

Sustainable Food Technology

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: W. Lai, *Sustainable Food Technol.*, 2025, DOI: 10.1039/D5FB00636H.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

View Article Online

View Journal

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

View Article Online

DOI: 10.1039/D5FB00636H

packaging smarter, safer, and more eco-conscious.

Open Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

The convergence of biodegradable polymers and aggregation-induced emission (AIE) luminogens is redefining the future of food packaging by making materials not only environmentally friendly but also intelligent. Traditional packaging, predominantly made from petroleum-based plastics, poses serious environmental challenges due to its persistence and accumulation in ecosystems. In contrast, biodegradable polymer films, derived from renewable resources or engineered for enhanced degradability, offer a sustainable alternative. These materials can break down under natural conditions, significantly reducing plastic pollution and supporting circular economy principles. When AIE luminogens are integrated into biodegradable films, the resulting materials gain the ability to monitor food freshness through changes in luminescence signals triggered by spoilage-related chemical cues. This functionality empowers consumers and retailers to assess food quality directly, addressing two major sustainability challenges simultaneously: (i) plastic waste reduction through the use of biodegradable materials, and (ii) food waste mitigation via real-time spoilage detection and freshness monitoring. These intelligent films also pave the way for low-energy sensing technologies, eliminating the need for external sensors or electronics. By combining degradability with smart functionality, AIE-incorporated packaging films exemplify how materials innovation can drive sustainability in everyday applications—making food

Biodegradable polymer films incorporated with aggregation-induced account to a superior smart food packaging

Wing-Fu Lai^{1,*}

 School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom

 $\hbox{$*$ E-mail: rori0610@graduate.hku.hk}\\$

Abstract

View Article Online
DOI: 10.1039/D5FB00636H

Packaging is essential for preserving food quality by protecting against microbial contamination and environmental factors such as oxygen, moisture, and light. Polymers are widely used for food packaging due to their versatility, low cost, and ease of processing. Over the past several decades, biodegradable polymer films have been extensively developed, either by using naturally derived polymers or by chemically modifying conventional polymers to enhance their environmental degradability. These advances have improved the sustainability of packaging and reduced the environmental impact associated with polymer use. More recently, the integration of aggregation-induced emission (AIE) luminogens into biodegradable polymer films has even enabled multiple functionalities such as real-time monitoring of food spoilage. This review highlights strategies for incorporating AIE into biodegradable polymer matrices, summarizes current progress, and discusses key challenges and future opportunities in developing sustainable, functional, and smart food packaging.

Keywords

Films; food packaging; aggregation-induced emission; smart packaging; biodegradability

1. Background

View Article Online
DOI: 10.1039/D5FB00636H

Packaging is essential for prolonging the freshness of food and slowing down quality loss during storage and distribution.¹⁻³ Nearly all food items available in the marketplace are enclosed within some form of packaging, which functions as a protective barrier against microbial invasion and harmful environmental factors, including oxygen, moisture, and light.⁴. ⁵ Among the wide variety of materials employed for packaging, polymers have gained the most extensive use.⁶⁻⁹ Their popularity stems from the fact that, compared with alternatives such as glass or wood, polymer-based materials offer far greater adaptability in both structure and functionality.¹⁰ Their characteristics can also be modified with relative ease to suit the specific requirements of diverse food packaging applications.¹¹⁻¹³ Polymer packaging can be fabricated into an array of shapes and sizes, and many types possess added advantages such as heat-sealability and compatibility with microwave heating.^{14,15} Another attractive feature is their potential transparency, which enables consumers to view the packaged product directly, thereby enhancing market appeal and supporting product design strategies.¹⁶⁻¹⁸ Combined with their light weight, low production cost, and ease of surface printing,¹⁹ polymers have become an indispensable class of materials for modern food packaging.

In the context of developing food packaging films, synthetic polymers represent one of the most extensively utilized groups of polymeric materials for film production. Their popularity stems from advantages such as low cost, excellent mechanical strength, durability, and good barrier properties against moisture and gases.²⁰ However, synthetic polymers also present drawbacks, including their non-biodegradability, environmental persistence, and reliance on non-renewable petroleum resources,²¹ which raise concerns about sustainability and waste management. Another important category of polymers used in film fabrication is natural polymers, which are valued for their abundance and sustainability.^{22,23} Their utilization helps

decrease dependence on petroleum-based resources and alleviates issues of petroleum-based resources in film production include proteins, 41-44 Compared with many synthetic polymers, they are generally more environmentally friendly, biodegradable, and renewable, making them preferable options for sustainable food packaging applications. 45-47 In this article, recent advances in the development of biodegradable polymer films, particularly regarding their integration with aggregation-induced emission (AIE) features, for smart food packaging is discussed, with current progress, key challenges, and future opportunities in this emerging field also outlined.

2. Fundamentals of aggregation-induced emission and its relevance to food packaging

Conventional smart packaging systems commonly employ small-molecule dyes, enzyme substrates, ⁴⁸ or electroactive compounds as sensing elements, which are primarily designed to provide a detectable signal in response to specific stimuli. While such sensing agents can be incorporated into multifunctional packaging architectures, their intrinsic role is generally limited to indication or sensing. In contrast, many AIE luminogens that have been explored for food packaging films originate from materials developed for broader functional applications and have been reported to exhibit additional bioactivities, such as antibacterial or antioxidant properties, depending on molecular structure and formulation. This intrinsic multifunctionality at the molecular level suggests the potential to integrate sensing and active packaging functions within a single film, although practical validation and safety assessment remain limited. As far as AIE is concerned, it refers to the phenomenon whereby certain molecules (ranging from metal nanoclusters^{49,50} to naturally occurring flavonoids such as epigallocatechin gallate⁵¹ and kaempferol⁵²) exhibit a pronounced enhancement of luminescence upon aggregation.⁵³⁻⁵⁵ Over the years, researchers have explored luminogens exhibiting AIE for use in diverse

applications.⁵⁶⁻⁶⁰ For instance, the AIE luminogen synthesized by condensing equitive accordance amounts of 2-hydroxy-1-naphthaldehyde and 3-hydroxy-2-naphthohydrazide has been examined for detection of sparfloxacin and azithromycin; whereas the one consisting of a tetraphenylethylene-ethylene-benzimidazole π-conjugated backbone has been adopted for monitoring of the concentration and structural transition of human serum albumin. Since the beginning of this century, efforts to explore the application potential of AIE have increasingly extended into the field of food science. One example is the pH-sensitive probe was developed by incorporating a pH-responsive N-alkylated indole moiety onto an AIE-active tetraphenylethylene (TPE) core. The probe's fluorescence intensity shows a clear linear correlation with pH over the range of 5.8–8.8.62 Upon further pH increase, the probe displays a turn-off response, accompanied by the fading of the solution's light magenta color. Such responsive behaviour suggests their possible use in food safety applications, where monitoring pH changes or spoilage metabolites can help assess food quality and shelf-life.

Given that milk and other dairy products experience a decline in pH upon microbial contamination, ^{63,64} and that seafood and meat products can produce volatile amines through microbial fermentation, resulting in pH changes, ⁶⁵⁻⁶⁷ AIE-active probes capable of detecting pH fluctuations have practical potential. In general, AIE luminogens can be categorized into two types: natural luminogens and synthetic luminogens. The former include berberine, ⁶⁸ kaempferol, ⁵² jatrorrhizine, ⁶⁹ mangiferin ⁷⁰ and palmatine; ⁷¹ while the latter encompass metal nanoclusters, ⁷² siloles, ⁷³ TPE derivatives ⁷⁴ and triphenylamine derivatives. ⁷⁵ Both natural and synthetic AIE luminogens have distinct advantages and limitations for applications, which are summarized in **Table 1**. To date, several mechanisms have been proposed to account for AIE in different organic systems, including the suppression of nonradiative decay pathways, ⁷⁶ restriction of intramolecular motion, ⁷⁷ excited-state intramolecular proton transfer, ⁷⁸ inhibition

of E-Z isomerization processes,⁴⁹ and restricted access to conical intersections.⁷⁹ In contrast by 60,60636H conventional luminogens, which frequently experience aggregation-caused quenching (ACQ) in the solid state,⁸⁰⁻⁸² AIE luminogens display enhanced fluorescence upon aggregation. In addition, AIE luminogens demonstrate good photostability and resistance to quenching in the solid state.⁸³ This renders AIE luminogens favourable for a myriad of practical applications, as it ensures reliable and long-lasting performance under prolonged exposure to light.

