

Sustainable Food Technology

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: R. Pabaati , K. V. Reddy, B. M. Venkatesh, A. Akila, P. Paul Vijay, G. VSree ajran, N. R. Maddela and R. Prasad, *Sustainable Food Technol.*, 2025, DOI: 10.1039/D5FB00303B.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the [Information for Authors](#).

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard [Terms & Conditions](#) and the [Ethical guidelines](#) still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Sustainability Spotlight Statement

The dark reality of microbial resistance and all its effects on food safety should be taken into account when choosing and integrating antimicrobials into food packaging materials. Sensor technologies are known to be a promising approach as an alternative food packaging method as well as minimizing the harmful effects of plastic on the environment. Different kinds of sensors, such as optical, edible, chemical, and biosensors, are used depending on the type of food being packaged. Thus, this technology will help us to monitor the quality of food in real-time. In order to create a bright and sustainable future, we require a multidisciplinary strategy that brings together professionals from all biotechnology domains, in particular engineering, food technology, microbiology, and material sciences. These novel strategies should be further studied to taking the complete advantage of these while overcoming the challenges associated with them. Further research becomes pivotal, taking into consideration that the food should not be contaminated and should be maintained in an efficient manner. Sustainable and environment-friendly food packaging systems are absolutely essential for a sustainable future.

1 **Advancements in food packaging strategies with a focus on Antimicrobials and** View Article Online
DOI: 10.1039/D5FB00303B

2 **Sensor Technologies: A comprehensive review**

3 Pabbati Ranjit ^{1,#}, Kondakindi Venkateswar Reddy ^{1,#}, Belli Madhuri Venkatesh ¹, Aleti

4 Akila ¹, P. Paul Vijay ¹, Guntheti G D D Sree Vajran ¹, Naga Raju Maddela ², Ram

5 Prasad ^{3,*}

6 ¹ Center for Biotechnology, University college of Engineering science and Technology,

7 Jawaharlal Nehru Technological University of Hyderabad, Kukatpally, Hyderabad

8 500085, Telangana, India

9 ² Departamento de Ciencias Biológicas, Facultad de Ciencias de La Salud, Universidad

10 Técnica de Manabí, Portoviejo, 130105, Ecuador

11 ³ Department of Botany, Mahatma Gandhi Central University, Motihari 845401, Bihar,

12 India

13 [#]Equal contribution

14 ***Corresponding author**

15 Dr. Ram Prasad, Ph.D., Associate Professor, Department of Botany, Mahatma Gandhi

16 Central University, Motihari 845401, Bihar, India. Email: rpjnu2001@gmail.com

17 **Authors' ORCiDs:**

18 Pabbati Ranjit: 0000-0001-9979-950X

19 Kondakindi Venkateswar Reddy: 0000-0002-7240-1714

20 Belli Madhuri Venkatesh: 0009-0003-8197-5669

21 Aleti Akila: 0009-0009-7526-096X

22 P. Paul Vijay: 0009-0008-8890-5766

23 Guntheti G D D Sree Vajran: 0009-0009-8603-9291

24 Naga Raju Maddela: 0000-0002-7893-0844

25 Ram Prasad: 0000-0002-3670-0450

26 **Highlights**

27 ② Food packaging with healthful, risk-free food without contamination is essential.

28 ② Antimicrobial food packaging brings antimicrobials into the food packaging films.

29 ② Active, bioactive, smart, and intelligent food packaging techniques are innovative in

30 food safety, quality and shelf life.

31 ② Bio-, edible-, optical sensors-based packaging materials can detect changes in food

32 quality.

33 ② The food packaging industry is facing environmental, technical, and regulatory

34 issues.

35

36

37 **Abstract**View Article Online
DOI: 10.1039/D5FB00303B

38 Food that is fresh, healthy, quick, and fast is in higher consumer demand with strict
39 rules to prevent food-borne infectious diseases has clearly increased over time due to
40 busy lifestyles and world's growing population. In order to provide the wholesome and
41 risk-free food without any contamination, food packing is important. Several studies
42 have been going on innovative packaging technologies, among which antimicrobial
43 food packaging technology is one. Antimicrobial food packaging is a potential approach
44 that successfully incorporates the antimicrobials into the film of the food packaging. In
45 the form of a thorough review, this paper provides a brief introduction to all the
46 innovative food packaging technologies focusing on the overview of contemporary
47 antimicrobial agent research targeted at prolonging the storage life of food to enhance
48 its quality and safety via suppressing pathogen development. This study addresses the
49 various kinds of antimicrobial agents and novel techniques that are in use at present as
50 well as those that are still being researched giving importance to their usage in food
51 packaging. Emerging novel technologies such as active, bioactive, smart and intelligent
52 packaging are considered to be a suitable alternative to combat increasing harmful
53 plastic effects on not only consumers but also the environment. This review gives a
54 brief information about the combination of natural and technological strategies for
55 enhancing the food packaging strategies. Technology plays a critical role in the
56 discovery of different types of packaging materials which include bio-sensors, edible
57 sensors, optical sensors and various kinds of indicators to detect the changes in the
58 food's quality. However, while outlining their applications, challenges/disadvantages
59 associated with antimicrobials are also highlighted for the future research to be in an
60 appropriate path.

61 **Keywords:** food packaging; antimicrobial packaging; antimicrobials; sensor
View Article Online
62 technologies. DOI:10.1039/D5FB00303B

63 **1. Introduction**

64 The production, processing, shipping, and storage of food present considerable
65 challenges, requiring adherence to regulations for human health, environmental safety,
66 and financial viability.¹ Over 1.3 billion metric tons of usable food are wasted
67 annually.² The global demand for diverse food products necessitates extensive
68 transportation, highlighting the critical role of proper food packaging in ensuring safety
69 and minimizing waste.¹ Food packaging generally fulfils four primary objectives:
70 protection, communication, convenience, and containment,³⁻⁵ with its most vital
71 function being the preservation of food quality and safety through prevention of
72 spoilage and contamination, and extension of shelf life.^{1, 6} Materials such as glass,
73 polymers/plastics, metals, and paper are commonly used, often in composite forms.⁷
74 Polymers/plastics constitute the largest segment of the food packaging market (37%),
75 followed by paper and board (34%).⁸ The main function of traditional food packaging
76 materials like polyethylene terephthalate (PET), high-density polyethylene (HDPE), and
77 low-density polyethylene (LDPE) is to operate as physical barriers that shield food from
78 outside environmental elements including light, air, and moisture. These films have
79 some degree of success in maintaining food quality, but they don't have any cognitive or
80 active features, including the capacity to stop microbiological growth or track the
81 freshness of food in real time. These restrictions have prompted the creation of active
82 and intelligent packaging technologies, which use sensors, indications, or antimicrobial
83 agents to improve food safety and shelf life above and beyond what is possible with
84 traditional materials.^{9,10} Sustainability is a key component of these developments, since

85 smart packaging solutions use breakthroughs like biodegradable materials and improved
 86 packaging designs to limit waste and their negative effects on the environment.¹¹

87

88 **Figure 1.** Primary plastic production by industrial sector 2015 (a), and Plastic waste
 89 generation by industrial sector, 2015 (b).

90 Antimicrobial food packaging tackles microbiological infection without chemical
 91 preservatives, whereas antioxidant food packaging reduces oxidation-related
 92 degradation, which is especially advantageous for oils, fats, and processed foods.¹² This
 93 review article discusses about advanced packaging technologies giving special

94 importance to antimicrobial packaging and sensor technologies along with their
95 applications.

96 **2. Active food packaging**

97 Active packaging technology includes components that are purposefully placed in or on
98 the packing material or the headspace of the container so that they can release or absorb
99 substances into the surrounding environment of the food product.¹³ Using active
100 packaging for perishable items reduces the amount of active chemicals used, reduces
101 localized activity and particle transfer from film to food, and gets rid of needless
102 industrial processes that could contaminate the product, among other advantages.¹⁴ As a
103 result, the primary goal of active packaging is to avoid microbiological and chemical
104 contamination while still preserving food's visual and organoleptic features.¹⁵ Ethylene
105 scavengers, oxygen scavengers, antimicrobials, preservative releasers, antioxidants and
106 flavour and odour absorber/releasers are all commonly employed in active packaging
107 technologies.¹⁶ Moisture absorbers are non-migratory active packaging that absorb
108 excess moisture by utilizing hygroscopic substrates or substances (e.g. Cellulose, silica
109 gel) establish an atmosphere less conducive to the growth of microorganisms and
110 deterioration.¹⁵ Ethylene removal systems aid in the reduction of ethylene (which
111 accelerates the ripening process) in the packaging atmosphere, hence reducing
112 unwanted impacts on the products.¹⁷ Ethylene can be removed using ethylene
113 absorbents (e.g. Silica, activated carbon), which act physically by absorbing and
114 holding its molecules,¹⁵ and ethylene scavengers (i.e. Potassium permanganate, 4–6%)¹⁸
115 anchored on an inert matrix, such as alumina or silica gel,¹⁹ which act chemically.
116 Carbon dioxide scavengers (CO₂ absorbers comprising calcium, sodium, and potassium
117 hydroxides) remove excess CO₂ from food, preventing discolouration, off-flavor
118 development, and tissue destruction^{15,17,20} as shown in **Figure 2**. Similarly, oxygen

119 scavengers (i.e. Iron-based scavengers) remove oxygen, which causes unwanted View Article Online
DOI: 10.1039/D5FB00303B
120 organoleptic changes like colour changes, off-flavor development, and the degradation
121 of nutritional characteristics, as well as supporting microbial growth.^{19,21} Phenolic
122 chemicals (such as butylated hydroxytoluene) are commonly employed synthetic
123 antioxidants that inhibit lipid oxidation in fat-containing foods and also have properties
124 of antimicrobials.^{19,20} Paraffin waxes, fatty acids, sugar alcohols, glycols, metallics, salt
125 hydrates and eutectics may be used in future in food packaging.¹⁵ Different kinds of
126 active packaging materials and their functions were shown in **Table 1**.

127

128 **Figure 2.** Various active scavenging approaches in food packaging.

129 Sustainable active packaging that incorporates antimicrobial packaging solutions can
130 meet industry standards for safety, quality, and longer shelf life.²² The active and
131 intelligent packaging solutions work as a protective barrier, shielding the food item
132 from numerous physical, chemical, and biological risks. They also act to indicate the
133 freshness and quality of the food product while continuously monitoring the time and
134 temperature of the food product, ensuring the overall safety and quality of the items.
135 Both active and intelligent packaging systems strive to improve food safety and quality
136 by delivering safe and nutritious food to customers, but their responsibilities in
137 achieving this goal differ. The similarities and differences of intelligent and active
138 packaging systems were shown in **Figure 3.**²³

139

140 **Figure 3.** The similarities and differences of active and intelligent food packaging
141 systems.

142 **Table 1.** Various materials and their functions involved in active food packaging.

