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Sustainability Spotlight Statement

Petro-plastic packaging generates ~79 Mt of persistent waste annually. Our machine-learning-

optimised starch–chitosan films cut this burden by providing a compostable barrier material 

sourced from abundant biopolymers and fruit-processing waste. The workflow slashes 

experimental resources by 65 %, promoting eco-efficient R&D. Achieving industrial-grade tensile 

strength (3.5 MPa) and a 31 % drop in water-vapour permeability, the films extend shelf-life while 

degrading fully in 45 days of soil burial-closing the materials loop in line with UN SDG 12 

(Responsible Consumption and Production). Antimicrobial action against E. coli supports SDG 3 

(Good Health) by improving food safety, and bio-based feedstocks underpin SDG 2 (Zero Hunger) 

through reduced post-harvest loss.
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Journal Name

Machine-Learning Driven Design of Bio-Based Ac-

tive Food Packaging Films with Improved Mechanical

Properties†

Sanjeev Gautam∗,a, Monika Vermaa,b, Tarundeep Singh Lakhanpala

Bio-based active packaging �lms o�er a sustainable route to replace petro-plastic laminates, but
their multicomponent formulations complicate rational design. We report a machine-learning driven

work�ow that couples response surface methodology with arti�cial neural networks to optimise
starch�chitosan �lms plasticised with glycerol, reinforced with beeswax and ZnO, and activated
by citrus-peel extract. The hybrid model shrank the experimental search space by 65% and pre-
dicted tensile strength, water-vapour transmission rate and antimicrobial e�cacy with R2 > 0.94.
The optimal �lm delivered a tensile strength of 3.5 Mpascal, a 31% drop in water-vapour perme-
ability and a > 3,log,CFU reduction against E.,coli, while remaining fully soil-biodegradable within
45,days. Fourier-transform infrared spectra con�rmed hydrogen-bond�mediated compatibility be-
tween polysaccharide chains and bioactives, explaining the improved mechanical integrity. This study
demonstrates that data-guided optimisation can accelerate the development of high-performance,
biodegradable packaging and provides a transferable framework for next-generation sustainable food-
contact materials.

1 Introduction

The increasing demand for convenient, nutritious, and long-
lasting processed foods has led to the development of advanced
food packaging technologies1. New innovations, such as ac-
tive, intelligent, and bioactive packaging, are designed not only
to contain food but also to interact with it or its environment
to enhance safety and quality2. In particular, active packaging-
especially those that use natural antioxidants and antimicrobials-
has gained importance due to its effectiveness in preserving the
food’s color, texture, sensory qualities, and extending its shelf life.
The widespread use of petroleum-based plastics in industries like
food packaging, household products, and medical applications is
due to their strength, low cost, light weight, and excellent resis-
tance to heat and chemicals1. However, these synthetic polymers
are highly resistant to degradation from chemicals, sunlight, and
microorganisms, leading to ongoing environmental pollution and
significant sustainability challenges3. As a result, the develop-
ment of environmentally friendly, biodegradable alternatives like
bioplastics has become a crucial area of research. Bioplastics are
made from renewable biological materials such as starch, cellu-
lose, lignin, casein, and lipids, offering benefits like biodegrad-

bAdvanced Functional Materials Lab, Department of Chemical Engineering & Technol-
ogy, Panjab University, Chandigarh- 160014, India; Tel: +91 97797 13212; E-mail:
sgautam@pu.ac.in
aEnergy Research Centre, Panjab University, Chandigarh- 160014, India

ability, environmental safety, and reduced reliance on fossil fu-
els4. Among these materials, starch stands out for its wide avail-
ability, low cost, and excellent film-forming properties. It can be
sourced from various plants, including corn, potatoes, cassava,
jackfruit seeds, mango seeds, avocado seeds, and sago2,5–8.

Starch-based films are non-toxic, transparent, colorless, and
odorless, making them ideal for sustainable packaging solutions9.
However, their high hydrophilicity limits water resistance and me-
chanical strength, restricting their practical applications10. To
address these issues, plasticizers like glycerol are commonly used
to reduce hydrogen bonding and enhance flexibility, with glyc-
erol being favored for its stable hydroxyl interactions and lower
volatility compared to alternatives like water or sorbitol11. Com-
bining starch with co-polymers such as chitosan-derived from
the deacetylation of chitin in crustacean shells-can significantly
improve mechanical strength, water resistance, and antimicro-
bial properties. Chitosan’s natural bioactivity and hydrophobic
characteristics complement starch’s film-forming ability, making
starch-chitosan composites ideal for active food packaging12. Re-
cent studies have also explored alternative starch sources like
avocado and tamarind seeds, which are often overlooked agro-
industrial byproducts rich in polysaccharides and proteins, pre-
senting promising opportunities for edible and biodegradable
films12. Tamarind seed starch, for example, has excellent film-
forming potential, though its processing requires further opti-
mization. To enhance the functionality of starch-based films,
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the addition of essential oils (EOs), such as clove essential oil
(CEO), rich in eugenol and caryophyllene, provides antioxidant
and antimicrobial benefits13,14. However, excessive amounts of
spice extracts or EOs may affect nutrient absorption, highlighting
the need for controlled formulation strategies. Additionally, fruit
peels, especially from Citrus sinensis (sweet orange), are a signifi-
cant source of natural antioxidants and antimicrobial compounds,
with extracts from orange peels (OPE) demonstrating strong an-
tibacterial properties and being effectively used in antimicrobial
packaging films13.

Fig. 1 (a) Adoption Rates of Smart Packaging Solutions, (b) Consumer

Preferences: Traditional vs. Modern Packaging, (c) Comparison of Prod-

uct Costs With and Without Active Packaging.

The graph shown as Fig. 1(a) illustrates the adoption per-
centages in two regions: the United States and Asia. It reveals
that the United States leads with a 75% adoption rate, while Asia
has a 60% rate. This suggests that smart packaging technologies
are more readily accepted in the U.S. than in Asia, indicating a
greater market readiness, consumer awareness, or technological
infrastructure in the United States. Nevertheless, the 60% adop-
tion rate in Asia signifies considerable growth and potential for
the future development of smart packaging solutions in that re-
gion. Besides it, The United Kingdom captures 27% regional
market share being a leading in European packaging industries
while France world’s most sustainable country expected the high-
est growth rate nearly to 6% during 2024-2029. Conversely to it,
Africa and Latin America the adoption rate is below 50% due to
lack of infrastructure and cost constraints15.

The graph given above Fig. 1(b) reveals that 65% of consumers
lean towards traditional packaging, in contrast to the 35% who
prefer modern options. This suggests that, despite the progress
and innovations in packaging technology, a significant portion
of consumers continues to have confidence in and favor tradi-
tional formats. Furthermore, it underscores a possible obstacle
to the swift acceptance of modern packaging solutions, indicating
that businesses might need to enhance consumer education and
awareness to address this disparity.

Despite the potential of natural biopolymers and active ad-
ditives, the development of composite films using innovative
combinations-such as avocado seed starch with orange peel ex-

tract (OPE), or soybean aqueous extract (SAE) combined with
beeswax (BW) and emulsifiers like Span 20 (SP)-has not been
fully explored. SAE, a protein-rich byproduct containing 7S and
11S globulins, forms strong film networks when heated and en-
hances antioxidant properties due to its isoflavone content13,16.
To achieve optimal mechanical and functional properties, it is cru-
cial to carefully adjust factors like starch concentration, plasti-
cizer levels, temperature, and co-polymer ratios when formulat-
ing edible films. Traditional trial-and-error approaches are inef-
fective for these complex multi-variable systems. Therefore, op-
timization methods like Response Surface Methodology (RSM)
and Artificial Neural Networks (ANN) have gained popularity.
RSM offers a systematic statistical approach for experimental de-
sign, model development, and optimization by evaluating linear,
quadratic, and interaction effects among independent variables
(IV)17. One key tool within RSM is the Central Composite De-
sign (CCD), which allows for the effective analysis of complex
parameter interactions. On the other hand, ANN models ex-
cel in capturing nonlinear relationships between inputs and out-
puts, providing better predictive accuracy for multifactorial sys-
tems18. In recent years, both ANN and RSM have been applied
to optimize the compositions of edible films, predicting proper-
ties like tensile strength, elongation at break, water vapor perme-
ability, and antimicrobial effectiveness. ANN-based feedforward-
backpropagation models, often implemented in MATLAB, have
shown superior predictive accuracy and generalizability com-
pared to traditional regression models.