Practically, the use of AIE materials enables the incorporation of the sensing functionality into smart food packaging films (**Table 2**). 84-98 In addition, some AIE luminogens (e.g., berberine, and quercetin) contain aromatic moieties and/or phenolic hydroxyl groups. This renders them capable of absorbing ultraviolet light at defined wavelengths to improve the UV-shielding performance of food packaging systems. 88,99,100 Numerous AIE materials obtained from nature also exhibit various bioactivities, ranging from antioxidant capacity to antibacterial properties. For example, the AIE-active packaging film incorporating self-assembled berberine-cinnamic acid nanoparticles exhibited notable mechanical strength and demonstrated strong antibacterial activity against Escherichia coli and Staphylococcus aureus, 88 with the AIE effect contributing to enhanced antimicrobial performance through reactive oxygen species (ROS) generation. This helps to further integrate the concept of active food packaging into works on smart food packaging. In general, packaging films incorporating AIE materials provide sensitive and reliable optical signals, enabling real-time monitoring of food quality and safety. These luminogens are typically non-emissive or weakly emissive in their dispersed state but exhibit a pronounced fluorescence "turn-on" response upon aggregation or immobilization. Along with their high photostability, packaging films incorporating AIE luminogens are expected to exhibit high durability and consistent performance throughout the product's shelf life.

View Article Online

DOI: 10.1039/D5FB00636H

3. Strategies for fabricating AIE-active food packaging films

In most reported studies, AIE luminogens are incorporated into biodegradable polymer films by blending them with the film-forming solution before the film is produced. This approach is compatible with the process of solution casting. One example of AIE luminogen-incorporated food packaging films generated by this method was reported by He and coworkers, ¹⁰¹ who mixed a quercetin solution in a tetrahydrofuran (THF)—water mixture with an aqueous poly(vinyl alcohol) (PVA) solution to produce an smart food packaging film. The film exhibited excellent mechanical properties as well as favourable water and CO₂ permeability. ¹⁰¹ Its optical characteristics were evaluated using ultraviolet-visible (UV-vis) and fluorescence spectroscopy. The prepared film was transparent and demonstrated significant AIE enhancement when in contact with foods containing Al³⁺ residues or with seafood producing biogenic amines during spoilage. ¹⁰¹

Another example of directly mixing AIE luminogens with the film-forming solution during fabrication was provided by Ma and coworkers,⁸⁸ who loaded self-assembled berberine-cinnamic acid nanoparticles (BC NPs) into a biodegradable polymer film. During film preparation, solutions of cinnamic acid and berberine chloride hydrate were first adjusted to neutral pH and then combined. The resulting mixture was gradually added to heated water under vigorous stirring and maintained under continuous stirring for several hours to obtain a stable BC NP solution. The nanoparticles were then incorporated into a film-forming solution containing gelatin, κ-carrageenan, and glycerol. After defoaming, the film-forming solution was poured into clean Petri dishes and dried in desiccators to produce a solution-cast film. More recently, the AIE luminogen 3-(3-(benzo[d]thiazol-2-yl)-2-hydroxyphenyl)-2-(4'-(diphenylamino)-[1,1'-biphenyl]-4-yl)acrylonitrile (BTPA) was also incorporated into an electrospun film for the detection of CN⁻ ions in food samples such as sprouting potatoes and

cassava roots. ¹⁰² Because luminogen incorporation and film formation can be achieved special production process is simplified. Direct mixing facilitates uniform dispersion and straightforward fabrication, making the method applicable to a wide range of polymer matrices. However, this one-step approach may also result in aggregation or uneven luminogen distribution, and the final optical properties can be influenced by polymer—luminogen interactions or residual solvents.

An alternative to solution casting is melt extrusion. The feasibility of using this approach to generate AIE active films was demonstrated in the production of poly(butylene adipate co terephthalate) (PBAT) films incorporating a quercetin grafted epoxy chain extender. During processing, PBAT and the modified chain extender were premixed at various ratios and compounded using a twin-screw extruder. The resulting composites were then pelletized and dried, after which the films were formed using a single-screw film blower. Compared with solution casting, which has a relatively slow processing rate and raises potential concerns related to residual solvents that may limit industrial scale use, melt extrusion provides a continuous and solvent free method for film production. However, the higher processing temperatures in melt extrusion can cause thermal quenching or degradation of heat sensitive AIE luminogens, whereas solution casting allows film formation under mild conditions that help minimise thermal degradation. Overall, the choice between solution casting and melt extrusion reflects a balance between molecular level control and industrial scalability.

Besides incorporating AIE luminogens directly into the packaging films, they can also be embedded into a separate tag which is then attached to a food package for sensing purposes. A good example is the use of the AIE luminogen, 6,7-dimethyl-2-buthy-2,3-dimethphenyl-1,2-dihydroquinoxaline (H⁺DQ2), in food packaging to monitor spoilage in shrimps.¹⁰⁴ During

package fabrication, polydimethylsiloxane (PDMS)-coated filter paper served of the pap

4. Applications in smart food packaging

Over the past years, packaging films incorporating AIE luminogens have transitioned from theoretical concepts to experimentally validated systems, demonstrating applicability across a diverse range of food products, from fruits to seafood. As delineated in proceeding sections, the restriction of intramolecular motion in aggregated or confined states enables strong solid-state fluorescence when AIE luminogens are embedded in films. The emission of AIE luminogens is often sensitive to environmental factors (such as pH, biogenic amines, or gases associated with food spoilage) which influence molecular interactions, making them suitable as indicators in smart food packaging. In some cases, such as naturally derived berberine-baicalin nanocomposite films, 105 the aggregated luminogens also act as photosensitizers under light irradiation, producing reactive oxygen species that confer photodynamic antibacterial activity. Thus, while AIE itself does not inherently confer antibacterial properties, the aggregated state can enable additional functionalities, giving the

Open Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

resulting films potential for multifunctional applications (*viz.*, combining sensing via file Online antimicrobial properties) and providing real-time, reliable indicators of food quality and safety.

4.1 Packaging of animal-derived perishable foods

Seafood is one of the animal-derived foods that are highly susceptible to microbial growth and biochemical degradation. ¹⁰⁶ Packaging strategies that enable real-time monitoring of freshness are, therefore, of significant interest. 107 Such approaches can help reduce food waste, enhance consumer confidence, and ensure safety across the supply chain. In an earlier study, shrimps were packaged in a PLA tray sealed with a PBAT film containing an H⁺DQ2-based tag to monitor spoilage (Figure 1).¹⁰⁴ By using ammonia vapor as a model analyte, the indicator was found to be activated by ammonia vapor at concentrations as low as 1.3×10^4 mg/m³, with the photoluminescence (PL) intensity of the indicator increasing with rising concentrations of ammonia vapor. 104 This suggested that it has high sensitivity toward biogenic amines. This behaviour is mediated via the deprotonation of the imine group in H⁺DQ2 by ammonia, which suppresses the molecule's intramolecular charge transfer (ICT) process. Consequently, the indicator exhibits both a visible color change and fluorescence activation. 104 These dual responses allow the indicator to provide a visual signal under both daylight and UV light. In the shrimp package, the indicator's color change (from red to yellow) and fluorescence activation closely corresponded with the increase in total volatile basic nitrogen (from 10.52 mg/100 g to 31.03 mg/100 g) and colony-forming units (from 4.4 log CFU/g to 6.5 log CFU/g) of prepackaged shrimp stored at 4 °C for five days. 104 This smart packaging system enables real-time, highly sensitive detection of seafood spoilage. The possible use of AIE luminogenincorporated film to package seafood has also been demonstrated by the case of the quercetinloaded PVA film, which was employed as a smart packaging material to detect biogenic amines released from packaged salmon. 101 When placed inside a sealed salmon package, the film

exhibited a marked increase in AIE at room temperature over an 8-hour period, corresponding collection to the accumulation of biogenic amines as the fish began to spoil, while a much weaker response was observed at 5 °C. 101 This temperature-sensitive behaviour demonstrates the film's potential for tracking storage conditions and offers a straightforward visual approach to evaluate the freshness and safety of perishable food products.

More recently, Yang and coworkers created a smart packaging film capable of dual colorimetric and fluorescent detection of biogenic amines by incorporating berberine together with β-cyclodextrin-encapsulated betaine into a corn amylose framework. When exposed to increasing alkalinity, the film exhibited both a visible color transition and an intensified bluegreen fluorescence. 108 The observed color variation stemmed from structural rearrangements in betaine, whereas the fluorescence enhancement was linked to contributions from both berberine and encapsulated betaine. At neutral pH, spectral overlap occurred between the ultraviolet absorption band of betaine and the fluorescence emission band of berberine. 108 This overlap promoted reabsorption, leading to a quenching of berberine's inherent fluorescence. 108 Under alkaline conditions, however, structural modification of betaine shifted its absorption band, thereby preventing the overlap and enabling berberine to restore its fluorescence output. 108 When applied to shrimp packaging, the film displayed a distinct color shift from red to yellow and simultaneous fluorescence amplification during storage, effectively allowing visual and optical tracking of shrimp freshness. 108 These sensing responses were consistent with conventional freshness assessment via total volatile basic nitrogen (TVB-N) measurements. 108 Although berberine alone does not provide a direct response signal under alkaline conditions, its AIE properties, when integrated with the pH sensitivity of other indicators, enabled the construction of smart packaging capable of signalling food freshness through fluorescence.