Active packaging method	Materials	Functions	Foods which can be packaged	Reference
Moisture absorbers	Starch copolymers, silica gel	Reduce food water activity	Meats, fruits, fish and vegetables	24
O ₂ scavengers	Ethanol oxidase, ascorbic acid, glucose oxidase.	Inhibits growth of microorganisms and prevents food alterations	Juices (brewing industry), wines, Sauces etc.	25
Desiccants	Calcium oxide, natural clay	Control moisture content	Chips, Spices, candies, Nuts, gums, etc.	25
Antioxidants	Alpha tocopherol, rosemary extract	Oxidation of food due to the formation of radicals can be avoided	Butter, nuts, fresh meat, bakery products, oils, meat derivatives, vegetables and fruits	26
Ethylene Scavengers	Potassium permanganate, zeolites, activated carbon, metal oxides, nanoparticles	Control the amount of ethylene (a growth hormone) and prevent early ripeness of vegetables and fruits.	Ethylene sensitive vegetables and fruits, banana, carrots, mangoes, onions, and tomatoes.	19,27
Humectants	NaCl	Absorbs moisture from the surroundings of food	Tomatoes	25
Ethanol emitters	Ethanol is present in encapsulated forms	Antimicrobial agent reduces oxidative changes; food preservative.	Dried fish, bakery products	28,29

Antimicrobials	Plant extracts, chlorine dioxide, essential oils	Inhibits the growth of bacteria, fungi and virus	Fish, meat, poultry, dairy and baked products	26
----------------	--	--	---	----

144 **2.1 Food packaging with antimicrobials**View Article Online
DOI: 10.1039/D5FB00303B

145 One of the more promising methods for eradicating pathogenic microbes that harm food
146 items is antimicrobial packaging, which is a subtype of controlled release packaging and
147 active packaging. It effectively incorporates the antimicrobial agent into the polymeric
148 film used for packaging and then releases it over a predetermined duration of time,
149 hence expanding the shelf life by many times. Antimicrobial agents have arisen
150 provides longer effectiveness, broader coverage, greater controllability, and improved
151 environmental performance. One of the innovative approaches under antimicrobial
152 packing is to developing functional meals and introduces bioactive packaging, a
153 technology where packaging or coatings actively improve consumer health.³⁰ Barriers in
154 food packaging can be removed through methods like microencapsulation and
155 nanoencapsulation, providing a sustainable solution for food packaging technologies.³¹
156 Log-reduction curves or minimum inhibitory concentration (MIC) values acquired at
157 fixed concentrations are frequently used to quantify antimicrobial efficacy *in vitro*.
158 These ideals, however, hardly ever correspond to actual food systems.³² The apparent
159 dose needed to accomplish the same microbial decrease in complicated matrices is
160 usually more than that found in straightforward laboratory conditions.³³ Antimicrobial
161 sorption onto dietary ingredients, chemical inactivation, decreased solubility, and
162 limited mass transfer within heterogeneous structures are some of the causes of this
163 disparity. As a result, in contrast to those in broth media, dose-response curves in meals
164 typically show a tilt to the right.³³ To enable a realistic assessment of efficacy, it is
165 crucial to examine antimicrobial performance in both relevant food matrices and
166 standardized model systems.³²

167 A number of variables, including as pH, water activity (a_w), lipid and protein content,
168 and temperature, affect how effective antimicrobial drugs are.^{26,34,35} Antimicrobial

169 activity is increased in acidic environments and decreased in low pH environments.^{36,38} Article Online
DOI: 10.1039/D5FB00303B

170 While fat and protein content can lower bioavailability, water activity (a_w) can protect
171 against microorganisms by lowering metabolism and diffusion rates.^{26,39,40}
172 Antimicrobial stability can also be impacted by temperature; at refrigerated
173 temperatures, certain antimicrobials exhibit decreased solubility or diffusion.⁴¹⁻⁴³
174 Therefore, in order to properly evaluate antimicrobial medicines, real-world testing
175 circumstances are crucial.^{26,35,44}

176 Encapsulation and nanocarrier designs (e.g. liposomes, polymeric nanoparticles,
177 cyclodextrins) are examples of controlled-release systems and nanocarriers that adjust
178 release rates to ensure that antibiotics act when needed, thereby lowering chronic low-
179 dose exposure that leads to resistance.⁴⁵ Immobilization / surface-anchored
180 antimicrobials (e.g. layer-by-layer immobilization or covalent anchoring) lowering the
181 exposure and regulates migration risk by reducing migration into food while
182 maintaining contact activity.⁴⁶ Although regulatory frameworks are changing, the use of
183 biological agents (e.g. bacteriophages, bacteriocins and tailored peptides) with narrow
184 specificity reduces off-target selection pressure and are being assessed for safe
185 packaging applications.⁴⁷ Natural antimicrobials and essential oils can be encapsulated
186 via microencapsulation, inclusion biopolymer matrices, and nano emulsions, which
187 increase stability, regulate sensory impact, and lessen resistance pressure by requiring
188 fewer dosages.⁴⁸ In order to prevent continuous release and reduce resistance selection,
189 materials that release antimicrobials in reaction to pH, moisture, or microbial enzymes
190 are known as stimuli-responsive and intelligent release (on-demand activation).⁴⁹
191 Standardizing safety and migration testing, better analytical techniques and regulatory
192 advice for migrants (plasticizers, nanoparticles, and additives) to create strong dossiers
193 that the Food and Drug Administration (FDA) and European Food Safety Authority

194 (EFSA) need and speed up approvals.⁵⁰ Bio-based and sustainable polymer platforms
195 shifting to food-grade and biodegradable polymer carriers that reduce long-term
196 environmental contamination and are simpler to defend under safety regulations.⁵¹

197 **2.1.1 Principles and mechanisms of antimicrobial action**

198 Antimicrobial activity can be accomplished in the packaging system by limiting
199 the microbial development by lengthening the lag period and lowering microorganism
200 live counts by slowing down the growth rate.⁵² Antimicrobial packaging systems are
201 particularly developed to manage germs that compromise foods' quality, safety, and
202 shelf life, as food security is a major concern nowadays. Microorganisms' characteristics
203 can be quite useful in determining which antimicrobial agents to use. Antioxidants,
204 natural antimicrobials, essential oils, antimicrobial polymers, biotechnology products
205 and other substances are common antimicrobial agents used.⁵³

206 Packaging materials can be surface-modified, integrated, coated, or immobilized with
207 antimicrobial chemicals to provide antimicrobial activity.²⁵ Antimicrobial films are
208 divided into two categories: those that inhibits surface microbe growth without
209 migration and those that come with an antimicrobial that penetrates into the food's
210 surface.²⁵ The antimicrobial agent may not migrate at all, only becoming active when
211 the food or target microorganisms come into direct touch with it. Alternatively, it may
212 gradually diffuse partially or completely into the headspace or food, where it
213 demonstrates its protective effect as shown in **Table 2**.^{54,55} Bioactive packaging aims to
214 extend food shelf-life and quality by incorporating antimicrobials and antioxidants,
215 often derived from plant-based secondary metabolites, into packaging materials. These
216 compounds can migrate into food, becoming constituents and offering antimicrobial and
217 antioxidant properties. They can also function as plasticizers, enhancing the mechanical
218 properties of biofilms and packaging.⁵⁶

219 **Table 2.** Mechanism of action of various antimicrobial agents in food packagingView Article Online
DOI: 10.1039/D5FB00303B

Antimicrobial agent	Mechanism of action	Packaging application	Reference
Silver nanoparticles (AgNPs)	Releases Ag ⁺ ions → bind thiol groups of enzymes/proteins; generate ROS; disrupt DNA/protein replication; membrane leakage	Incorporated in biopolymer films (e.g. chitosan, PLA) for meat, dairy	57
Zinc oxide nanoparticles (ZnONPs)	ROS production (H ₂ O ₂ , •OH, O ₂ ⁻); Zn ²⁺ release damages membranes and proteins	Active coatings/films for fruits, cheese	58
Essential oils (e.g. Thymol, Carvacrol, Eugenol, Cinnamaldehyde)	Hydrophobic molecules integrate into lipid bilayers → membrane disruption, ion leakage, protein denaturation	Electrospun films and vapor-phase active packaging	59
Bacteriocins (e.g. Nisin, Pediocin)	Bind lipid II in bacterial membrane → pore formation → leakage of ions/metabolites; bactericidal against Gram+	Biodegradable films and coatings for cheese, meat	33
Chitosan	Cationic groups bind to negatively charged microbial cell walls → leakage of proteins/ions; chelates metals → enzyme inhibition	Stand-alone antimicrobial film or nanocomposite with AgNPs	60
Enzymes (e.g. Lysozyme, glucose Oxidase)	Lysozyme: hydrolyzes β-(1,4) glycosidic bonds in peptidoglycan; Glucose oxidase: generates H ₂ O ₂ → oxidative stress	Immobilized in protein/polysaccharide films	61
Organic acids (e.g. Lactic acid, sorbic acid, acetic acid)	Undissociated acids diffuse into cell → dissociate → intracellular acidification, enzyme inhibition	Coated films, edible coatings for fruits/vegetables	52

220

221 **2.1.2 Types of antimicrobial agents in food packaging**222 The food business is increasingly focusing on maintaining the quality and safety of food
223 goods as consumers become more health conscious and want fresh, minimally

224 processed foods.²² Due to their distinct physiologies, different harmful microorganisms
225 respond differently to antimicrobial treatments. To ensure the quality of food and its
226 safety, antimicrobial agents are mixed into food particles or packaging materials and
227 released gradually, resulting in a prolonged shelf life. Microbicidal and microbistatic
228 effects are thus two essential activities of antimicrobial agents. For the duration of the
229 storage period, the antimicrobial agent must actively work in order to keep the
230 concentration above the minimal inhibitory levels for preventing the development of
231 microbiological species.⁵³ Antimicrobial agents are chemically manufactured or drawn
232 from the biomass of living things, including animals, plants and microbes for food
233 preservation. The functional properties of antimicrobial packaging films made of
234 biopolymers like polylactic acid (PLA) and fossil-derived polymers like LDPE have
235 been thoroughly studied, but most studies do not use life cycle assessment (LCA) to
236 compare their environmental impacts, particularly carbon footprints. Such comparisons
237 are essential since PLA's supposed sustainability over LDPE is not always clear-cut;
238 LCA studies have demonstrated that although PLA may occasionally lower greenhouse
239 gas emissions, these benefits can be countered by its production and end-of-life
240 management.⁶²⁻⁶⁴ Claims of antimicrobial PLA films' superiority in terms of the
241 environment are still up for debate in the absence of systematic LCA-based
242 assessments. Thus, various antimicrobial agents are discussed in the following **Table 3**.

243 **Table 3.** Different antimicrobial agents and their applications in food packaging.

