapsules suitable
46 for functional food and nutraceutical applications.

47 **Keywords:** Bioactive Compounds, Gum Arabic, Kratom Leaf, Microencapsulation, Spray-
48 Drying

49 **1. Introduction**

50 Kratom (*Mitragyna Speciosa*) is a tropical plant belonging to the Rubiaceae family and is
51 indigenous to Southeast Asia ¹. For hundreds of years, kratom has been utilized in various
52 regions of Thailand and is known by several local names, including Thom, E-Thang, Ketum,
53 Kratum-Koke, and Maeng Da Leaf ². Traditionally, fresh kratom leaves are commonly chewed
54 or boiled to create a decoction. In contrast, dried leaves are typically smoked, brewed into tea, or
55 consumed as an herbal drink, often with added honey and lemon ³. Kratom has historically been
56 used to relieve muscle fatigue and tiredness and as a herbal remedy for various common
57 ailments, including diarrhea, diabetes, coughing, and hypertension. Additionally, it has been
58 employed as an alternative to morphine or opium for treating drug addiction ⁴. Some studies have
59 shown that kratom exhibits a range of biological activities, such as anti-inflammatory,
60 antinociceptive, antioxidant, and antimicrobial properties ⁵. For these reasons, kratom leaves
61 holds significant economic value, with fresh leaves selling for \$8 to \$10 per kilogram in Thai
62 markets as of 2022 ⁶.

63 Extracting bioactive compounds from kratom leaves can enhance both the commercial
64 value of the raw material and the profitability of its processing. Consequently, kratom leaves
65 have garnered significant interest from researchers exploring both traditional and novel
66 extraction techniques ⁷⁻¹⁰. However, the stability of these extracted compounds can be
67 compromised during processing and storage due to factors such as solvents, pH, temperature,

68 oxygen, light, and enzymes ¹¹. Hence, finding alternative methods to enhance the stability of
69 these bioactive compounds during processing and storage is crucial.

70 The stabilization of bioactive compounds can be enhanced using microencapsulation
71 technologies, such as spray drying ¹², to improve their suitability for industrial applications and
72 ensure their bioavailability. Spray drying is the preferred method for microencapsulation due to
73 its cost-effectiveness, user-friendliness, and its ability to produce high-quality particles ¹³.

74 Spray drying microencapsulation is a technique used to protect essential substances from
75 unwanted decomposition or reactions during storage ¹⁴. This technology involves embedding
76 active ingredients within microparticle matrices, creating a physical barrier between the active
77 compound and the external environment while regulating its release. By encapsulating a
78 bioactive compound in a biopolymer, the process shields it from oxygen, moisture, and other
79 environmental factors, thus enhancing its stability. Additionally, it converts liquid solutions into
80 powders, making them easier to handle ¹⁵.

81 Various encapsulating agents are employed in spray drying, including polysaccharides
82 (such as starches, resistant maltodextrin (RMD), corn syrups, and gum arabic (GA)), lipids (like
83 stearic acid and mono- and diglycerides), and proteins (including gelatin, casein, milk serum,
84 soy, and wheat). These substances are favored for their high-water solubility, low viscosity,
85 neutral taste, and colorless solutions, making them widely utilized in the food industry (Jafari et
86 al., 2023a).

87 On the other hand, using mathematical models is a highly effective approach to assess
88 quality parameters at various stages of processing. Zero-order and first-order equations are
89 frequently utilized to describe the changes in quality properties over time. Predictive models

90 have been previously developed to evaluate the shelf life of various products, by integrating the
91 physical and phytochemical indicators¹⁶.

92 Bioactive compounds from different plant leaves have been previously
93 microencapsulated using spray drying technology^{12, 14, 17-23}.

94 Although kratom (*Mitragyna speciosa*) has been studied for its phytochemical
95 composition and potential bioactivity^{10, 24-26}, no previous reports have investigated its
96 microencapsulation using spray drying. Microencapsulation is crucial for protecting kratom
97 extracts from degradation, improving stability, and facilitating reconstitution into functional
98 products. However, knowledge remains limited regarding how different wall materials and
99 processing conditions influence these outcomes. Therefore, the objectives of this study were to
100 microencapsulate kratom leaf extract (KLE) using spray drying with gum arabic (GA) and
101 resistant maltodextrin (RMD) at two inlet temperatures (150 and 160 °C), to characterize the
102 resulting microcapsules in terms of their physicochemical properties, to evaluate bioactive
103 retention including total phenolic and flavonoid contents as well as antioxidant activity, and to
104 assess shelf-life using kinetic modeling.

105 **2. Materials and Methods**

106 *2.1. Preparing kratom leaves extract (KLE)*

107 Kratom leaves were sourced from a domestic market in Bangkok, Thailand. They were
108 first rinsed with water to eliminate dirties, and then dried in a lab oven (Memmert, DO 6062,
109 Germany) at a temperature of 60°C until their moisture content (MC) was reduced to less than
110 5%. The dried leaves were then ground and passed through a 50-mesh sieve.

111 For the preparing kratom leaf extract (KLE), three gram of the powdered leaves was
112 immersed in 120 mL of solvent, following the modified procedures of²⁷. The ultrasonic-assisted

113 extraction was performed using an ultrasonic homogenizer (UP400S Ultrasonic processor,
114 Hielsher, Germany). The ultrasonic setting was: 400 W, 50% amplitude, 7 mm tip, pulse 30 s
115 on/10 s off, 250 mL beaker, 50% immersion, ice bath ($T < 40^\circ\text{C}$). Vacuum evaporation was also
116 conducted at 40°C under 100 mbar pressure until the extract reached a total solids content of
117 approximately 15–20% (w/v), measured gravimetrically. Feasibility for encapsulation was
118 confirmed by viscosity (<50 mPa·s at 25°C) and absence of precipitation, ensuring stable feed
119 for spray drying. Based on preliminary experiments, the optimum extraction conditions included
120 90% (v/v) ethanol concentration, a 30-min extraction time, and an extraction ratio of 1:40 (w/v).
121 According to the method described by ²⁸, the extracts were centrifuged at $6000 \times g$ (rotor radius
122 10 cm) for 15 min at 25°C using a centrifuge (Centrifuge Kubota, series 6000, Japan). The
123 supernatant was purified using Whatman No. 1 paper in order to eliminate coarse particles and
124 then subjected to vacuum evaporation process utilizing a rotary evaporator (Oilbath B-485,
125 BÜCHI, Switzerland) to ~20% solids (w/w). The samples were stored in amber vials at 4°C for
126 subsequent analysis.

127 2.2. Spray drying microencapsulation process

128 Microencapsulation was carried out using resistant maltodextrin (RMD; Fibersol-2,
129 Matsutani, Japan), gum Arabic (GA; Agrigum, UK), and their combination as coating materials.
130 Concentrations (w/w) were selected based on preliminary trials to achieve comparable feed
131 viscosities (~20–40 mPa.s) while remaining within solubility limits: 20% for GA (to avoid
132 excessive viscosity), 40% for RMD (optimal solubility), and a 1:1 blend (40% RMD with 20%
133 GA) at equivalent total solids for comparison. All formulations were spray dried at inlet
134 temperatures of 150 and 160°C using a KLE-to-coating material ratio of 1:2 (w/w). The
135 mixtures were prepared by combining KLE with the coating materials (Table 1) and stirring

136 continuously with a magnetic stirrer (SCILOGEX, SCI550-S, USA) for 10 min. The mixture was
137 then homogenized with a high-speed blender (Ystral, model X10, Germany) at 11,000 rpm for
138 10 min. Feed solids were 20–40% w/w, viscosity 20–40 mPa·s, pump 10 mL/min, aspirator
139 90%, atomizing air 0.7 mm nozzle at 1 bar, feed at 25°C. The resulting solutions were processed
140 through a spray dryer (BUCHI, B-290, Switzerland) set at inlet temperatures of 150 and 160 °C
141 and an outlet temperature of 85–95 °C. The resulting powders were stored at -20°C for analysis
142 of their properties (e.g., encapsulation yield, encapsulation efficiency, moisture content, water
143 activity, water solubility, TPC, TFC, TTC, antioxidant activity via DPPH and FRAP) under
144 different conditions. Figure (1) reveals the production flow chart of KLE microcapsules of
145 bioactive compounds extracted from kratom leaves.

146 **2.3. Calculation of the encapsulation yield and efficiency**

147 Following the procedure of ²⁹, the encapsulation yield (%) was determined and calculated using
148 the following equation (Eq. 1):

$$\text{Encapsulation Yield (\%)} = \frac{m_{\text{capsules, collected}}}{m_{\text{solids, initial}}} \times 100 \quad (1)$$

149 where $m_{\text{capsules, collected}}$ is the total mass of KLE microcapsules collected from the spray dryer,
150 and $m_{\text{solids, initial}}$ is the mass of total solids in the feed before drying.

151 To calculate the percentage of encapsulation efficiency, the total bioactive compounds
152 were measured first. A sample of 0.1 g of KLE encapsulated powder was dissolved in 1 mL of a
153 mixed solution (ethanol: acetic acid: water in a 50:8:42 ratio) and shaken with a vortex mixer for
154 1 minute. The sample was then centrifuged at 10,000 rpm for 5 min and filtered. The total
155 phenolic content was analyzed using Folin-Ciocalteau colorimetry as described by ³⁰. Next, to
156 determine the surface bioactive compounds, 0.1 g of KLE encapsulated powder was dissolved in

157 a mixed solution of ethanol and methanol (1:1 ratio) and shaken with a vortex mixer for 1
158 minute. The sample was filtered, and the total phenolic content was again analyzed using Folin-
159 Ciocalteau colorimetry.

160 The encapsulation efficiency (%) was calculated using the following formula (Eq.2) according to
161 ³¹:

$$EE = [(T_o - S_o)/T_o] \times 100 \quad (2)$$

162 where T_o represents the total bioactive compounds, and S_o represents the surface bioactive
163 compounds.