View Article Online DOI: 10.1039/D5FB00636H

Apart from using films directly loaded with AIE luminogens, tags loaded with AIE-active probes have also been adopted in food packages. One good example is a tag constructed from an AIE-active polymer, prepared by combining the stimuli-responsive polymethacrylic acid (PMAA) with the AIE-active molecule tetraphenylethylene (TPE), and deposited onto filter paper with rhodamine B (RhB) as an internal reference (Figure 2).¹⁰⁷ The resulting sensing material was configured as a smart tag suitable for direct attachment to food packaging. Its practical utility lies in enabling both retailers and consumers to assess salmon freshness using a portable UV light source or even a handheld UV flashlight.¹⁰⁷ Freshness was visually evaluated by comparing the fluorescence of the indicator region with the reference signal. As spoilage progressed, the fluorescence of the sensing label underwent a distinct color shift from pink (fresh) to purple (slightly spoiled) and finally to blue (spoiled). This fluorescence transition arises from the ratiometric nature of the probe. Initially, the pink emission resulted from strong RhB fluorescence combined with weak TPE fluorescence. 107 As the fish deteriorated, biogenic amines released during spoilage protonated the PMAA backbone to varying extents, promoting aggregation of the TPE moieties. 107 This aggregation enhanced the blue emission of TPE, gradually dominating the fluorescence output and shifting the overall signal from pink to blue.

To validate the responsiveness of the system, three representative amines commonly produced during salmon spoilage—trimethylamine, dimethylamine, and ammonia—were tested. The sensing labels demonstrated rapid response kinetics, with color changes from pink to purple occurring within 2 h for trimethylamine and dimethylamine, while ammonia elicited a delayed response of approximately 3 h.¹⁰⁷ This variation is attributed to differences in the basicity of the amines. The selectivity of the sensing platform was further examined using volatile

compounds likely to be present in fish headspace, such as ethyl hexanoate, phenylethanoly middle online phenylacetaldehyde. Negligible interference was observed, and the fluorescence signal remained stable throughout testing. Collectively, these results confirm that the TPE/PMAA/RhB-based sensing label is a promising candidate for real-time, selective, and stable monitoring of fish freshness.

In addition to seafood, AIE has been applied in the smart packaging of poultry products. This was demonstrated by an earlier study, ⁸⁸ in which self-assembled BC NPs were adopted as AIE luminogens for packaging fresh chicken meat. The AIE characteristics of the nanocomposite films were evaluated using fluorescence spectroscopy, with emission spectra recorded under excitation at 405 nm. The photoluminescence intensity increased as the BC NP content in the films was raised. ⁸⁸ Because BC NPs can act as photosensitizers, with aggregation enhancing their excited-state lifetime and fluorescence quantum yield. Upon light excitation, these nanoparticles can transfer energy to molecular oxygen, generating reactive oxygen species (ROS), such as singlet oxygen. This renders the film antibacterial in nature. For this, fresh chicken packaged with the NP-containing film has a total bacterial count much lower than that wrapped in the plain film. ⁸⁸ Although the AIE luminogen has not been exploited for sensing applications in this study, the NP-containing film still holds promise as antibacterial packaging materials capable of extending the shelf life of meat products.

4.2 Packaging of plant-based perishable foods

Bakery products are plant-based foods that are highly perishable due to their moisture content and susceptibility to microbial growth and staling. Effective packaging is therefore essential to preserve texture, flavour, and overall quality, extend shelf life, and reduce food waste. In an earlier study, an AIE-active quercetin-loaded PVA film was adopted for packaging bakery

products. ¹⁰¹ When the film was applied to freshly bought deep-fried dough sticks and steamed control buns, an AIE response was observed; however, the fluorescence increase was particularly pronounced with the deep-fried dough sticks. ¹⁰¹ This is partly because of the use of aluminium-based leavening agents during preparation of deep-fried dough sticks. These agents help create the porous texture and crispiness of the dough when they decompose during frying, causing the dough to expand. Residual Al³⁺ ions in the deep-fried dough sticks could then be detected by the film, leading to the observed AIE enhancement. In contrast, steamed buns are often leavened with yeast or baking powder that does not contain aluminium salts, resulting in much lower Al³⁺ content and, consequently, a weaker fluorescence signal. This variation in the intensity of AIE signals exhibited by the film suggests that the packaging film enables on-site detection of Al³⁺ ions in the packaged food.

Apart from packaging bakery products, the film was applied to coat various fruit products (*viz.*, bananas and apple slices) that are known to face rapid quality degradation due to microbial activity, enzymatic changes, and moisture loss (**Figure 3**).¹⁰¹ When apple slices were coated with the film, they remained visually fresh without significant browning after two hours; whereas uncoated slices quickly developed the characteristic brown discoloration associated with enzymatic oxidation. A similar trend was observed with bananas. Those coated with the film and stored for five days maintained their bright yellow peel and showed no signs of blackening or spoilage. In contrast, uncoated bananas exhibited significant darkening and decay over the same period. The ability of the film to retard the spoilage of fruits is due to the antibacterial and antioxidant activities of the film.¹⁰¹ Such activities come from the radical-scavenging ability of quercetin,¹⁰¹ and the capacity of quercetin in reducing the bacterial cell biofilms and hence altering their structures, causing inhibition of both Gram-positive and Gram-negative bacteria.¹⁰¹ Although fruits contain lower levels of free amino acids compared

with protein-rich foods such as seafood, biogenic amines—primarily produced through colors biogenic amines—primarily produced through colors biogenic amines microbial decarboxylation of amino acids—can still be generated during fruit decay. While the AIE responses of quercetin in this context have not been extensively investigated, the quercetin-loaded PVA film has already been shown to exhibit pronounced AIE changes upon detecting biogenic amines in seafood products. Further research is, therefore, warranted to evaluate whether the AIE response of the film is sufficiently sensitive to detect the biogenic amines released by decaying fruits.

5. Performance optimization and practical considerations

The color and taste characteristics of AIE luminogens warrant careful consideration. Certain luminogens, including riboflavin⁹³ and quercetin, ¹⁰⁹ can impart coloration to food packaging films when incorporated, potentially diminishing both the visual appeal and transparency of the packaging. In addition, some AIE luminogens, such as quercetin, possess a naturally bitter flavour. 110,111 If these compounds migrate into the food product, they may alter its sensory properties and negatively influence consumer acceptance. Importantly, not all AIE luminogens are suitable for human consumption. Migration from packaging into food could result in unintended oral exposure, which may pose health risks over prolonged ingestion, including bioaccumulation and metabolic effects. 112 From a regulatory perspective, AIE luminogens incorporated into food packaging films would fall under existing frameworks governing foodcontact substances. In the European Union, Regulation (EC) No 1935/2004 requires that substances used in food-contact plastics do not migrate into food at levels that could endanger human health, 113 necessitating migration testing and toxicological evaluation for non-listed compounds. Similarly, in the United States, AIE luminogens would be regulated as indirect food additives under the FDA Food Contact Notification system.¹¹⁴ While several AIE luminogens reported in food packaging films are derived from naturally occurring polyphenols

(e.g., berberine¹¹⁵ and quercetin^{101,116}), for which safety data in food or nutraceutical contest beloef are available, toxicological data for many synthetic AIE luminogens reported in the literature remain absent. In general, the safety of AIE luminogens in food-contact applications therefore depends critically on their chemical structure and the extent of their migration into food matrices. The advantages and limitations of incorporating AIE luminogens into food packaging films are summarized in **Table 3**. Nevertheless, regardless of the origin of the AIE luminogens, comprehensive migration studies, long-term toxicological evaluations, and sensory impact analyses are required before AIE-based food packaging films can be translated from laboratory studies to practical applications.