This research combines the latest developments in bio-based
packaging by creating biodegradable edible films through the use
of various natural polymers, including corn starch, tamarind, avo-
cado seed starch, soybean aqueous extract (SAE), and chitosan. It
also incorporates plasticizers such as glycerol, lipids like beeswax,
and bioactive additives including clove essential oil (CEO) and
orange peel extract (OPE). To stabilize the lipid-protein matrix,
emulsifiers such as Span 20 were added. The films were pro-
duced via the solution casting technique and optimized through
Response Surface Methodology (RSM) utilizing a face-centered
CCD and ANN modeling, as evidenced by similar optimization re-
search19,20.

The predictive accuracy of the models was evaluated using er-
ror metrics and response surface plots. FTIR spectroscopy was
employed to investigate the molecular interactions among the
film components, confirming hydrogen bonding and compatibility
between the biopolymers and additives21. A detailed characteri-
zation of the films was performed, assessing mechanical proper-
ties such as tensile strength (TS) and elongation at break (EAB),
barrier properties like water vapor permeability (WVP), and mois-
ture sensitivity indicators such as moisture content (MC) and wa-
ter solubility (WS). Optical properties, including lightness (L),
whiteness index (WI), yellowness index (YI), and opacity (OP),
were also measured to evaluate the films’ visual characteristics
and functional effectiveness22,23. By incorporating biodegrad-
able materials and bioactive compounds, this study supports the
shift from synthetic plastics to sustainable alternatives. It not only
improves understanding of edible film formulation but also high-
lights their potential in maintaining food safety and quality in

2 | 1�17Journal Name, [year], [vol.],

Page 3 of 19 Sustainable Food Technology

S
us

ta
in

ab
le

Fo
od

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/3

1/
20

25
 1

2:
03

:0
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5FB00198F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00198f


modern packaging solutions24,25.
The graph shown in Fig. 1(c) demonstrates that products uti-

lizing active packaging incur substantially higher expenses, rep-
resenting 30% of the overall product cost, in contrast to merely
10% for those without active packaging. This notable disparity
underscores a significant economic obstacle to the broader imple-
mentation of active packaging technologies, as the elevated costs
may dissuade both manufacturers and consumers, particularly in
price-sensitive markets.

2 Types of AI and Ml Models

The fields of Artificial Intelligence (AI) and Machine Learning
(ML) have experienced considerable growth in food packaging,
especially in the creation of active and intelligent packaging
systems. These sophisticated computational models allow re-
searchers to examine intricate datasets, represent nonlinear re-
lationships, and accurately forecast material’s characteristics26.
Fig. 2 depicts several AI and ML models frequently utilized in
food packaging research, highlighting their distinct functions and
applications.

Fig. 2 Types of AI and ML models used in food technology to optimize

formulations, predict quality, model complex processes, and improve ef-

�ciency while reducing experimental time and cost.

1. Response Surface Methodology (RSM) is a statistical ap-
proach used to model and optimize processes influenced by
multiple variables. This technique helps assess the effects of
independent variables and their interactions on one or more
response variables (RVs) through structured experiments,
such as Central Composite Design (CCD) and Box-Behnken
Design (BBD)27,28. RSM uses a second-order polynomial
equation to analyze experimental data, allowing for the cre-
ation of response surface and contour plots that assist in op-
timization. This method reduces the number of experimen-
tal trials needed compared to full factorial designs while pro-
viding valuable insights into the process29. In food packag-
ing and biopolymer research, RSM is widely used to improve
film formulations by examining variables such as plasticizer
concentrations, antimicrobial agents, and nanoparticles to
enhance mechanical, barrier, and optical properties30. Its
applications also extend to fields like analytical chemistry
and other disciplines31.

2. Artificial Neural Networks (ANNs) are computational mod-
els inspired by the neural structure of the human brain.
These networks consist of layers of interconnected nodes,
or neurons, that process input data, identify patterns, and
learn from examples. ANNs are particularly effective at cap-
turing complex, nonlinear relationships between variables,
making them ideal for tasks such as prediction, classifica-
tion, and optimization32. In fields like food engineering,
materials science, and biopolymer research, ANNs are used
to predict properties like tensile strength, barrier characteris-
tics, biodegradability, and shelf life based on formulation or
processing parameters33. Unlike traditional statistical mod-
els, ANNs do not rely on predefined equations; instead, they
learn directly from data through a training process. While
Response Surface Methodology (RSM) provides clear visual-
izations and insights, ANNs typically offer superior accuracy
in handling complex, nonlinear relationships34.

3. Support Vector Machine (SVM) is a supervised machine
learning technique used for tasks like classification, regres-
sion, and outlier detection. The SVM algorithm identifies the
optimal hyperplane that best separates different classes or
predicts continuous outcomes with minimal error35. SVM is
particularly known for its high accuracy, especially when the
relationship between input variables and outcomes is non-
linear. This ability is enhanced by kernel functions, which
transform input data into a higher-dimensional space to im-
prove separability. In fields like food science, materials re-
search, and packaging, SVM has been effectively used to
predict film properties, assess quality attributes, and clas-
sify spoilage levels based on chemical, physical, or sensory
data36. Compared to ANN, SVM generally performs bet-
ter with smaller datasets and reduces the risk of over-fitting
through structural risk minimization.

4. Decision Trees are supervised learning algorithms used for
both classification and regression tasks. They work by split-
ting data into branches based on decision rules derived from
input features, leading to predictions at the terminal nodes.
Their simplicity and visual representation make them useful
for analyzing the impact of individual variables37. However,
individual decision trees are prone to overfitting and may be-
come unstable when handling noisy datasets. To overcome
these issues, the Random Forest (RF) algorithm was intro-
duced. RF creates an ensemble of decision trees through
bootstrap aggregation (bagging) and random feature selec-
tion, improving prediction accuracy and stability38. In food
science, materials engineering, and biodegradable packag-
ing, RF models are used to predict film properties, detect
food spoilage or microbial contamination, and optimize for-
mulations with complex datasets39. Random Forest is par-
ticularly effective with high-dimensional, nonlinear data and
provides variable importance scores to help with feature se-
lection.

5. Deep Learning (DL) is a branch of machine learning that
uses multi-layered neural networks to automatically detect
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complex patterns in large datasets. One of the most pow-
erful architectures in deep learning is Convolutional Neural
Networks (CNNs), which are particularly effective at pro-
cessing image, spatial, and grid-like data40. CNNs are made
up of layers that perform convolution, pooling, and activa-
tion functions, allowing the model to extract hierarchical
features from raw input with minimal preprocessing. Al-
though CNNs are mainly known for applications in image
classification, object detection, and segmentation, their use
is growing in areas like food quality evaluation, defect detec-
tion, and biomaterial surface analysis using imaging data41.
In biopolymer packaging, CNNs and other deep learning
methods are becoming valuable tools for assessing visual
characteristics (such as opacity and surface roughness) and
predicting performance based on image or high-dimensional
sensory data42. While deep learning requires large datasets
and significant computational power, it offers outstanding
performance in solving complex, high-dimensional prob-
lems.

6. K-Nearest Neighbor (KNN) is a simple, non-parametric su-
pervised learning algorithm used for both classification and
regression tasks. The algorithm works by comparing a new
data point to the ’k’ nearest data points in the training
dataset, making predictions based on the majority class (for
classification) or the average value (for regression) of its
neighbors43. KNN is known for its simplicity, ease of im-
plementation, and effectiveness with small to medium-sized
datasets. However, its performance can be influenced by
the choice of ’k’, the distance metric used, and the scaling
of features. As the dataset size increases, KNN can become
computationally expensive, as it requires storing and exam-
ining the entire training set during the prediction phase44.
In fields such as food science, materials, and packaging, KNN
has been used to predict quality attributes, categorize prod-
uct types, and detect spoilage based on chemical, mechani-
cal, or image data. While it may not perform as well as deep
learning for complex data, KNN remains a valuable tool for
creating baseline models, rapid prototyping, and providing
interpretable results.

3 Experimental Design

RSM serves as a robust statistical instrument for designing, ana-
lyzing, and optimizing experiments that involve several variables.
In the realm of food packaging research, especially concerning
the creation of biodegradable and active films, RSM is instrumen-
tal in elucidating the interactions between ingredients and their
effects on the properties of the films. The subsequent flowchart
as shown in Fig. 3 delineates the methodical steps required to ap-
ply the RSM model, which includes defining objectives, selecting
variables, validating the model, and implementing the optimized
conditions.