164 **2.4. Determination of physical attributes of KLE microcapsules**

165 **2.4.1. Determination of moisture content and water activity**

166 The moisture content of KLE microcapsules was measured using an infrared moisture
167 analyzer (MA35, Sartorius, Goettingen, Germany) according to the method described by ³².
168 Additionally, the water activity (a_w) at 25°C was determined with an Aqua Lab instrument
169 (AquaLab Pre, Decagon, QTETech, Hanoi, Vietnam). The reported results are an average of three
170 replicates.

171 **2.4.2. Determination of color attributes**

172 According to the method outlined by ³², the color of KLE microcapsules was measured
173 using a portable spectrophotometer (CM-600d, Konica Minolta, INC, Osaka, Japan) within the
174 Lab system. The color values were expressed using the CIE L*a*b* system, where the brightness
175 coordinate L* indicates whiteness/darkness, the chromaticity coordinate a* indicates
176 redness/greenness, and the chromaticity coordinate b* indicates yellowness/blueness. All
177 measurements were taken in triplicate, and the mean values were recorded. The total color
178 difference, ΔE , was subsequently calculated using the following formula (Eq. 3),

179
$$\Delta E = \sqrt{(L^*_{\text{t}} - L^*_{\text{i}})^2 + (a^*_{\text{t}} - a^*_{\text{i}})^2 + (b^*_{\text{t}} - b^*_{\text{i}})^2} \quad (3)$$

180 where L^*_{t} , a^*_{t} , and b^*_{t} are the initial values for KLE microcapsules at zero days, and L^*_{i} , a^*_{i} , and
181 b^*_{i} are the measured values at different storage times.

182 **2.4.3. Determination of water solubility**

183 The water solubility measurement was performed following the procedure outlined by ³³
184 involved adding 1 g of KLE microcapsules to 100 mL of distilled water, and then the mixture
185 was stirred utilizing a magnetic stirrer (SCILOGEX, model SCI550-S, USA) for 30 min.
186 Afterward, the mixture was centrifuged (Centrifuge Kubota, series 6000, Japan) at 3000×g for 5
187 min. A 25 mL aliquot of the supernatant was transferred to a pre-weighed petri dish and dried in
188 an oven (Memmert, DO 6062, Germany) operated at a temperature of 105°C for a period of 5 h
189 (Aliquot homogenized before drying). The solubility was estimated utilizing the following
190 formula (Eq. (4)).

191
$$\text{Water solubility}(\%) = \frac{\text{Solid content in supernatant}}{\text{Total solid content}} \times 100 \quad (4)$$

192 **2.5. Determination of phytochemicals properties of KLE microcapsules**

193 **2.5.1. Measurements of total phenolic content (TPC)**

194 TPC of KLE microcapsules was measured using a modified approach based on ³⁴.
195 Briefly, a 1 g of microencapsulated samples was added to 5 mL of distilled water, and then 0.5
196 mL of Folin–Ciocalteu phenol reagent was added. The mixture was incubated for 8 min,
197 afterward, 1.5 mL of 20% Na₂CO₃ was added, and the mixture was left at 25 °C for 20 min
198 (calibration: 0–200 mg GAE/L, R²=0.994; samples diluted to 0.2–0.8 AU). UV-vis
199 Spectrophotometer (Eppendorf BioSpectrometer® basic, Thailand) was utilized to measure the
200 absorbance of the sample at 765 nm, using a blank for reference, according to ²⁷, Gallic acid was

201 used as the standard for the calibration curve ($Y=4.83 X + 0.0792$, $R^2=0.994$). TPC was
202 expressed as gallic acid equivalents (mg GAE/mL). Three independent extractions and
203 encapsulations were carried out in triplicate, with each replicate measured three times; data are
204 presented as mean \pm SD.

205 **2.5.2. Analysis of total flavonoid content (TFC)**

206 To assess TFC, 1 mL of the microencapsulated solution was added to 1 mL of 2% w/v
207 aluminum chloride in methanol and incubated for 30 min. UV-vis Spectrophotometer
208 (Eppendorf BioSpectrometer® basic, Thailand) was used to measure the absorbance at 430 nm
209 using a with a blank for reference, using a cuvette spectrophotometer³⁵. TFC (mg QE/mL) was
210 calculated based on the quercetin calibration curve ($Y=0.8986 X + 0.024$, $R^2 = 0.995$). Three
211 independent extractions and encapsulations were carried out in triplicate, with each replicate
212 measured three times; data are presented as mean \pm SD.

213 **2.5.3. Determination of antioxidant activity by DPPH scavenging activity**

214 Following a slightly modified version of the procedure used by^{36, 37}, the 2,2-Diphenyl-1-
215 picrylhydrazyl (DPPH) assay was utilized to evaluate the antioxidant activity of KLE
216 microcapsules. A 0.2 mL of aqueous extract (from 1 g powder in 10 mL water consistent with
217 TPC extraction for comparability was added to 2 mL of methanol and 2 mL of the DPPH
218 solution. The mixture was incubated for 30 min at 25 °C in the dark. Following incubation, UV-
219 vis Spectrophotometer (Eppendorf BioSpectrometer® basic, Thailand), the absorbance was
220 determined at 517 nm. Methanol served as the blank, and the values of antioxidant activity of
221 KLE microcapsules were then computed using the specified equation (Eq. 5). Antioxidant
222 activity was quantified against a Trolox calibration curve (0–1000 μM; $R^2=0.993$ for DPPH).

223 **2.5.4. Determination of antioxidant activity by ferric reducing antioxidant power (FRAP)**

224 To determine the FRAP antioxidant activity of KLE microcapsules, 1 g of KLE
225 microcapsules was dissolved in 10 mL of distilled water and thoroughly mixed using a vortex
226 mixer for 3 min. The sample was placed in a hot tub, maintaining a shaking temperature of 30°C
227 for up to 30 min. Next, the sample was subjected to centrifugation at 4000 rpm for 20 min ³¹.
228 Then, 2.85 mL of FRAP solution was mixed with 0.15 mL of the sample. The FRAP solution
229 was prepared by combining acetate buffer (300 mM, pH=3.6), 20 mM FeCl₃, and TPTZ solution
230 (40 mM HCl for TPTZ) in a ratio of 10:1:1 and warming it to 37.5°C before use. After the
231 sample and FRAP solution were thoroughly mixed, the mixture was incubated for 30 min.
232 Antioxidant activity was quantified against a Trolox calibration curve (0–1000 μM; R²=0.991 for
233 FRAP. The absorbance was measured at 593 nm ³⁸. The DPPH and FRAP inhibition were
234 calculated using the following formula (Eq. 5):

$$235 \quad \% \text{ Inhibition} = \left[1 - \frac{A_{\text{sample}}}{A_{\text{control}}} \right] \times 100 \quad (5)$$

236 Where A_{control} denotes the mixture of methanol and DPPH solution, and A_{sample} refers to the
237 mixture of the extract and DPPH / FRAP solution.

238 2.5.5. Determination of total tannin content (TTC)

239 The tannin content in KLE microcapsules was assessed using a method adapted from ³⁹.
240 In summary, 500 μL of extract (from 0.1 g of KLE microcapsules in 1 mL water) were incubated
241 with 10 mg polyvinylpolypyrrolidone (PVPP) (to bind tannins) or without (replaced by water as
242 control) for 15 min at 4°C, followed by centrifugation at 15,000× g for 10 min. The supernatants
243 were then analysed using the total phenolic content (TPC) assay. The tannin content was
244 calculated based on the difference in TPC values between the PVPP-treated and water-treated
245 samples. Tannic acid (0–100 μg/mL) served as the standard, and tannin levels were reported as
246 mg TAE/100 mL.

247 2.5.6. Mitragynine quantification by HPLC

248 Mitragynine content in KLE microcapsules was quantified using high-performance liquid
249 chromatography (HPLC) with UV detection. Approximately 100 mg of encapsulated powder
250 was extracted with 10 mL of methanol containing 0.1% formic acid, vortexed for 1 min,
251 sonicated for 15 min at ambient temperature, and centrifuged (5000 g, 10 min). The supernatant
252 was diluted as needed, filtered through a 0.22 µm PTFE syringe filter, and transferred to vials.
253 Chromatographic analysis was performed on a C18 column (150 × 4.6 mm, 5 µm; 35 °C) using a
254 binary gradient system consisting of water with 0.1% formic acid (solvent A) and acetonitrile
255 with 0.1% formic acid (solvent B). The gradient program was: 35% B (0 min) → 55% B (6 min)
256 → 70% B (10 min, held to 12 min) → 35% B (12.1 min, re-equilibrated to 20 min). The flow
257 rate was 1.0 mL min⁻¹, injection volume 10 µL, and detection wavelength 225 nm. Calibration
258 curves were prepared using mitragynine standard solutions (0.05–50 µg/mL), yielding linearity
259 with $r^2 \geq 0.999$. Method performance was validated with a limit of quantification (LOQ) of 0.05
260 µg/mL, precision (RSD) ≤ 5%, and recovery of 90–110% from spiked matrix samples.
261 Mitragynine concentrations were expressed as mg/g dry basis, corrected for residual moisture.

262 2.6. Assessment of morphology of KLE microcapsules

263 To assess the microstructure of KLE microcapsules, the appearance of the microcapsules
264 was examined using a scanning electron microscope (SEM) and an energy dispersive X-ray
265 spectrometer (JEOL, JSM-IT300 Oxford, X-Max N 20) with a 15 kV magnification at 1000×,
266 3000×, 5000×. Samples were sputter-coated with gold (10 nm thickness) under vacuum before
267 imaging.

268 2.7. Investigation of storage stability of KLE microcapsules

269 Formulations were selected using a multi-criteria optimization approach that considered
270 lowest MC/aw and highest TPC, TFC, and antioxidant activity. Weighted scoring was applied
271 (40% bioactive retention, 30% physical stability, 30% solubility), with the GA@160 °C
272 formulation achieving the highest score (85/100). Ten grams of KLE microcapsules,
273 encapsulated using gum Arabic and processed via spray drying at 160°C, were packaged in
274 laminated aluminum foil bags and stored under vacuum conditions at room temperature
275 (30±5°C). Quality properties were monitored every 15 days over a period of 90 days to assess
276 changes.