In addition to the points discussed above, incorporating AIE luminogens into biodegradable polymer films can markedly affect the films' properties. For instance, the added luminogens may alter the mechanical, barrier, and thermal characteristics of the films. 117,118 Depending on their dispersion and compatibility within the polymer matrix, they can either enhance or reduce tensile strength and flexibility, modify gas and moisture permeability, and influence surface properties such as roughness and hydrophobicity. In addition to these physical effects, the concentration of luminogens also plays a critical role in determining the films' optical performance. Excessive loading can lead to aggregation beyond the optimal level, which may reduce fluorescence efficiency, compromise transparency, or negatively impact mechanical integrity. Conversely, insufficient incorporation may yield suboptimal AIE emission, limiting the functional utility of the films. Therefore, careful optimization of the amount of luminogen introduced into the polymer matrix is essential to achieve a balance between desirable film properties and high-performance aggregation-induced emission. Finally, most studies on AIE-based smart food packaging to date remain proof of concept and focus on demonstrating visual or fluorescent responses without systematic evaluation of performance. Consequently, direct

comparison across reported systems is limited, with quantitative performance metrics (such esticle online sensitivity thresholds and response times) for the generated films being particularly scarce.

Future research should aim to quantify these parameters under standardized conditions to enable rigorous evaluation and practical application.

While the focus of this article is on AIE, there is another related yet mechanistically distinct phenomenon that also involves emission enhancement upon aggregation and is worth noting. It is called clusteroluminescence, which occurs in polymers containing electron-rich or heteroatomic moieties such as carboxylate, amide, and amine groups. These groups can interact through space, leading to emission in the visible light region. Done property of clusteroluminogenic polymers, akin to AIE luminogens, is their lack of luminescence at low concentrations in solution. Emission appears only upon molecular clustering. Data In addition, the wavelength of the emission is excitation wavelength-dependent, with longer excitation wavelengths leading to progressively red-shifted emission. Data Importantly, unlike AIE luminogen loaded films where the incorporated luminogen may migrate into the packaged food and raise safety concerns, clusteroluminogenic polymers themselves can form films with intrinsic AIE-like properties suitable for direct application in smart food packaging.

The feasibility of this approach has been corroborated in a previous study, ¹²⁷ in which packaging films were fabricated from a cellulose derivative. The derivative was synthesized via hydroxypropylation and methylation of cellulose, followed by transesterification in a polar aprotic solvent. The UV-vis spectra indicate that all films are optically transparent, exhibiting a transmittance of approximately 60–85% across the visible spectrum (400-700 nm), while simultaneously demonstrating UV-blocking capability in both the UVA (320-400 nm, long-wavelength) and UVB (280-320 nm, short-wavelength) regions, with a UV block factor

ranging from 1.05 to 1.24. Consequently, these films can significantly reduce UV transmission and concentration and molecular weight of the cellulose derivative used in film fabrication are positively correlated with the films' luminescence intensity and also influence their wettability and permeability. This concentration- and molecular weight-dependent modulation of luminescence allows the films to act as self-indicating materials, reflecting their barrier properties. The films have been applied to the packaging of chicken breast, a product whose quality is particularly sensitive to repeated freeze-thaw cycles during storage and transport. 128,129 It was observed that the luminescence intensity of the packaging remained stable when fresh or frozen chicken was placed inside (**Figure 4**). However, upon thawing of the frozen chicken meat, the exudate released caused the film to swell, resulting in a decrease in clusteroluminescence intensity. This change in luminescence serves as a visual indicator, signalling that the frozen food has thawed.

Similar to the cellulose derivative described above, starch has also been used to produce smart food packaging films capable of exhibiting changes in luminescence intensity during the thawing of frozen chicken meat, demonstrating self-indicating properties.¹³⁰ Furthermore, starch films derived from different botanical sources (*e.g.*, water chestnut, maize, and potato starch) display variations in clusteroluminescence (**Figure 5**).¹³⁰ These differences are attributed to the intrinsic properties of each starch, such as molecular weight, degree of branching, and amylose-to-amylopectin ratio, which influence molecular entanglement and, consequently, clusteroluminescence.¹³⁰ These films demonstrated the dual ability to indicate the film's barrier properties and to detect the thawing of packaged frozen food. Recently, chitosan-based composite films derived from clusteroluminogenic polymers have been reported to possess self-indicating capabilities, enabling visualization of their composition. A

representative example is a film prepared from a Pickering emulsion loaded with Lemon Morth Bookson (*Backhousia citriodora*) essential oil (LEO). ¹³¹ The emulsion, stabilized by chitosan-coated alkali lignin colloidal particles, was incorporated into a chitosan-based film-forming solution to produce the final film. Notably, the film exhibited AIE-like luminescence whose intensity varied with the essential oil content. ¹³¹ All these highlight the promising potential of clusteroluminogenic polymers for developing smart packaging materials with aggregation-enhanced luminescence in future studies.

6. Conclusions and outlook

Over the past decades, considerable research has demonstrated the practical feasibility and potential of biodegradable polymer films incorporated with AIE luminogens for smart food packaging applications. These studies have highlighted multiple advantages of such films, including their ability to provide real-time visual or fluorescent indicators of food quality, enhance barrier properties, and offer flexibility in design and functionality. The unique optical properties of AIE luminogens allow for sensitive detection of environmental changes or food spoilage, enabling consumers and manufacturers to monitor product freshness more effectively. In addition, the tunable mechanical, thermal, and barrier characteristics of the films provide opportunities to tailor packaging materials for specific food products, ensuring both protection and functionality.

Despite these promising features, several challenges remain that require further research. For instance, the optimal loading of AIE luminogens must be carefully controlled to maintain both high fluorescence efficiency and desirable film properties, such as transparency, flexibility, and mechanical strength. Potential migration of luminogens into the food matrix, as well as possible effects on taste or odour, also necessitate careful consideration to ensure consumer safety and

acceptability. Furthermore, most AIE-active food packaging films reported to date remain acceptability. Furthermore, most AIE-active food packaging films reported to date remain acceptability proof-of-concept stage and are typically fabricated using laboratory-scale methods such as solution casting or small-area coating. Consequently, their industrial readiness remains limited, as systematic studies addressing large-scale production, continuous processing, or integration into existing packaging manufacturing lines are largely absent. From a scalability perspective, key challenges include the thermal and chemical stability of AIE luminogens during high-temperature processes such as melt extrusion, the maintenance of uniform dispersion and controlled aggregation within polymer matrices, and the reproducibility of optical response during extrusion or lamination. Addressing these challenges through process-oriented studies under industrially relevant conditions will be crucial in the coming decades before the widespread commercial application of AIE-based smart food packaging films can be realized.

Nonetheless, the body of existing literature provides a solid foundation that underscores the feasibility of integrating AIE luminogens into biodegradable polymer films for smart packaging. The combination of functional performance, adaptability, and sensory feedback offered by these materials positions them as highly promising candidates for the next generation of food packaging solutions. While further optimization and systematic studies are needed to address current limitations, the overall outlook for such films is optimistic. Along with the possibility of transforming conventional luminogens that exhibit ACQ into AIE luminogens—as demonstrated by the success of rendering an ACQ molecule AIE-active by modifying its 2,3,4,5,6-penta(9H-carbazol-9-yl)benzonitrile core through decoration with alkyl chain—linked spirobifluorene dendrons¹³²—more novel AIE luminogens applicable for food applications are expected to continue to emerge. The concept of AIE is anticipated to hold considerable future potential for enhancing food safety, quality monitoring, and consumer confidence in packaged products.

Open Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

View Article Online DOI: 10.1039/D5FB00636H

Conflicts of interest

There are no conflicts to declare

References

View Article Online
DOI: 10.1039/D5FB00636H

1. P. F. J. Bocoli, V. E. S. Gomes, A. A. D. Maia and L. Marangoni Junior, *Foods*, 2025, **14**, 3062.

- 2. M. Z. Al Mahmud, M. H. Mobarak and N. Hossain, *Heliyon*, 2024, **10**, e24122.
- 3. Y. Wu, H. Wu and L. Hu, Food Biophys., 2024, 19, 29-45.
- 4. S. Hussain, R. Akhter and S. S. Maktedar, *Sustainable Food Technol.*, 2024, **2**, 1297-1364.
- 5. J. Cheng, R. Gao, Y. Zhu and Q. Lin, *Alexandria Eng. J.*, 2024, **91**, 70-83.
- N. Pinku Chandra, S. Ramesh, M. Uttara, M. Yugal Kishore, R. Sarvesh, S. Minaxi,
 M. Shikha, N. Prakash Kumar and S. Kandi, *Int. J. Biol. Macromol.*, 2024, 273,
 133090.
- 7. C. Breheny, K. Donlon, A. Harrington, D. M. Colbert, G. S. N. Bezerra and L. M. Geever, *Coatings*, 2024, **14**, 1252.
- 8. G. Gangadharan, S. Gupta, M. L. Kudipady and Y. M. Puttaiahgowda, *ACS Omega*, 2024, **9**, 37530-37547.
- 9. A. N. Mafe, G. I. Edo, A. B. M. Ali, P. O. Akpoghelie, E. Yousif, E. F. Isoje, U. A. Igbuku, R. A. Opiti, L. A. Ajiduku, J. O. Owheruo, A. E. A. Essaghah, D. S. Ahmed and H. Umar, *Food Bioprocess Technol.*, 2025, **18**, 9052–9108.
- 10. W. F. Lai, npj Sci. Food, 2023, 7, 11.
- 11. D. S. Rajendran, S. Venkataraman, S. K. Jha, D. Chakrabarty and V. V. Kumar, *Food Sci. Biotechnol.*, 2024, **33**, 1759-1788.
- 12. S. Fatima, M. R. Khan, I. Ahmad and M. B. Sadiq, *Heliyon*, 2024, **10**, e27453.
- 13. C. Jean, T. V. Klug, L. Stoll, F. Izidoro, S. H. Flores and A. de Oliveira Rios, *Food Packag. Shelf Life*, 2024, **41**, 101230.
- 14. P. Upadhyay, M. Zubair, M. S. Roopesh and A. Ullah, *Polymers*, 2024, **16**, 2007.