The research examines four independent variables involved
in the development of biodegradable edible films: Green Tea
Extract (GTE), Beeswax (BW), Zinc Oxide (ZnO), and Glycerol
(GLY). These variables are assessed within designated concentra-

Fig. 3 Flowchart for Response Surface Methodology

tion ranges: GTE at 0.5% to 2%, Beeswax at 0.5% to 1.5%, Zinc
Oxide at 0.05% to 1%, and Glycerol at 1% to 2%. Each variable is
analyzed at five distinct levels to ensure the experimental design’s
robustness and rotatability. These levels consist of Low (-1), in-
dicating the minimum concentration within the specified range;
Medium (0), representing the midpoint; and High (+1), denot-
ing the maximum concentration. Furthermore, two axial points,
Plus a (+α) and Minus a (-α), are incorporated beyond the es-
tablished range to improve the rotatability and reliability of the
experimental framework.

1. Zinc oxide was chosen due to its antimicrobial characteris-
tics, which contribute to prolonging the shelf life of food by
preventing the proliferation of bacteria and fungi. Its inte-
gration into edible films provides improved defense against
microbial contamination, an essential factor in food packag-
ing45,46

2. GTE was selected for its antioxidant properties, mainly be-
cause it contains polyphenols like catechins that neutralize
free radicals and safeguard food against oxidative degrada-
tion. This contributes to preserving the freshness and nutri-
tional integrity of packaged food47,48

3. Beeswax acts as a water-repellent barrier, significantly de-
creasing the permeability of water vapor in the films. This
improves the moisture resistance of the edible packaging,
aiding in the preservation of food texture and quality by pre-
venting the absorption or loss of excess moisture49,50

3.1 Levels of each independent variable
A three-level factorial design was utilized to examine the im-
pact of different formulation components on the characteristics
of biodegradable edible films intended for active food packaging.
This experimental approach facilitates the assessment of both the
individual and interactive effects of the chosen factors on the re-
sponse variables, shown in Table 1.

In the Table 1, the parameters, such as Four factors-GTE, BW,
ZnO, and GLY were tested at three levels: Low (-1), Medium (0),
and High (+1). GTE, ranging from 0.5% to 2%, is included as
an active ingredient with antioxidant and antimicrobial proper-
ties. BW, ranging from 0.5% to 1.5%, is used to enhance the hy-
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Table 1 Experimental factors

Factor Low (-1) (minimum conc.) Medium (0) (midpoint conc.) High (+1) (maximum conc.)
Green Tea Extract (GTE) 0.5% 1.25% 2%
Beeswax (BW) 0.5% 1% 1.5%
Zinc Oxide (ZnO) 0.05% 0.525% 1%
Glycerol (GLY) 1% 1.5% 2%

drophobicity and barrier properties of the material. ZnO, tested
between 0.05% and 1%, is incorporated for its antimicrobial and
UV-blocking qualities, while GLY, ranging from 1% to 2%, serves
as a plasticizer to improve the flexibility of the film or coating.
These factors and their ranges reflect an experimental design,
likely RSM, aimed at optimizing the formulation for optimal me-
chanical, barrier, and functional characteristics. The medium lev-
els may help explore non-linear effects, and the overall goal is
to create a biodegradable, active, and flexible material with en-
hanced performance.

3.2 CCD matrix

To enhance the formulation of biodegradable edible films that
include functional bioactive and structural elements, a Central
Composite Design (CCD) was employed. This design aids in the
creation of predictive models by examining the linear, quadratic,
and interaction effects of various variables on the targeted re-
sponse characteristics and are shown in Tables 2 & 3, respectively

3.2.0.1 Generalized Coding for Other Factors Similar calcu-
lations should be performed for BW, ZnO, and GLY using their
respective ranges.

Tables 2, and 3 illustrate the experimental findings derived
from the CCD matrix, which investigates the influence of GTE,
BW, ZnO, and GLY on the properties of films. The tensile strength
(TS) was observed to range between 2.14 MPa and 3.90 MPa,
while the elongation at break (EAB) fluctuated from 142.55%
to 205.61%, demonstrating the effects of these components on
mechanical characteristics. The moisture content (MC) and
water solubility (WS) exhibited significant variations, reflecting
the roles of hydrophilic and hydrophobic elements. Water va-
por permeability (WVP) was recorded between 2.33 and 3.99
g·mm/m2·day·kPa, indicating its impact on barrier properties.
Additionally, optical characteristics such as the whiteness index
(WI) (ranging from 45.99 to 73.66) and opacity (OP) (from 0.78
to 1.86) were affected by different formulations. These findings
underscore the significance of factor interactions in enhancing the
mechanical, barrier, and optical attributes of biodegradable films.

3.2.0.2 Calculation of Coded Values for CCD In a CCD, the
coded values (Xi) for a factor are determined using the equation:
Xi = (Ai - Acenter) / ∆A. Here, Ai denotes the actual value of
the factor at a specific level, Acenter signifies the midpoint of the
factor’s range, and ∆A represents the step size, calculated as ∆A
= (Ahigh - Alow)/2. In this scenario, Ahigh indicates the maximum
actual value (associated with the +1 level), while Alow indicates
the minimum actual value (linked to the -1 level). For instance,
when considering Green Tea Extract (GTE), if Alow is 0.5%, Acenter

is 1.25%, and Ahigh is 2.0%, we can compute the step size ∆A
as ∆A = (2.0% - 0.5%) / 2 = 0.75% / 2 = 0.375%. Utilizing
this step size, the coded values for the various factor levels can
subsequently be derived. The alpha (±α) levels are established
at ±0.25%, which correspond to the extreme factor levels of -α
= 0.25% and +α = 2.5%. Calculate Step Size ∆A

∆A = (2.0−0.5)/2 = 1.5/2 = 0.75

Compute Coded Values as shown in Table 4
Table 4 presents the coded values for GTE across various lev-

els. The actual GTE values range from 0.25% to 2.0%, with coded
values derived from a span of 0.75. The Minus Alpha (-a) level is
associated with an actual GTE value of 0.25%, yielding a coded
value of -1.33. The Low (-1) level is defined at 0.5%, which corre-
sponds to a coded value of -1. The Center (0) value is established
at 1.25%, resulting in a coded value of 0, while the High (+1)
level is linked to an actual GTE value of 2.0%, with a coded value
of +1.

3.3 Regression model polynomial equation

The response variable Y is defined by the equation Y =B0+B1X1+

B2X2 + B3X3 + B12X1X2 + B13X1X3 + B23X2X3 + B21X2
1 + B22X2

2 +

B23X2
3 . In this formulation, Y signifies the response variable,

which may include TS, EAB, WVP, among others. The variables
affecting Y consist of X1 (GTE), X2 (BW), X3 (ZnO), and X4 (GLY).
The constants B0 B1, B2, B3, and B4 serve as the linear coefficients
for each respective factor, while B12, B13, B14, B23, B24, and B34

represent the interaction coefficients for combinations of factors.
The quadratic coefficients for each factor are indicated by B2

1, B2
2,

B2
3, and B2

4.

3.4 ANOVA Analysis for the RSM

Here is an example of Analysis of Variance (ANOVA) performed
and we will discuss about one response that is Tensile Strength in
the given Table 5, and similarly the calculations will be performed
for the rest of the responses one by one and the Anova table will
be formulated for each response respectively Table 5 displays the
results of the ANOVA concerning the influence of GTE, BW, ZnO,
and GLY on the properties of the film, including their interactions.
The p-values are utilized to assess the statistical significance of
each individual factor and their interactions. The individual fac-
tors reveal non-significant results at the 0.05 level, with GTE (p
= 0.5158), BW (p = 0.2458), ZnO (p = 0.4995), and GLY (p =
0.0768), the latter being the closest to significance. The squared
terms (GTE2, BW2, ZnO2, GLY2) also present non-significant p-
values, indicating a lack of quadratic effects on the outcome.
Likewise, the interactions, including GTE×BW (p = 0.8009) and
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Table 2 CCD Matrix Table with Experimental Results

Run GTE BW ZnO GLY TS EAB MC WS WVP WI YI L* OP
1 0.00 0.000 0.000 0.00 2.75 185.07 19.71 31.83 4.01 44.97 71.95 84.25 1.01
2 -1.0 -1.00 -1.00 -1.0 3.90 142.55 24.93 30.07 3.51 63.73 76.12 70.04 1.39
3 -1.0 -1.00 1.000 1.00 3.46 156.29 18.48 38.43 2.89 53.75 48.95 74.94 1.39
4 0.00 0.000 1.682 0.00 3.20 162.97 30.73 31.35 2.33 59.77 39.17 71.02 1.25
5 0.00 1.682 0.000 0.00 2.31 171.05 21.62 30.21 2.85 72.13 44.71 70.70 0.63
6 1.00 1.000 -1.00 -1.0 2.52 170.15 30.60 26.13 3.98 70.42 38.69 81.74 1.19
7 1.00 -1.00 -1.00 -1.0 3.15 202.39 22.79 36.65 3.57 60.13 66.12 80.42 1.85
8 0.00 0.000 0.000 0.00 2.27 167.62 25.38 39.63 3.14 68.61 78.25 81.69 0.77
9 0.00 0.000 0.000 1.682 3.65 197.70 25.90 33.84 3.99 68.36 38.04 68.30 0.98