277 **2.8. Kinetics modelling of changes in characteristics of KLE microcapsules**

278 To estimate the reaction order of the alterations in various characteristics of KLE
279 microcapsules, the experimental data were analysed using Eq. 6. Zero-order and first- order
280 equations, which are frequently employed to model reactions associated with food quality
281 deterioration, were derived from Eq.6 and are represented in Eqs. 7-8.

$$282 -\frac{dC}{dt} = kC^n \quad (6)$$

$$C = C_o \pm k t \quad (7)$$

$$lnC = lnC_o \pm k t \quad (8)$$

283 In the given equations, C and C_o denote the property value at a specific time and the
284 initial value, respectively, while “t” indicates the storage duration. The parameter “k” is the
285 reaction rate constant (day⁻¹), and “n” represents the reaction order of the changes. The symbols
286 (+) and (-) indicate the increase and decrease in attributes, respectively.

287 *2.9. Predicting the shelf life by integration of the quality properties*

288 Shelf-life was estimated based on the minimum time to first failure among key
289 physicochemical and phytochemical attributes, namely moisture content (MC), water activity
290 (aw), total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC),
291 antioxidant activity by DPPH radical scavenging, and ferric reducing antioxidant power (FRAP).

292 For each parameter, a threshold value was defined to indicate the point of quality loss.
293 Specifically, the water activity threshold was set at 0.30, as values above this level promote
294 chemical reactions and increase the risk of microbial growth^{40, 41}. For antioxidant stability, shelf-
295 life termination was determined when DPPH radical scavenging activity decreased by 20%
296 relative to the initial value, which was considered a critical limit for functional quality retention.

297 A least-squares fitting procedure was employed to ascertain the kinetic orders by
298 adjusting the experimental data to solve the general expression of Eq. 6. The kinetic parameters
299 derived for each attribute were then used to estimate the shelf life of KLE microcapsules using
300 Eq. 9, as demonstrated in prior studies by¹⁶.

$$\text{Shelf life (day)} = \frac{C - C_0}{k} \quad (9)$$

301 2.10. Data Analysis

302 Data were analyzed using two-way analysis of variance (ANOVA) to evaluate the effects
303 of wall material and drying temperature on the properties of KLE microcapsules, and
304 mean comparisons were performed using Tukey's HSD test at a significance level of $p < 0.05$.
305 Significant differences among wall materials are denoted by uppercase letters, while differences
306 among temperatures are indicated by lowercase letters. Effect size was also computed to
307 investigate the importance of each factor. Moreover, regression analysis was performed to
308 evaluate the precision of the models in representing the observed data. The selection of the best
309 model was based on achieving the highest correlation coefficient, $R^2 \geq 0.90$, as recommended by

310 previous studies ⁴². Data analysis and modelling were carried out using Minitab v. 18 (Minitab
311 Inc., State College, PA, USA). The proportion of variance explained by each factor was
312 expressed as eta-squared (η^2) values obtained from the ANOVA, indicating the relative effect
313 size of wall material, inlet temperature, and their interaction.

314 **3. Results and Discussion**

315 *3.1 Encapsulation Yield of KLE Microcapsules*

316 The two-way ANOVA results revealed significant main and interaction effects of wall
317 material and temperature on encapsulation yield. The encapsulation yield ranged from 58.2 to
318 72.9%, with wall material exerting a moderate effect ($\eta^2 = 0.28$). Resistant maltodextrin (RM)
319 generally produced higher recovery values compared to gum Arabic (GA), underscoring the
320 importance of carrier selection in determining encapsulation efficiency. In contrast, temperature
321 exhibited only a small effect ($\eta^2 = 0.07$), suggesting that drying conditions had a limited
322 influence on yield relative to wall material composition, as illustrated in Table 2. Higher
323 excipient concentrations in RMD and blend experiments contributed to reduced wall adhesion,
324 enhancing yield. The low yield for gum Arabic is attributed to its pseudoplastic nature at high
325 concentrations (20% in this study), which increases viscosity ⁴³ and causes it to adhere to the
326 inner surfaces of the spray dryer, reducing yield. Additionally, increasing the spray drying
327 temperature from 150°C to 160°C significantly ($p \leq 0.05$) improved the yield when using gum
328 Arabic as the coating material. Higher temperatures enhance thermal energy, breaking
329 intermolecular bonds, which reduces viscosity and adhesion to the spray dryer surfaces ⁴⁴.

330 Conversely, using resistant maltodextrin alone or in combination with gum Arabic
331 resulted in lower yields at higher spray drying temperatures. This is likely due to heat

332 accumulation causing the microcapsules to melt and stick to the inner surfaces of the spray dryer,
333 thereby decreasing the overall yield.

334 **3.2 Encapsulation Efficiency of KLE Microcapsules**

335 The results presented in Table 2, revealed that the values of encapsulation efficiency
336 (EE), ranged from 68.3% to 92.7%, with both wall material and temperature exerting strong
337 influences ($\eta^2 = 0.32$ and 0.18, respectively), alongside a significant interaction effect ($\eta^2 =$
338 0.11). Similarly, hygroscopicity (HG), which varied between 7.2% and 12.5%, was markedly
339 influenced by wall material ($\eta^2 = 0.26$) and temperature ($\eta^2 = 0.14$), with an additional moderate
340 interaction ($\eta^2 = 0.09$). The use of gum Arabic as a coating material at an inlet spray drying
341 temperature of 160°C resulted in the highest encapsulation efficiency, while resistant
342 maltodextrin at the same temperature resulted in the lowest efficiency. Gum Arabic's emulsion
343 properties enable it to form a better encapsulating film compared to resistant maltodextrin,
344 leading to higher encapsulation efficiency for microcapsules coated with gum Arabic⁴⁵.

345 Considering the inlet spray drying temperature, higher temperatures led to more effective
346 water evaporation from the particles, thus increasing encapsulation efficiency. However,
347 excessively high temperatures might damage the microcapsules, exposing the core material to
348 direct heat and potentially degrading the active compounds⁴⁶. Consequently, microcapsules
349 using maltodextrin and a combination of resistant maltodextrin with gum Arabic exhibited
350 reduced encapsulation efficiency when the inlet spray drying temperature increased to 160°C. In
351 general, Encapsulation efficiency values were benchmarked against the initial TPC in the crude
352 extract (45.2 ± 2.1 mg GAE/mL), indicating 82–92% retention post-encapsulation and thereby
353 confirming effective protection.

354 **3.3 Moisture Content (%) and water activity (a_w) of KLM microcapsules**

355 The study examined the moisture content and water activity of KLM microcapsules
356 produced through spray drying, varying the types of coating materials and two inlet drying
357 temperatures (Table 2). Moisture content ranged from 2.6 to 6.8%, being more strongly affected
358 by temperature ($\eta^2 = 0.27$) than wall material ($\eta^2 = 0.15$). Higher inlet temperature reduced
359 moisture in GA samples but slightly increased it in RM powders, suggesting carrier-dependent
360 responses to drying kinetics. It was found that microcapsules with gum Arabic as the coating
361 material had higher moisture content compared to those using resistant maltodextrin. This is
362 because gum Arabic, a complex heteropolysaccharide, is hydrophilic, enabling it to retain more
363 moisture than resistant maltodextrin. Water activity or moisture content below T_g ($\sim 50^\circ\text{C}$ for
364 GA/RMD), ensures glassy state stability ⁴⁷.

365 When the inlet spray drying temperature was increased from 150°C to 160°C , the
366 moisture content of microcapsules with gum Arabic decreased, as the higher temperature
367 facilitated better water evaporation ⁴⁸. GA exhibits higher viscosity at lower temperatures, which
368 can trap moisture; at elevated temperatures, viscosity decreases, facilitating evaporation. In
369 contrast, RMD is inherently less viscous and less affected by this behavior. In contrast,
370 microcapsules with resistant maltodextrin and those with a combination of gum Arabic and
371 resistant maltodextrin showed an increase in moisture content ($3.52 \pm 0.1\%$ and $3.34 \pm 0.2\%$,
372 respectively) at higher temperatures (Table 2). Higher temperatures generate a steeper heat
373 gradient, enhancing moisture diffusion in RMD but leading to tackiness in the blends (Tay et al.,
374 2021).

375 Clearly from Table 2, water activity (a_w) values were low (0.16–0.26), suitable for
376 storage stability. Both factors had small effects ($\eta^2 \leq 0.12$), indicating robustness across
377 treatments., which are within the standard reference values for food powders that should not

378 exceed a water activity of 0.3. Water activity (a_w) is more closely associated with bound water;
379 GA's hydrophilic nature tightly binds water, which maintains low a_w values even at higher total
380 moisture content ⁴⁹.

381 *3.4 Water solubility of KLE Microcapsules*

382 Water solubility was consistently high (91.8–95.6%), with significant though smaller
383 effects of carrier ($\eta^2 = 0.22$) and temperature ($\eta^2 = 0.10$). Higher temperatures improved
384 solubility slightly, likely through reduced moisture and better particle formation (Table 2), with
385 the highest solubility observed in microcapsules coated with resistant maltodextrin
386 (95.8±0.09%). The branched structure of resistant maltodextrin enhances its density, and the
387 presence of hydroxyl groups allows it to bond with water molecules effectively, resulting in
388 superior solubility compared to those coated with gum Arabic or a combination of both ⁵⁰. In
389 addition, higher temperatures reduce residual moisture, enhancing particle dispersibility; low MC
390 minimizes clumping upon reconstitution.

391 The large, porous amorphous structure of the microcapsules using resistant maltodextrin
392 as a coating material facilitates easy dissolution in water, aligning with the findings of Jordan et
393 al. (2018), which indicated that resistant maltodextrin-coated microcapsules have better
394 solubility than those coated with gum Arabic. Additionally, increasing the inlet drying
395 temperature from 150°C to 160°C improved the water solubility of microcapsules coated with
396 gum Arabic and the combination of gum Arabic and resistant maltodextrin. The higher drying
397 temperature reduces moisture content, thereby enhancing the ability of the microcapsules to
398 dissolve in water. In other words, tackiness affects internal evaporation but not external
399 solubility; lower moisture content from optimal temperatures aids dissolution. This is consistent

400 with the research of Astina & Sapwarabol (2019), which showed that lower moisture content
401 improves the solubility of powdered milk.