Category	Origin	Examples	Applications in Packaging / Food	Reference
Organic acids and salts	Natural (fermentation) and synthetic	Lactic, acetic, propionic acids; salts: sodium lactate, potassium lactate, sodium acetate, sodium benzoate, potassium sorbate	Active films (e.g., EVOH + sorbic acid–chitosan microcapsules), dipping (e.g. salmon, trout fillets), PE films with salts	65

Category	Origin	Examples	Applications in Packaging / Food	Reference
Antimicrobial peptides (AMPs) and Bacteriocins	Microbial origin (e.g. bacteriocins) and animal peptides	Nisin, pediocin, enterocin, leucocin, cathelicidins, defensins	Direct incorporation in polymer (e.g. soy, zein, PLA), surface coating, nanoencapsulation	66
Antioxidants	Plant origin (e.g. and polyphenols fruits, herbs, spices)	Phenolic acids, flavonoids, stilbenes, lignans, tannins (e.g., caffeic acid, quercetin, xanthohumol)	Films with grape seed, green tea, hops extracts; active coatings with antioxidant + antimicrobial dual activity	19
Essential oils (EOs)	Plant metabolites (e.g. herbs, spices, citrus)	Carvacrol, thymol, eugenol, cinnamaldehyde, citral, limonene	Active starch films, encapsulation in chitosan/PLA, coatings for cheese, meat, fish	67,65
Plant extracts (mixtures)	Plant secondary metabolites (e.g. polyphenols, terpenoids, glucosinolates)	Oregano, rosemary, clove, garlic, onion, mustard extracts	Extract-incorporated films/coatings for meat, fish, cheese, fruits, vegetables	68
Enzymes	Microbial/animal proteins	Lysozyme, dispersin B, alginate lyase, DNase I, proteinase K, lysostaphin	Edible films (e.g. chitosan + lysozyme), enzyme coatings for cheese/meat/fish, combinations with chito-oligosaccharides	69

244

2.1.3 Incorporation strategies for antimicrobial agents

246 There are various ways to include antimicrobial agents into food packaging materials,
 247 and each has advantages and disadvantages of its own. Direct integration, in which the
 248 antimicrobial component is mixed into the polymer matrix during extrusion, casting, or
 249 molding, is one of the most used techniques. Controlled release is made possible by this
 250 method's homogeneous distribution of the active agent, scalability, and relative
 251 simplicity. However, sensitive bioactives like peptides, enzymes, or essential oils may

252 be degraded by high processing temperatures, which could lessen their antibacterial
253 efficacy^{66,67} as illustrated in **Figure 4**.

254

255 **Figure 4.** The development of antimicrobial food packaging systems

256 Another method is coating, which involves applying the antimicrobial agent in layers,
257 sprays, or dips onto the packing film's surface. Higher surface concentrations can be
258 attained and the agent's activity is maintained since it is not exposed to high processing
259 temperatures. This is beneficial because microbial development usually takes place on
260 the food–package interface. However, during storage, this tactic could have poor
261 adhesion, uneven release, and limited durability.⁶⁵

262 Immobilization is a more sophisticated technique that uses nanocarriers like cyclodextrins or nanoparticles to covalently bind, crosslink, or entrap antimicrobial compounds on the packing surface. Immobilization increases stability, decreases migration into food, and extends antibacterial activity. But it is more expensive and complicated, and sometimes the compound's bioactivity can be changed by chemical alteration.^{69,70}

268 Finally, a new generation of packaging systems is represented by multilayer structures. This technique confines antimicrobial substances to a particular active layer, which is subsequently joined by lamination or layer-by-layer assembly with additional functional layers (such barrier or mechanical reinforcement layers). This structure enables the creation of multipurpose packaging with integrated barrier, mechanical, and antibacterial qualities while shielding delicate agents from deterioration during processing. Higher manufacturing costs and the requirement for sophisticated processing technologies are the primary obstacles.¹⁹ Complete overview of antimicrobial packaging was illustrated in the **Figure 5**.

277
278 **Figure 5.** Overview of antimicrobial packaging in food packing systems

279 **3. Intelligent food packaging**View Article Online
DOI: 10.1039/D5FB00303B

280 Although the terms "smart," "active," and "intelligent" packaging technologies are
281 interchangeable, they refer to distinct ideas. While active packaging extends the shelf
282 life of food by influencing the environment, intelligent packages keep an eye on the
283 condition of food goods. Smart packaging is frequently utilized in commercial items
284 and expands on conventional food packaging techniques. Using a variety of signals,
285 including pH, humidity, temperature, and chemicals, intelligent packaging seeks to
286 assess the quality of food. However, because of the high prices, complex equipment
287 needs, and challenging integration with current packaging materials, real-time
288 monitoring on a broad commercial scale is still a long way off.⁷¹ Intelligent packaging
289 has the ability to enhance product safety, lessen its negative effects on the environment,
290 and make packaged goods and food companies more appealing. "Materials and articles
291 that monitor the condition of packaged food or the environment surrounding the food" is
292 how the EFSA defines intelligent packaging products. Despite not interacting with the
293 goods, they can convey the circumstances of the packaged product. Their mission is to
294 keep an eye on the goods and provide customers with information. This may include
295 details like the manufacturing period, storage conditions, or the state of a package and
296 its contents. These can be positioned on the primary (inside or exterior), secondary, or
297 tertiary packaging, depending on whether it is a reactive or simple intelligent package.⁷²
298 By identifying and sensing changes in the food, intelligent packaging, which is a
299 communication-integrated system that monitors and improves the quality of packaged
300 food. By lowering food waste and illnesses, enhancing environmental controls, and
301 giving real-time information about product location and condition, this technology can
302 increase supply chain efficiency. Additionally, it helps customers improve their
303 shopping experience and make well-informed purchases. There are two categories of

304 applications for intelligent packaging systems: quantitative sensors and qualitative
 305 sensors. When choosing and creating intelligent packaging solutions for meat quality
 306 monitoring, it is essential to comprehend parameters and mechanisms. Sensors give
 307 quick, accurate, and trustworthy information regarding the safety and quality of
 308 products. Cost-effective information about freshness, temperature history, and package
 309 integrity can be obtained via indicators including time-temperature, pH, and gas
 310 indicators. For industrial packaging applications, sensors and indicators need to be
 311 accurate, biocompatible, mass-producible, economical, reusable, and user-friendly.⁷³
 312 Various devices included under intelligent packaging has been illustrated in the **Figure**
 313 **6.**

314
 315 **Figure 6.** Devices involved in Intelligent Packaging

316 **3.1 Sensor technologies in food packaging**

317 A sensor is an apparatus used to identify, locate, or measure matter or energy by New Article Online
318 emitting signals in a continuous stream for detecting or quantifying a chemical or DOI: 10.1039/D5FB00303B

319 physical property. A receptor and a transducer are the two major functional pieces of
320 most sensors.⁷⁴⁻⁷⁶ For instance, along with pathogen-specific fluorescence, the N-CDs-
321 CS-CMC (novel nitrogen doped carbon dots cellulose sulfate-carboxymethyl cellulose
322 composite) film demonstrated potent antibacterial action against *S. aureus*, *C. albicans*,
323 and *E. coli*. It became pH-responsive when beetroot was added, changing colour in
324 response to acidity. It increased the shelf life of tomatoes from four to ten days when
325 they were wrapped. Additionally, the film identified chromium by changing colour,
326 demonstrating its multipurpose use in food safety and quality control⁷⁷. When the film,
327 which is composed of sulfur/nitrogen-modified carbon dots (S,N-CQDs) and
328 hydroxyethyl cellulose (HEC), comes into touch with *Salmonella*, it turns from red to
329 light red, signifying that the chicken meat has spoilt. The film's sensitivity to pH
330 changes associated with meat decomposition is seen in this colour shift. Additionally,
331 the S,N-CQDs have antibacterial qualities that allow them to prolong the shelf life of
332 packaged meat by 12 days, which is longer than the 3-day extension offered by the film
333 that does not contain S,N-CQDs.⁷⁸ The carboxymethyl cellulose–N-fullerene–g-
334 poly(co-acrylamido-2-methyl-1-propane sulfonic acid) (CMC–N-fullerene–AMPS)
335 hydrogel was created in this study. The hydrogel's antibacterial qualities were greatly
336 enhanced by the addition of N-fullerenes. Furthermore, when the hydrogel came into
337 contact with *E. coli*, it changed from dark red to brilliant orange-red, displaying a
338 characteristic "turn-on" fluorescence.⁷⁹

339 Types of sensors are as follows:

340 **i) Biosensors**

341 Biosensors are devices that sense, record, and send data regarding biological reactions.⁸⁰ Article Online
DOI: 10.1039/D5FB00303B

342 Bioreceptors and transducers are employed in biosensors.⁸¹ The transducer translates

343 biological signals into measurable electronic responses after the bioreceptor detects the

344 analyte of interest.⁸⁰ Enzymes, microorganisms, nucleic acids, hormones and antigens

345 are examples of bio-receptors that are either organic or biological. Electrochemical,

346 optical, or calorimetric transducers are available and are system dependent.⁷⁴

347 ToxinGuard® (Toxin Alert, Canada) is an example of biosensor where this visual

348 diagnostic device detects pathogens such as *E. coli*, *Listeria* sp., *Salmonella* sp., and

349 *Campylobacter* sp. by employing printed antibodies on PE based packaging

350 material.⁸² There have been biosensors designed to detect xanthine and biogenic amines.

351 The colorimetric analyte detection is used in the majority of bio-based substances in

352 food packaging sensors.¹ Because decaying proteins release alkaline volatile compounds

353 containing nitrogen (e.g. cadaverine, histamine, putrescine, and ammonia), colorimetric

354 pH-sensitive sensors are often enough to assess food quality based on pH changes.^{83,84}

355 Because the structures of natural dyes such as -carotene, curcumin and chlorophyll are

356 particularly sensitive to oxidative radicals, they could be useful for sensing.¹

357 The creation of biosensors has shown great promise for carbon dots (CDs) because of

358 their high surface-to-volume ratio, variable fluorescence, outstanding biocompatibility,

359 and simplicity of functionalization with biomolecules.^{85,86} Enzymes, antibodies, nucleic

360 acids, or aptamers can be used to modify their surfaces, allowing for the sensitive and

361 selective detection of biological targets like infections, proteins, DNA, and glucose.^{87,88}

362 In biosensing platforms based on Förster resonance energy transfer (FRET), CDs

363 frequently function as either fluorescent probes or energy donors/acceptors.⁸⁵ The basis

364 for detection is frequently the quenching or increase of CD fluorescence in response to

365 particular analytes.^{86,87} CDs are especially helpful in non-invasive biosensing and real-

366 time monitoring applications, such as medical diagnostics and point-of-care systems.^{87,88} New Article Online
DOI: 10.1039/D5FB00303B

367 due to their stability in physiological and aquatic settings.^{86,88}

368 Although biodegradable sensors are being marketed as environmentally friendly options
369 for smart food packaging, scaling issues prevent their widespread use.⁸⁹ The main
370 challenges are obtaining specialized materials, high production costs, and poor
371 compatibility with industrial processes. Non-biodegradable conductive components are
372 the source of e-waste issues. Compostable printed sensors are now being investigated by
373 researchers employing water-based printing formulations, bio-based inks, and natural
374 polymers; however, industrial adoption of these methods is still restricted and most of
375 the research is conducted at the laboratory level.