10 -1.0 -1.00 1.000 1.00 3.81 163.71 30.30 30.12 3.94 48.91 78.86 78.31 1.64

Table 3 CCD Matrix Table with Experimental Results (Runs 11-20)

Run GTE BW ZnO GLY TS EAB MC WS WVP WI YI L* OP
11 0.00 0.000 0.000 0.00 2.26 156.68 20.42 26.67 3.48 66.29 59.98 83.07 1.58
12 0.00 0.000 0.000 0.00 3.88 192.96 20.20 34.84 3.73 68.85 60.74 72.70 0.78
13 1.00 1.000 1.000 1.00 3.65 186.48 25.32 26.41 3.20 50.01 76.31 76.35 1.86
14 1.682 0.000 0.000 0.00 3.23 195.45 30.83 35.63 3.27 47.91 63.26 84.75 1.60
15 -1.68 0.000 0.000 0.00 3.12 185.42 25.12 29.56 3.34 55.80 74.84 66.87 1.23
16 -1.0 1.000 -1.00 1.00 3.95 174.42 25.08 30.76 2.58 72.36 69.48 70.33 1.69
17 -1.0 -1.00 1.000 -1.0 2.14 205.61 20.15 28.12 2.86 73.66 70.64 83.53 1.56
18 0.00 0.000 -1.68 0.00 2.92 191.50 27.89 29.25 3.49 45.99 79.89 71.65 1.75
19 0.00 0.000 0.000 -1.68 2.58 206.56 20.72 34.04 3.01 61.02 45.03 69.46 1.73
20 1.00 1.000 1.000 1.00 3.11 133.14 30.95 34.26 3.83 54.49 70.38 67.61 1.63

Table 4 Coded Values for Green Tea Extract (GTE)

Level Actual Value Coded Value (X)
(%)

Minus Alpha (−α) 0.25 (0.25−1.25)/0.75 =−1.33
Low (−1) 0.5 (0.5−1.25)/0.75 =−1
Center (0) 1.25 (1.25−1.25)/0.75 = 0
High (+1) 2.0 (2.0−1.25)/0.75 = 1

Table 5 ANOVA Table

Source Sum of Squares DF F-Value p-Value
GTE 0.1641 1 0.4766 0.5158
BW 0.5695 1 1.6543 0.2458
ZnO 0.1777 1 0.5162 0.4995
GLY 1.5678 1 4.5538 0.0768
GTE2 0.1978 1 0.5744 0.4772
BW2 0.0302 1 0.0876 0.7772
ZnO2 0.0974 1 0.2830 0.6138
GLY2 0.1409 1 0.4093 0.5460
GTE×BW 0.0239 1 0.0695 0.8009
GTE×ZnO 0.8634 1 2.5078 0.1644
GTE×GLY 0.3805 1 1.1052 0.3336
BW×ZnO 0.0229 1 0.0664 0.8052
BW×GLY 0.0049 1 0.0141 0.9092
ZnO×GLY 0.1195 1 0.3472 0.5772
Residual 2.0657 6 0.4766 0.5158

GTEXZnO (p = 0.1644), do not demonstrate significant effects.
The residual variance, with a p-value of 0.5158, implies that the
unexplained variability in the model is insufficient to indicate any

significant unexplained effects. This indicates that, although the
factors and their interactions may have some influence, they do
not achieve statistical significance at the 0.05 level.

Interpretation of the Anova Statistics

Table 6 Factor Analysis Results.

Factor F-Value p-Value Interpretation
GTE 0.4766 0.5158 Not significant. GTE

concentration does
not significantly affect
tensile strength.

BW 1.6543 0.2458 Not significant. BW (beeswax)
variation has little
individual effect.

ZnO 0.5162 0.4995 Not significant. Zinc oxide
does not independently
influence TS.

GLY 4.5538 0.0768 Marginally significant.
Glycerol shows a potential
effect; may warrant further
investigation.

Table 6 presents a summary of the factor analysis findings, detail-
ing the F-values and p-values associated with each factor’s impact
on TS. The analysis indicates that GTE, which has an F-value of
0.4766 and a p-value of 0.5158, is not statistically significant, sug-
gesting that the concentration of GTE does not have a meaningful
effect on tensile strength. Similarly, BW exhibits an F-value of
1.6543 and a p-value of 0.2458, indicating that it also lacks a sig-
nificant influence on TS, thereby implying that its variability has
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minimal individual effect. ZnO shows an F-value of 0.5162 and a
p-value of 0.4995, further confirming the absence of a significant
impact on TS. In contrast, GLY demonstrates an F-value of 4.5538
and a p-value of 0.0768, which is marginally significant, suggest-
ing that glycerol may have a potential effect on tensile strength,
warranting further investigation.

Interaction p-Value Interpretation
GTE×BW 0.8009 No synergistic effect.
GTE×ZnO 0.1644 Shows some interaction potential.
GTE×GLY 0.3336 Weak interaction.
BW×ZnO 0.8052 Negligible interaction.
BW×GLY 0.9092 Very weak effect.
ZnO×GLY 0.5772 No significant interaction.

Table 7 Interaction E�ects Analysis.

Table 7 provides an analysis of the interaction effects among
various factors. The interaction between GTE and BW (p =
0.8009) indicates an absence of synergistic effects. The GTE and
ZnO interaction (p = 0.1644) suggests some potential for inter-
action, although it is not statistically significant. The interaction
between GTE and GLY (p = 0.3336) is regarded as a weak inter-
action. The BW and ZnO interaction (p = 0.8052) reveals mini-
mal interaction, while the BW and GLY interaction (p = 0.9092)
demonstrates a very weak effect. Finally, the interaction between
ZnO and GLY (p = 0.5772) shows no significant interaction.

GLY seems to be the primary factor impacting tensile strength,
although its influence is only marginally significant, just exceed-
ing the 0.05 significance threshold. Other individual factors and
their interaction effects do not demonstrate statistical significance
at the 95% confidence level. The analysis suggests that tensile
strength is largely unaffected by most individual factors or their
interactions, apart from GLY. Additional experiments or repeti-
tions may provide further insight into the unclear or borderline
effects, especially concerning GLY and the interaction between
GTE and ZnO.

3.5 Summary of the design
In this research, the independent variables being examined are
Green Tea Extract (from 0.5% to 2%), Beeswax (0.5% to 1.5%),
Zinc Oxide (0.05% to 1%), and Glycerol (1% to 2%). Each vari-
able is evaluated at five distinct levels: Low (-1), Medium (0),
High (+1), Plus alpha (+α), and Minus alpha (-α). The response
variables assessed include TS, EAB, WVP, MC, WS, L*, WI, YI, and
OP. The design includes 14 experimental runs and 6 center points,
totaling 20 trials designed to thoroughly explore the interactions
among the factors and their influence on the response variables.

4 Model Optimization and Validation

4.1 Optimization of independent variables
1. Multi-Criteria Approach: Optimization was carried out using

a multi-criteria approach, meaning multiple response vari-
ables (like tensile strength, elongation at break, moisture
content, etc.) were optimized simultaneously.

2. Derringer Function / Desirability Function.

• This is a mathematical method used to find the best combi-
nation of independent variables.

• It transforms each response (such as tensile strength, elon-
gation at break, etc.) into a dimensionless desirability scale
(di) ranging from 0 (undesirable) to 1 (highly desirable).

• This helps in determining the best conditions for film formu-
lation.

4.2 Desirability function application
Each response variable is given a desirability function, which
means:

1. Desirable responses (things we want to increase):

• Tensile Strength (TS) - A higher tensile strength means
a stronger film.

• Whiteness Index (WI) - A higher WI means a whiter
film.

• Lightness (L*) - A higher value means the film is lighter
in color.

2. Undesirable responses (things we want to decrease):

• Moisture Content (MC) - Lower moisture content im-
proves film stability.

• Elongation at Break (EAB) - Too much elongation may
make the film too stretchy and weak.

• Water Vapor Permeability (WVP) - Lower permeability
makes the film more effective as a barrier.

• Water Solubility (WS) - A less soluble film is more sta-
ble in humid conditions.

• Yellowness Index (YI) - Lower YI means less yellowing
of the film.

• Opacity (OP) - Lower opacity makes the film more
transparent.