View Article Online

DOI: 10.1039/D5FB00636H

- 15. W. F. Lai and W.T. Wong, *Int. J. Mol. Sci.*, 2022, **23**, 6295.
- 16. G.-P. Susana, J. B. José and A. H. G. José, *Food Res. Int.*, 2022, **161**, 111792.
- Y. A. Shah, S. Bhatia, A. Al-Harrasi, M. Afzaal, F. Saeed, M. K. Anwer, M. R. Khan,
 M. Jawad, N. Akram and Z. Faisal, *Polymers*, 2023, 15, 1724.
- M. E. González-López, S. D. J. Calva-Estrada, M. S. Gradilla-Hernández and P. Barajas-Álvarez, Front. Sustain. Food Syst., 2023, 7, 2023.
- N. C. Joshi, P. Gururani and N. Kumar, J. Food Meas. Charact., 2024, 18, 8673-8687.
- 20. G. Satchanska, S. Davidova and P. D. Petrov, *Polymers*, 2024, 16, 1159.
- 21. C. Y. Barlow and D. C. Morgan, *Resour.*, *Conserv. Recycl.*, 2013, **78**, 74-80.
- 22. R. Somoghi, S. Mihai and F. Oancea, *Polymers*, 2025, **17**, 2335.
- 23. C. B. C. Yuen, Hio Lam, M.-H. Kwok and T. Ngai, *Sustainable Food Technol.*, 2025, **3**, 908-929.
- H. Chen, J. Wang, Y. Cheng, C. Wang, H. Liu, H. Bian, Y. Pan, J. Sun and W. Han, *Polymers*, 2019, 11, 2039.
- S. Gerna, P. D'Incecco, S. Limbo, M. Sindaco and L. Pellegrino, *Foods*, 2023, 12, 1271.
- 26. R. Zhang, R. Liu, J. Han, L. Ren and L. Jiang, *Gels*, 2024, **10**, 418.
- J. Cai, D. Zhang, R. Zhou, R. Zhu, P. Fei, Z. Z. Zhu, S. Y. Cheng and W. P. Ding, J. Agric. Food Chem., 2021, 69, 5067-5075.
- 28. H. Deng, J. Su, W. Zhang, A. Khan, M. A. Sani, G. Goksen, P. Kashyap, P. Ezati and J. W. Rhim, *Int. J. Biol. Macromol.*, 2024, **273**, 132926.
- S. Liu, Y. Chen, X. Li, Y. Yao, H. Wang and M. Wang, *Carbohydr. Polym.*, 2025,
 357, 123431.

Open Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

- 30. S. Sarak, W. Pisitaro, T. Rammak and K. Kaewtatip, *Int. J. Biol. Macromol*_{O:: 20.239/D5FB00636H} **254**, 127820.
- M. Hoque, R. S. Das, S. K. Paramasivam, M. L. Bhavya, B. A. Alimi, B. K. Tiwari, J. P. Kerry and S. Pathania, *Int. J. Biol. Macromol.*, 2025, 314, 144302.
- 32. N. S. Said and W. Y. Lee, *Molecules*, 2025, **30**, 1144.
- 33. M. R. Sharaby, E. A. Soliman, A. B. Abdel-Rahman, A. Osman and R. Khalil, *Sci. Rep.*, 2022, **12**, 20673.
- 34. W. Y. Tong, A. R. Ahmad Rafiee, C. R. Leong, W. N. Tan, D. J. Dailin, Z. M. Almarhoon, M. Shelkh, A. Nawaz and L. F. Chuah, *Chemosphere*, 2023, **336**, 139212.
- 35. K. M. Cheung, H. L. Chong, Z. Jiang and T. Ngai, Soft Matter, 2023, 19, 7696-7707.
- M. Gulpinar, F. Tomul, Y. Arslan and H. N. Tran, *Int. J. Biol. Macromol.*, 2024, 274, 133197.
- S. Khan, S. B. H. Hashim, M. Arslan, K. Zhang, M. Bilal, C. Zhiyang, L. Zhihua, H.
 E. Tahir, X. Zhai, M. R. I. Shishir and X. Zou, *Int. J. Biol. Macromol.*, 2024, 261, 129821.
- 38. J. Su, W. Zhang, Z. Moradi, M. Rouhi, E. Parandi and F. Garavand, *Food Chem.*, 2025, **463**, 141356.
- G. Cina, M. Massaro, G. Cavallaro, G. Lazzara, R. Sanchez-Espejo, C. Viseras Iborra,
 B. D'Abrosca, A. Fiorentino, G. M. L. Messina and S. Riela, *Int. J. Biol. Macromol.*,
 2024, 277, 134375.
- P. Ruan, K. Zhang, W. Zhang, Y. Kong, Y. Zhou, B. Yao, Y. Wang and Z. Wang, *Int. J. Biol. Macromol.*, 2024, 279, 135184.
- 41. P. J. Lindsey, S. Murugan, E. Renitta, R. S. Sudheer and B. Mahanty, *Food Chem.*, 2025, **494**, 146140.

- 42. Z. Miao, M. Yang, S. Y. H. Abdalkarim and H. Y. Yu, *Int. J. Biol. Macromol.* 2003 / DEFB00636H **279**, 135090.
- 43. J. Yang, Y. Li, B. Liu, K. Wang, H. Li and L. Peng, Food Chem., 2024, 448, 139143.
- 44. X. Zhang, G. Yang, Q. Jiang, J. Fan, S. Wang and J. Chen, *Int. J. Biol. Macromol.*, 2024, **276**, 133910.
- M. C. Sofia, P. F. Diana, T. Pilar, F. B. Lina, A. T. José and F. Raul, *Int. J. Biol. Macromol.*, 2021, 177, 241-251.
- 46. V. Gupta, D. Biswas and S. Roy, *Materials*, 2022, **15**, 5899.

Open Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

- 47. R. K. Gupta, P. Guha and P. P. Srivastav, Food Chem. Adv., 2022, 1, 100135.
- 48. K. Won, N. Y. Jang and J. Jeon, *J. Agric. Food Chem.*, 2016, **64**, 9675-9679.
- J. W. Chung, S. J. Yoon, B.-K. An and S. Y. Park, J. Phys. Chem. C, 2013, 117, 11285-11291.
- J. Du, J. Duan, L. Yao, H. Tong, J. Chen and S. Liao, J. Chin. Chem. Soc., 2025, 72, 804-813.
- 51. L. Lu, M. Yang, Y. Kim, T. Zhang, N. Kwon, H. Li, S. Park and J. Yoon, *Cell Rep. Phys. Sci.*, 2022, 3.
- 52. L. Sun, X. Wang, J. Shi, S. Yang and L. Xu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 249, 119303.
- 53. Z. Wang, Y. E. Shi, X. Yang, Y. Xiong, Y. Li, B. Chen, W. F. Lai and A. L. Rogach, *Adv. Funct. Mater.*, 2018, **28**, 1802848.
- 54. Y. Gou, P. Hou, Q. Wang, F. He, P. Wang and X. Yang, *Microchem. J.*, 2023, **195**, 109400.
- 55. K. Ren, B. Zhang, J. Guo, H. Cao, J. Cheng, J. Guo and D. Li, *Biosens. Bioelectron.*, 2025, **271**, 117067.
- 56. D. A. Patel, B. R. Jali and S. K. Sahoo, *Anal. Methods*, 2025, **17**, 469-475.