376 **ii) Chemical sensors**

377 Chemical sensing in food packaging could potentially benefit from synthetic dyes based
378 on diverse polydiacetylenes and azo-compounds. Enzymatic activities, wherein the
379 change in color is often a function of temperature and time, can also be used to create
380 colorimetric indicators and sensors.¹ The food package containing a gaseous analyte, is
381 detected by gas sensors which include sensors for oxygen, water vapour, carbon
382 dioxide, and ethanol, as well as piezoelectric crystal sensors, metal oxides, organic
383 conducting polymers, semiconductor field effect transistors.^{75,76} The chemical sensor,
384 also known as a chemical receptor is a coating that is unique to a certain chemical and is
385 used to detect the presence, make-up, activity, and concentration of that chemical or gas
386 by surface adsorption. The presence of specific compounds is detected and transformed
387 into signals by a transducer.⁷⁴ An electrode represents the transduction element in
388 electrochemical sensors. Reference, counter, and working electrodes are linked to a
389 potentiostat in a conventional electrochemical sensor. At the interface
390 of electrode/analyte, a redox reaction takes place when voltage is applied via the

391 potentiostat, causing electrons to flow between the electroactive species and the electrode, resulting in a current proportionate to the analyte concentration.⁹⁰ Inhibition
392 zones and molecular docking simulations demonstrating robust binding interactions with
393 bacterial proteins support the substantial antibacterial activity of betalains-N-CQD (Betalains-
394 nitrogen-doped carbon dots) film against common foodborne pathogens such as *Escherichia*
395 *coli*, *Staphylococcus aureus*, and *Candida albicans*. Additionally, the film serves as a
396 fluorescence sensor, displaying clear colour changes in response to various microbes and Pb(II)
397 heavy metals, allowing for quick, visual detection. Because of the betalains, the film also
398 functions as a pH sensor, showing colour changes (yellow in acidic, brown in alkaline) that are
399 helpful for tracking food degradation.⁹¹ For instance, in order to identify tomato spoilage, a
400 very recent study conducted by Tohamy⁹² created pH-sensitive colorimetric sensors
401 using carboxymethyl cellulose (CMC) sheets embedded with sulfur and nitrogen-doped
402 carbon dots (SN-CDs), which were made from leftover red onion peel. The films
403 allowed for naked-eye monitoring due to their intense fluorescence, antibacterial
404 activity, and noticeable color changes (i.e. yellow in acidic, red in alkaline conditions)
405 that corresponded to spoilage-induced pH shifts. Computational research and structural
406 analyses provided additional evidence of these films' efficacy as environmentally
407 friendly smart packaging materials.⁹² By tracking variations in fluorescence intensity,
408 wavelength shift, or lifetime, CDs in optical sensors can identify metal ions (such as
409 Fe³⁺, Hg²⁺, and Pb²⁺), tiny compounds (such as dopamine and ascorbic acid), or
410 environmental contaminants (such as pesticides and antibiotics).^{85,87}

412 iii) Optical sensors

413 Optical sensors either provide an optical signal (such as, color, chemiluminescence
414 or fluorescence) or alter the system's optical characteristics. The resulting optical signal
415 is visible to the unaided eye or quantified with a photodetector, which transforms optical

416 signals into electrical impulses that can be quantified.¹⁵ Analytical electrochemical
417 sensors and the selectivity of biological recognition methods are combined in
418 electrochemical biosensors. Carbon dots' potent and adjustable photoluminescence,
419 upconversion fluorescence, and photostability are the main components of optical
420 sensing.^{85,87} Excitation-dependent emission from CDs makes multiplexed sensing
421 possible with a single probe.⁹³ Their distinct optical response is frequently brought on
422 by interactions between the analyte and CD surface functional groups, electron/energy
423 transfer, or surface passivation processes.^{88,93} Moreover, CDs can be incorporated into
424 films, optical fibers, or field-use portable devices.⁸⁷ They are appealing for
425 environmental monitoring, food safety analysis, and biological imaging-based sensing
426 due to their low toxicity and straightforward production.^{86,88}

427 **iv) Edible sensors**

428 Edible sensors are made of biodegradable, consumable materials and make use of intelligent
429 packaging technology. They offer up-to-date details on food product contamination, nutrition,
430 and deterioration. Researchers recently created a proof-of-concept sensor for frozen meals that
431 monitors temperature variations during shipping and storage by changing color when inside
432 temperatures rise beyond a predetermined threshold, indicating possible contamination. This
433 breakthrough, which ensures safety and freshness without changing the food itself, is essential
434 for the future of food monitoring.⁹⁴ Edible sensors constructed entirely of natural and
435 biodegradable ingredients that have no negative or severe long-term impacts on humans, are
436 used for detecting food spoilage.¹⁵ Other technologies that replicate the human olfactory system
437 in a device developed to acquire reproducible data enabling detection and characterization of
438 aroma combinations contained in the odour include electronic noses. Each smell, flavour, or
439 savour elicits a distinct response.⁷⁴ Food-based edible films were successfully created, and when
440 exposed to specific gaseous amines, they dramatically changed color from purple to yellow.
441 When the sensor film was exposed to the headspace above meat and fisheries products

442 throughout their degradation at 21°C and 4°C, colorimetric alterations were also noticeable.⁹⁵

443 Various types of sensors were presented in the **Table 4**.

444 **v) Printed sensors**

445 Printed sensors are a new development in packaging technology that allows
446 organizations to collect real-time data without the need for bulky electronics. These
447 sensors are thin sticky strips integrated with electronics that measure temperature,
448 humidity, and vibrations. This technology is especially beneficial for monitoring
449 perishable foods, as it allows for real-time condition tracking during transportation and
450 storage. Businesses can use printed sensors to improve product quality control while
451 lowering packaging space and material costs.⁹⁶ In addition to protecting food from
452 environmental contamination, the synergistic integration of intelligent food packaging
453 (IFP) with PE (printed electronics) technologies—which has moved from science fiction
454 to a field of study—also actively contributes to food safety and quality. By evaluating
455 the freshness of food, the legitimacy of medications, the environmental conditions
456 (temperature, humidity, light, etc.) in circulation, and other elements, it extends the shelf
457 life in ways that standard packaging is quite difficult.⁹⁷ Flexible printed sensors and
458 radio frequency identification systems are two examples of specific products that have
459 been successfully developed based on flexible printed electronics. These products are
460 excitingly able to meet various requirements for food safety, including ingredient
461 detection, environmental monitoring, logistics tracking, and anti-counterfeiting and anti-
462 theft measures.⁹⁸ Dairy product spoiling may be detected using 3D printed sensors,
463 tackling the serious problem of foodborne illnesses that impact one in six Americans.
464 Colorimetric indicators in packaging are crucial for consumer safety and lowering food
465 poisoning cases because contamination in fresh items is frequently undetectable. In
466 addition to improving quality evaluation and encouraging functional integration within

467 autonomous systems, these technologies can be scaled for industrial food processing
468 and agricultural applications.⁹⁹

469 **vi) Humidity sensors**

470 One of the most significant environmental elements affecting food items' quality, safety,
471 and shelf life is humidity. While insufficient humidity may result in texture loss, staling,
472 or a decrease in product weight, excessive moisture within packing can encourage mold
473 growth, microbial growth, and biochemical deterioration.^{100,101} As a result, one of the
474 main functions of intelligent and active packaging technologies is the monitoring and
475 regulation of humidity within food packages. Water vapor in the air or within packaging
476 can be detected and measured using humidity sensors. They primarily function
477 according to three principles: (i) Capacitive sensors track variations in hygroscopic
478 materials' dielectric constant;¹⁰² (ii) Resistive sensors identify changes in resistance
479 brought on by water molecules that have been absorbed;¹⁰³ and (ii) Colorimetric
480 indicators are based on the obvious color shift of materials or dyes that are sensitive to
481 humidity.¹⁰⁴

482 Recent innovations that enable real-time remote monitoring of humidity in packaged
483 foods include wireless RFID-enabled devices and sensors based on nanomaterials (e.g.
484 graphene oxide, carbon nanotubes, and MXenes).^{90,105} Additionally, humidity sensors
485 that are printable and biodegradable are becoming available, which means they can be
486 used with environmentally friendly packaging materials.¹⁰⁶ Producers may improve
487 quality control, increase shelf life, and decrease food waste by incorporating humidity
488 sensors into food packaging. This will also give customers and supply chain
489 stakeholders more information.

490 **3.2 Near field communication (NFC) chips**

491 With its ability to facilitate wireless data interchange between consumer smartphones
492 and NFC chips embedded in labels or films, NFC technology is quickly becoming a
493 crucial element in intelligent food packaging. This makes packaging more secure,
494 traceable, and interactive. Product authentication and anti-counterfeiting are two of
495 NFC's main uses in food packaging, especially for expensive goods like wine, dairy
496 powders, olive oil, and infant formula. Customers may rapidly confirm authenticity by
497 scanning the NFC tag, which lowers the dangers associated with fake goods.¹⁰⁷ By
498 recording and transmitting data regarding product origin, transportation, and storage
499 conditions, NFC also facilitates supply chain traceability, increasing compliance and
500 transparency.¹⁰⁶ NFC chips improve customer engagement in addition to safety. To
501 increase trust and brand loyalty, a quick scan can provide recipes, nutritional
502 information, promotions, or sustainability features.¹⁰⁴ Additionally, NFC packaging can
503 offer real-time food freshness monitoring when combined with sensors, such as those
504 for temperature, humidity, or gas. This is crucial for cold-chain logistics and perishable
505 goods.¹⁰⁸ Large-scale food applications can benefit from NFC's benefits over classic
506 RFID, which include smartphone compatibility, affordability, and flexibility. Big data
507 analytics and cloud-based monitoring are also made possible via its Internet of Things
508 (IoT) connection. Many sensors, indicators and data carriers have played a major role in
509 understanding the properties of food related to its quality. They provide information
510 about the product's freshness by observing any chemical changes in the food, its texture
511 or any pH changes in the surroundings of the product to avoid any microbial
512 contamination. They also trace the product while it is being transported from provider to
513 consumer.¹⁰⁹ These advanced packaging technologies are incorporating biodegradable
514 substances into the packaging materials which results in the sustainable conservation of
515 environment. They also prevent food contamination and food loss.¹¹⁰ Due to these

516 technologies the consumption, storage and transportation has been efficiently increased. View Article Online
DOI: 10.1039/D5FB00303B

517 thereby reaching the consumer expectations.¹¹¹

518 **Table 4.** Various devices and their functions involved in intelligent food packaging.