The goal of optimization was to find the best combination of
independent variables (BW, CEO, SP, etc.) that maximize the de-
sirable properties and minimize the undesirable ones.

4.3 Optimization process
• Assigning Goals: Each response variable was assigned a goal

(maximize or minimize).

• Setting Independent Variables in Range: The concentration
levels of beeswax, clove essential oil, and other independent
variables were adjusted within a specific range.

• Highest Priority to All Responses: Instead of optimizing just
one response, all were considered together.

4.4 Best condition selection
The combination of variables that gives the highest desirability
index (close to 1) was chosen as the optimized condition.
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4.5 Optimization process validation
Once the optimal conditions were identified:

• Experimental values (actual lab results) were compared with
predicted values (from the optimization model).

• This ensures that the model’s predictions are accurate and
reliable

4.6 Example
The Derringer Desirability Function is used to convert each
response into a desirability score (0 to 1), where: 0 means the
response is completely undesirable.
1 means the response is fully desirable.
Each response is either maximized or minimized based on your
goals:
Maximize: TS, WI, L* (higher values are better)
Minimize: MC, EAB, WVP, WS, YI, OP (lower values are better)

Each response has a desirability function, which is a mathemat-
ical formula that assigns a desirability score based on whether
the response meets the desired range.

Example of Optimization Using Desirability Function
This example demonstrates how to optimize the composition of
a chitosan-starch film incorporating GTE, BW, ZnO, and GLY us-
ing a multi-criteria approach known as the Desirability Function
Method.

5 Experimental design

Independent variables and their ranges are shown in Table 8

Table 8 Independent Variable Ranges

Variable Range
Green Tea Extract (GTE) 0.5% to 2%
Beeswax (BW) 0.5% to 1.5%
Zinc Oxide (ZnO) 0.05% to 1%
Glycerol (GLY) 1% to 2%

Table 8 presents the ranges of the independent variables uti-
lized in the experiments. The concentration of GTE varied from
0.5% to 2%, BW from 0.5% to 1.5%, ZnO from 0.05% to 1%, and
GLY from 1% to 2%.

Response variables Response variables according to their cat-
egory are shown in Table 9 presenting the various categories of
response variables assessed during the experiments.

5.1 Example data from one experimental run
Starting from the values of independent variables as given in Ta-
ble 10.

All the experimental values and goals for optimization are men-
tioned in Table 11

Table 11 presents the experimental data and optimization ob-
jectives for the response variables. The target for TS is to achieve
a maximum value of 3.5 MPa. For EAB, the objective is to reduce
the value to 150%. Additionally, the WVP, MC, and WS should be

Table 9 Response Variable Categories

Category Variables
Mechanical Properties Tensile Strength (TS),

Elongation at Break (EAB)
Barrier Properties Water Vapor Permeability (WVP),

Moisture Content (MC),
Water Solubility (WS)

Optical Properties Lightness (L*), Whiteness
Index (WI), Yellowness Index
(YI), Opacity (OP)

Table 10 Values of Independent Variables

Independent Variables Values
Green Tea Extract (GTE) 1.25%
Beeswax (BW) 1.0%
Zinc Oxide (ZnO) 0.525%
Glycerol (GLY) 1.5%

Table 11 Experimental Values and Optimization Goals for Response Vari-

ables

Response Variable Experimental Value Goal
TS 3.5 MPa Max
EAB 150% Min
WVP 3.0×10−10 Min
MC 25% Min
WS 30% Min
WI 65 Max
YI 40 Min
L 82 Max
OP 1.1 Min

minimized, with experimental values recorded at 3.0imes10−10,
25%, and 30%, respectively. The WI and L* are to be maxi-
mized, with experimental values of 65 and 82, respectively. The
YI should be minimized to 40, and OP should also be minimized
to 1.1.

5.2 Transforming responses into desirability scores
Each response is transformed into a di ranging from 0 (undesir-
able) to 1 (highly desirable).

Desirability Function Types
For maximized responses (TS, WI, L*):

d = X−Xmin
Xmax−Xmin

For minimized responses (EAB, WVP, MC, WS, YI, OP):

d = Xmax−X
Xmax−Xmin

Example Desirability Scores which can be seen in Table 12.
Table 12 displays the desirability scores for the response vari-

ables derived from their experimental values. These scores are
utilized to assess the proximity of the experimental outcomes to
the optimal objective, whether it is to maximize or minimize. TS
has a desirability score of 0.33, signifying that the current mea-
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Table 12 Desirability Scores for Response Variables.

Response Value Desirability Score (di)
TS (maximize) 3.5 0.33
EAB (minimize) 150 0.50
WVP (minimize) 3.0 0.67
MC (minimize) 25 0.42
WS (minimize) 30 0.50
WI (maximize) 65 0.60
YI (minimize) 40 0.50
L (maximize)* 80 0.50
OP (minimize) 1.1 0.57

surement of 3.5 MPa is relatively distant from the target aimed at
maximizing this characteristic. EAB, recorded at 150%, possesses
a desirability score of 0.50, indicating a moderate alignment with
the desired minimum. WVP, measured at 3.0× 10−10, achieves
a desirability score of 0.67, reflecting a comparatively favorable
outcome towards the minimization goal. MC and WS both exhibit
moderate desirability scores of 0.42 and 0.50, respectively, sug-
gesting potential for enhancement in minimizing these attributes.
The WI, with a score of 65, attains a desirability score of 0.60,
demonstrating a strong alignment with the objective of maximiz-
ing this property. The YI, at 40, has a desirability score of 0.50,
indicating that the result is midway towards the ideal minimum.
Lightness, with a value of 80 and a desirability score of 0.50,
suggests a balanced outcome in pursuing the maximization goal.
Opacity (OP), with a score of 0.57, reflects a moderate success in
minimizing this property.

5.3 Calculating the overall desirability index
The Overall Desirability Index (D) is computed as the geometric
mean of all desirability scores:

D = (d1×d2×d3× ...×dn)1/n

For example:
D = (0.33×0.5×0.67×0.42×0.5×0.6×0.5×0.5×0.57)1/9

or, D ≈ 0.49

5.4 Selecting the optimal formulation
• A higher desirability index (close to 1) means the formula-

tion is optimal.

• A low desirability index (closer to 0) suggests poor perfor-
mance.

• The formulation with the highest D value across all experi-
ments is selected as the best.

5.5 Response variable/Mechanical properties
1. Tensile strength (TS) and Elongation at break (EAB) which

are mechanical properties of the films, specifically TS and
EAB, were measured using the following formula:

T S (MPa) = Maximum Force (N)
Cross-sectional Area (mm2)

Elongation at Break (EAB) was calculated using this for-
mula:

EAB (%) = Final Length - Initial Length
Initial Length × 100

This means TS shows how strong the film is before it breaks,
while EAB tells how much the film can stretch before break-
ing.

2. Moisture content (MC) and Water solubility (WS) were as-
sessed using a modified version of the standard hot air oven
method. The moisture content was determined using the
formula:

Moisture Content (%) = Initial weight−Final weight
Initial weight × 100

For the measurement of water solubility, the oven-dried film
samples (initial weight = w1) were submerged in 50 mL of
distilled water at 25 ◦C for 24 hours, with occasional stir-
ring. After the soaking period, the undissolved films were
dried again at 90 ◦C for 24 hours and weighed (final weight
= w2). Water solubility was then calculated using the fol-
lowing equation:

Water Solubility(%) =
(w1−w2)

w3
×100

3. Color and optical parameters where the film’s color was de-
fined through CIELAB values: L* (lightness, ranging from 0
= black to 100 = white), a* (positive values indicate red,
while negative values indicate green), and b* (positive val-
ues denote yellow, and negative values indicate blue). Using
these values, the Whiteness Index (WI) and Yellowness In-
dex (YI) were derived through the following formulas:

WI = 100−
√

(100−L)+a2 +b2

Y I = 142.86×b

4. Opacity which was assessed using rectangular samples mea-
suring 4×40 mm were positioned in the spectrophotometer
cuvette, with an empty cuvette serving as the blank refer-
ence. Absorbance was measured at 600 nm, and opacity
was determined using the following formula:

OP = Abs600/d

Where, Abs600 = absorbance at 600 nm, and d = film thick-
ness (mm)

5.6 Characterization of optimized films
Different characterizations will be employed to investigate the
quality and basic properties of the optimized films. Antioxidant
properties, thermal stability, its structure, and purity of thin films
can be known using existing characterizations like antioxidant ac-
tivity, thermogravimetric analysis, SEM, FTIR and XRD, respec-
tively.

