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Oxygen exposure in packaged foods accelerates oxidative spoilage, microbial growth, and sensory
degradation. Although iron-based oxygen scavengers dominate current applications, concerns about
safety, recyclability, and consumer acceptance have driven interest in non-iron alternatives. This review
critically examines recent developments in natural and synthetic non-iron oxygen scavengers, including
antioxidants (ascorbic acid and tocopherol), unsaturated hydrocarbons (polybutadiene), enzymes
(glucose oxidase and catalase), microorganisms, and polyphenolic plant extracts (gallic acid and
catechu). Reported oxygen scavenging capacities range from 6.44 mL O, g™ (a-tocopherol) to 200 mL
0, g~ (polybutadiene), with activation often triggered by moisture, UV light, or pH. Plant-based systems,
such as catechu—calcium carbonate combinations, stand out as biodegradable and food-safe
alternatives, making them especially suitable for moisture-rich foods. Compared to conventional iron-

based scavengers, these systems offer advantages in terms of safety, sustainability, and consumer appeal.
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issues, and barriers to commercialization. Emerging trends include biodegradable films, multifunctional

DOI-10.1039/d5fb00368g packaging, and smart indicators, which highlight non-iron oxygen scavengers as promising solutions for

rsc.li/susfoodtech safer and more sustainable active packaging.
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Oxygen scavengers play a critical role in active packaging, aiming to reduce or eliminate oxygen within food packages to mitigate oxidative deterioration. The

food industry increasingly relies on this technology, traditionally dominated by iron-based scavengers. However, organic oxygen scavengers present a promising,

sustainable alternative. These innovative materials include bioactive molecules, natural pigments, fatty acids, biochemical agents, biological agents, and plant-

based polyphenols. Their non-toxic nature and renewable sources align with sustainability objectives, offering a viable solution for enhancing food preservation

while minimizing environmental impact. By incorporating organic scavengers, the food industry can transition towards more eco-friendly practices, ultimately

contributing to a more sustainable future.

1. Introduction

The Earth's entire gaseous atmosphere comprises 20.9%
molecular oxygen (O,) by volume, a highly volatile gas essential
to sustain all organic living systems. Oxygen is a strong
oxidizing agent and thus readily accepts electrons, causing high
reactivity towards various chemical and biological substrates.
Oxygen ingress poses a significant challenge in food packaging.*
Oxygen promotes the growth of aerobic pathogens, including
Pseudomonas aeruginosa, Listeria monocytogenes, Rhizopus sto-
lonifer, and Aspergillus niger, which accelerate food spoilage.
Even at oxygen levels as low as 0.4 vol% in gas mixtures,
oxidative damage and aerobic pathogen growth present major
challenges to maintaining food quality.>

Moreover, oxygen presence in food substrates jeopardizes
food safety by accelerating insect infestation and promoting
chemical and biochemical degradation reactions like lipid
oxidation or rancidity, loss of vitamins, and oxygen-assisted
enzymatic browning, all of which render the food product
unsuitable for human consumption and contributes to food
loss.* An effective way to control molecular oxygen is by using
chemical scavengers, also known as oxygen scavengers. Oxygen
scavengers eliminate excess oxygen in the package headspace by
chemically binding or quenching free oxygen, thereby main-
taining desirable conditions. They are also compatible with
permeable packaging materials since they exert active oxygen-
scavenging activity.*®
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Oxygen scavengers are commonly applied as sachets or
integrated coatings that are placed in direct contact with food
inside the product package. Metal-based oxygen scavengers,
especially those based on iron powders, have been the most
commercially successful so far. They do, however, present
certain challenges, such as regulatory concerns, unintentional
ingestion, and the potential to trigger unnecessary alarms
during metal detector screening. Several studies in the past
have discussed the urgency of finding an alternative solution to
iron-based commercial scavengers.