Intelligent packaging devices		Examples	Functions	Reference
1. Indicators	Freshness and ripeness indicators	Sensor label from FQSI (Food quality sensor international Inc)	Used to detect biogenic amines.	72
	Time-temperature indicators	Visual indicators. TTI/RFID tag Fresh check	Detect any internal and external changes in the food's temperature and also carries data for product identification.	72
	Gas indicators	Water vapour indicators, CO ₂ indicators, O ₂ indicators.	Detect any kind of changes in internal atmosphere of packages. Monitor changes in gas composition.	112
	pH indicator	pH sensitive dyes	Make food safer for customers by indicating its quality.	113
2. Sensors	Fluorescence based oxygen sensors.	O ₂ xyDot®	Detects any changes in the concentration of oxygen in the packages.	114
	Biosensors.	Toxin guard	Can detect pathogens	72
	Gas sensors.	Potentiometric CO ₂ sensors.	The most sophisticated method available for measuring O ₂ in package headspace.	112
	Oxygen sensors	Piezoelectric crystal sensors.	These sensors are utilized to know the amount of O ₂ in Modified atmosphere packaging.	114

3. Smart packaging devices	Barcodes	UPC (Universal product code). RSS expand barcode. RSS-14 stacked omnidirectional barcode. PDF 417	These are three common type of data carriers which encode larger data in reduced forms. Carry information about the product.	112
	RFID (Radio frequency identification tags)		Traceability, product identification, promotion, security.	72
	NFC chips (Near field communication)		Anti-counterfeiting, cold-chain tracking, consumer engagement, freshness monitoring authentication	100, 106-108

520 **4. Challenges**

521 While novel packaging has great promise for increasing traceability, safety, and
522 sustainability, it also confronts significant challenges that must be solved. In order to
523 improve food quality, nutrition, and shelf life while reducing environmental effect, it is
524 crucial to include a variety of biomaterials, sensors, biodegradable materials,
525 nanotechnology, essential oils, and plant extracts when developing novel food
526 packaging (NFP) systems. NFP represents the future of packaging technology and
527 includes smart, green, and active technologies that enhance food longevity and
528 consumer health.¹¹⁵

529 **4.1 Integration Challenges and Synergistic Potential of Smart Systems**

530 It becomes economically untenable for low-margin items to integrate technology like
531 sensors, RFID tags, and indicators since they dramatically increase packing costs,
532 frequently surpassing the traditional threshold of 10% of the whole product value and
533 occasionally accounting for 50% to 100% of the product cost.¹¹ Particularly in supply
534 chains that are fragmented, many intelligent technologies struggle to seamlessly
535 interface with traditional IT, manufacturing, or logistical systems.¹¹⁶ Including sensors,
536 batteries, and electronic parts makes recycling more difficult and can increase
537 packaging waste, which goes against sustainability objectives.⁷² By providing precise
538 information on product quality that can deter theft and minimise food waste, smart
539 packaging technologies improve supply chain systems through real-time monitoring and
540 traceability. Experts from a variety of disciplines must work together in a
541 multidisciplinary manner to integrate them into conventional packaging. The successful
542 use of technology can be facilitated by the application of supply chain management
543 principles.¹¹⁷

544 **4.2 Functionality: Designing Integrated Antimicrobial-Sensor Platforms**

545 When microbial activity is still low, some antimicrobial drugs are released too soon, wasting [View Article Online](#)
DOI: 10.1039/D5FB00303B

546 their effectiveness during the crucial later stages of storage or spoiling.¹¹⁸ In order for packaging
547 to both detect deterioration or risk and take action to stop spoiling or pathogen growth,
548 integrated antimicrobial–sensor platforms combine real-time sensing of the package/food
549 environment (temperature, gases, pH, metabolites, or microbial markers) with active
550 antimicrobial responses (controlled release, contact-killing surfaces, or triggering preservative
551 delivery). By focusing treatments just where necessary, this hybrid "sense-and-respond" strategy
552 can decrease waste, increase safety, and prolong shelf life.¹¹⁹

553 Among the integration strategies are:

554 1. Films with passive antimicrobials (contact-killing/constant release).
555 2. Controlled-release, stimuli-responsive systems- that only release antimicrobials in response to
556 sensor-detected conditions (such as a temperature increase, pH change, or gas signature)
557 minimize needless exposure to active agents and increase their efficacy.¹²⁰

558 4.3 Regulatory and Safety Considerations for Smart Materials

559 Strict regulatory scrutiny is triggered when active agents, particularly nanomaterials or
560 novel chemicals, are used in packaging (e.g., FDA in the U.S., Novel Food Laws in the
561 EU). Prior to commercialization, extensive safety testing and compliance are
562 necessary.¹²¹ Smart packaging must be evaluated for chemical and microbiological risks
563 (including nanomaterials and antimicrobials), obtain the proper pre-market
564 authorizations or notifications, adhere to food-contact regulations (safety, migration,
565 labeling, and traceability), and meet standards for recyclability, occupational safety, and
566 data/privacy when devices gather information¹²²

567 4.4 Economic Feasibility and Consumer Acceptance:

568 The creation of environmentally friendly smart packaging, such as biodegradable
569 sensors, is still in its infancy and is not yet generally accessible. A key factor in

570 determining market success is consumer perception. According to studies, perceived safety, affordability, usefulness, trust, and environmental impact all influence how widely smart packaging is used.¹²³ Customers may discard perfectly safe food due to misinterpretations of color-changing freshness indications, eroding brand credibility and increasing waste.¹¹ A number of variables, including production cost, scalability, material availability, and market value, affect the economic viability of smart packaging technologies, such as active, intelligent, and antimicrobial-sensor systems. Although these technologies have the potential to decrease food waste, increase shelf life, and improve supply-chain transparency, their uptake is frequently hindered by the high cost of materials and manufacturing, as well as difficulties integrating with current packaging systems.^{124,5}

581 Another important consideration is scalability. Through mass printing methods, technologies such as printed electronics and biodegradable biopolymer sensors are demonstrating promise in reducing production costs. For smart packaging to be commercially successful, cooperation between material scientists, food producers, and technology suppliers is essential.¹²⁵

586 **5. Applications**

587 Chitosan and zinc oxide (ZnO) nanocomposites have demonstrated encouraging outcomes; for example, coatings containing chitosan–ZnO nanoparticles significantly decreased *E. coli* in cheeses, while ZnO-based pad absorbents eradicated *Campylobacter jejuni* from raw chicken meat.¹²⁶ These packaging types release antimicrobial compounds (such as organic acids or essential oils) in response to microbial development, particularly for meat products. Optimizing release kinetics-based activation of antimicrobial drugs at the appropriate time to maximize efficacy remains a challenge. The development of intelligent systems such as time temperature

595 indicators (TTIs), gas sensors, RFID, and colorimetric indicators for food safety was
View Article Online
DOI: 10.1039/D5FB00303B

596 examined in this article. It emphasizes antibacterial methods and chromogenic
597 indicators based on natural compounds.¹¹⁸ The biosensors use enzymes, antibodies,
598 antigens, phages, or nucleic acids to detect volatile substances with excellent selectivity,
599 such as H₂S, NH₃, and CO₂. Examples from the commercial world include "Toxin
600 GuardTM" and "Flex Alert" for infections such as *Salmonella*, *Listeria*, and *E.
601 coli*.¹²⁷ Optical sensors are used to detect colour changes, temperature variations, or gas
602 to keep an eye on spoiling. Examples of technologies used in produce include "Fresh
603 Tag®," "Sensor QTM," and "Food Sentinel System".¹²⁷ Electrochemical sensors are
604 used to monitor the pH, oxygen content, and chemical composition of meat and dairy
605 products. For example, they can identify trace amounts of gases or additives by
606 monitoring changes in electrode signals.¹²⁷ Bio-based solutions, which are mostly used
607 for perishable goods like meat, fish, and shellfish, give information on how fresh a
608 product is. The most researched choices for creating bio-based sensors were the
609 pigments betalains, curcumin, and anthocyanins, which are typically derived from fruits
610 and plants and their waste. When combined with a package, these pigments can provide
611 the biopolymer some activity, extending the shelf life of the goods being packaged.
612 They also have antibacterial and antioxidant qualities.¹²⁸ Because of their antibacterial
613 qualities, chemically produced nanoparticles such as nano-Ag, ZnONPs, TiO₂NPs, and
614 CuONPs are utilized in coatings and packaging films. For safety and environmental
615 considerations, green synthesis techniques are becoming more and more popular.
616 Superior mechanical, barrier, and antibacterial qualities are provided by complex
617 composites, gold nanoparticles, and nanocrystalline cellulose.¹²⁹ The use of sensors,
618 nanomaterials, and other intelligent elements into active and intelligent packaging
619 systems has demonstrated great promise in prolonging food products' shelf lives while

620 preserving their quality and safety. By enabling the real-time monitoring of crucial
621 parameters like temperature, humidity, and gas composition, the integration of Artificial
622 Intelligence (AI) and the Internet of Things (IoT) into packaging systems holds
623 revolutionary promise. Supply chains may cut down on food waste, enhance storage
624 conditions, and guarantee fresher items by using predictive AI algorithms to evaluate
625 this data and forecast shelf life, detect quality degradation, and predict spoilage.
626 Furthermore, by offering real-time lifecycle data, improving recycling efficiency, and
627 lowering contamination in waste streams, sustainable solutions like recyclable, sensor-
628 embedded materials, such RFID tags on biodegradable substrates can completely
629 transform waste management.¹¹

630 By keeping an eye on and preserving ideal circumstances, intelligent packaging plays a
631 critical role in increasing the shelf life of perishable goods. To keep a constant
632 temperature and stop spoiling, it uses Gas Regulation Modified Atmosphere Packaging
633 (MAP), active cooling systems, and humidity control desiccants. By identifying
634 anomalies early, this technology also improves food safety by avoiding the consumption
635 of spoilt or dangerous goods. By guaranteeing the safety and freshness of perishable
636 goods, intelligent packaging increases consumer trust and saves money for
637 manufacturers, retailers, and customers. Additionally, it uses sophisticated sensors for
638 real-time monitoring and early problem detection, and it displays the product's freshness
639 visually. Reducing food waste and satisfying the rising demand for perishable items that
640 are safe, fresh, and of excellent quality depend on this creative strategy.¹³⁰ A brief
641 overview of applications of active and intelligent packaging has been demonstrated in
642 the **Figure 7**.

644 **Figure 7:** Overview of applications of active and intelligent packaging technologies
645 (Created by Biorender).