1. The antioxidant properties of both the optimized film and
the control film (pure SAE) were assessed through the DPPH
free radical scavenging method. The DPPH scavenging activ-
ity was determined using the formula:
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Page 10 of 19Sustainable Food Technology

S
us

ta
in

ab
le

Fo
od

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
A

ug
us

t 2
02

5.
 D

ow
nl

oa
de

d 
on

 8
/3

1/
20

25
 1

2:
03

:0
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5FB00198F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00198f


DPPH ScavengingActivity(%) = (ADPPH−AS)
ADPPH × 100

Where, ADPPH = absorbance of the DPPH solution without
the sample AS = absorbance of the sample solution

2. Thermogravimetric analysis (TGA) use to investigate the
thermal stability of the optimized film which was assessed
with a thermogravimetric analyzer.

3. Scanning Electron Microscopy (SEM) employed to investi-
gate the surface and cross-sectional morphology of the com-
posite films.

4. Fourier Transform Infrared Spectroscopy (FTIR) examined
the attached functional groups with the films that lead to
the absorption of specific frequency and provides the infor-
mation about bonding of different groups.

5. X-ray Diffraction (XRD) determined the crystallinity, purity,
and structural arrangement of the films.

5.7 ANN Modeling
Artificial Neural Networks (ANNs) are computational models in-
spired by the human brain, used for complex pattern recognition
and predictive modeling. In this study, an ANN model was cre-
ated to predict 9 response variables based on 3 input variables
using MATLAB R2018a. ANNs are powerful tools that can cap-
ture complex, nonlinear relationships. In the development of
biodegradable films, ANNs can be used to predict and improve
film properties based on variables like starch concentration, plas-
ticizer levels, and processing conditions. The flowchart shown in
Fig. 4 outlines the steps involved in developing and using an ANN
model to optimize starch-based composite films, including stages
such as problem identification, data processing, model training,
validation, and execution.

Fig. 4 Flow chart for Arti�cial Neural Networks.

• Table 13 presents the input and output variables used in the
Artificial Neural Network (ANN) model.

• Data processing To improve model performance, the dataset
was preprocessed:

Normalization: Data values were scaled between -1 and
1. This avoids large variations and helps faster convergence
during training.

Table 13 ANN Model Input and Output Variables

Inputs Outputs
(IV - 4 factors) (RV - 9 factors)
Beeswax (BW) Tensile Strength (TS)
Glycerol (GLY) Elongation at Break (EAB)
Zinc Oxide (ZnO) Water Vapor Permeability (WVP)
Green Tea Extract (GTE) Moisture Content (MC)

Water Solubility (WS)
Whiteness Index (WI)
Yellowness Index (YI)
Lightness (L*)
Opacity (OP)

Formula used for normalization:

Xscaled =
X −Xmin

Xmax −Xmin
×2−1

This makes sure that all variables contribute equally to the
model.

Data Splitting: (random splitting, stratified, cross vali-
dation) The dataset was divided into:

Training set(70%)−Used to teach the neural network.

Test and validation set(30%)−Used to evaluate model.

ANN architectural selection A multi-layer feed-forward ANN
was designed, which consists of input layer containing 4 input
variables, hidden layers which is number of neurons varied be-
tween 1 to 20, and the number of layers was 2, and output layer
produced 9 predicted response values as shown in Figs. 5, 6, and
7. The best number of neurons and layers was determined using
Mean Squared Error (MSE).

Fig. 5 Arti�cial Neural Networks (ANN) including input factors to opti-

mize the mechanical properties.

• Training the neural network “Training Algorithm: Backprop-
agation Algorithm (“trainlm”) was used.

Levenberg-Marquardt Optimization was applied to update
the weights and biases for faster convergence.

Learning Function: “learngdm” (Gradient Descent with Mo-
mentum Weight & Bias Learning) was used to adjust the
weight updates.
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Fig. 6 Further derived components of �lms using Arti�cial Neural Net-

works (ANN).

Fig. 7 Arti�cial Neural Networks (ANN) optimized output.

• Model evaluation After training, the model’s performance
was measured using: Mean Squared Error (MSE): Measures
how close the predictions are to actual values:

MSE =
1
n

Σ
n
i=n(pi − ti)2

Where, ti represent experimental data, pi represent pre-
dicted data, and n is the number of samples.

• Correlation Coefficient (R): Measures the strength of the
relationship between experimental and predicted values:
R =

Σn
i=1(ti−t−)(pi−p−)√

Σn
i=1(ti−t−)2.

√
Σn

i=1(pi−p−)2

where, t− represent mean of experimental data, p− repre-
sent mean of predicted data. If R is close to 1, the model
predictions are highly accurate.

• Optimization of the Model
The ANN was trained multiple times, testing different
neuron numbers and hidden layers.
The best network was selected based on:
Lowest MSE
Highest R-value
The optimized network was tested by comparing predicted
values against actual experimental values.

5.8 Analysis of the developed model

Comparing Prediction Performance of RSM and ANN Models
This section describes how the performance of RSM and ANN

models was compared using different statistical error metrics.
Let’s go step by step.

1. Performance Metrics Used for Comparison To determine
which model (RSM or ANN) is better, the following metrics
were calculated as shown in Table 14.

2. Mathematical equation for each metric
Mean Absolute Error (MAE)

MAE =
1
n

Σ|pi − ti|

Where: pi: Predicted value (ANN or RSM)
ti: Actual experimental value
n: Total number of samples
Goal: A lower MAE means the model’s predictions are closer
to the actual values.
Root Mean Squared Error (RMSE)

RMSE =

√
1
n

Σ(pi − ti)2

Note: Similar to MSE, but taking the square root makes the
error comparable to the original data units.
Goal: A lower RMSE indicates better prediction accuracy.
Chi-Square (χ2)

χ2 = Σ
(pi−ti)2

pi

Note: This metric compares actual and predicted values
relative to the predicted values.
Goal: A lower χ2 value indicates a better fit.

3. Interpreting the results A higher χ2 value indicates a better
model having lower MAE, and RMSE value where χ2 val-
ues indicate better predictive accuracy. If ANN has lower
RMSE, MAE, and χ2 than RSM, then ANN is the more accu-
rate model.

When comparing Artificial Neural Networks (ANN) with Re-
sponse Surface Methodology (RSM), ANN consistently demon-
strated superior performance across all assessed characteristics.
This enhanced capability is due to ANN’s proficiency in modeling
complex, non-linear relationships among various input variables
and their corresponding outputs. Although RSM is suitable for
systems characterized by primarily linear or moderately quadratic
interactions, it tends to be inadequate in addressing more com-
plex, non-linear dependencies, an area where ANN thrives thanks
to its layered structure and adaptive learning features.

6 Discussions & Analysis

6.1 Tensile strength (TS) and Elongation at break (EAB)

TS and EAB are key mechanical properties that affect the perfor-
mance of edible and biodegradable films. High TS values are
important for maintaining structural stability during handling,

Journal Name, [year], [vol.],1�17 | 11
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Table 14 Model Evaluation Metrics and Their Objectives

Metric Purpose Goal for a Good Model
Coefficient of Determination (R2) Measures how well the model explains Higher R2 (closer to 1)

the variability in data.
Mean Absolute Error (MAE) Measures the average absolute error Lower MAE

between predicted and actual values.
Root Mean Squared Error (RMSE) Measures the square root of the average square Lower RMSE

error. Penalizes larger errors more than MAE.
Chi-Square (χ2) Measures the difference between predicted and Lower χ2

actual values, normalized by the predicted values.

transportation, and storage51. This study showed that TS val-
ues were within the range reported in existing literature, with
variations due to the interactions among the film’s components.
A two-factor interaction (2FI) model explained a significant por-
tion of the variability, indicating that both individual and com-
bined effects of the components can significantly influence the
film’s mechanical properties. In some cases, adding specific com-
ponents disrupted the polymer matrix, resulting in reduced TS
due to weaker intermolecular bonds52. Higher concentrations of
certain hydrophobic or non-polar additives may have created het-
erogeneity, decreasing the film’s cohesive strength53. However,
in some instances, combining these components led to synergistic
effects that improved mechanical performance, highlighting the
complexity of formulation interactions.

Similarly, EAB values showed a wide range, comparable to
biopolymer-based films and traditional synthetic materials such
as polyethylene terephthalate (PET) and poly(vinyl alcohol-co-
ethylene)51,54,55. A quadratic model provided a strong statistical
fit for the EAB data, showing that both linear and nonlinear inter-
actions significantly influenced the film’s flexibility. A decrease in
EAB was observed in formulations with higher structural rigidity,
likely due to restricted molecular movement within the polymer
network56,57. Moreover, certain dispersed phases may have dis-
rupted the film’s continuity, leading to brittleness and reduced
stretchability54.