402 **3.5 Color parameters (L* a* b*) of KLE microcapsules**

403 Color attributes (L*, a*, b*) showed meaningful changes as indicated in Table 2.
404 Lightness (L*; 60.4–64.8) was moderately influenced by both carrier ($\eta^2 = 0.19$) and temperature
405 ($\eta^2 = 0.14$). The a* values (−1.29 to −0.44) showed a strong wall material effect ($\eta^2 = 0.24$),
406 reflecting GA's tendency toward less negative redness–greenness. The b* values (4.1–8.3)
407 showed the strongest carrier effect ($\eta^2 = 0.32$), confirming the distinct visual profiles imparted by
408 GA

409 The L* value, which ranges from 0 (dark) to 100 (light), showed that microcapsules
410 coated with resistant maltodextrin were lighter than those coated with gum Arabic or a
411 combination of both. This is because resistant maltodextrin is a white powder, resulting in a
412 bright white color when dissolved in water, whereas gum Arabic is a light-yellow powder that
413 turns brown when dissolved. Therefore, microcapsules with resistant maltodextrin as the coating
414 material appeared lighter than those with gum Arabic. The inlet drying temperature did not
415 significantly affect the L* value of the microcapsules ($p \leq 0.05$).

416 The a* value indicates the red-green spectrum, with negative values representing green
417 and positive values representing red. Similarly, the b* value indicates the yellow-blue spectrum,
418 with positive values representing yellow. An increase in the inlet drying temperature from 150°C
419 to 160°C resulted in higher b* values for KLE microcapsules. This is attributed to the Maillard
420 reaction, which intensifies yellow coloration at higher temperatures⁵¹.

421 **3.6 Phytochemical properties of KLE microcapsules**

422 **3.6.1 Total Phenolic Compounds**

423 From Table (2), It was observed that total phenolic content (TPC) ranged from 13.1 to
424 34.8 mg GAE/mL and was strongly influenced by wall material ($\eta^2 = 0.29$), with GA promoting
425 higher retention. Temperature contributed moderately ($\eta^2 = 0.16$), suggesting heat-stimulated
426 release or degradation depending on carrier type. When considering the impact of temperature,
427 increasing the inlet temperature from 150°C to 160°C resulted in a higher total phenolic content
428 in the microcapsules. The higher temperature facilitated faster drying and the formation of a
429 protective film layer around the microcapsules, which shortens the exposure time of the phenolic
430 compounds to heat. Additionally, higher drying temperatures may possibly induce faster film
431 formation and polymerization reactions that could lead to an increase in the total phenolic
432 content⁵².

433 Regarding the coating material, microcapsules coated with gum Arabic demonstrated a
434 higher total phenolic content compared to those coated with resistant maltodextrin or a
435 combination of resistant maltodextrin and gum Arabic. This is because gum Arabic has
436 emulsifying properties that enhance stability and can form a well-structured polymer film around
437 the microcapsules⁵³.

438 **3.6.2 Total Flavonoid Content**

439 The results shown in Table 2 revealed that total flavonoid content (TFC) varied between
440 1.8 and 5.1 mg QE/mL. Carrier was again dominant ($\eta^2 = 0.30$), with GA-based formulations
441 consistently higher. Specifically, microcapsules coated with gum Arabic exhibited the highest
442 total flavonoid content. This is due to the matrix formation between the gum Arabic coating and
443 the core substance, which helps reduce the loss of total flavonoid content. Additionally, the
444 emulsifying properties of gum Arabic enhance stability and protect the active compounds from
445 environmental conditions⁵⁴.

446 In contrast, the inlet temperature during spray drying (150°C and 160°C) did not
447 significantly affect the total flavonoid content. Increasing the inlet temperature from 150°C to
448 160°C did not significantly impact the total flavonoid content ($p>0.05$). Flavonoids may be more
449 heat-stable or better protected by matrix; TPC includes broader reducing species sensitive to
450 heat. The microcapsules coated with gum Arabic had the highest total flavonoid content at both
451 150°C and 160°C (4.98 ± 0.8 and 5.22 ± 0.12 mg QE/mL db., respectively), followed by those
452 coated with resistant maltodextrin combined with gum Arabic (3.08 ± 0.23 and 2.99 ± 0.35 mg
453 QE/mL db., respectively), and finally those coated solely with resistant maltodextrin (1.67 ± 0.5
454 and 1.61 ± 0.72 mg QE/mL db., respectively).

455 **3.6.3 Antioxidant activity using the DPPH assay**

456 The results revealed that antioxidant activity showed strong wall material effects. DPPH
457 scavenging activity ranged from 233.5 to 305.2 $\mu\text{mol TE}/100 \text{ mL}$ ($\eta^2 = 0.27$), as it can be seen in
458 Table 2. GA preserved and even enhanced antioxidant activity compared to RM.

459 Increasing the inlet temperature during spray drying resulted in a corresponding increase
460 in antioxidant activity, which can be explained by the higher drying temperature enhancing the
461 antioxidant properties of the microcapsules⁴⁷. This trend is attributed to the direct correlation
462 between antioxidant activity and phenolic compound content; higher levels of phenolic
463 compounds generally lead to increased antioxidant activity⁵⁵.

464 **3.6.4 Antioxidant activity using the FRAP assay**

465 As it can be observed from Table (2), the results indicated that FRAP varied more
466 broadly ($317.5\text{--}522.7 \mu\text{mol TE}/100 \text{ mL}$), with carrier ($\eta^2 = 0.33$) and temperature ($\eta^2 = 0.21$)
467 both important. GA preserved and even enhanced antioxidant activity compared to RM.

468 When examining the type of coating material, microcapsules coated with gum Arabic and
469 those coated with a combination of resistant maltodextrin and gum Arabic showed no significant
470 statistical difference in FRAP antioxidant activity. However, gum Arabic-coated microcapsules
471 demonstrated higher antioxidant activity compared to those coated with resistant maltodextrin.
472 This is because the film layer formed by gum Arabic better prevents oxidation reactions
473 compared to resistant maltodextrin⁵⁶

474 Regarding the temperature factor, increasing the inlet temperature in the spray drying
475 process from 150°C to 160°C resulted in a significant change in FRAP antioxidant activity ($p \leq$
476 0.05). This could be attributed to the higher inlet temperature causing microcapsule particles to
477 crack, which leads to direct exposure of antioxidants to heat and subsequent loss due to direct
478 heat exposure⁵⁷.

479 **3.6.5 Total Tannin Content**

480 The results presented in Table 2 revealed that total tannin content (TTC) followed a
481 similar trend (13.4–35.5 mg CE/mL), with both carrier ($\eta^2 = 0.25$) and temperature ($\eta^2 = 0.20$)
482 exerting effects, highlighting synergistic contributions. It was found that both the type of coating
483 material and the inlet temperature during spray drying at 150°C and 160°C significantly affect
484 the total tannin content. Specifically, microcapsules coated with gum Arabic and processed at an
485 inlet temperature of 160°C exhibited the highest total tannin content (36.42 ± 2.45 mg TAE/mL).

486 Increasing the inlet temperature from 150°C to 160°C resulted in a higher total tannin
487 content in the microcapsules. This is because the higher temperature facilitates the formation of a
488 well-structured film layer on the particle walls, which enhances the retention of tannins.
489 Regarding the coating material, microcapsules using gum Arabic as the coating material
490 demonstrated a higher total tannin content compared to those coated with resistant maltodextrin

491 or a combination of resistant maltodextrin and gum Arabic. This is due to gum Arabic's
492 emulsifying properties, which improve stability and enable the formation of a polymer film
493 around the microcapsules, similar to its effect on total phenolic content⁵³.

494 **3.6.6. Mitragynine Stability**

495 The chromatographic profile of kratom leaf extract (KLE), as revealed by HPLC analysis,
496 demonstrated a distinct and well-resolved peak at approximately 6.9 min, corresponding to
497 mitragynine (Figure 2). This identification was confirmed through comparison with an authentic
498 standard, consistent with previous reports that place mitragynine's retention time between 6.5
499 and 7.0 min under reversed-phase conditions^{58, 59}. The sharp symmetry and high intensity of this
500 peak affirm mitragynine's predominance among the alkaloids present in KLE. Additional minor
501 peaks observed between 2–5 min and 7–10 min likely represent polar phenolic compounds and
502 structurally related alkaloids such as paynantheine and speciogynine.

503 The developed HPLC method exhibited a stable baseline and absence of interfering
504 signals beyond 10 min, indicating high selectivity and robustness. These attributes are essential
505 for reliable quantification of mitragynine in complex plant matrices and support the method's
506 suitability for routine analysis in quality control and formulation studies.

507 Encapsulation studies further revealed that the retention of mitragynine in spray-dried
508 microcapsules was significantly influenced by the choice of wall material. Gum Arabic (GA)
509 consistently yielded the highest mitragynine content (1.89–1.96 mg/mL), outperforming resistant
510 maltodextrin (RMD) and the RMD–GA blend. This superior performance is attributed to GA's
511 highly branched polysaccharide structure and emulsifying properties, which enhance molecular
512 entrapment and protect bioactives from thermal and oxidative degradation during spray drying⁶⁰,
513⁶¹. In contrast, RMD, while beneficial for moisture reduction and solubility, demonstrated lower

514 encapsulation efficiency for hydrophobic alkaloids like mitragynine, likely due to its limited
515 molecular affinity ⁶².

516 Interestingly, inlet temperature (150 vs. 160 °C) did not significantly affect mitragynine
517 retention across formulations, suggesting that wall material composition exerts a more dominant
518 influence than thermal stress. This observation aligns with previous findings that emphasize the
519 role of carrier–core interactions over processing temperature in determining encapsulation
520 outcomes (Díaz-Montes, 2023).

521 Moreover, the retention trends of mitragynine paralleled those of total phenolic content
522 (TPC) and antioxidant capacity (DPPH, FRAP), reinforcing the protective role of GA in
523 preserving multiple classes of bioactives. The co-stabilization of alkaloids and phenolics is
524 particularly relevant for the development of functional food and nutraceutical products, where
525 both pharmacological efficacy and antioxidant potential are desired ⁶⁰.