While iron-based scavengers dominate commercially, most
previous reviews have focused mainly on these systems and
have given limited attention to non-iron alternatives. Where
non-iron scavengers are discussed, the discussions are often
brief and do not critically address their activation mechanisms,
compatibility with polymeric matrices, or sustainability aspects.
Yet, non-iron systems have recently gained significant academic
and industrial interest because of their advantages in consumer
perception and environmental safety. These biodegradable
oxygen scavengers eliminate major drawbacks of iron-based
systems, such as accidental ingestion and non-recyclability.
Additionally, compared to the dispersion of inorganic metallic
powders, these non-iron scavenging systems exhibit superior
dispersion and compatibility with polymeric matrices, allowing
the production of optically transparent active barrier polymer
films® and even edible films.”
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Against this background, this review aims to present an
outline discussion of the non-iron oxygen scavenging systems
that have been researched so far. The paper first discusses major
non-iron scavenging agents, their activation, and scavenging
chemistry. Further, it presents an overview of the potential food
application, sizing calculations, and regulatory requirements for
the emerging non-iron oxygen scavenging systems.

2. Fundamentals of oxygen
scavenging

In food packaging, the processor can limit oxidative degrada-
tion by reducing nutrient loss and the accompanying physio-
logical changes by quickly removing trapped oxygen inside the
package using oxygen scavengers. Oxygen scavengers are the
most commercially important subgroup in active packaging
applications, part of a much broader class of absorbers or
scavenging materials for gases. The scavenging reaction usually
proceeds by the reaction of dissolved oxygen with scavenging
components to form stable compounds. Some common mech-
anisms include chemisorption of oxygen, catalytic hydrogen gas
formation to form water, oxidation of non-iron and inorganic
nitrogen compounds, oxidation of sulphites to sulphates,
catalytic oxidation of unsaturated hydrocarbons and non-iron
compounds, and oxidation of reduced transition metals to
form stable oxides.?

The activation mechanism of an oxygen scavenger is another
important property for commercial applications. Some scaven-
gers get activated instantly during manufacture and thus pose
the problem of early saturation. Scavengers that can activate
themselves only upon exposure to specific external factors, like
moisture in the package, UV light, and temperature, are more
desirable.’

Oxygen scavengers must also comply with specific parame-
ters in food packaging applications because the scavenger
components may come into contact with food or be uninten-
tionally swallowed. These parameters should ensure that they
pose no risk to human health and do not alter the sensory
properties of food, such as taste, odor, and appearance. In
polyunsaturated hydrocarbon or fatty acid-based scavengers,
self-oxidation is a well-known occurrence during the scavenging
process. This reaction generates aldehydes and other volatile
compounds, which impart rancid odors and are undesirable in
food packaging applications.

However, to ensure effective application while minimizing
such drawbacks, oxygen scavengers are typically incorporated
into highly permeable sachets or packs. The materials used to
create these packs or sachets include paper, polymeric films
(microperforated or solid), porous nonwovens (such as spun-
bound polyolefins), and their combinations.*

3. Non-iron-based oxygen
scavengers

Recent research has increasingly focused on finding alterna-
tives to metallic/inorganic oxygen scavengers. This interest is
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aresult of increasing negative consumer perception towards the
use of synthetic chemicals in food. Moreover, growing aware-
ness regarding food safety concerns emphasizes shifting focus
towards sustainable and biodegradable packaging solutions,
which include materials that are generally recognized as safe
(GRAS) by the Food and Drug Administration (FDA)."* As out-
lined in sections 3.1-3.5, non-iron oxygen scavengers can be
broadly classified into five categories: antioxidants (ascorbic
acid and tocopherols), hydrocarbons (polybutadiene and poly-
isoprene), enzymatic systems (glucose oxidase and catalase),
biological (yeast), and plant-derived polyphenols (gallic acid
and catechin). Additional examples of these scavengers, along
with their reported oxygen-scavenging capacities, are summa-
rized in Table 1.