- 57. N. Liang, Y. Xu, W. Zhao, Z. Liu, G. Li and S. Sun, *Colloids Surf. B Biointerface* Side Anticle Online 2024, **235**, 113792.
- 58. Y. Yang, J. Liu, W. Li, Y. Zheng and W. Xu, *Talanta*, 2024, 277, 126345.
- Y. Huang, H. Song, P. Zhang, C. Jiang, J. Chen, X. Xie, Y. Peng, Y. Pan and J. Liu, *Bioorg. Chem.*, 2025, 163, 108684.
- 60. E. Roy, A. Nagar, S. Chaudhary and S. Pal, *ChemistrySelect*, 2020, 5, 722-735.
- 61. H. Nie, W. Ji, J. Cui, X. Liang, X. Yang, J. Bai and X. Zhang, *Anal. Chim. Acta*, 2022, **1236**, 340578.
- 62. Z. Zhang, X. Wang, L. Shi, Y. Lang, Y. Gao, R. Bai, S. Zhang, J. Xi, C. Han and X. Zhang, *Tetrahedron*, 2025, **181**, 134700.
- 63. W. Max, P. Minh Anh Thu, A. Jayashree and C. Rona, *Food Chem.*, 2020, **326**, 127017.
- 64. E. Yang, Q. Yang, B. Troemper and J. Zhang, Sci. World J., 2023, 2023, 9982886.
- 65. W. Zhang, J. Ma and D.-W. Sun, Food Chem., 2023, 416, 135725.
- D. Doeun, M. Davaatseren and M. S. Chung, Food Sci. Biotechnol., 2017, 26, 1463-1474.
- 67. X. N. Qi, Y. X. Che, W. J. Qu, Y. M. Zhang, H. Yao, Q. Lin and T. B. Wei, *Sens. Actuators*, *B*, 2021, **333**, 129430.
- Z. H. Li, D. Li, Y. Li, R. Li, H. Kong, Y. Qu, Y. Wu, J. Liu, S. Qin, E. Zhang and Y.
 Q. Tu, *Chem. Eng. J.*, 2025, **519**, 165603.
- X. Wang, Z. Wang, F. Dong, D. Yang, L. Yin and L. Han, *Anal. Chem.*, 2023, 95, 13864-13871.
- 70. R. Long, C. Tang, Q. Wei, C. Tong, X. Tong, S. Shi, Y. Guo and Y. Yang, *Sens. Actuators*, *B*, 2021, **348**, 130666.

- 71. L. Xu, S. Zhang, X. Liang, S. Zhong, B. Wang, Z. Li and X. Cui, *Dyes Pigm*, 2029, D5FB00636H

 184, 108860.
- 72. T. Li, H. Zhu and Z. Wu, *Nanomaterials*, 2023, **13**, 470.

pen Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

- B. Szathmári, D. Hessz, D. Zámbó, C. Bruhn, R. Pietschnig, A. Udvardy, P. Szabó, T. Holczbauer, M. J. Balogh and Z. Kelemen, *Chem. Eur. J.*, 2025, 31, e202404462.
- 74. V. Hariprasad, K. S. Keremane, P. Naik, D. D. Babu and S. M. Shivashankar, *Photochem.*, 2025, **5**, 23.
- 75. S. Zhang, Y. Fang, J. Wang, A. Sun, J. Li, X. Zhang, C. Wang, L. Zhou, L. Hu and H. Wang, J. Photochem. Photobiol., A, 2025, 462, 116248.
- 76. Q. Peng, Y. Yi, Z. Shuai and J. Shao, *J. Am. Chem. Soc.*, 2007, **129**, 9333-9339.
- 77. J. Ma, Y. Gu, D. Ma, W. Lu and J. Qiu, Front. Chem., 2022, 10, 985578.
- 78. M. Dommett, M. Rivera, M. T. H. Smith and R. Crespo-Otero, *J. Mater. Chem. C*, 2020, **8**, 2558-2568.
- 79. X. L. Peng, S. Ruiz-Barragan, Z. S. Li, Q. S. Li and L. Blancafort, *J. Mater. Chem. C*, 2016, 4, 2802-2810.
- W. Z. Yuan, P. Lu, S. Chen, J. W. Lam, Z. Wang, Y. Liu, H. S. Kwok, Y. Ma and B.
 Z. Tang, *Adv, Mater.*, 2010, 22, 2159-2163.
- 81. Y. Huang, J. Xing, Q. Gong, L. C. Chen, G. Liu, C. Yao, Z. Wang, H. L. Zhang, Z. Chen and Q. Zhang, *Nat. Commun.*, 2019, **10**, 169.
- K. Zhang, J. Liu, Y. Zhang, J. Fan, C. K. Wang and L. Lin, *J. Phys. Chem. C*, 2019,
 123, 24705-24713.
- 83. B. Zha, H. Li, S. Ren, J. R. Wu and H. Wang, *Appl. Sci.*, 2024, **14**, 8947.
- 84. F. Luzi, E. Pannucci, L. Santi, J. M. Kenny, L. Torre, R. Bernini and D. Puglia, *Polymers*, 2019, **11**, 1999.

- pen Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

 This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.
- 85. E. Olewnik-Kruszkowska, M. Ferri, M. C. Cardeira, M. Gierszewska and Aci: 10.1039/D5FB00636H

 Rudawska, *Polymers*, 2024, **16**, 1577.
- 86. K. Nilsuwan, P. Guerrero, K. de la Caba, S. Benjakul and T. Prodpran, *Food Hydrocoll.*, 2020, **105**, 105792.
- 87. L. Cao, H. Feng, F. Meng, J. Li and L. Wang, *J. Cleaner Prod.*, 2020, **266**, 121885.
- 88. K. Ma, T. Zhe, F. Li, Y. Zhang, M. Yu, R. Li and L. Wang, *Food Hydrocoll.*, 2022, **123**, 107147.
- 89. P. Yang, Y. F. Song, H. Qi, L. Q. Li and X. B. Xie, Lwt, 2024, 202, 116330.
- 90. L. Xu, X. Hu, L. Zou and T. Ren, Lwt, 2024, **191**, 115586.
- 91. Y. Ning, S. Liu, Z. Ren, D. Yang, J. Li and L. Wang, *Food Hydrocoll.*, 2024, **155**, 110206.
- 92. M. Kaixuan, Z. Taotao, L. Fan, Z. Yalan, Y. Min, L. Ruixia and W. Li, *Food Hydrocoll.*, 2022, **123**, 107147.
- 93. L. Su, J. Huang, H. Li, Y. Pan, B. Zhu, Y. Zhao and H. Liu, *Int. J. Biol. Macromol.*, 2021, **172**, 231-240.
- H. Guo, H. Sun, Y. Fang, H. Qin, X. Wang, Y. Zhang, M. Zhao, H. Wu, X. Zhou and
 Y. Liu, *Int. J. Biol. Macromol.*, 2024, 278, 135047.
- 95. T. W. Huang, H. T. Lu, Y. C. Ho, K. Y. Lu, P. Wang and F. L. Mi, *Mater. Sci. Eng. C*, 2021, **118**, 111396.
- 96. B. Wang, J. Leng, X. Wang and W. Zhao, Food Chem., 2022, **386**, 132768.
- 97. Y. Ma, Y. Li, T. Huang, X. Yang, J. Huang and M. Huang, *Chem. Eng. J.*, 2025, **513**, 163034.
- N. N. Li, T. T. Wei, Z. B. Jin, C. Q. Liu, Z. Wang, F. Li, M. Muddassir, O. Prakash,
 A. Kumar and J. Q. Liu, *J. Mol. Struct.*, 2024, 1315, 138985.

- 99. R. Bai, X. Zhang, H. Yong, X. Wang, Y. Liu and J. Liu, *Int. J. Biol. Macromol.* 2015 Fibre Online 126, 1074-1084.
- N. Krisana, G. Pedro, Koro, B. Soottawat and P. Thummanoon, *Food Hydrocoll.*,
 2020, 105, 105792.
- T. He, H. Wang, Z. Chen, S. Liu, J. Li and S. Li, ACS Appl. Bio Mater., 2018, 1, 636-642.
- 102. E. Saravanan, M. Sathishkumar, P. Sathiyanathan, J. Dhanapal, Selin and S. Kulathu Iyer, *Talanta*, 2023, **264**, 124726.
- S. Huang, B. Li, S. Huang, Y. Wang, L. Zhang, J. Li and X. Yin, Eur. Polym. J., 2023, 200, 112492.
- Z. Jian, L. Zhiqing, C. Hui, L. Hongsheng, B. Xianyang, L. Chunyan, C. Ling and Y. Long, *Lwt*, 2021, **151**, 112135.
- F. Li, T. Zhe, K. Ma, R. Li, M. Li, Y. Liu, Y. Cao and L. Wang, ACS Appl. Mater.
 Interfaces, 2021, 13, 52998-53008.
- C. Lu, Z. Han, L. Shaojie, L. Yufeng, Z. Yong, Z. Qiaohui, L. Haiquan and W. Jing
 Jing, Food Packag. Shelf Life, 2024, 46, 101354.
- X. Liu, Y. Wang, Z. Zhang, L. Zhu, X. Gao, K. Zhong, X. Sun, X. Li and J. Li, Food Chem, 2022, 390, 133153.
- Y. Zan, W. Zheng, L. Pan, L. Wenya, X. Yingran, Z. Yibin, Y. Zhenyu, Z. Mingming,
 X. Yaqing and L. Yingnan, Food Chem, 2024, 454, 139830.
- 109. P. Ezati and J. W. Rhim, ACS Appl. Polym. Mater., 2021, **3**, 2131-2137.
- 110. B. Wan, Q. Xiao, M. Huang and R. Ying, Food Hydrocoll., 2024, 149, 109540.
- 111. W. F. Lai and W. T. Wong, Crit. Rev. Food Sci. Nutr., 2022, 62, 7319-7335.
- 112. J. H. Urbelis and J. R. Cooper, *Food Addit. Contam., Part A*, 2021, **38**, 1044-1073.