646 Eco-friendly packaging options are being adopted by businesses in an effort to lessen
647 their carbon footprint. Among the environmentally friendly choices are temperature-
648 sensitive packaging, NFC tags, QR codes, biodegradable materials, and compostable
649 film. In addition to improving sustainability and convenience, these solutions close the
650 gap between technology and customer demands, spurring innovation in the dynamic
651 market.¹³⁰

652 **Conclusions**

653 Passive containment solutions have gradually given way to active, intelligent platforms
654 that combine antimicrobial agents and sensor technology in food packaging
655 advancements. Foodborne pathogens can be decreased, shelf life can be increased, and
656 chemical preservatives can be reduced with antimicrobial packaging. In the meantime,

657 real-time food safety, quality, and storage condition monitoring is made possible by
658 sensor-integrated packaging. Large-scale commercialization is still hampered by issues
659 including consumer acceptance, cost-effectiveness, material compatibility, regulatory
660 approval, and environmental sustainability, despite these encouraging advancements. To
661 further the field of antimicrobial chemicals and nanosensors in food, future research
662 should concentrate on standardization, safety evaluations, scalability, sustainability,
663 circular economy strategies, intelligent data integration, and consumer-centric research.
664 This entails creating standardized testing procedures, creating affordable,
665 environmentally friendly materials, fusing sensing technology with digital platforms,
666 and comprehending customer attitudes. The next generation of sensor-enabled and
667 antimicrobial packaging can go from lab prototypes to commercially feasible,
668 environmentally friendly solutions by tackling these research priorities. In addition to
669 improving food safety and quality, these developments will support international
670 initiatives to cut down on food waste and guarantee a robust food supply chain.
671 Sustainable and environmentally friendly food packaging systems are essential.

672 **Authors' contribution**

673 PR, KVR: Conceptualization, Writing - Original Draft, Software; BMV, AA, PPV,
674 GGDDSV: Formal analysis, Investigation, Data curation; NRM, RP: Writing – Original
675 Draft, Writing – Review and Editing, Formal analysis, Methodology.

676 **Conflicts of interest**

677 The authors declare that they have no conflict of interest.

678 **Data availability**

679 All the data is presented within the manuscript itself.

680 **Acknowledgements**

681 PR, KVR, BMV, AA, PPV, and GGDDSV are thankful to Jawaharlal Nehru Article Online
682 Technological University of Hyderabad (Kukatpally, Hyderabad, India) for encouraging DOI: 10.1039/D5FB00303B
683 throughout this work.

684 **References:**

685

686 1. N. Halonen, P. S. Pálvölgyi, A. Bassani, C. Fiorentini, R. Nair, G. Spigno
687 and K. Kordas, Bio-based smart materials for food packaging and sensors—a
688 review, *Frontiers in materials*, 2020, **7**, 82.

689 2. S. Roy, T. Ghosh, W. Zhang and J.-W. Rhim, Recent progress in PBAT-
690 based films and food packaging applications: A mini-review, *Food
691 Chemistry*, 2024, **437**, 137822.

692 3. G. L. Robertson, *Food packaging: principles and practice*, CRC press, 2005.

693 4. D. Schaefer and W. M. Cheung, Smart packaging: opportunities and
694 challenges, *Procedia Cirp*, 2018, **72**, 1022-1027.

695 5. M. Vanderroost, P. Ragaert, F. Devlieghere and B. De Meulenaer, Intelligent
696 food packaging: The next generation, *Trends in food science & technology*,
697 2014, **39**, 47-62.

698 6. X. He, H. Deng and H.-m. Hwang, The current application of
699 nanotechnology in food and agriculture, *Journal of food and drug analysis*,
700 2019, **27**, 1-21.

701 7. Z. Berk, in *Food Process Engineering and Technology (Third Edition)*, ed.
702 Z. Berk, Academic Press, 2018, DOI: <https://doi.org/10.1016/B978-0-12-812018-7.00027-0>, pp. 625-641.

703 8. J. Muncke, Food Packaging Materials, Food Packaging Forum, *Journal*,
704 2012.

705 9. Restuccia, D., Spizzirri, U. G., Parisi, O. I., Cirillo, G., Curcio, M., Iemma,
706 F., ... & Picci, N. (2010). New EU regulation aspects and global market of
707 active and intelligent packaging for food industry applications. *Food
708 control*, **21**(11), 1425-1435.

709 10. Yildirim, S., Röcker, B., Pettersen, M. K., Nilsen-Nygaard, J., Ayhan, Z.,
710 Rutkaite, R., ... & Coma, V. (2018). Active packaging applications for
711 food. *Comprehensive Reviews in food science and food safety*, **17**(1), 165-
712 199.

713 11. Mkhari, T., Adeyemi, J. O., & Fawole, O. A. (2025). Recent advances in the
714 fabrication of intelligent packaging for food preservation: a
715 review. *Processes*, **13**(2), 539.

716 12. P. M. Gorde, D. R. Dash, S. K. Singh and P. Singha, Advancements in
717 sustainable food packaging: A comprehensive review on utilization of
718 nanomaterials, machine learning and deep learning, *Sustainable Chemistry
719 and Pharmacy*, 2024, **39**, 101619.

720

721 13. I. S. Arvanitoyannis and A. C. Stratakos, Application of modified
722 atmosphere packaging and active/smart technologies to red meat and
723 poultry: a review, *Food and Bioprocess Technology*, 2012, **5**, 1423-1446.

724 14. T. Bolumar, M. L. Andersen and V. Orlien, Antioxidant active packaging for
725 chicken meat processed by high pressure treatment, *Food Chemistry*, 2011,
726 **129**, 1406-1412.

727 15. E. Drago, R. Campardelli, M. Pettinato and P. Perego, Innovations in smart
728 packaging concepts for food: An extensive review, *foods*, 2020, **9**, 1628.

729 16. P. Prasad and A. Kochhar, Active packaging in food industry: a review,
730 *Journal of Environmental Science, Toxicology and Food Technology*, 2014,
731 **8**, 1-7.

732 17. K. K. Gaikwad and Y. S. Lee, Current scenario of gas scavenging systems
733 used in active packaging-A review, *Korean J Packag Sci Technol*, 2017, **23**,
734 109-117.

735 18. K. K. Gaikwad, S. Singh and Y. S. Negi, Ethylene scavengers for active
736 packaging of fresh food produce, *Environmental Chemistry Letters*, 2020,
737 **18**, 269-284.

738 19. C. Vilela, M. Kurek, Z. Hayouka, B. Röcker, S. Yildirim, M. D. C. Antunes,
739 J. Nilsen-Nygaard, M. K. Pettersen and C. S. Freire, A concise guide to
740 active agents for active food packaging, *Trends in Food Science &*
741 *Technology*, 2018, **80**, 212-222.

742 20. I. Ahmed, H. Lin, L. Zou, A. L. Brody, Z. Li, I. M. Qazi, T. R. Pavase and L.
743 Lv, A comprehensive review on the application of active packaging
744 technologies to muscle foods, *Food Control*, 2017, **82**, 163-178.

745 21. Y. Byun, D. Darby, K. Cooksey, P. Dawson and S. Whiteside, Development
746 of oxygen scavenging system containing a natural free radical scavenger and
747 a transition metal, *Food chemistry*, 2011, **124**, 615-619.

748 22. P. Upadhyay, M. Zubair, M. Roopesh and A. Ullah, An overview of
749 advanced antimicrobial food packaging: emphasizing antimicrobial agents
750 and polymer-based films, *Polymers*, 2024, **16**, 2007.

751 23. M. Thirupathi Vasuki, V. Kadirvel and G. Pejavara Narayana, Smart
752 packaging—An overview of concepts and applications in various food
753 industries, *Food Bioengineering*, 2023, **2**, 25-41.

754 24. S. Yadav and P. K. Dutta, Moisture-Absorbent Food Packaging Systems and
755 the Role of Chitosan, *Smart Food Packaging Systems: Innovations and*
756 *Technology Applications*, 2024, 169-193.

757 25. P. Suppakul, J. Miltz, K. Sonneveld and S. W. Bigger, Active packaging
758 technologies with an emphasis on antimicrobial packaging and its
759 applications, *Journal of food science*, 2003, **68**, 408-420.

760 26. R. Patel, J. Prajapati and S. Balakrishnan, 2015.

761 27. J. Wyrwa and A. Barska, Packaging as a source of information about food
762 products, *Procedia Engineering*, 2017, **182**, 770-779.

763 28. I. Majid, M. Thakur and V. Nanda, Innovative and safe packaging
764 technologies for food and beverages: updated review, *Innovations in*
765 *technologies for fermented food and beverage industries*, 2018, 257-287.

766 29. E. Latou, S. Mexis, A. Badeka, S. Kontakos and M. Kontominas, Combined
767 effect of chitosan and modified atmosphere packaging for shelf life
768 extension of chicken breast fillets, *LWT-Food science and Technology*, 2014,
769 **55**, 263-268.

770 30. A. Lopez-Rubio, E. Almenar, P. Hernandez-Muñoz, J. M. Lagarón, R.
771 Catalá and R. Gavara, Overview of active polymer-based packaging
772 technologies for food applications, *Food Reviews International*, 2004, **20**,
773 357-387.

774 31. Y. Wyser, M. Adams, M. Avella, D. Carlander, L. Garcia, G. Pieper, M.
775 Rennen, J. Schuermans and J. Weiss, Outlook and challenges of
776 nanotechnologies for food packaging, *Packaging Technology and Science*,
777 2016, **29**, 615-648.

778 32. A. Etxabide, D. Mojío, P. Guerrero, K. de la Caba and J. Gómez-Estaca,
779 Chitin nanowhisker-containing photo-crosslinked antimicrobial gelatin films,
780 *Food Hydrocolloids*, 2024, **147**, 109371.

781 33. M. Gumienna and B. Górná, Antimicrobial food packaging with
782 biodegradable polymers and bacteriocins, *Molecules*, 2021, **26**, 3735.

783 34. P. M. Davidson, J. N. Sofos and A. L. Branen, *Antimicrobials in food*, CRC
784 press, 2005.

785 35. R. Gyawali and S. A. Ibrahim, Natural products as antimicrobial agents,
786 *Food control*, 2014, **46**, 412-429.

787 36. P. M. Davidson and M. A. Harrison, Resistance and adaptation to food
788 antimicrobials, sanitizers, and other process controls, *Food Technology-*
789 *Champaign Then Chicago-*, 2002, **56**, 69-78.

790 37. R. M. Raybaudi-Massilia, J. Mosqueda-Melgar and O. Martin-Beloso,
791 Antimicrobial activity of essential oils on *Salmonella enteritidis*, *Escherichia*
792 *coli*, and *Listeria innocua* in fruit juices, *Journal of food protection*, 2006,
793 **69**, 1579-1586.

794 38. C. Burel, A. Kala and L. Purevdorj-Gage, Impact of pH on citric acid
795 antimicrobial activity against Gram-negative bacteria, *Letters in applied*
796 *microbiology*, 2021, **72**, 332-340.

797 39. L. R. Beuchat, Microbial stability as affected by water activity, *Cereal*
798 *Foods World*, 1981, **26**, 345-349.