3.1. Antioxidant-based scavengers

Ascorbic acid, with the chemical formula CgHgOg, is a mild
reducing agent and a common non-iron antioxidant. .-Ascorbic
acid, also known as vitamin C, is the naturally occurring
chemical form. Ascorbic acid is a scavenger of molecular oxygen
because it quickly oxidizes under both air and aqueous condi-
tions. Transition metal catalysts, preferably copper and light,
can accelerate the redox reaction. The oxidation route for -
ascorbic acid results in the formation of dehydroascorbic acid
and water, as shown in Fig. 1. In later stages of oxidation,
furfural and various other compounds are formed by the
removal of the diol side group. However, this reaction has
a relatively low scavenging capacity, requiring larger quantities
of reactant to match iron-based systems."> The scavenging
reaction is greatly influenced by the pH of the environment. In
comparison to the ascorbate monoanion (A-H™), which
predominates at high pH levels, the completely protonated
form (A-H,) is more stable and has significantly reduced
vulnerability to oxygen at low pH values.*

A study in 2018 employed a combination of sodium tr-
ascorbate and activated carbon as oxygen scavenging systems
for the preservation of raw meatloaves. The results indicated
reduced lipid oxidation effects in meatloaves packed with the
developed oxygen scavenger.”* Another study®* utilized ascorbic
acid solution as a direct oxygen scavenging coating on fuyan
longan fruits. The postharvest quality of fruits was reported to
be significantly improved with the application of a coating.

Erythorbic acid is a stereoisomer of ascorbic acid with an
oxidation reaction pathway identical to that of ascorbic acid.
The sodium, potassium, and calcium salts of erythorbic acid are
generally recognized as safe food antioxidants. In the past,
sodium erythorbate was investigated as an oxygen scavenger for
the packaging of citrus juice. The headspace oxygen content (%)
decreased to 0% over approximately 10 days of storage. A rate
constant (k) value of 0.089 h™' was determined at 25 °C, which
was reported to be higher than commercial iron-based oxygen
scavengers like Freshpax® R-200 (0.043 h™').*** From the
available literature, it is suggested that the oxidation of eryth-
orbic acid usually requires a transition metal catalyst.*® The
mechanism of the oxygen scavenging reaction is illustrated in
Fig. 1.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Chemical depiction illustrating the oxygen scavenging pathways associated with the non-iron scavengers: (a) ascorbic acid, (b) erythorbic

acid, and (c) a-tocopherol.

Tocopherol is another natural compound that has been
explored for its oxygen-scavenging activity. It is a strong free
radical scavenger, which, in the presence of a transition metal,
reacts with singlet oxygen to quench atmospheric oxygen. The
oxidation mechanism includes activation of ground-state
oxygen to a singlet electron state, which further undergoes
subsequent reduction to form oxygen free radicals or reactive
oxygen species. Further, the reactive oxygen species are
consumed by tocopherol to produce a mixture of oxidation
products like tocopherol hydroperoxydienone or quinones, as
shown in Fig. 1.°

An oxygen scavenging system comprising a-tocopherol (500
mg) and a transition metal (100 mg) with thermal processing
was developed. The headspace oxygen concentration (%) in the
samples reduced from an initial 20.9% to 18% after 60 days of
storage.”® Another example includes the preparation of poly-
lactic acid microparticles loaded with 40% wt a-tocopherol.

1672 | Sustainable Food Technol., 2025, 3, 1668-1680

The reported oxygen scavenging capacity was 0.11 mL O, per g
day.”

Despite such progress, most natural scavengers share
common drawbacks, including relatively low oxygen scavenging
capacity, high cost, and the frequent need for transition metal
activation. While these metals are considered safe in trace
amounts and generally exist as stable ions, their use raises
concerns regarding migration into food. To mitigate this risk,
immobilization within polymer matrices, surface coatings, or
encapsulation techniques is commonly employed, which helps
confine catalytic ions away from direct food contact while
maintaining scavenging efficiency.*

3.2. Hydrocarbon-based scavengers

Polyunsaturated fatty acids (PUFAs) are known to scavenge
molecular oxygen through the auto-oxidative pathway. In
contrast to iron-based scavengers, polyunsaturated fatty acid-

© 2025 The Author(s). Published by the Royal Society of Chemistry
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based scavenging reactions can propagate in dry environ-
ments.”® Thus, these kinds of scavenging systems have great
potential in the application of dry product packaging. The
mechanism of auto-oxidation follows a 3-step reaction scheme.
The first step, termed the chain initiation step, is marked by the
generation of a free alkyl radical. The generated alkyl radical
further reacts with molecular oxygen and a proton to form
peroxyl and alkoxyl radicals.