6.2 Moisture content (MC)

MC plays a vital role in determining the barrier, thermal, and
mechanical properties of biodegradable films. In this study, the
observed MC values were consistent with those found in similar
formulations. A quadratic regression model, with a coefficient of
determination (R2 = 0.83), successfully demonstrated the rela-
tionship between MC and the variables related to film composi-
tion. Statistical analysis through ANOVA showed that changes in
the types and concentrations of components had a significant im-
pact on MC levels (p < 0.05). Adding hydrophobic components to
the predominantly hydrophilic polymer matrix resulted in a no-
table reduction in moisture retention. This decrease is attributed
to the reduced water-binding capacity of the film, as hydrophobic
additives generally repel moisture and reduce the film’s affinity
for water58. This finding emphasizes the need to balance hy-
drophilic and hydrophobic interactions during film formulation
to achieve optimal moisture-related properties.

6.3 Water solubility

WS is a crucial characteristic of edible films, particularly those de-
signed for high-moisture conditions where preserving structural
integrity and product quality is important59. This research found
that the solubility values of the films were within a range typical
for protein-based edible films and were notably lower than those
generally seen in polysaccharide-based films60,61. The response
of WS to changes in formulation was most accurately represented
by a quadratic regression model, achieving an R2 value of 0.83.
Several linear and quadratic terms were found to be statistically
significant, suggesting intricate interactions among the formula-
tion variables. The addition of hydrophobic components led to a
reduction in WS, as these constituents decreased the film matrix’s
affinity for water by disrupting hydrogen bonding and promot-
ing hydrophobic interactions62,63. Furthermore, certain additives
with low hydrophilic-lipophilic balance (HLB) values further re-
duced solubility due to their limited compatibility with water, im-
peding effective interactions between the film matrix and aqueous
environments64.

6.4 Water vapour permeability (WVP)

WVP is an essential factor that influences a film’s ability to regu-
late moisture transfer, which is crucial for maintaining food qual-
ity and prolonging shelf life. In this research, the WVP values
fell within the range documented for comparable biodegradable
films, consistent with earlier studies65. The changes in WVP
were accurately modeled using a second-order polynomial equa-
tion, which accounted for more than 90% of the variability in the
data. Certain hydrophobic elements significantly decreased WVP
by enhancing the film’s resistance to moisture movement through
improved barrier properties65. Notably, some additives exhib-
ited concentration-dependent effects-initially enhancing barrier
performance by increasing the tortuosity of the diffusion path-
way, but ultimately undermining the film’s structural integrity
at higher concentrations, leading to increased WVP values66,67.
Additionally, the synergistic effects of emulsifiers and plasticizers
were found to enhance matrix cohesion and fortify hydrophobic
regions, further improving moisture barrier properties68.

6.5 Color

Lightness (L*) plays a crucial role in determining consumer ac-
ceptance of edible films. This research utilized a quadratic re-
gression model (R2 = 0.87) to effectively illustrate the relation-
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ship between formulation variables and the L*. Certain ingredi-
ents were identified as enhancing lightness due to their natural
optical properties, while others, especially those with darker or
more saturated colors, negatively impacted lightness. Further-
more, second-order interactions and nonlinear effects contributed
to additional decreases in lightness. WI exhibited a similar trend,
increasing with lighter-colored agents and decreasing with darker
or chromophore-rich materials. Notably, some emulsifying agents
displayed a negative relationship with WI, possibly due to their
effects on pigment distribution or polymer compatibility. The im-
provement of both L* and WI in certain formulations is likely
linked to the light-scattering properties of opaque components65.
However, earlier studies indicate that the color response is sig-
nificantly influenced by the composition and structure of the film
matrix, as well as the characteristics of the added particles58,69.
Conversely, films that included naturally pigmented compounds
experienced a reduction in both lightness and whiteness, accom-
panied by a significant rise in the YI, likely due to their inherent
color and the presence of light-absorbing phenolic compounds70.

6.6 Opacity

Plays a vital role in assessing the appropriateness of packaging
materials. A second-order regression analysis (R2 = 86.31%) re-
vealed that opacity is primarily affected by linear factors (p <

0.005). Certain additives can enhance opacity by obstructing
light transmission through the film, likely due to the development
of light-scattering structures within the material, a phenomenon
corroborated by previous research71. On the other hand, the ad-
dition of different substances may compromise the dense struc-
ture of the film, resulting in reduced opacity and increased trans-
parency. This effect may stem from these substances modifying
the microstructure and potentially affecting the film’s refractive
index through interactions with water molecules, as noted by
Gonzalez et al.72 and Vargas et al.73. Furthermore, specific emul-
sifiers have been shown to boost opacity, a finding consistent with
earlier studies74,75.

6.7 Optimized film characterization

6.7.1 Antioxidant activity

Antioxidant activity is an essential characteristic of edible films,
as it helps reduce the detrimental effects of free radicals in both
food products and biological systems76. The commonly utilized
DPPH assay serves as a dependable method for assessing the free
radical scavenging ability of a material, which is directly related
to its potential for prolonging the shelf life of packaged foods77.
In this study, both the standard film and its optimized version
demonstrated inherent antioxidant properties. The activity of the
standard sample is attributed to the natural free radical scaveng-
ing capabilities of its primary polymer matrix, while the improved
performance of the optimized film is associated with the addi-
tion of natural bioactive compounds. These compounds, which
are typically abundant in phenolic structures, are recognized for
their significant role in neutralizing free radicals, thus enhancing
the overall antioxidant capacity13,78.

6.7.2 X-ray diffraction (XRD) analysis

The XRD analysis was performed to assess the structural arrange-
ment and crystallinity of the optimized film. The resulting diffrac-
tion pattern revealed a semi-crystalline character, exhibiting both
amorphous and crystalline regions. A broad peak centered at ap-
proximately 20◦ was associated with the amorphous characteris-
tics of the soy protein matrix, specifically linked to the presence
of 7S and 11S amorphous globulins, which are typical compo-
nents of soy protein structures79,80. Conversely, several sharp
and well-defined peaks observed at both lower and higher diffrac-
tion angles, including those near 5.5◦, 6.4◦, 15.9◦, 23.1◦, 27.7◦,
and 34.8◦, indicated the presence of crystalline domains within
the film. These peaks were primarily attributed to the addition
of beeswax, which is recognized for its contribution to crystalline
structure due to its orderly molecular configuration. The emer-
gence of these peaks signifies a favorable level of molecular orga-
nization and implies that the beeswax was effectively integrated
into the film matrix. The degree of crystallinity observed is also
affected by the physical processing conditions, particularly dur-
ing the cooling and drying phases, which influence the alignment
and packing of molecules throughout the film formation process.
These structural characteristics not only validate the compatibil-
ity of the film-forming components but also indicate robust in-
termolecular interactions that are essential for the mechanical
strength and barrier properties of the final film81,82.

Fig. 8 (a) showed the XRD of the chitosan (CH), corn
starch (CS), tea polyphenols (TP), and their composite films
(CS/CH/TP-x%) brief study done by Gao et al.83. The diffrac-
tion peaks for chitosan exhibited the broad peak at 19.7◦, indi-
cating a predominance of amorphous regions, which is common
for chitosan due to its flexible polymer chains. Corn Starch (CS)
showed sharp peaks at 14.9◦, 17.0◦, 18.1◦, and 22.8◦, indicating
an A-type crystalline structure and a higher degree of crystallinity,
whereas Tea Polyphenols (TP) had a very broad and weak peak
at 23.2◦, suggesting an amorphous or poorly crystalline nature.
Composite Films (CS/CH/TP-x%), regardless of TP concentration,
show a single broad peak at 19.5◦, with the disappearance of
starch’s sharp crystalline peaks. It indicated a significant decrease
in overall crystallinity and the formation of a more amorphous
structure. The absence of new peaks and the broadening of the
main peak suggested strong molecular interactions (such as hy-
drogen bonding) between chitosan, starch, and tea polyphenols.
These interactions disrupted the regular crystalline arrangement
of starch and chitosan, leading to a homogeneous amorphous ma-
trix.