526 Collectively, these findings underscore the importance of wall material selection in
527 microencapsulation strategies for botanical extracts. Gum Arabic, particularly at an inlet
528 temperature of 160 °C, offers a promising formulation for preserving mitragynine and related
529 bioactives, thereby enhancing the stability and functionality of KLE-based products.

530 **3.7 Surface structure of KLE microcapsules analyzed by scanning electron microscopy
531 (SEM)**

532 The shape and structure of KLE microcapsules are influenced by various production
533 factors, including the type of coating material, coating concentration, coating-to-liquid ratio,
534 solution viscosity, inlet temperature of the spray dryer, and the flow rate of the solution through
535 the spray dryer. These factors not only affect the visual appearance of the microcapsules but also
536 impact the stability of the bioactive compounds within them. Smoother morphology in GA

537 correlates with higher bioactive retention via reduced surface exposure. Issues such as cracks or
538 surface ruptures can decrease encapsulation efficiency and allow moisture infiltration, potentially
539 leading to oxidation of the active compounds ^{63, 64}.

540 Figure (3a) illustrates the morphology of microcapsules coated with resistant
541 maltodextrin at an inlet temperature of 150°C. Analyzed using scanning electron microscopy
542 (SEM) at magnifications of 1,000x, 3,000x, and 5,000x, these microcapsules generally appear
543 spherical with relatively smooth surfaces and minor folds and dents, indicating effective
544 encapsulation. Some particles tend to cluster slightly, which may be due to residual moisture in
545 the coating material or moisture absorbed from the environment ⁶⁵.

546 The morphology of microcapsules coated with gum Arabic at 150°C is shown in Figure
547 (3b). These particles are typically smaller and exhibit more surface folds and dents compared to
548 those coated with resistant maltodextrin. The increased surface irregularities are attributed to the
549 rapid formation of the coating during the initial stage, leading to the swift evaporation of water
550 within the particles ⁶⁶.

551 Figure (3c) also depicts microcapsules coated with a 1:1 ratio of resistant maltodextrin
552 and gum Arabic at 150°C. These capsules are mostly spherical with a mix of large and small
553 particles. They show a tendency to be well-distributed without significant clustering but exhibit
554 more surface folds and dents compared to capsules coated solely with resistant maltodextrin.
555 This morphology is influenced by factors such as direct exposure to heat and rapid evaporation
556 of water within the particles, leading to deformation and folds ⁶⁵.

557 At a higher inlet temperature of 160°C, Figure (4a) shows microcapsules coated with
558 resistant maltodextrin. The particles are mostly spherical with larger sizes and some smaller
559 particles clumped together. The surface exhibits wrinkles and is partially smooth. In contrast,

560 Figure (4b) presents microcapsules coated with gum Arabic, which are generally smaller with a
561 rough surface and significant wrinkling and crumpling. Figure (4c) depicts microcapsules coated
562 with a 1:1 ratio of resistant maltodextrin and gum Arabic. These particles are small with a rough
563 surface, showing pronounced crumpling and indentations compared to single coatings.

564 These observations highlight how different coating materials and inlet temperatures affect
565 the structural characteristics of microcapsules. Higher temperatures and certain coating
566 combinations can result in increased surface roughness and crumpling, which impacts the
567 integrity and performance of the microcapsules⁶⁷.

568 **3.8. Quality changes of KLE microcapsules during storage**

569 **3.8.1 Changes in physical properties of KLE microcapsules during storage**

570 Figures (5a-b) show the moisture content and water activity of the KLE microcapsules,
571 respectively. The initial moisture content of the KLE microcapsules was $2.65\pm0.1\%$. Over time,
572 the moisture content increased to $2.75\pm0.2\%$, $2.85\pm0.25\%$, $2.94\pm0.15\%$, $3.05\pm0.2\%$, $3.22\pm0.1\%$,
573 and $3.33\pm0.16\%$ after 15, 30, 45, 60, 75, and 90 days of storage, respectively. The initial water
574 activity of the KLE microcapsules was 0.164 ± 0.03 . With prolonged storage, the water activity
575 increased to 0.193 ± 0.07 , 0.221 ± 0.04 , 0.243 ± 0.01 , 0.256 ± 0.04 , 0.289 ± 0.07 , and 0.317 ± 0.03 after
576 15, 30, 45, 60, 75, and 90 days, respectively.

577 The moisture content and free water of the KLE microcapsules did not exceed the
578 spoilage indicators set (moisture content $\leq 5\%$ and water activity < 0.6) even after 90 days of
579 storage. This is due to the aluminum foil packaging's excellent ability to prevent moisture and
580 water vapor from the air⁶⁸. The aluminum foil has a water vapor and oxygen permeability of
581 only water vapor transmission rate of $0.06571 \text{ g/m}^2/\text{day}$ and oxygen transmission rate of
582 $0.00873 \text{ mL/m}^2/\text{day}$, respectively⁶⁹. This low permeability explains why the aluminum foil

583 packaging minimizes water and oxygen absorption under vacuum conditions, resulting in only a
584 slight increase in moisture and free water content. Water activity can serve as an indicator of
585 product stability against oxidation reactions, such as fat oxidation and rancidity. A water activity
586 of less than 0.6 indicates that the sample remains stable or has good shelf stability ⁷⁰. These
587 results are consistent with ⁷¹, who studied the storage of papaya powder in aluminum foil bags
588 and found that the water activity of the papaya powder remained below 0.6 after 7 weeks of
589 storage.

590 The progressive increase in total color difference (ΔE) observed in spray-dried KLE
591 encapsulates over the 90-day storage period reflects gradual pigment degradation and structural
592 changes within the microcapsules. Initially, the ΔE value was 0 on day 0, indicating no
593 perceptible color change. A marked increase to $\Delta E = 0.40$ by day 15 suggests an early phase of
594 rapid color modification. This may be attributed to residual moisture and initial oxidative
595 reactions, which are known to affect polyphenolic compounds and sensitive pigments ⁷².

596 Following this initial phase, the rate of color change decelerated, with ΔE values reaching
597 0.44 and 0.46 on days 30 and 45, respectively. This plateau-like behavior implies that the
598 encapsulated system may have achieved a degree of equilibrium in pigment stability and wall
599 matrix integrity, thereby reducing the rate of further degradation. Similar stabilization trends
600 have been reported in encapsulated anthocyanins and carotenoids, where wall materials such as
601 maltodextrin and gum Arabic mitigate oxidative stress and thermal instability ⁷³.

602 Between days 60 and 90, ΔE values continued to rise gradually from 0.51 to 0.58,
603 indicating ongoing but limited degradation. This phase likely involves slower oxidative
604 processes and potential Maillard-type reactions, which are common during prolonged storage of
605 encapsulated bioactives ⁷⁴. Importantly, the final ΔE value remained below 1.0, a threshold

606 generally considered imperceptible or only slightly noticeable to the human eye. This suggests
607 that the encapsulation matrix provided effective protection against color deterioration, preserving
608 the visual quality of the product.

609 Overall, these findings demonstrate that the selected encapsulation strategy offers
610 substantial color stability over time. The minor perceptible changes observed after three months
611 of storage underscore the efficacy of the wall materials in limiting oxidative and thermal
612 degradation of sensitive compounds. This stability is critical for maintaining both the aesthetic
613 and functional attributes of KLE encapsulates, particularly in applications where visual appeal
614 and bioactive retention are essential.

615 **3.8.3 Changes in total phenolic compounds during storage**

616 Figure (6a) shows the decrease in total phenolic compounds in KLE microcapsules
617 during storage. Initially, the total phenolic content of the microcapsules was 36.78 ± 3.08 mg
618 GAE/mL. Over time, this amount gradually decreased, with total phenolic compounds measuring
619 34.83 ± 1.52 , 33.20 ± 0.65 , 32.66 ± 1.04 , 31.88 ± 0.67 , 30.36 ± 0.89 , and 30.10 ± 0.45 mg
620 GAE/mL. at 15, 30, 45, 60, 75, and 90 days of storage, respectively. Several factors can lead to
621 the reduction in total phenolic compounds, including temperature, increased moisture, and the
622 amount of air permeating the packaging and coming into contact with the product⁷⁵. These
623 results align with research by⁷⁶, which found a reduction in phenolic content in ground coffee
624 stored in aluminum foil bags.

625 **3.8.4 Changes in total flavonoid contents during storage**

626 Figure (6b) displays the decrease in total flavonoids in KLE microcapsules during
627 storage. The initial total flavonoid content was 5.22 ± 0.12 mg QE/mL. This amount gradually
628 decreased over time, with values of 5.15 ± 0.15 , 4.95 ± 0.09 , 4.85 ± 0.23 , 4.75 ± 0.12 , $4.54 \pm$

629 0.15, and 4.32 ± 0.05 mg QE/mL. at 15, 30, 45, 60, 75, and 90 days of storage, respectively. Key
630 factors affecting the total flavonoid content include temperature, light, and oxygen. The primary
631 cause of the decrease in flavonoid content is oxidation during storage, a common reaction in food
632 preservation. This hypothesis aligns with the research of ⁷⁷, which studied the stability of
633 bioactive compounds in rowan berries. Their study found that flavonoid levels in berries
634 decreased by up to 86% during 20 weeks of storage. Therefore, oxidation directly impacts the
635 reduction in flavonoid content. Similarly, ⁷⁸ examined the impact of packaging material on the
636 quality of powdered milk over 12 months. They found that powdered milk packaged in
637 aluminum foil experienced a lower reduction in flavonoids compared to other packaging
638 materials, as aluminum foil blocks light and has low moisture and oxygen permeability. This
639 indicates that packaging material directly affects the reduction in total flavonoid content in KLE
640 microcapsules.