This is followed by chain propagation, where peroxides are
formed, driving the reaction to the last step, known as chain
termination. In the last step, final oxidation products like
aldehydes, ketones, etc., are formed. Molecular oxygen is only
consumed in the initial stage or chain initiation step. A detailed
mechanism is illustrated in Fig. 2. Aldehydes and ketones are
final lipid oxidation products that can impart undesirable
flavour and odour to the packaged food.> Their presence is
unwanted and detectable by humans even at concentrations
below 1 ppm.

Unsaturated hydrocarbons like 1,4-polybutadiene, the most
common hydrocarbon used for oxygen scavenging purposes,
follow a similar oxidative mechanism to fatty acids. Therefore,
the final reaction products are also similar, which compromises
the sensory quality characteristics of the packaged food. The
scavenging system requires the presence of transition metal
salts like cobalt neodecanoate or manganese chloride. An
investigation reported that oxygen-scavenging polyisoprene
films can prolong the shelf life of beef jerky. The developed
system exhibited an oxygen scavenging capacity of 16.72 mL O,
g~ 1.%° Recently, natural rubber latex was investigated as a source
for polybutadiene for its scavenging potential in the form of

View Article Online
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polythene composite or pure natural rubber latex-based oxygen
scavenging films.""**

3.3. Enzyme-based scavengers

Enzymes are non-iron catalysts that accelerate the biochemical
reactions occurring in a living system. Using enzyme-based
technology as an active agent for oxygen absorption is well
known.** Specific food-grade enzymes, when entrapped over
a solid matrix or within polymer barriers, biofilms, and sachets,
can act as oxygen scavengers, as shown in Fig. 3. The presence
of an oxidizable substrate based on enzyme specificity is
necessary for enzyme-based scavenging technology to act in any
composition. Moreover, most of these developed enzyme
systems require high relative humidity and specific pH envi-
ronments to function at their highest efficiency. Recent
advances in enzyme immobilization on nanofibers or hydro-
phobic matrices show potential to improve stability and reduce
leaching, warranting deeper exploration.

In 2001, an active enzyme mixture containing glucose
oxidase, catalase, glucose, and calcium carbonate was incorpo-
rated into an industrial laminate dedicated to milk packaging.
The prepared laminates exhibited an oxygen absorption
capacity of 7.6 & 1.0 L m™ 23 Glucose was externally added as
a substrate for the enzyme, whereas calcium carbonate
neutralized the pH drop due to the formation of gluconic acid
and compensated for the decrease in pressure due to oxygen
consumption through CO, production. Another study involved
immobilizing glucose oxidase in electrospun nanofibrous
membranes based on polyvinyl alcohol, chitosan, and green tea

H- Propagation
M2 R R
I < |
. -_——— °
00-
R
Initiation Alkayl radical (R+) Free radical (ROO») {
R R R
Fatty acid R-R | 3 |
End products < ROOR = . 00-
ROR R R
Where, R is unsaturated hydrocarbons fLontmaton
like polybutadiene or polyisoprene
H,C
HC=CH cH, CH, CH=CH e &
CH, CH=CH CH, ~CH, H
1,4 — polybutadiene Polyisoprene

Fig. 2 The oxygen scavenging mechanism of polyunsaturated fatty acids and ethylenic hydrocarbons through the autoxidation pathway.

© 2025 The Author(s). Published by the Royal Society of Chemistry

Sustainable Food Technol,, 2025, 3, 1668-1680 | 1673


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00368g

Open Access Article. Published on 18 September 2025. Downloaded on 1/12/2026 6:26:58 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Sustainable Food Technology

View Article Online

Review

Multilayer food Package

I nside_ layer
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Atmospheric
oxygen

immobilized into a matrix

Fig. 3 Entrapment of enzymes, microorganisms, and spores into a polymer matrix for active oxygen scavenging in a food package.

extract.** Recently, a glucose oxidase coated polymer film was
prepared, which could efficiently decrease the headspace
oxygen level by 2% in a closed container over 8 weeks of
storage.*® The common reaction pathway followed by glucose
oxidase can be represented by eqn (1)-(3).