799 40. L. Leistener and G. Gould, Hurdle Technologies: Combination Treatments
800 for Food Stability, Safety and Quality, *Journal*, 2002.

801 41. F. Devlieghere, L. Vermeiren and J. Debevere, New preservation
802 technologies: possibilities and limitations, *International dairy journal*, 2004,
803 **14**, 273-285.

804 42. V. K. Juneja, H. P. Dwivedi and X. Yan, Novel natural food antimicrobials,
805 *Annual review of food science and technology*, 2012, **3**, 381-403.

806 43. R. M. Syamaladevi, J. Tang, R. Villa-Rojas, S. Sablani, B. Carter and C. Campbell, Influence of water activity on thermal resistance of microorganisms in low-moisture foods: a review, *Comprehensive Reviews in Food Science and Food Safety*, 2016, **15**, 353-370.

807 44. M. C. Giannakourou, I. Semenoglou, M. Arvaniti, E. Dermesolouoglou and P. Taoukis, Effect of Temperature and Water Activity on the Quality Kinetics of Packaged Fish Powder During Storage, *Food and Bioprocess Technology*, 2025, 1-16.

808 45. J. R. Westlake, M. W. Tran, Y. Jiang, X. Zhang, A. D. Burrows and M. Xie, Biodegradable active packaging with controlled release: principles, progress, and prospects, *ACS Food Science & Technology*, 2022, **2**, 1166-1183.

809 46. A. H. A. Nor, M. T. M. Jalil, E.-K. Seow, M. H. M. Idris and M. F. Z. R. Yahya, Antimicrobial packaging: mechanisms, materials, incorporation methods, strategies, biodegradability, and smart innovations—a comprehensive review, *Food Materials Research*, 2025, **5**.

810 47. R. V. Wagh, R. Priyadarshi, A. Khan, Z. Riahi, J. S. Packialakshmi, P. Kumar, S. N. Rindhe and J.-W. Rhim, The role of active packaging in the defense against foodborne pathogens with particular attention to bacteriophages, *Microorganisms*, 2025, **13**, 401.

811 48. L. Kumar, P. Tyagi, L. Lucia and L. Pal, Innovations in Edible Packaging Films, Coatings, and Antimicrobial Agents for Applications in Food Industry, *Comprehensive Reviews in Food Science and Food Safety*, 2025, **24**, e70217.

812 49. S. Latif, A. Latif, W. Waheed, A. Shankar, J. Balaji, A. Imran, M. S. Naseer, F. Tariq, F. Islam and A. B. Kinki, Effect of intelligent controlled release anti-microbial packaging in food preservation, *Food Production, Processing and Nutrition*, 2025, **7**, 33.

813 50. R. Rodríguez-Ramos, A. Santana-Mayor, A. Herrera-Herrera, B. Socas-Rodríguez and M. Rodríguez-Delgado, Recent advances in the analysis of plastic migrants in food, *TrAC Trends in Analytical Chemistry*, 2024, **178**, 117847.

814 51. P. Purnama, T. Samanta, R. T. K. Dewi, I. Iswaldi, M. Samsuri, Z. S. Saldi, M. Y. Tsang, L. J. Diguna and M. D. Birowosuto, Recent Advances in Antimicrobial Food Packaging From Bio-Based Polymers: A Comprehensive Review, *Journal of Applied Polymer Science*, 2025, e57275.

815 52. R. Chawla, S. Sivakumar and H. Kaur, Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements—a review, *Carbohydrate Polymer Technologies and Applications*, 2021, **2**, 100024.

816 53. B. Malhotra, A. Keshwani and H. Kharkwal, Antimicrobial food packaging: Potential and pitfalls, *Frontiers in microbiology*, 2015, **6**, 611.

817 54. J. Brockgreitens and A. Abbas, Responsive food packaging: Recent progress and technological prospects, *Comprehensive Reviews in Food Science and Food Safety*, 2016, **15**, 3-15.

Open Access Article. Published on 02 December 2025. Downloaded on 1/13/2026 10:51:48 PM.
This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

850 55. L. Vermeiren, F. Devlieghere and J. Debevere, Effectiveness of some recent *View Article Online*
851 antimicrobial packaging concepts, *Food additives & contaminants*, 2002, **19**,
852 163-171.

853 56. A. Moeini, P. Pedram, E. Fattahi, P. Cerruti and G. Santagata, Edible
854 polymers and secondary bioactive compounds for food packaging
855 applications: Antimicrobial, mechanical, and gas barrier properties,
856 *Polymers*, 2022, **14**, 2395.

857 57. K. Kraśniewska, S. Galus and M. Gniewosz, Biopolymers-based materials
858 containing silver nanoparticles as active packaging for food applications—a
859 review, *International Journal of Molecular Sciences*, 2020, **21**, 698.

860 58. V. R. Lebaka, P. Ravi, M. C. Reddy, C. Thummala and T. K. Mandal, Zinc
861 oxide nanoparticles in modern science and technology: multifunctional roles
862 in healthcare, environmental remediation, and industry, *Nanomaterials*,
863 2025, **15**, 754.

864 59. S. Ataei, P. Azari, A. Hassan, B. Pingguan-Murphy, R. Yahya and F.
865 Muhamad, Essential oils-loaded electrospun biopolymers: A future
866 perspective for active food packaging, *Advances in Polymer Technology*,
867 2020, **2020**, 9040535.

868 60. R. Priyadarshi and J.-W. Rhim, Chitosan-based biodegradable functional
869 films for food packaging applications, *Innovative Food Science & Emerging
870 Technologies*, 2020, **62**, 102346.

871 61. M.-I. Socaci, M. Fogarasi, C. A. Semeniuc, S. A. Socaci, M. A. Rotar, V.
872 Mureşan, O. L. Pop and D. C. Vodnar, Formulation and characterization of
873 antimicrobial edible films based on whey protein isolate and tarragon
874 essential oil, *Polymers*, 2020, **12**, 1748.

875 62. S. Madival, R. Auras, S. P. Singh and R. Narayan, Assessment of the
876 environmental profile of PLA, PET and PS clamshell containers using LCA
877 methodology, *Journal of Cleaner Production*, 2009, **17**, 1183-1194.

878 63. S. Nessi, L. Rigamonti and M. Grossi, Packaging waste prevention
879 activities: A life cycle assessment of the effects on a regional waste
880 management system, *Waste Management & Research*, 2015, **33**, 833-849.

881 64. V. Siracusa, P. Rocculi, S. Romani and M. Dalla Rosa, Biodegradable
882 polymers for food packaging: a review, *Trends in food science &
883 technology*, 2008, **19**, 634-643.

884 65. R. Ribeiro-Santos, M. Andrade, N. R. de Melo and A. Sanches-Silva, Use of
885 essential oils in active food packaging: Recent advances and future trends,
886 *Trends in food science & technology*, 2017, **61**, 132-140.

887 66. Y. Liu, D. E. Sameen, S. Ahmed, J. Dai and W. Qin, Antimicrobial peptides
888 and their application in food packaging, *Trends in Food Science &
889 Technology*, 2021, **112**, 471-483.

890 67. N. Lakshmayya, A. K. Mishra, Y. K. Mohanta, J. Panda, B. Naik, B. Mishra
891 and R. S. Varma, Essential oils-based nano-emulsion system for food safety
892 and preservation: Current status and future prospects, *Biocatalysis and
893 Agricultural Biotechnology*, 2023, **53**, 102897.

894 68. S. Vesković, in *Natural Food Preservation: Controlling Loss, Advancing Safety*, Springer, 2025, pp. 193-238.

895 69. B. Masoumi, M. Tabibiazar, Z. Golchinfar, M. Mohammadifar and H. Hamishehkar, A review of protein-phenolic acid interaction: reaction mechanisms and applications, *Critical Reviews in Food Science and Nutrition*, 2024, **64**, 3539-3555.

900 70. T. Fadiji, M. Rashvand, M. O. Daramola and S. A. Iwarere, A review on antimicrobial packaging for extending the shelf life of food, *Processes*, 2023, **11**, 590.

903 71. A. Dodero, A. Escher, S. Bertucci, M. Castellano and P. Lova, Intelligent packaging for real-time monitoring of food-quality: Current and future developments, *Applied Sciences*, 2021, **11**, 3532.

906 72. P. Müller and M. Schmid, Intelligent packaging in the food sector: A brief overview. *Foods*, 8 (1), 16, *Journal*, 2019.

908 73. M. Nami, M. Taheri, J. Siddiqui, I. A. Deen, M. Packirisamy and M. J. Deen, Recent progress in intelligent packaging for seafood and meat quality monitoring, *Advanced Materials Technologies*, 2024, **9**, 2301347.

911 74. K. Biji, C. Ravishankar, C. Mohan and T. Srinivasa Gopal, Smart packaging systems for food applications: a review, *Journal of food science and technology*, 2015, **52**, 6125-6135.

914 75. J. Kerry, M. O'grady and S. Hogan, Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review, *Meat science*, 2006, **74**, 113-130.

917 76. E. Kress-Rogers, *Handbook of biosensors and electronic noses: medicine, food, and the environment*, CRC Press, 2024.

919 77. Tohamy, H. A. S. (2025). Beet root carbon dots cellulose sulfate film as a novel naked eye pH sensor for chromium and bacterial detection in tomatoes. *Scientific Reports*, 15(1), 30235.

922 78. Tohamy, H. A. S. (2025). A novel anthocyanins hydroxyethyl cellulose film for intelligent chicken meat packaging with mechanical study, DFT calculations and molecular Docking study. *Scientific Reports*, 15(1), 27311.

925 79. Tohamy, H. A. S. (2025). Fullerene-functionalized cellulosic hydrogel biosensor with bacterial turn-on fluorescence response derived from carboxymethyl cellulose for intelligent food packaging with DFT calculations and molecular docking. *Gels*, 11(5), 329.

929 80. K. L. Yam, P. T. Takhistov and J. Miltz, Intelligent packaging: concepts and applications, *Journal of food science*, 2005, **70**, R1-R10.

930 81. E. C. Alocilja and S. M. Radke, Market analysis of biosensors for food safety, *Biosensors and Bioelectronics*, 2003, **18**, 841-846.

931 82. W. T. Bodenhamer, G. Jackowski and E. Davies, Surface binding of an immunoglobulin to a flexible polymer using a water soluble varnish matrix, *Journal*, 2004.

936 83. I. A. Bulushi, S. Poole, H. C. Deeth and G. A. Dykes, Biogenic amines in fish: roles in intoxication, spoilage, and nitrosamine formation—a review, *Critical reviews in food science and nutrition*, 2009, **49**, 369-377.

937 84. L. Prester, Biogenic amines in fish, fish products and shellfish: a review, *Food Addit Contam Part A Chem Anal Control Expo Risk Assess*, 2011, **28**, 1547-1560.

938 85. K. F. Kayani, D. Ghafoor, S. J. Mohammed and O. B. Shatery, Carbon dots: synthesis, sensing mechanisms, and potential applications as promising materials for glucose sensors, *Nanoscale Advances*, 2024.