641 3.8.5 Changes in total tannins during storage

642 Figure (6c) illustrates the decrease in total tannins in KLE microcapsules during storage.
643 The initial total tannin content was 36.42 ± 2.45 mg TAE/mL. Over time, this amount gradually
644 decreased, with total tannins measuring 33.83 ± 1.25 , 32.20 ± 1.56 , 31.66 ± 1.05 , 30.75 ± 0.85 ,
645 29.29 ± 0.45 , and 29.08 ± 0.06 mg TAE/mL. at 15, 30, 45, 60, 75, and 90 days of storage,
646 respectively. This trend mirrors the decrease observed in total phenolic compounds and total
647 flavonoids, which also decreased with extended storage time. These findings are consistent with
648 research by ⁷⁹, which investigated tannin extraction from kluwek fruit and its stability. Their
649 study found that tannin extracted from kluwek fruit and stored in opaque glass containers had a
650 shelf life of about 15 days, while tannins exposed to air and light had a shelf life of only 9 h. The
651 darker color of kluwek fruit extracts may result from direct light exposure, which increases light

652 absorption and accelerates oxidation reactions that can degrade tannins⁸⁰. Thus, packaging, light,
653 and temperature are crucial factors affecting the stability and shelf life of KLE microcapsules.

654 **3.8.6 Changes in antioxidant activity (DPPH) and antioxidant activity (FRAP) during
655 storage**

656 Figure 7a illustrates the reduction in antioxidant activity of KLE microcapsules as
657 measured by the DPPH method during storage. Initially, the antioxidant activity was $293.55 \pm$
658 $3.28 \mu\text{M TE}/100 \text{ mL}$. This value gradually decreased over time, reaching 283.06 ± 5.76 , 271.45
659 ± 4.32 , 265.53 ± 2.15 , 258.06 ± 3.52 , 247.65 ± 2.85 , and $227.88 \pm 4.64 \mu\text{M TE}/100 \text{ mL}$. at 15,
660 30, 45, 60, 75, and 90 days, respectively. This trend is consistent with the decrease in total
661 phenolic compounds, as phenolics are directly related to antioxidant activity⁸¹. A study by⁷⁸ on
662 the antioxidant activity of commercial powdered milk using the DPPH method found a 42.37%
663 reduction in antioxidant activity over one year of storage. Their results indicated that packaging
664 material significantly affects the reduction in antioxidant activity.

665 Similarly, antioxidant activity measured by the FRAP method also showed a decline over
666 time (Figure 7b). The FRAP values for the KLE microcapsules were 522.74 ± 2.47 , $477.49 \pm$
667 3.56 , 469.32 ± 3.12 , 459.35 ± 2.76 , 435.56 ± 5.62 , 422.63 ± 2.89 , and $409.67 \pm 8.51 \mu\text{M TE}/100$
668 mL at days 1, 15, 30, 45, 60, 75, and 90, respectively. The observed reduction in antioxidant
669 activity during storage indicates that antioxidant capacity decreases with prolonged storage time,
670 and packaging material plays a crucial role in preserving the antioxidant activity of KLE
671 microcapsules.

672

673

674 **3.9. Kinetic modelling of changes in the properties of KLE microcapsules over storage**
675 **period**

676 In food science, kinetic modelling is a widely used technique to understand the changes
677 in quality that occur during food processing. To characterize the changes in attributes (a_w , MC,
678 TPC, TFC, TTC, DPPH, and FRAP) of KLE microcapsules over time, experimental data for
679 these properties were fitted to proposed models using regression analysis. Figures (5-7) provide
680 graphical representations of the zero-order and first-order equations that describe the changes in
681 these properties during storage. The estimated kinetic parameters for the models were
682 determined using regression analysis technique and listed in Table 3.

683 Generally, R^2 values of both zero-order and first-order were greater than 0.95, indicating
684 that both models effectively describe the degradation kinetics of the studied properties, with first-
685 order models generally providing a slightly better fit for most properties. Previous studies have
686 reported that both zero-order and first-order models effectively described the alterations in the
687 quality properties over the storage period of the studied materials⁸²⁻⁸⁴

688 **3.10. Prediction of shelf life of KLE microcapsules**

689 The period during which a product maintains its satisfactory quality before deteriorating
690 is known as its shelf life¹⁶. During storage, quality changes occur, leading to degradation that
691 may limit the product's shelf life. By incorporating the reaction rate constants obtained from
692 kinetic modelling of quality attribute changes (Eq. 6) into Eq. 9, it is possible to predict the shelf
693 life of KLE microcapsules. This equation allows for shelf-life prediction based on key quality
694 determinants such as a_w , MC, TPC, TFC, TTC, DPPH, and FRAP. Based on minimum moisture
695 content and water activity, the predicted shelf-life values are detailed in Table 3. The shelf lives

696 for the various properties of KLE microcapsules range from approximately 81 to 99 days,
697 indicating their potential stability and longevity under the studied conditions.

698 **4. Conclusions**

699 This study demonstrated that spray drying offers a sustainable and scalable technique for
700 producing kratom leaf extract (KLE) microcapsules with enhanced stability and bioactive
701 retention. By utilizing plant-based, biodegradable wall materials—resistant maltodextrin and
702 gum Arabic—the process aligns with environmentally conscious food formulation practices.
703 Results showed that resistant maltodextrin yielded the highest encapsulation yield and solubility,
704 while gum Arabic at 160°C provided superior antioxidant retention, phenolic and flavonoid
705 content, and encapsulation efficiency. Gum Arabic, particularly at an inlet temperature of 160
706 °C, offers a promising formulation for preserving mitragynine and related bioactives, thereby
707 enhancing the stability and functionality of KLE-based products. Despite slight differences in
708 moisture content, both encapsulants maintained acceptable water activity, contributing to shelf-
709 life stability. The application of kinetic models further allowed prediction of microcapsule
710 degradation during storage, with estimated shelf lives ranging from 81 to 99 days.

711 However, it should be noted that unequal wall-solid concentrations across carriers (20%
712 GA vs. 40% RMD) may have influenced atomization, viscosity, and yield outcomes, thereby
713 limiting the strength of direct comparisons. Future studies should validate these findings under
714 isosolid feed conditions to ensure robust comparisons across encapsulants. Moreover, while
715 spray drying presents promise as a practical and environmentally aligned encapsulation method,
716 energy consumption data were not collected in this study; thus, no claims regarding “low-energy
717 processing” can be made at this stage.

718 These findings support the development of sustainable functional food systems by
719 minimizing degradation, reducing food waste, and encouraging the use of renewable, low-impact
720 ingredients in clean-label product design.

721 **Credit Author Statement**

722 Supanit Khongtongsang: Investigation, Formal analysis, Data curation and Writing – original
723 draft. Mohammed Fikry: Investigation, Formal analysis, Data curation and Writing – original
724 draft. Saeid Jafari: Data curation and Writing – original draft. Sochannet Chheng: Data curation
725 and Writing – original draft. Isaya Kijpatanasilp: Data curation and Writing – original draft.
726 Kitipong Assatarakul: Conceptualization, Data curation, Funding acquisition, Project
727 administration, Supervision, Writing – original draft and Writing – review & editing.

728 **Declaration of Competing Interest**

729 Authors have no conflict of interest

730 **Data availability**

731 The data supporting the findings of this study are available from the corresponding author upon
732 request.

733 **Funding**

734 This study was funded by the 90th Anniversary of Chulalongkorn University Scholarship through
735 the Ratchadapisek Somphot Endowment Fund (Grant no. GCUGR1125671051M), awarded to
736 Supanit Khongtongsang.

737

738

739

740

741

742 **References**

743 1. W. F. Dewatisari and E. Nuryandani, *In Proceeding International Seminar of Science and*
744 *Technology*, 2025, **4**, 49-62.

745 2. S. Charoenratana, C. Anukul and A. Aramrattana, *International Journal of Drug Policy*, 2021,
746 **95**, 103197.

747 3. P. Sornsenee, S. Chimpee and C. Romyasamit, *Probiotics and Antimicrobial Proteins*, 2023, **1**-
748 13.

749 4. C. Stanciu, S. Ahmed, S. Gnanasegaram, S. Gibson, T. Penders, O. Grundmann and C. McCurdy,
750 *The American Journal of Drug and Alcohol Abuse*, 2022, **48**, 509-528.

751 5. R. Hossain, A. Sultana, M. Nuinoon, K. Noonong, J. Tangpong, K. H. Hossain and M. A.
752 *Molecules*, 2023, **28**, 7372.

753 6. K. Phesatcha, B. Phesatcha, M. Wanapat and A. Cherdthong, *Fermentation*, 2022, **8**, 8.

754 7. F. Zakaria, J.-K. Tan, S. M. M. Faudzi, M. B. A. Rahman and S. E. Ashari, *Ultrasonics*
755 *Sonochemistry*, 2021, **81**, 105851.

756 8. T. Petcharat, T. Sae-leaw, S. Benjakul, T. H. Quan, S. Indriani, Y. Phimolsiripol and S.
757 *Karnjanapratum*, *Process Biochemistry*, 2024, **142**, 212-222.

758 9. S. Parthasarathy, J. B. Azizi, S. Ramanathan, S. Ismail, S. Sasidharan, M. I. M. Said and S. M.
759 *Mansor*, *Molecules*, 2009, **14**, 3964-3974.

760 10. R. Yuniarti, S. Nadia, A. Alamanda, M. Zubir, R. Syahputra and M. Nizam, 2020.

761 11. M. Çam, N. C. İçyer and F. Erdoğan, *LWT-Food Science and Technology*, 2014, **55**, 117-123.

762 12. E. Dobroslavić, I. Elez Garofulić, Z. Zorić, S. Pedisić, M. Roje and V. Dragović-Uzelac, *Foods*,
763 2023, **12**, 1923.

764 13. S. Jafari, S. M. Jafari, M. Ebrahimi, I. Kijpatanasilp and K. Assatarakul, *Food hydrocolloids*,
765 2023, **134**, 108068.

766 14. S. Insang, I. Kijpatanasilp, S. Jafari and K. Assatarakul, *Ultrasonics Sonochemistry*, 2022, **82**,
767 105806.

768 15. S. Jafari, Z. Karami, K. A. Shiekh, I. Kijpatanasilp, R. W. Worobo and K. Assatarakul, *Foods*,
769 2023, **12**, 412.

770 16. M. Fikry, Y. A. Yusof, A. M. Al-Awaadh, R. A. Rahman and N. L. Chin, *Journal of Food*
771 *Measurement and Characterization*, 2020, **14**, 1158-1171.

772 17. D. W. Dadi, S. A. Emire, A. D. Hagos and J.-B. Eun, *Industrial Crops and Products*, 2020, **156**,
773 112891.