2p-Glucose + 20, + H,O — p-glucono-1,5-lactone

(via 2GOx) (1)
D-Glucono-1,5-lactone — 2p-gluconic acid + 2H,0, (2)
2H,0, — 2H,0 + O, (via catalase) (3)

where GOx denotes glucose oxidase

The reaction is initiated by hydrogen transfer from the
glucose molecule (-CHOH group) to molecular oxygen in the
presence of water through the enzymatic activity of glucose
oxidase. Following this, delta-gluconolactone is formed as an
intermediate product, which further quickly reacts with water
and yields gluconic acid and hydrogen peroxide (H,0,).® Since
hydrogen peroxide formation is undesirable, catalase is added
to initiate the breakdown of peroxide into water and oxygen.
Overall, half a mole of oxygen is removed per mole of glucose
oxidase.*®

Other enzyme scavenging systems explored so far include
a combination of oxalate oxidase and catalase co-immobilized
into a polymer latex. Oxalate oxidase catalyses the conversion
reaction of oxalic acid to carbon dioxide and hydrogen peroxide
while scavenging molecular oxygen. Another example is laccase,
a copper-containing enzyme, which, in combination with
phenolic compounds like pyrogallol and lignosulfates, has also
been used as an oxygen scavenger in films and coatings.*”*® In
the oxidation reaction catalysed by laccase, molecular oxygen is
reduced to water as given in eqn (4).

4Poly-OH + O, — 4poly-O* + 2H,0 (via laccase) (4)
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where poly-OH emphasizes the phenolic hydroxyl group
participating in the reaction.

3.4. Biological scavenging systems

Biological oxygen scavengers rely on the respiration of micro-
organisms that are entrapped in a polymer matrix or incorpo-
rated in sachet forms, as shown in Fig. 3. Among them, yeast
has been the most extensively explored due to its food-grade
status and well-established role in fermentation. Early patents
(1985 and 1992) demonstrated two approaches for applying
yeast in packaging: incorporation into beer bottle closures and
development of sachet systems. In the closure-based design,
viable yeast cells were immobilized within the cork or polymer
insert of the cap. Residual moisture and dissolved nutrients
from the beer acted as triggers, allowing the yeast to resume
limited metabolic activity. The oxygen present in the bottle
headspace was consumed during respiration, while small
amounts of carbon dioxide and ethanol were produced as by-
products. Importantly, because beer naturally contains both
CO, and ethanol, these by-products did not alter product
quality.>>*°

Other microorganisms besides Saccharomyces yeast have also
been investigated for oxygen scavenging. For instance, Pichia
subpelliculosa and Kocuria varians, two different microorgan-
isms, were entrapped into a combined matrix of polyvinyl
alcohol and were further investigated as oxygen scavengers. The
authors reported that these microorganisms were best suited to
act as oxygen scavengers when coated on high macromolecular
substrates under high humidity conditions.** A related but
different approach included incorporating spores of Bacillus
amyloliquefaciens into polyethylene terephthalate bottles,
which, upon rehydration, will result in spore germination fol-
lowed by oxygen consumption through respiration. Rehydration
of the model system will be from high humidity conditions
created by the food product. The reported oxygen scavenging

© 2025 The Author(s). Published by the Royal Society of Chemistry
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rate was 0.10 & 0.02 mL O, per g day, which is comparable to
those of metallic scavengers.*

Despite these encouraging results, several limitations
remain. The viability of microorganisms during long-term
storage is difficult to maintain, and activation generally
requires high moisture levels, restricting applications in dry
products. Safety considerations also arise, as microbial

(A) Oxygen scavenging mechanism of gallic acid:

0
40 OH Alkaline condition C
+Ry ——
HO / HO
L OH 12 L
Gallic acid Oxygen

(B) Oxygen scavenging mechanism of pyragallol:

Gallic acid radical
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metabolites such as ethanol or organic acids may alter product
quality if not carefully controlled. Moreover, the intentional use
of live microorganisms in food packaging requires strict regu-
latory evaluation. Overall, only a few microbial strains have
been investigated to date, and little is known about their
performance in real food systems. Expanding this research to
assess sensory effects, stability, and practical applications will

(0]
9 HOOC O Y
OH 0,
‘ COOH
OH 0
12 0

Gallic acid quinone

| OH OH 0
HO OH " 02 Alkaline condition HO (0} ()2 (0) 0
= OH
2 12 HO
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(C) Oxygen scavenging mechanism of resorcinol:
. 0
[ ] 0
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o 0
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Fig. 4 Schematic illustration of the reaction pathways for various polyphenolic oxygen scavengers, along with a brief overview of the structural

changes occurring from initial reactants to end products.
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be important for future development. At present, the most
promising use appears to be in beer packaging, where the
metabolic by-products of yeast are compatible with the product,
though future work may explore other high-moisture foods and
beverages.