6.7.3 Fourier Transform Infrared Spectroscopy (FTIR) anal-
ysis

FTIR is an advanced analytical method employed to identify
chemical bonds and functional groups within materials by ex-
amining their absorption of infrared (IR) light. When subjected
to IR radiation, the molecules of a material absorb specific fre-
quencies, leading to vibrational movements in the bonds, such
as stretching, bending, or twisting. These unique absorption pat-
terns generate a distinct spectral “fingerprint” for the material.
As noted by Coates84 a key reference for interpreting IR spectra,
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Fig. 8 (a) X-ray di�raction graph clearly illustrating the crystallinity
changes in pure chitosan (CH), corn starch (CS), tea polyphenols (TP),
and their composite �lms (CS/CH/TP-x%) as tea polyphenol content
increases, and (b) Fourier Transform Infrared Spectroscopy (FTIR) spec-
tra of pure components-chitosan (CH), corn starch (CS), tea polyphe-
nols (TP)-and their composite �lms with increasing concentrations of
tea polyphenols (CS/CH/TP-0.5% up to CS/CH/TP-3%) 83. Adapted from

Open access under the Creative Commons BY license. Copyright 2021 MDPI.

each type of chemical bond (such as O-H, C-H, C=O, N-H, etc.)
absorbs infrared radiation at specific wavenumbers (expressed in
cm−1). By scrutinizing these absorption bands, researchers can
identify the functional groups present in a given sample. Vari-
ous researchers have studied the application of FTIR in the study
of natural polymers, specifically starch. Their findings indicated
that starch displays consistent IR absorption bands, which corre-
late with its molecular structure, thereby aiding in the evaluation
of its composition and the detection of any modifications.

The FTIR spectra shown in Fig. 8 (b) illustrated the reflectance
of various films83 where wavenumber between 3290-3340 cm−1

was attributed to broad O-H and N-H stretching indicating the
presence of hydroxyl (from starch and polyphenols) and amino
groups (from chitosan). The persistence of this peak in all com-
posite films suggests that hydrogen bonding remains a dominant
interaction, and the blending process does not disrupt these func-
tional groups. Amide I and II Bands 1640-1690 cm−1 and 1550
cm−1 was associated with C=O stretching and N-H bending, re-
spectively, both characteristic of protein and polysaccharide ma-
trices. The composite films sometimes shifted as compared to
pure components, indicating interactions (likely hydrogen bond-
ing or electrostatic) between chitosan, starch, and tea polyphe-
nols. The shift towards lower wavenumbers upon TP addition is
evidence of strong intermolecular interactions, likely due to the
aromatic rings and hydroxyl groups in polyphenols forming new
hydrogen bonds with the matrix. Peaks in 1470-1410 cm−1 re-
gion were attributed to -CH2 bending and -CH3 symmetrical de-
formation. The presence and intensity of these peaks in the com-
posite films confirmed the integration of chitosan and starch, and
their modification as TP concentration increases suggests changes
in the microstructure and packing of the polymer chains. Fur-
ther, fingerprint region below 1500 cm−1 represented the C-O,
C-C, and C-H bending vibrations that changed according to TP
concentration reflecting successful incorporation and molecular
interaction of TP within the CS/CH matrix.

In a similar vein, Lii et al.85 employed FTIR to explore the
structure of xanthan gum, a type of polysaccharide. Their re-
search validated the effectiveness of FTIR in identifying charac-
teristic functional groups within complex carbohydrates, which

is instrumental in understanding molecular conformation and in-
teractions with other substances. Additionally, FTIR was exam-
ined glycerol, a simple polyol compound. Their results under-
scored the capability of FTIR to identify hydroxyl (-OH) groups
and other molecular characteristics in small organic molecules,
proving valuable for the analysis of additives or plasticizers in
biopolymer systems.

6.7.4 Thermogravimetric analysis (TGA)

TGA was utilized to assess the thermal stability and decomposi-
tion characteristics of the developed films. This method also sheds
light on how composite interactions affect film stability when sub-
jected to thermal stress86. The TGA results for the optimized
film revealed the correlation between mass loss and temperature,
while the derivative thermogravimetric (DTG) curve depicted the
rate of weight change during the heating process. The thermal
degradation was observed to occur in three distinct phases. The
first phase, occurring between 25 ◦C and approximately 112 ◦C,
was primarily characterized by the evaporation of free moisture
and the loss of minor volatile components. The second phase,
which extended to around 243 ◦C, exhibited a significant mass re-
duction of approximately 28.96%. This reduction can be linked to
the degradation of low molecular weight additives, partial break-
down of structural polymers, and the evaporation of plasticiz-
ers87–89. The final phase, occurring between 243 ◦C and 363
◦C, involved the thermal decomposition of high molecular weight
compounds and the evaporation of bound water, resulting in a
sharp decrease in sample mass90.

Fig. 9 Thermogravimetric analysis (TGA) for pure curmin, SFTG, GE,
and several �lm formulations (F1, F2, C1, C2) 91.Adapted from Open access

under the Creative Commons BY license. Copyright 2022 MDPI.

The TGA curves depicted in the accompanying Fig. 9 demon-
strate the thermal stability of various films studied by Amani et
al.91. It could be observed that pure curcumin (curmin) dis-
plays the highest thermal stability, with major weight loss start-
ing around 270 ◦C and significant residue remaining even above
400 ◦C. SFTG (tragacanth gum) and GE (Gelatin) degraded at
lower temperatures than curcumin 220 ◦C and 260-450 ◦C, re-
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spectively . All film samples F1 (1GE:1SFTG), F2 (2GE:1SFTG),
C1 (1GE:1SFTG/curcumin), C2(2GE:1SFTG/curcumin) showed
similar degradation profiles, with the main weight loss (about
70%) occurring between 200-300 ◦C, attributed to polymer de-
polymerization. The final decomposition stage (about 10% mass
loss) is due to the breakdown of remaining film components. The
films have lower thermal stability than pure curcumin, consistent
with the observation that blending curcumin with biopolymers re-
duces thermal stability. The order of thermal stability found to be
curmin > GE ≈ F1 ≈ F2 ≈ C1 ≈ C2 >SFTG, with all film samples
clustering closely together.

6.7.5 Scanning Electron Microscopy (SEM) analysis

SEM was utilized to examine the microstructural arrangement
and compatibility of the various elements within the composite
film. This analysis yielded crucial information regarding both
the internal and surface morphology, which are vital for assess-
ing mechanical strength and barrier efficacy58.The film’s surface
displayed significant roughness and irregularities, likely resulting
from the recrystallization and accumulation of hydrophobic par-
ticles during the drying phase. These particles disrupted the uni-
formity of the matrix, leading to a coarse and uneven texture82.
Such morphological characteristics can impact both optical clarity
and surface integrity.

Internally, microporous structures were identified, possibly
formed by the evaporation of volatile substances during the film
casting process. The distribution of lipophilic droplets appeared
to be well integrated within the continuous polymer matrix, cre-
ating distinct regions that contributed to a loosely arranged in-
ternal structure. While this porosity may enhance breathabil-
ity, it could also influence moisture barrier properties based on
the overall density and connectivity of the pores90. Despite the
observed rough surface textures and internal porosity, the com-
posite film exhibited a consistent distribution of all components,
with no signs of phase separation or significant aggregation. This
structural uniformity indicates effective miscibility and interac-
tion among the film-forming agents, likely facilitated by ultra-
sonication and emulsifying agents. The resulting homogeneity
within the matrix promotes improved mechanical cohesion and
functional stability of the composite film70.

7 Conclusion

The development of biodegradable edible films made from nat-
ural biopolymers, bioactive additives, and nanomaterials pro-
vides an eco-friendly alternative to conventional plastic pack-
aging. This review highlights significant improvements in the
mechanical, barrier, and antimicrobial properties of these films,
achieved by incorporating natural polymers such as starch, chi-
tosan, and essential oils, along with bioactive compounds like
zinc oxide nanoparticles. Advanced optimization techniques, in-
cluding Response Surface Methodology (RSM) and Artificial Neu-
ral Networks (ANN), have been instrumental in fine-tuning film
formulations to meet specific performance criteria. The inclusion
of bioactive agents such as green tea extract and beeswax not
only enhances the antioxidant and antimicrobial properties of the
films but also improves their mechanical strength and moisture

resistance. Characterization methods like FTIR, SEM, and XRD
have confirmed the structural integrity and functional compatibil-
ity of the films, while AI-driven optimization models have demon-
strated superior predictive accuracy compared to traditional tech-
niques. Besides it, the AI models can be incorporated to develop
other bio-based films. These interdisciplinary innovations pave
the way for sustainable, high-performance food packaging solu-
tions that align with sustainability goals. Future research should
focus on scaling production, assessing real-world biodegradabil-
ity, and addressing regulatory challenges to accelerate the com-
mercialization of these groundbreaking bio-based films. Despite
promising laboratory results, the absence of shelf-life and antimi-
crobial testing on actual food products limits the practical vali-
dation of these films. Therefore, further studies are needed to
determine whether the existing models can be applied to differ-
ent biopolymer combinations and food packaging applications.
Before the widespread use and commercialization of these films,
it is crucial to conduct real-world food testing and evaluate these
models with other natural materials.
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