Open Access Article. Published on 02 January 2026. Downloaded on 1/3/2026 2:05:45 AM.

- EUR-Lex, Document 32004R1935, https://eur-lex.europa.eu/eli/reg/2004/1935/oi/engticle Online (accessed Dec 15, 2025).
- 114. Federal Register, Food additives: Food contact substance notification system, https://www.federalregister.gov/documents/2000/07/13/00-17653/food-additives-food-contact-substance-notification-system (accessed Dec 15, 2025).
- 115. S. Öztürk, Z. Kalaycıoğlu, E. Torlak, G. Akın-Evingür and F. B. Erim, *J. Food Meas. Charact.*, 2025, **19**, 264-275.
- 116. A. Masek, M. Latos, M. Piotrowska and M. Zaborski, *Food Packag. Shelf Life*, 2018,16, 51-58.
- 117. Q. Wang, W. Chen, W. Zhu, D. J. McClements, X. Liu and F. Liu, *npj Sci. Food*, 2022, **6**, 18.
- R. Li, Y. Ma, T. Yang, X. Yang, R. Tao, Y. Jin, W. Zhang and L. Qiu, ACS Mater.
 Lett., 2023, 5, 2348-2354.
- 119. W. F. Lai, Mater. Today Chem., 2022, 23, 100712.
- 120. W. F. Lai, J. Drug Delivery Sci. Technol., 2020, **59**, 101916.
- 121. J. Zhang, Z. Xiong, H. Zhang and B. Z. Tang, Nat. Commun., 2025, 16, 3910.
- 122. W. F. Lai, S. Zhao and J. Chiou, *Carbohydr. Polym.*, 2021, **271**, 118447.
- 123. W. F. Lai, O. S. Reddy, L. Law, H. Wu and W. T. Wong, *RSC Adv.*, 2023, **13**, 11865-11873.
- 124. R. Wu, H. Dai, W. Guan and C. Lu, *Small*, 2025, **21**, e2412133.
- 125. W. F. Lai, E. Huang, M. and W. T. Wong, *Appl. Mater. Today*, 2020, **21**, 100876.
- 126. F. B. Peters and A. O. Rapp, *Polymers*, 2025, **17**, 1908.
- 127. W. F. Lai, W. Yip and W. T. Wong, *Adv. Mater. Technol.*, 2021, **6**, 2100120.
- 128. J. C. Frelka, D. M. Phinney, X. Yang, M. V. Knopp, D. R. Heldman, M. P. Wick and Y. Vodovotz, *J. Sci. Food Agric.*, 2019, **99**, 844-853.

- 129. X. Du, B. Wang, H. Li, H. Liu, S. Shi, J. Feng, N. Pan and X. Xia, *Compr* Rev. 1539 37 FB00636H *Sci. Food Saf.*, 2022, **21**, 4812-4846.
- 130. W. F. Lai and W. T. Wong, *Membranes*, 2022, 12, 437.
- L. Liu, S. Swift, C. Tollemache, J. Perera and P. A. Kilmartin, *Food Hydrocoll.*, 2022,
 133, 107971.
- L. Dan, W. Jing Yi, T. Wen Wen, J. Wei, S. Yue Ming, Z. Zheng and T. Ben Zhong,
 Chem. Sci., 2020, 11, 7194-7203.

View Article Online DOI: 10.1039/D5FB00636H

Figures and tables

Table 1. Pros and cons of different types of AIE luminogens used in food packaging

Туре	Pros	Cons
Natural AIE luminogen	 Typically non-toxic and environmentally friendly, making them suitable for biomedical and food-related applications. Derived from biomass or widely available natural products, supporting sustainable sourcing. Some possess additional bioactivities (e.g., antioxidant and antimicrobial activities) beyond luminescence. Aligns with green chemistry principles and circular economy goals. Certain natural compounds may benefit from existing safety data, facilitating regulatory approval. 	 Natural extracts often contain complex mixtures, making it difficult to isolate uniform AIE-active species. Photophysical properties (e.g., emission wavelength, quantum yield) are harder to fine-tune compared to synthetic analogues Susceptible to degradation under pH changes, enzymatic activity, or oxidative stress. Source variability and processing conditions can affect reproducibility and performance.
Synthetic AIE luminogen	 Molecular structures can be precisely engineered to control emission color, intensity, and lifetime. Often exhibit higher quantum yields, longer lifetimes, and stable emission under diverse conditions. Easily functionalized for targeted applications such as sensing, imaging, and optoelectronics. Chemical synthesis yields uniform products with predictable properties. Tunable emission profiles enable simultaneous detection of multiple targets. 	 Some synthetic AIE luminogens may be cytotoxic and non-degradable. Synthesis may involve hazardous reagents, organic solvents, or energy-intensive processes. Complex synthesis routes can increase production costs, especially for large-scale applications.

Table 2. Functional properties of AIE luminogens relevant to food packaging application structure online of AIE luminogens relevant to food packaging application structure.

Property	Description	Underlying principle	Example	Ref.
Antioxidant activity	Help prevent oxidative degradation in food systems.	Certain AIE- active molecules possess phenolic or	PVA films loaded with natural AIE luminogens (viz., gallic acid and quercetin) showed substantial antioxidant activity.	84
		conjugated structures that scavenge free radicals.	Polylactide-based films containing berberine and quercetin displayed radical scavenging activity and could preserve the freshness of blueberries.	85
			The poly(lactic acid)/gelatin bilayer film incorporated with epigallocatechin gallate exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, which increased with higher epigallocatechin gallate content.	86
			The cassia gum/quercetin composite film was more effective at delaying pork lard oxidation than the commercially available high-density polyethylene film.	87
Antimicrobial activity	Used to inhibit or kill microorganisms, contributing to food safety.	AIE luminogens can be functionalized with cationic or hydrophobic	Packaging films containing AIE- active berberine-based nanoparticles exhibited strong antibacterial ability against both <i>E.</i> <i>coli</i> and <i>S. aureus</i> .	88
		groups that disrupt microbial membranes. Some AIE luminogens also generate reactive oxygen	An agar-based photodynamic sterilization film doped with an AIE luminogen possessing a D–π–A structure was found to have good inhibitory effects on <i>E. coli</i> , <i>S. aureus</i> , <i>C. albicans</i> , <i>A. baumannii</i> , <i>P. aeruginosa</i> and <i>P. leiognathi</i> .	89
		species (ROS) under light, enhancing antimicrobial effects.	A gelatin-based film incorporating AIE-active self-assembled berberine—3,4,5-methoxycinnamic acid nanoparticles utilized sunlight to generate ROS, thereby being able to inactivate <i>Staphylococcus aureus</i> and to extend the shelf life of pork loin.	90
			A k-carrageenan/carboxylated cellulose nanofibrils film incorporating an AIE-active berberine–citric acid salt showed photodynamic antibacterial activity, effectively killing bacteria from cooked chicken under white light.	91
Ultraviolet screening capacity	Protect sensitive materials or products from UV-induced damage by	AIE luminogens with extended π-conjugation or aromatic rings can absorb UV	Packaging films prepared by incorporating AIE-active self-assembled berberine-cinnamic acid nanoparticles into gelatin, κ-carrageenan, and glycerol matrices	92