3.5. Polyphenolic and plant-based scavenging systems

The term polyphenols covers a diverse range of naturally
occurring plant compounds containing one or multiple phenol
group functionalities with variable hydroxyl (-OH) substituents.
Naturally occurring polyphenols have long been utilized for
medicinal and pharmaceutical purposes. Moreover, plant
polyphenols act as strong antioxidants and reduce oxidative
stress in the system.* The mechanism of free radical scav-
enging for all polyphenols (natural and synthetic) is broadly
based on hydrogen atom transfer.**

In the past, various polyphenolic oxygen scavenging systems
have been explored. In 2012, a patent was published involving
the utilization of gallic acid as a non-iron oxygen scavenger/
indicator in combination with sodium hydroxide.*® In 2016,
the oxygen scavenging potential of pyrogallol, a natural poly-
phenol present in Amla fruit (Emblica officinalis Gaertn), was
explored. Pyrogallol in combination with an alkali demon-
strated potential oxygen scavenging capacities at room
temperature, which were reported to be comparable to a few
iron-based oxygen scavengers. The activation of ground-state
molecular oxygen (*0,) into reactive species involves its
conversion to singlet oxygen ('O,), often triggered by photo-
irradiation or alkaline environments. Singlet oxygen is an
electronically excited form that is significantly more reactive
than its ground-state counterpart.

Under these conditions, 'O, can participate in electron
transfer reactions, generating reactive oxygen species such as
superoxide anion (O, °), hydrogen peroxide (H,0O,), or hydroxyl
radicals ("OH). These intermediates are then neutralized by
polyphenols or antioxidants through hydrogen atom donation
or radical quenching pathways, as reported in ref 46 and further
reduced to reactive oxygen species, which are finally eliminated
by electron donation through pyrogallol.** Similarly, in another
attempt, the polyphenolic compound resorcinol was explored.
The oxygen scavenging system comprised pure resorcinol
powder along with potassium carbonate. The system exhibited
a fast oxygen scavenging phenomenon, and a 0% (v/v) oxygen
content was reported within 264 h at 5 °C, 68 h at 25 °C, and
48 h at 45 °C.¥

Recently, the oxygen-scavenging properties of the plant-
based substance Acacia catechu were studied. Catechu powder,
along with calcium carbonate, comprised the oxygen scav-
enging system, which was also reported as food-grade or edible.
The results suggested that with an oxygen scavenging capacity
of 10 mL O, g " over 20 days of storage, the developed system is
suitable for foods at an intermediate risk of oxidation.*® The
oxygen-scavenging properties of catechu powder were linked to
the presence of a polyphenol known as catechin. The chemical
structures of initial and final reaction products for reported
polyphenols so far are given in Fig. 4.
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Plant-based oxygen scavengers have many desirable quali-
ties, making them a very interesting topic in modern food
technology. This approach also aligns with the current
consumer demand for minimal chemical use. Among all the
reported systems so far, the presence of alkaline conditions is
necessary. This is due to polyphenolic chemistry, which results
in increased deprotonation activity under alkaline conditions.
Moreover, alkaline conditions also activate ground-state oxygen
to the singlet state, resulting in the initiation of the oxygen
scavenging reaction.

Further, the recurring presence of carbonate salts in the
above-described systems helps increase the system's depen-
dence on moisture. Briefly, the system will only activate after
drawing moisture from the packed food product, thus elimi-
nating the problem of early saturation of oxygen scavengers.
The common scavenging reactions for polyphenolic oxygen
scavenging systems are given in eqn (5)-(9).