939 86. J. G. López, M. Muñoz, V. Arias, V. García, P. C. Calvo, A. O. Ondo-Méndez, D. C. Rodríguez-Burbano and F. Fonthal, Electrochemical and Optical Carbon Dots and Glassy Carbon Biosensors: A Review on Their Development and Applications in Early Cancer Detection, *Micromachines*, 2025, **16**, 139.

940 87. W. He, D. Zhang, Y. Gao, D. Li, G. Xing, H. Mou and J. Song, Biomass-derived carbon quantum dots as fluorescent probes for biosensing: a review, *Chemical Communications*, 2025.

941 88. T. Stuart, X. Yin, S. J. Chen, M. Farley, D. T. McGuire, N. Reddy, R. Thien, S. DiMatteo, C. Fumeaux and P. Gutruf, Context-aware electromagnetic design for continuously wearable biosymbiotic devices, *Biosensors and Bioelectronics*, 2023, **228**, 115218.

942 89. G. Dell'Erba, The scale-up of printed electronics is more than just technical challenges, *Nature Reviews Electrical Engineering*, 2024, **1**, 634-636.

943 90. M. Ghaani, C. A. Cozzolino, G. Castelli and S. Farris, An overview of the intelligent packaging technologies in the food sector, *Trends in Food Science & Technology*, 2016, **51**, 1-11.

944 91. Tohamy, H. A. S. (2025). A novel natural chromogenic visual and luminescent sensor platform for Multi-Target analysis in strawberries and shape memory applications. *Foods*, 14(16), 2791.

945 92. H.-A. S. Tohamy, Novel intelligent naked-eye food packaging pH-sensitive and fluorescent sulfur, nitrogen-carbon dots biosensors for tomato spoilage detection including DFT and molecular docking characterization, *International Journal of Biological Macromolecules*, 2025, 143330.

946 93. N. Mate, Pranav, K. Nabeela, N. Kaur and S. M. Mobin, Insight into the modulation of carbon-dot optical sensing attributes through a reduction pathway, *ACS omega*, 2022, **7**, 43759-43769.

947 94. Ilic, I. K., Lamanna, L., Cortecchia, D., Cataldi, P., Luzio, A., & Caironi, M. (2022). Self-powered edible defrosting sensor. *ACS sensors*, 7(10), 2995-3005.

948 95. Dudnyk, I., Janeček, E. R., Vaucher-Joset, J., & Stellacci, F. (2018). Edible sensors for meat and seafood freshness. *Sensors and Actuators B: Chemical*, 259, 1108-1112.

978 96. K. Sweta, Top 10 Smart Packaging Technologies Revolutionizing Food, <https://www.foodinfotech.com/top-10-smart-packaging-technologies-revolutionizing-food/>. Accessed 21 June 2025.). DOI: 10.1039/D5FB00303B

979 December 2024.

980

981 97. Liao, Y., Zhang, R., & Qian, J. (2019). Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. *RSC advances*, *9*(50), 29154-29172.

982

983

984 98. Yue, C., Wang, J., Wang, Z., Kong, B., & Wang, G. (2023). Flexible printed electronics and their applications in food quality monitoring and intelligent food packaging: Recent advances. *Food Control*, *154*, 109983.

985

986

987 99. Agron, D. J. S., & Kim, W. S. (2024). 3D printing technology: role in safeguarding food security. *Analytical chemistry*, *96*(11), 4333-4342.

988

989 100. B. Kuswandi, Y. Wicaksono, Jayus, A. Abdullah, L. Y. Heng and M. Ahmad, Smart packaging: sensors for monitoring of food quality and safety, *Sensing and Instrumentation for Food Quality and Safety*, 2011, **5**, 137-146.

990

991

992 101. C. E. Realini and B. Marcos, Active and intelligent packaging systems for a modern society, *Meat science*, 2014, **98**, 404-419.

993

994 102. Z. Chen and C. Lu, Humidity sensors: a review of materials and mechanisms, *Sensor letters*, 2005, **3**, 274-295.

995

996 103. H. Farahani, R. Wagiran and M. N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review, *Sensors*, 2014, **14**, 7881-7939.

997

998

999 104. B. Kuswandi, Freshness sensors for food packaging. Reference Module in Food Science, *Journal*, 2017.

1000

1001 105. E. Liu, Z. Cai, Y. Ye, M. Zhou, H. Liao and Y. Yi, An overview of flexible sensors: Development, application, and challenges, *Sensors*, 2023, **23**, 817.

1002

1003 106. E. Poyatos-Racionero, J. V. Ros-Lis, J.-L. Vivancos and R. Martinez-Manez, Recent advances on intelligent packaging as tools to reduce food waste, *Journal of cleaner production*, 2018, **172**, 3398-3409.

1004

1005

1006 107. O. Urbano, A. Perles, C. Pedraza, S. Rubio-Arraez, M. L. Castelló, M. D. Ortola and R. Mercado, Cost-effective implementation of a temperature traceability system based on smart RFID tags and IoT services, *Sensors*, 2020, **20**, 1163.

1007

1008

1009

1010 108. A. Naik, H. S. Lee, J. Herrington, G. Barandun, G. Flock, F. Güder and L. Gonzalez-Macia, Smart packaging with disposable NFC-enabled wireless gas sensors for monitoring food spoilage, *ACS sensors*, 2024, **9**, 6789-6799.

1011

1012

1013 109. A. U. Alam, P. Rathi, H. Beshai, G. K. Sarabha and M. J. Deen, Fruit quality monitoring with smart packaging, *Sensors*, 2021, **21**, 1509.

1014

1015 110. F. Versino, F. Ortega, Y. Monroy, S. Rivero, O. V. López and M. A. García, Sustainable and bio-based food packaging: A review on past and current design innovations, *Foods*, 2023, **12**, 1057.

1016

1017

1018 111. J. H. Han, A review of food packaging technologies and innovations, *Innovations in food packaging*, 2014, 3-12.

1019

1020 112. W. Heo and S. Lim, A review on gas indicators and sensors for smart food View Article Online
DOI: 10.3390/D5FB00303B
1021 packaging, *Foods*, 2024, **13**, 3047.

1022 113. E. Balbinot-Alfaro, D. V. Craveiro, K. O. Lima, H. L. G. Costa, D. R. Lopes
1023 and C. Prentice, Intelligent packaging with pH indicator potential, *Food
1024 engineering reviews*, 2019, **11**, 235-244.

1025 114. Mohebi and L. Marquez, Intelligent packaging in meat industry: An
1026 overview of existing solutions, *Journal of food science and technology*,
1027 2015, **52**, 3947-3964.

1028 115. Ahari, H., & Soufiani, S. P. (2021). Smart and active food packaging:
1029 Insights in novel food packaging. *Frontiers in Microbiology*, **12**, 657233.

1030 116. T. K. Dasaklis, T. G. Voutsinas, G. T. Tsoulfas and F. Casino, A systematic
1031 literature review of blockchain-enabled supply chain traceability
1032 implementations, *Sustainability*, 2022, **14**, 2439.

1033 117. Chen, S., Brahma, S., Mackay, J., Cao, C., & Aliakbarian, B. (2020). The
1034 role of smart packaging system in food supply chain. *Journal of food
1035 science*, **85**(3), 517-525.

1036 118. J. Zhang, J. Zhang, L. Zhang, Z. Qin and T. Wang, Review of Recent
1037 Advances in Intelligent and Antibacterial Packaging for Meat Quality and
1038 Safety, *Foods*, 2025, **14**, 1157.

1039 119. Du, H., Sun, X., Chong, X., Yang, M., Zhu, Z., & Wen, Y. (2023). A review
1040 on smart active packaging systems for food preservation: Applications and
1041 future trends. *Trends in Food Science & Technology*, **141**, 104200.

1042 120. Hou, T., Ma, S., Wang, F., & Wang, L. (2023). A comprehensive review of
1043 intelligent controlled release antimicrobial packaging in food
1044 preservation. *Food Science and Biotechnology*, **32**(11), 1459-1478.

1045 121. X. Wang, Y. Wang, H. Zhu, S. Chen, J. Xue, C. Shen, Z. Xiao and Y. Luo,
1046 Emerging strategies for food preservation: recent advances and challenges in
1047 nanotechnology for edible coatings, *Agricultural Products Processing and
1048 Storage*, 2025, **1**, 13.

1049 122. Author: Ekaterina Karamfilova EPRS | European Parliamentary Research
1050 Service Ex-Post Impact Assessment Unit PE 581.411 – May
1051 2016.[https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU\(2016\)581411](https://www.europarl.europa.eu/thinktank/en/document/EPRS_STU(2016)581411)

1053 123. Young, E., Mirosa, M., & Bremer, P. (2020). A systematic review of
1054 consumer perceptions of smart packaging technologies for food. *Frontiers in
1055 Sustainable Food Systems*, **4**, 63.

1056 124. Aday, M. S., & Yener, U. (2015). Assessing consumers' adoption of active
1057 and intelligent packaging. *British Food Journal*, **117**(1), 157-177.

1058 125. Otoni, C. G., Azeredo, H. M., Mattos, B. D., Beaumont, M., Correa, D. S., &
1059 Rojas, O. J. (2021). The food–materials nexus: next generation bioplastics
1060 and advanced materials from agri-food residues. *Advanced
1061 Materials*, **33**(43), 2102520.

1062 126. A. A. Anvar, H. Ahari and M. Ataee, Antimicrobial properties of food [View Article Online](#)
1063 nanopackaging: A new focus on foodborne pathogens, *Frontiers in*
1064 *microbiology*, 2021, **12**, 690706. [DOI: 10.3389/fmicb.2021.690706](#)

1065 127. Y. Palanisamy, V. Kadirvel and N. D. Ganesan, Recent technological
1066 advances in food packaging: sensors, automation, and application,
1067 *Sustainable Food Technology*, 2025.

1068 128. C. Rodrigues, V. G. L. Souza, I. Coelhoso and A. L. Fernando, Bio-based
1069 sensors for smart food packaging—current applications and future trends,
1070 *Sensors*, 2021, **21**, 2148.

1071 129. A. Muthu, D. H. Nguyen, C. Neji, G. Törös, A. Ferroudj, R. Atieh, J.
1072 Prokisch, H. El-Ramady and Á. Béni, Nanomaterials for Smart and
1073 Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory
1074 Perspectives, *Foods*, 2025, **14**, 2657.

1075 130. M. W. Alam, J. V. Kumar, M. Awad, P. Saravanan, N. S. Al-Sowayan, P.
1076 Rosaiah and M. S. Nivetha, Emerging trends in food process engineering:
1077 integrating sensing technologies for health, sustainability, and consumer
1078 preferences, *Journal of Food Process Engineering*, 2025, **48**, e70035.

1079

Data availability

All the data is presented within the manuscript itself.