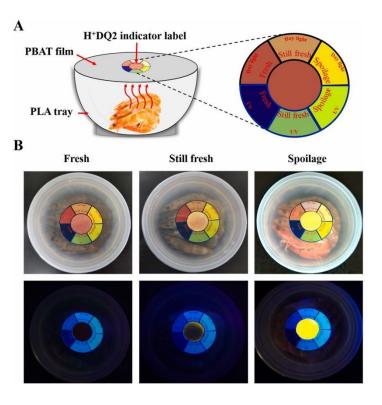

	absorbing or blocking UV light.	light efficiently. This enables them to show	exhibited enhanced UV-shielding capacity relative to films lacking the nanoparticles.	View Article 10.1039/D5F800
UV-blocking performance while maintaining	UV-blocking performance while	Chitosan–riboflavin composite films showed strong UV barrier properties while maintaining a transparent yellow appearance.	93	
		visible fluorescence for dual	Introducing berberine enhanced the UV-shielding capability of starch/PVA composite films	94
		functionality.	The epigallocatechin gallate/hydroxypropyl methylcellulose film was reported to act as an effective UV filter, blocking both UV-B and UV-A radiation.	95
Sensing capacity	Serve as visual or fluorescent sensors to detect spoilage.	AIE luminogens exhibit fluorescence "turn-on" behaviour upon aggregation	An AIE-active fluorescent probe exhibited a large emission wavelength shift (147 nm) to H ₂ S, enabling it to be used for ratiometric monitoring H ₂ S when detecting the beef and shrimp freshness.	96
		triggered by specific analytes.	The AIE—active, ammonia-responsive sensor film, prepared on bacterial cellulose, enabled real-time visual monitoring of chicken freshness by detecting amine vapours, with a distinct color change from red to blue-green visible to consumers.	97
			2-(benzo[d]thiazol-2-yl)-4-hydroxy-7-methylphthalazin-1(2H)-one exhibited changes in AIE in response to biogenic amines and was applied for real-time, visual monitoring of pork and shrimp freshness.	98

Table 3. Advantages and limitations of incorporating AIE luminogens into food packaging article Online Onli


Domain	Advantage	Limitation
Manufacturing feasibility and scalability	AIE luminogens demonstrate strong photostability, minimizing fading over time and enabling reliable monitoring throughout the shelf life of packaged products.	AIE luminogens are not yet widely available at low cost, and their integration into packaging at industrial scale may be more expensive than conventional inks, dyes, or sensors.
Photophysical behaviour in solid-state environments	AIE luminogens exhibit enhanced brightness upon aggregation, unlike conventional dyes that suffer from ACQ. This makes them well-suited for the polymer-rich environments of packaging films.	Incorporating AIE luminogens into polymers or multilayer films requires precise formulation to maintain their functionality and avoid adverse effects on mechanical or optical properties.
Functional tunability and responsiveness	AIE luminogens can be chemically tailored to respond to stimuli (e.g., pH changes and volatile organic compounds), allowing targeted detection of food deterioration.	Some AIE luminogens may lack biodegradability or recyclability, posing sustainability concerns for large-scale use in disposable packaging.
Suitability for food safety monitoring	AIE luminogens activate fluorescence only upon aggregation, reducing background signals and enabling clearer detection of spoilage indicators such as ammonia, hydrogen sulphide, or microbial growth.	Materials intended for food contact are subject to stringent safety regulations. Novel AIE-based systems may require extensive testing and regulatory approval, potentially delaying adoption.
Real-time detection and consumer interaction	Fluorescence or color changes can be observed visually, making them accessible and user-friendly indicators of freshness.	Without proper consumer education, fluorescent or color-changing packaging may cause confusion or concern, potentially limiting market acceptance.
Compatibility with packaging systems	AIE luminogens can be embedded into polymers, coatings, or labels without loss of function. When combined with nanomaterials, they may also enhance barrier or antimicrobial properties.	Many AIE luminogens are synthetic organic compounds or metal complexes, and their safety in direct or indirect food contact is not fully established. Risks of migration or leaching must be addressed before commercialization.

View Article Online

DOI: 10.1039/D5FB00636H

Figure 1. (A) Schematic illustration of the biodegradable package designed for shrimp packaging. (B) Photographs of the package under daylight and UV light at 28 °C. Reproduced from ref. 104 with permission from Elsevier B.V.

Figure 2. Schematic layout of the sensing label (left) and demonstration of its application in salmon samples (right). Reproduced from ref. 107 with permission from Elsevier B.V.

View Article Online

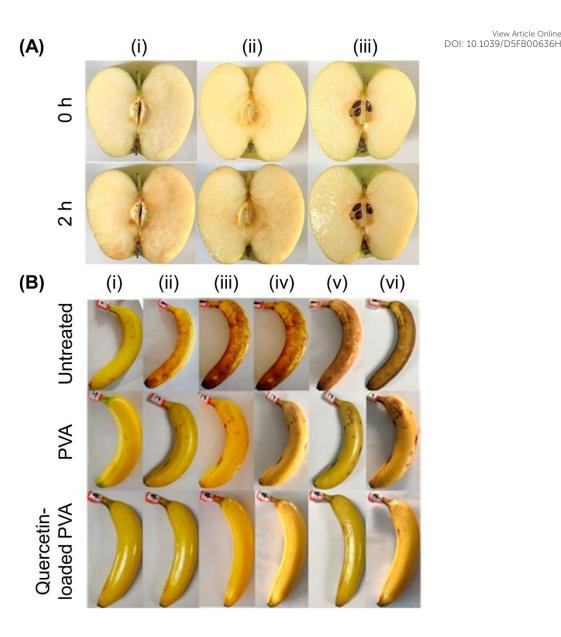
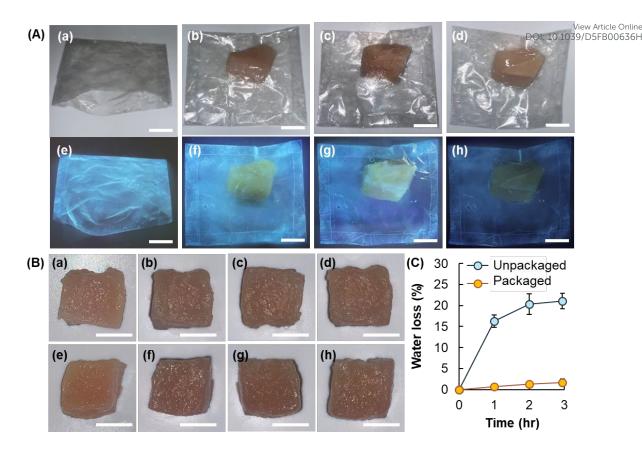
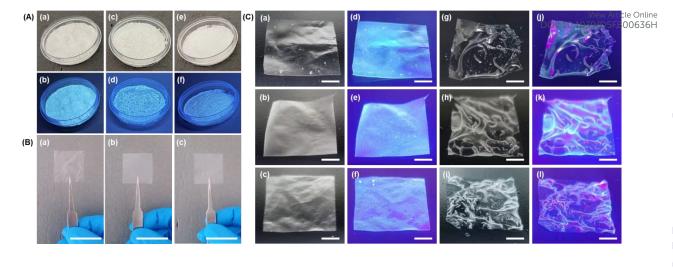




Figure 3. (A) Images of apple slices at 0 h and 2 h under different treatments: (i) uncoated, (ii) coated with PVA, and (iii) coated with quercetin-loaded PVA. (B) Images of bananas under different treatments—uncoated, coated with PVA, and coated with quercetin-loaded PVA—at various time points: (i) day 0, (ii) day 1, (iii) day 2, (iv) day 3, (v) day 4, and (vi) day 5. Reproduced from ref. 101 with permission from American Chemical Society.

Figure 4. (A) Photographs of (a,e) a bag made from the clusteroluminogenic cellulose derivative, and the bag containing (b,f) fresh chicken meat, (c,g) frozen chicken meat, and (d,h) thawed frozen chicken meat, shown under (a–d) white light and (e–h) UV light. Scale bar = 1 cm. (B) Photographs of chicken meat (a–d) packaged in, or (e–h) not packaged in, a bag made from the clusteroluminogenic cellulose derivative, after (a,e) 0 h, (b,f) 1 h, (c,g) 2 h, and (d,h) 3 h. Scale bar = 1 cm. (C) Time-dependent changes in the water content of chicken meat with and without packaging in the bag made from the clusteroluminogenic cellulose derivative. Reproduced from ref. 127 with permission from John Wiley & Sons, Inc.

Figure 5. (A) Photographs of starch samples: (a, b) water chestnut starch (WS), (c, d) maize starch (MS), and (e, f) potato starch (PS) under (a, c, e) white light and (b, d, f) UV light (λ = 365 nm). (B) Images of films prepared from (a) WS, (b) MS, and (c) PS. (E) Photographs of the films: (a, d, g, j) WS film, (b, e, h, k) MS film, and (c, f, i, l) PS film, captured under (a, b, c, g, h, i) white light and (d, e, f, j, k, l) UV light (λ = 365 nm). Scale bar = 1 cm. Reproduced from ref. 130 with permission from MDPI.

Data availability

View Article Online DOI: 10.1039/D5FB00636H

No primary research results, software or code have been included and no new data were generated or analysed as part of this review.