Activation mechanism:

X — CO3 + H,O — 2X — OH + CO, (5)

Scavenging mechanism:

2Poly-H + 20, — 2poly* + 2HO,* (6)

2Poly* — dimer of poly (7)

Poly-dimer + O, — poly-quinone + H,0, (8)
Poly-quinone + O, — open-ring dimer products 9)
where X = single valent metal ion (sodium - (Na),

potassium - (K), etc.)

Poly = any polyphenol (gallic acid, pyrogallol, resorcinol, and
catechin)

* = electron

4. Packaging applications and
scavenger loading

Oxygen scavengers are generally utilized for the packaging of
food products with high fat or moisture. Meat, fish, dry fruits,
coffee powders, bakery products, milk products, and alcoholic
and non-alcoholic beverages are some common examples where
oxygen scavenging technology is utilized to maintain product
quality during their anticipated shelf life. Typically, oxygen
scavengers are used in sachet forms, which are placed in direct
contact with food. However, unsustainable consumption of
plastics in sachet formation, as well as incompatibility with
liquid beverages, drove researchers to find newer package-based
solutions.

Currently, there is considerable interest in directly embed-
ding active oxygen scavenging agents into packaging materials.
Many studies have experimented and produced polymer/
biopolymer-based oxygen scavenging films and coatings and
active scavenging polyethylene terephthalate bottles for food
packaging applications.***

© 2025 The Author(s). Published by the Royal Society of Chemistry
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4.1. Food and beverage applications

Headspace and dissolved oxygen are major contributors to
food spoilage in packaged food. Oxygen-related food spoilage
has already been discussed in section 1. Oxygen scavengers
can be used in a variety of food products for extending shelf
life and maintaining specific quality characteristics. The
findings of previous studies using non-iron or natural oxygen
scavengers to increase food product shelf life are summarised
in Table 2. It was reported that with the application of pyro-
gallic acid-blended linear low-density polyethylene oxygen
scavenging films, the storage quality of peeled garlic could be
maintained till 20 days at room temperature.> Further,
another study utilized oxygen scavenging films as a replace-
ment for artificial antioxidant preservatives added for oil
preservation. Soybean oil packed in pyrogallol-coated scav-
enging films maintained oxidative stability over 30 days,
whereas oxidative degradation was observed in control oil
samples.>***

Another scavenging system utilizing a non-iron oxygen
scavenger formulation could maintain the quality characteris-
tics of meatloaves over 4 days of storage,** whereas control
meatloaves over the same storage time exhibited signs of
oxidative degradation and microbial spoilage.** Similarly, many
oxygen scavenging systems have been researched and applied to
a variety of food products, including alcoholic beverages, beef
products,*>* fish,*® dry products like walnuts,®” dairy products
like khoa,** etc.

4.2. Sizing calculation for efficient scavenging

For an efficient oxygen scavenger application, two distinct
design goals are quick headspace oxygen removal and limiting
oxygen ingress through the packaging material from the outside
environment.® Sizing calculations aim to measure the real
volume of oxygen that must be scavenged over time, including
headspace and oxygen ingress into packaging material for low-
to high-oxygen barrier packaging material. The amount of
oxygen that must be scavenged is determined by calculating the
percentage of oxygen in the initial headspace gas mixture,
considering the package and headspace volume. Eliminating
initial oxygen may be sufficient for a product with a short shelf
life. But for a lot of packages, throughout the course of their
distribution life, more oxygen seeps through than was initially
in the headspace.

If so, the oxygen transmission rate (OTR) of the barrier in use
and the surface area of the package should be multiplied by the
estimated shelf life of the product to determine the expected
oxygen ingress into the package over shelf storage. The total
capacity required for the oxygen scavenger for that application
is then calculated by adding the initial oxygen concentration
and the oxygen ingress during the shelf life. For high barrier
packaging materials like polyvinyl alcohol and aluminium foil,
only the elimination of headspace oxygen is of primary concern.
Thus, a lower mass of scavengers is needed to exhibit the
necessary scavenging powers. Therefore, the formula for the
total amount of oxygen to be removed from a package along its
shelf life can be formulated as
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Ox(ingress) = OTR x SA x SL (10)
TO, = OZ(headspace) X O2(ingress) (11)

where Oj(ingressy = total oxygen ingress (mL) through the
package over time (t)
OTR = oxygen transmission rate (mL O, per m” per day)
SA = surface area (m?)
SL = shelf life (days)
TO, = total volume of oxygen to be scavenged (mL)
Os(headspace) = volume (mL) of oxygen in headspace.