774 18. V. Sablania, S. J. D. Bosco, S. Rohilla and M. A. Shah, *Journal of Food Measurement and*
775 *Characterization*, 2018, **12**, 892-901.

776 19. D. W. Dadi, S. A. Emire, A. D. Hagos and J.-B. Eun, *Cogent Food & Agriculture*, 2019, **5**,
777 1690316.

778 20. A. Martinić, A. Kalušević, S. Lević, V. Nedović, A. Vojvodić Cebin, S. Karlović, I. Špoljarić, G.
779 Mršić, K. Žižek and D. Komes, *Food technology and biotechnology*, 2022, **60**, 237-252.

780 21. A. Dobrinčić, L. Tuđen, M. Repajić, I. E. Garofulić, Z. Zorić, V. Dragović-Uzelac and B. Levaj,
781 *Acta alimentaria*, 2020, **49**, 475-482.

782 22. E. González, A. M. Gómez-Caravaca, B. Giménez, R. Cebrián, M. Maqueda, A. Martínez-Férez,
783 A. Segura-Carretero and P. Robert, *Food chemistry*, 2019, **279**, 40-48.

784 23. D. W. Dadi, S. A. Emire, A. D. Hagos and J.-B. Eun, *Annals: Food Science & Technology*, 2019,
785 **20**.

786 24. C. Tongped and N. Trongsiriwat, King Mongkut's University of Technology North Bangkok,
787 2025.

Open Access Article. Published on 15 November 2025. Downloaded on 1/14/2026 9:34:25 AM.
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc) BY-NC

788 25. M. Matra, S. Phupaboon, P. Totakul, R. Prommachart, A. A. Shah, A. M. Shah and M. Wanapat, *Animal bioscience*, 2023, **37**, 74.

789 26. M. Matra, S. Phupaboon, P. Totakul, R. Prommachart and M. Wanapat, *International Journal of*
790 *Agriculture and Biosciences*, 2025, **14**, 258-264.

791 27. M. Fikry, S. Jafari, K. A. Shiekh, I. Kijpatanasilp, S. Khongtongsang, E. Khojah, H. A. A. L.
792 Jumayi and K. Assatarakul, *Ultrasonics Sonochemistry*, 2024, DOI:
793 <https://doi.org/10.1016/j.ultsonch.2024.106949>, 106949.

794 28. M. Sharma and K. K. Dash, *Innovative Food Science & Emerging Technologies*, 2022, **75**,
795 102913.

796 29. Y. Ramakrishnan, N. M. Adzahan, Y. A. Yusof and K. Muhammad, *Powder technology*, 2018,
797 **328**, 406-414.

798 30. K. Slinkard and V. L. Singleton, *American journal of enology and viticulture*, 1977, **28**, 49-55.

799 31. S. Chheng, M. Fikry, S. Jafari, D. K. Mishra and K. Assatarakul, *Journal of Stored Products*
800 *Research*, 2025, **112**, 102660.

801 32. M. Fikry, Y. A. Yusof, A. M. Al-Awaadh, R. A. Rahman, N. L. Chin, E. Mousa and L. S. Chang,
802 *Food Science and Technology Research*, 2019, **25**, 351-362.

803 33. M. Ahmed, M. S. Akter and J. B. Eun, *Journal of the Science of Food and Agriculture*, 2010, **90**,
804 494-502.

805 34. L. Wen, B. Yang, C. Cui, L. You and M. Zhao, *Food Analytical Methods*, 2012, **5**, 1244-1251.

806 35. S. Chheng and K. Assatarakul, Summer Institute of Asia & ASEAN Center for Educational
807 Research, Chiba University, Japan, 2023.

808 36. K. Papoutsis, P. Pristijono, J. B. Golding, C. E. Stathopoulos, M. C. Bowyer, C. J. Scarlett and Q.
809 V. Vuong, *Journal of Food Processing and Preservation*, 2017, **41**, e13152.

810 37. M. Fikry, S. Jafari, K. A. Shiekh, I. Kijpatanasilp, S. Chheng and K. Assatarakul, *Food and*
811 *Bioprocess Technology*, 2024, DOI: 10.1007/s11947-024-03421-0, 1-18.

812 38. S. Chheng, S. Jafari, D. Mishra and K. Assatarakul, *Sustainable Food Technology*, 2025, DOI:
813 10.1039/D5FB00227C.

814 39. P. Siddhuraju and S. Manian, *Food chemistry*, 2007, **105**, 950-958.

815 40. I. Atalar and M. Dervisoglu, *LWT-Food Science and Technology*, 2015, **60**, 751-757.

816 41. R. K. Cruz-Bravo, D. Guajardo-Flores, C. A. Gómez-Aldapa, J. Castro-Rosas, R. O. Navarro-
817 Cortez, L. Díaz-Batalla and R. N. Falfán-Cortés, *CyTA-Journal of Food*, 2023, **21**, 493-501.

818 42. M. Fikry, R. Sami, A. A. Al-Mushhin, A. H. Aljahani, A. Almasoudi, S. Alharthi, K. A. Ismail
819 and M. Dabbour, *Journal of Biobased Materials and Bioenergy*, 2022, **16**, 150-158.

820 43. D. Gómez-Díaz, J. M. Navaza and L. Quintáns-Riveiro, *International Journal of Food*
821 *Properties*, 2008, **11**, 773-780.

822 44. P. Pittia and M. Faieta, in *Spray Drying Encapsulation of Bioactive Materials*, CRC Press, 2021,
823 pp. 355-376.

824 45. K. Simon-Brown, K. M. Solval, A. Chotiko, L. Alfaro, V. Reyes, C. Liu, B. Dzandu, E. Kyereh,
825 A. G. Barnaby and I. Thompson, *LWT*, 2016, **70**, 119-125.

826 46. W. Ren, G. Tian, S. Zhao, Y. Yang, W. Gao, C. Zhao, H. Zhang, Y. Lian, F. Wang and H. Du,
827 *Lwt*, 2020, **133**, 109954.

828 47. T. T. Tran and H. V. Nguyen, *Beverages*, 2018, **4**, 84.

829 48. C. T. Nguyen, K. N. Di, H. C. Phan, T. C. Kha and H. C. Nguyen, *International Journal of*
830 *Biological Macromolecules*, 2024, **269**, 132217.

831 49. T. P. Labuza and B. Altunakar, *Water activity in foods: fundamentals and applications*, 2020,
832 161-205.

833 50. J. Astina and S. Sapwarobol, *Journal of the American College of Nutrition*, 2019, **38**, 380-385.

834 51. S. Y. Quek, N. K. Chok and P. Swedlund, *Chemical Engineering and Processing: Process*
835 *Intensification*, 2007, **46**, 386-392.

836 52. P. Mishra, S. Mishra and C. L. Mahanta, *Food and bioproducts processing*, 2014, **92**, 252-258.

838 53. R. V. de Barros Fernandes, S. V. Borges and D. A. Botrel, *Carbohydrate polymers*, 2014, **101**,
839 54. 524-532.

840 55. E. J. G. Laureanti, T. S. Paiva, L. M. de Matos Jorge and R. M. M. Jorge, *International journal of*
841 *biological macromolecules*, 2023, **253**, 126969.

842 56. S. B. Nimse and D. Pal, *RSC advances*, 2015, **5**, 27986-28006.

843 57. V. M. Silva, L. E. Kurozawa, K. J. Park and M. D. Hubinger, *Drying Technology*, 2012, **30**, 175-
844 184.

845 58. C. Cao, X. Zhao, C. Zhang, Z. Ding, F. Sun and C. Zhao, *Journal of Food Science*, 2020, **85**,
846 3442-3449.

847 59. E. M. Mudge and P. N. Brown, *Journal of AOAC International*, 2017, **100**, 18-24.

848 60. N. Isnaeni, A. Saefumillah and A. H. Cahyana, *Eruditio: Indonesia Journal of Food and Drug*
849 *Safety*, 2024, **4**, 130-144.

850 61. A. Al-Hamayda, B. Abu-Jdayil, M. Ayyash and J. Tannous, *Industrial Crops and Products*, 2023,
851 **205**, 117556.

852 62. E. Diaz-Montes, *Polymers*, 2023, **15**, 2659.

853 63. D. A. Pai, V. R. Vangala, J. W. Ng, W. K. Ng and R. B. Tan, *Journal of Food Engineering*, 2015,
854 **161**, 68-74.

855 64. H. C. Carneiro, R. V. Tonon, C. R. Grossi and M. D. Hubinger, *Journal of food engineering*,
856 2013, **115**, 443-451.

857 65. A. Tolun, Z. Altintas and N. Artik, *Journal of biotechnology*, 2016, **239**, 23-33.

858 66. L. Alamilla-Beltran, J. J. Chanona-Perez, A. R. Jimenez-Aparicio and G. F. Gutierrez-Lopez,
859 *Journal of Food Engineering*, 2005, **67**, 179-184.

860 67. Z. Zhang, S. Zhang, R. Su, D. Xiong, W. Feng and J. Chen, *Journal of food science*, 2019, **84**,
861 1427-1438.

862 68. R. Vehring, H. Snyder and D. Lechuga-Ballesteros, *Drying technologies for biotechnology and*
863 *pharmaceutical applications*, 2020, 179-216.

864 69. R. Chedoloh and S.-a. Asae, *Burapha Science Journal*, 2017, 78-91.

865 70. A. Dutta and G. Dutta, *Journal of Applied Packaging Research*, 2016, **8**, 5.

866 71. S. N. Dirim and G. Çalışkan, 2012.

867 72. C. Wong and W. Lim, *International Food Research Journal*, 2016, **23**, 1887.

868 73. O. Jiménez-González and J. Á. Guerrero-Beltrán, *Food Engineering Reviews*, 2021, **13**, 769-811.

869 74. S. C. de Moura, C. L. Berling, A. O. Garcia, M. B. Queiroz, I. D. Alvim and M. D. Hubinger,
870 *Food Research International*, 2019, **121**, 542-552.

871 75. R. V. Tonon, C. Brabet and M. D. Hubinger, *Journal of food engineering*, 2008, **88**, 411-418.