4.3. Regulatory aspects

Directive 89/109/EEC, the European Union framework regula-
tion that applies to all materials with direct food contact, states
that such materials must not pose a risk to human health and
must not adversely alter the sensory qualities of packaged
meals. Oxygen scavengers are usually in direct or close contact
with food products.®® Therefore, strict regulations must be fol-
lowed to avoid any compromise on the food safety of the
packaged food. Using oxygen scavenging films, coatings, labels,
or direct entrapment over a matrix limits the risk of accidental
ingestion, unlike sachets. Moreover, using a non-iron compo-
sition further depletes the risk of food contamination as
compared to iron-based scavengers. However, several possible
oxidation by-products, their toxicity, and their migratory char-
acteristics inside the packing structures need to be considered
while developing a scavenging system.

Furthermore, it should be ensured that all detected extract-
ables are within their authorised limitations to obtain a valid
licence for commercial usage. The maximum mass of non-
volatile compounds that can transfer from packing material
into food is expressed as the overall migration limit (OML). The
European Union in Regulation 10/2011 states that for food
contact packaging materials, the overall migration limit is
10 mg dm 2 and 60 mg kg~ ' (infant food).*

4.4. Challenges and future perspectives

Over the years, the development of non-iron oxygen scavenging
systems has accelerated for active and sustainable food pack-
aging applications. Non-iron scavenging systems/films in food
packaging are anticipated to have a prosperous future because
they align with the food safety plan, which calls for increased
food safety and customer transparency.

However, several challenges restrict the industrial adoption
of non-iron scavengers. These include material availability,
economic feasibility, regulatory approval, sensitivity towards
moisture and pH, and potential by-product toxicity. Addressing
these issues is essential to ensure both safety and compliance
with food packaging standards. A comparative evaluation of
cost-effectiveness is critical for the industrial adoption of non-
iron oxygen scavengers.*>”®

While enzyme- and nanoparticle-based systems (e.g., glucose
oxidase and a-tocopherol) offer high specificity and efficiency,
they are relatively expensive due to complex production and
stabilization requirements. In contrast, plant-derived polyphenols

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00368g

Open Access Article. Published on 18 September 2025. Downloaded on 1/12/2026 6:26:58 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

such as gallic acid, catechu, and pyrogallol are more economically
viable, especially when sourced from agro-waste or abundant
natural materials. These systems also require fewer processing
steps and can be activated under ambient conditions, further
reducing costs. Thus, while advanced scavengers offer superior
performance, plant-based alternatives strike a better balance
between efficacy and affordability, making them promising
candidates for large-scale food packaging applications.

To bridge the gap between laboratory development and
commercial application, additional research and real-world
food studies are necessary. Future work should also examine
the integration of oxygen-scavenging packaging with comple-
mentary preservation technologies. The development of biode-
gradable films for packaging is becoming more and more
important to save the environment and reduce the pollution
that packaging materials produce. The strict regulations for
food packaging will continue to keep the application of multi-
layer oxygen scavenging films in focus.

5. Conclusion

Non-iron oxygen scavengers represent a crucial step toward
safer, more sustainable, and consumer-acceptable active pack-
aging. This review contributes by systematically categorizing
them into antioxidant, hydrocarbon, enzyme, biological, and
polyphenol-based systems and by connecting their chemistry to
real food applications. The novelty lies in presenting a unified
framework that makes it easier to compare their potential and
limitations across classes. Looking forward, the main chal-
lenges are scaling up and incorporating into packaging mate-
rials, ensuring stability under real storage conditions, and
generating comprehensive data on sensory impact, migration,
and safety to meet regulatory requirements. Cost-effectiveness
and lifecycle sustainability must also be demonstrated to
compete with established iron-based systems. Hybrid
approaches that combine complementary mechanisms and
improved stabilization strategies are especially promising.
Overall, the pathway to commercialization will depend on
bridging laboratory results with pilot-scale validation and
industry trials, so that non-iron systems will become feasible
and viable solutions to future food packaging.
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