872 76. J. K. Agbenorhevi and L. J. Marshall, *Journal of Food Science and Engineering*, 2012, **2**, 72.

873 77. S. Agustini and M. K. Yusya, *Current Research on Biosciences and Biotechnology*, 2020, **1**, 66-
874 70.

875 78. C. Baltacioglu, S. Velioğlu and E. Karacabey, *Journal of Food Quality*, 2011, **34**, 278-283.

876 79. M. Thakur and V. Nanda, *Food Chemistry Advances*, 2024, **4**, 100567.

877 80. S. Warnasih and U. Hasanah, *Journal of Science Innovare*, 2019, **1**, 44-49.

878 81. T. Okuda and H. Ito, *Molecules*, 2011, **16**, 2191-2217.

879 82. K. Jitrangsri, A. Chaicedgumjorn and M. Satiraphan, *Pharmaceutical Sciences Asia*, 2020, **47**,
880 164-172.

881 83. S. C. Foo, F. M. Yusoff and N. M. Khong, *Journal of Agriculture and Food Research*, 2024, **15**,
882 100823.

883 84. S. A. Desobry, F. M. Netto and T. P. Labuza, *Journal of food science*, 1997, **62**, 1158-1162.

886

Figures

Figure 1. Production flow chart of KLE microcapsules of bioactive compounds extracted from kratom leaves.

Figure 2. HPLC chromatogram of Kratom leaf extract (KLE), showing the major alkaloid mitragynine at a retention time of approximately 6.9 min and minor peaks corresponding to other alkaloids and phenolic compounds. X-axis: Retention time (min); Y-axis: Absorbance (mAU).

Figure 3. Scanning electron microscopy images at magnifications of 1,000x, 3,000x, and 5,000x (left to right) of KLE microcapsules obtained at an inlet temperature of 150°C: (A) coated with resistant maltodextrin DE10, (B) coated with gum Arabic, and (C) coated with a 1:1 ratio of resistant maltodextrin and gum Arabic.

Figure 4. Scanning electron microscopy images at magnifications of 1,000 \times , 3,000 \times , and 5,000 \times (left to right) of KLE microcapsules obtained at an inlet temperature of 160 °C: (A) coated with resistant maltodextrin DE10, (B) coated with gum Arabic, and (C) coated with a 1:1 ratio of resistant maltodextrin and gum Arabic.

Figure 5. Moisture content (a), water activity (b), and total color difference (c) of stored KLE microcapsules at different storage periods. Values represent means \pm SD ($n = 3$).

Figure 6. Total phenolic content (TPC, a), total flavonoid content (TFC, b), and total tannin content (TTC, c) of stored KLE microcapsules at different storage periods. Values represent means \pm SD ($n = 3$).

Figure 7. Antioxidant activities of stored KLE microcapsules measured by (a) DPPH radical-scavenging assay and (b) FRAP assay. Values represent means \pm SD ($n = 3$). DPPH = 2,2-diphenyl-1-picrylhydrazyl; FRAP = ferric-reducing antioxidant power.

Tables

Table 1

Production conditions of KLE microcapsules using spray drying

Experiment	Inlet Temperature	Type of Coating Material	KLE to Coating Material Ratio (w/w)
1		40% Resistant Maltodextrin	1:2
2	150°C	20% Gum Arabic	1:2
3		40% Resistant Maltodextrin with 20% Gum Arabic (1:1 ratio)	1:2
4		40% Resistant Maltodextrin	1:2
5	160°C	20% Gum Arabic	1:2
6		40% Resistant Maltodextrin with 20% Gum Arabic (1:1 ratio)	1:2

Table 2.

Mean Values of physicochemical properties of kratom leaf extract microcapsules as affected by different wall materials and inlet temperatures.

Property	Inlet Temperature (°C)	40% Resistant Maltodextrin	20% Gum Arabic	40% Resistant Maltodextrin + 20% Gum Arabic (1:1)	Carrier η^2	Temperature η^2	Interaction η^2
Yield (%)	150	72.85 ± 1.08 Aa	58.24 ± 0.60 Aa	67.52 ± 0.83 Aa	0.28	0.07	0.05
	160	63.61 ± 3.81 Aa	65.23 ± 3.54 Aa	66.26 ± 0.98 Aa			
EE (%)	150	79.34 ± 2.88 ABa	67.87 ± 1.50 Aa	67.52 ± 0.89 Aa	0.35	0.18	0.09
	160	59.16 ± 5.26 ABa	84.65 ± 1.32 Aa	62.45 ± 2.53 Aa			
Water solubility (%)	150	95.55 ± 0.26 Ba	91.82 ± 0.09 Aa	93.21 ± 0.26 Aa	0.22	0.1	0.04
	160	95.34 ± 0.58 Bb	95.10 ± 0.48 Ab	94.75 ± 0.38 Ab			
Moisture content (%)	150	2.59 ± 0.09 Aa	6.81 ± 0.15 Aa	2.90 ± 0.07 Aa	0.15	0.27	0.07
	160	3.52 ± 0.07 Aa	2.67 ± 0.10 Aa	3.30 ± 0.13 Aa			
Water activity	150	0.23 ± 0.00 Aa	0.26 ± 0.04 Aa	0.18 ± 0.22 Aa	0.08	0.12	0.03
	160	0.21 ± 0.01 Aa	0.16 ± 0.03 Aa	0.22 ± 0.02 Aa			
L-value*	150	64.32 ± 1.19 Ca	60.76 ± 0.88 Aa	62.80 ± 0.85 Ba	0.19	0.14	0.06
	160	64.80 ± 1.24 Cb	60.41 ± 1.12 Aa	63.05 ± 0.67 Bb			
a-value*	150	-1.29 ± 0.02 Db	-0.44 ± 0.06 Aa	-0.51 ± 0.07 Ba	0.24	0.1	0.05
	160	-1.24 ± 0.01 Da	-0.47 ± 0.04 Aa	-0.63 ± 0.08 Ca			
b-value*	150	4.07 ± 0.12 Aa	7.62 ± 0.34 Bb	6.67 ± 0.76 Db	0.32	0.12	0.08

	160	4.17 ± 0.87 Aa	8.09 ± 0.83 Bc	8.25 ± 0.43 Dc			
TPC	150	13.07 ± 2.13 Ba	25.91 ± 1.45 Aa	17.14 ± 0.30 Aa	0.29	0.16	0.1
	160	15.71 ± 0.65 Ba	34.75 ± 2.66 Aa	25.62 ± 2.21 Aa			
TTC	150	13.39 ± 2.34 Aa	27.59 ± 1.58 a	17.11 ± 0.63 Aa	0.25	0.2	0.12
	160	18.66 ± 1.41 Ab	35.46 ± 2.87 b	26.07 ± 1.50 Ab			
TFC	150	1.79 ± 0.20 Ca	4.84 ± 0.50 Aa	2.92 ± 0.23 Ca	0.3	0.14	0.09
	160	1.98 ± 0.40 Ca	5.05 ± 0.06 Aa	3.18 ± 0.23 Ca			
DPPH	150	243.54 ± 4.10 Ca	279.93 ± 1.64 Aa	233.54 ± 3.09 Ca	0.27	0.18	0.08
	160	239.72 ± 6.05 Ca	305.24 ± 2.59 Aa	238.78 ± 1.11 Ca			
FRAP	150	343.56 ± 3.12 Aa	400.52 ± 2.01 Aa	413.99 ± 2.33 Aa	0.33	0.21	0.11
	160	322.29 ± 4.59 Aa	522.74 ± 2.47 Aa	317.48 ± 8.14 Aa			
Mitragynine	150	0.96 ± 0.09 Ca	1.89 ± 0.06 Aa	1.36 ± 0.09 Ca	0.21	0.09	0.05
	160	1.06 ± 0.02 Ca	1.96 ± 0.04 Aa	1.38 ± 0.09 Ca			

Values are presented as mean ± SD (n = 3). Different uppercase letters within the same row indicate significant differences (p < 0.05) among wall materials. Different lowercase letters within the same column indicate significant differences (p < 0.05) between temperatures. Means sharing the same letter are not significantly different according to Tukey's HSD test.

Table 3.

Statistical parameters of the models used in the study and the predicted shelf life of KLE microcapsules using GA at 160 °C.

Properties	Parameter	Zero-order model		First-order model		Predicted Shelf life (day)
		Values	CI (95%)	Values	CI (95%)	
Moisture content (%)	Co	2.629	(2.58,2.68)	2.639	(2.61,2.67)	92.55
	k	-0.008	(-0.008,-0.007)	-0.003	(-0.003,-0.002)	
	R ²	0.991		0.995		
Water activity	Co	0.167	(0.158,0.176)	0.174	(0.163,0.185)	91.88
	k	-0.002	(-0.002,-0.001)	-0.007	(-0.008,-0.006)	
	R ²	0.992		0.986		
TPC (mg GAE/g db.)	Co	36.076	(35.14,37.02)	36.193	(35.32,37.07)	82.84
	k	0.072	(0.055,0.089)	0.002	(0.002,0.003)	
	R ²	0.958		0.966		
TTC (mg TAE/g db.)	Co	35.378	(34.13,36.63)	35.528	(34.35,36.7)	81.26
	k	0.078	(0.054,0.10)	0.002	(0.002,0.003)	
	R ²	0.937		0.949		
TFC (mg QE/g db.)	Co	5.267	(5.18,5.36)	5.275	(5.17,5.38)	96.55
	k	0.010	(0.008,0.011)	0.002	(0.0016,0.0024)	
	R ²	0.978		0.972		
DPPH (µM TE/100g db.)	Co	294.014	(287.14,300.89)	294.743	(286.74,302.75)	98.77

	k	0.670	(0.54,0.80)	0.003	(0.002,0.003)	
	R ²		0.973		0.967	
	Co	508.397	(491.3,525.17)	510.410	(494.2,526.6)	
FRAP (µM TE/100g db.)	k	1.149	(0.84,1.46)	0.003	(0.0019,0.0032)	85.90
	R ²		0.948		0.955	
Integrated shelf-life decision (minimum across attributes)	-	-	-	-	-	81.26

Data availability Statement

The data supporting the findings of this study are available from the corresponding author upon request.

