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driven design of bio-based active
food packaging films with improved mechanical
properties

Sanjeev Gautam, *a Monika Verma ab and Tarundeep Singh Lakhanpala

Bio-based active packaging films offer a sustainable route to replace petro-plastic laminates, but their

multicomponent formulations complicate rational design. We report a machine-learning driven workflow

that couples response surface methodology with artificial neural networks to optimise starch–chitosan

films plasticised with glycerol, reinforced with beeswax and ZnO, and activated using citrus-peel extract.

The hybrid model shrank the experimental search space by 65% and predicted tensile strength, the

water-vapour transmission rate and antimicrobial efficacy with R2 > 0.94. The optimal film delivered

a tensile strength of 3.5 Mpascal, a 31% drop in water-vapour permeability and a >3 log CFU reduction

against E. coli, while remaining fully soil-biodegradable within 45 days. Fourier-transform infrared spectra

confirmed hydrogen-bond-mediated compatibility between polysaccharide chains and bioactives,

explaining the improved mechanical integrity. This study demonstrates that data-guided optimisation can

accelerate the development of high-performance, biodegradable packaging and provides a transferable

framework for next-generation sustainable food-contact materials.
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Sustainability spotlight

Petro-plastic packaging generates ∼79 Mt of persistent waste annually. Our machine-learning-optimised starch–chitosan lms reduce this burden by providing
a compostable barrier material sourced from abundant biopolymers and fruit-processing waste. The workow slashes experimental resources by 65%,
promoting eco-efficient R&D. Achieving industrial-grade tensile strength (3.5 MPa) and a 31% drop in water-vapour permeability, the lms extend shelf-life while
degrading fully in 45 days of soil burial-closing the materials loop in line with UN SDG 12 (Responsible Consumption and Production). Antimicrobial action
against E. coli supports SDG 3 (Good Health) by improving food safety, and bio-based feedstocks underpin SDG 2 (Zero Hunger) through reduced post-harvest
loss.
1 Introduction

The increasing demand for convenient, nutritious, and long-
lasting processed foods has led to the development of
advanced food packaging technologies.1 New innovations, such
as active, intelligent, and bioactive packaging, are designed not
only to contain food but also to interact with it or its environ-
ment to enhance safety and quality.2 In particular, active
packaging-especially those that use natural antioxidants and
antimicrobials-has gained importance due to its effectiveness in
preserving the food's color, texture, sensory qualities, and
extending its shelf life. The widespread use of petroleum-based
plastics in industries like food packaging, household products,
and medical applications are due to their strength, low cost,
light weight, and excellent resistance to heat and chemicals.1

However, these synthetic polymers are highly resistant to
degradation due to chemicals, sunlight, and microorganisms,
leading to ongoing environmental pollution and signicant
sustainability challenges.3 As a result, the development of
environmental friendly, biodegradable alternatives like bi-
oplastics has become a crucial area of research. Bioplastics are
made from renewable biological materials such as starch,
cellulose, lignin, casein, and lipids, offering benets like
biodegradability, environmental safety, and reduced reliance on
fossil fuels.4 Among these materials, starch stands out due to its
wide availability, low cost, and excellent lm-forming
arundeep Singh Lakhanpal
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properties. It can be sourced from various plants, including
corn, potatoes, cassava, jackfruit seeds, mango seeds, avocado
seeds, and sago.2,5–8

Starch-based lms are non-toxic, transparent, colorless, and
odorless, making them ideal for sustainable packaging solu-
tions.9 However, their high hydrophilicity limits water resis-
tance and mechanical strength, restricting their practical
applications.10 To address these issues, plasticizers like glycerol
are commonly used to reduce hydrogen bonding and enhance
exibility, with glycerol being favored for its stable hydroxyl
interactions and lower volatility compared to alternatives like
water or sorbitol.11 Combining starch with co-polymers such as
chitosan-derived from the deacetylation of chitin in crustacean
shells-can signicantly improve mechanical strength, water
resistance, and antimicrobial properties. Chitosan's natural
bioactivity and hydrophobic characteristics complement
starch's lm-forming ability, making starch–chitosan compos-
ites ideal for active food packaging.12 Recent studies have also
explored alternative starch sources like avocado and tamarind
seeds, which are oen overlooked agro-industrial byproducts
rich in polysaccharides and proteins, presenting promising
opportunities for edible and biodegradable lms.12 Tamarind
seed starch, for example, has excellent lm-forming potential,
though its processing requires further optimization. To
enhance the functionality of starch-based lms, the addition of
essential oils (EOs), such as clove essential oil (CEO), rich in
eugenol and caryophyllene, provides antioxidant and antimi-
crobial benets.13,14 However, excessive amounts of spice
extracts or EOs may affect nutrient absorption, highlighting the
need for controlled formulation strategies. Additionally, fruit
peels, especially from Citrus sinensis (sweet orange), are
a signicant source of natural antioxidants and antimicrobial
compounds, with extracts from orange peels (OPE) demon-
strating strong antibacterial properties and being effectively
used in antimicrobial packaging lms.13

The graph shown in Fig. 1(a) illustrates the adoption
percentages of smart packaging solutions in two regions: the
United States and Asia. It reveals that the United States leads
with a 75% adoption rate, while Asia has a 60% rate. This
suggests that smart packaging technologies are more readily
accepted in the U.S. than in Asia, indicating a greater market
readiness, consumer awareness, or technological infrastructure
in the United States. Nevertheless, the 60% adoption rate in Asia
signies considerable growth and potential for the future
development of smart packaging solutions in that region.
Besides this, the United Kingdom captures 27% regional
market share being a leading in European packaging industries
while France, the world's most sustainable country expected the
© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00198f


Fig. 1 (a) Adoption rates of smart packaging solutions, (b) consumer
preferences: traditional vs. modern packaging, and (c) comparison of
product costs with and without active packaging.
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highest growth rate to be nearly 6% during 2024–2029.
Conversely, in Africa and Latin America the adoption rate is
below 50% due to lack of infrastructure and cost constraints.15

The graph given above in Fig. 1(b) reveals that 65% of
consumers lean towards traditional packaging, in contrast to
the 35% who prefer modern options. This suggests that, despite
the progress and innovations in packaging technology,
a signicant portion of consumers continues to have condence
in and favor traditional formats. Furthermore, this underscores
a possible obstacle to the swi acceptance of modern packaging
solutions, indicating that businesses might need to enhance
consumer education and awareness to address this disparity.
The graph shown in Fig. 1(c) demonstrates that products
utilizing active packaging incur substantially higher expenses,
representing 30% of the overall product cost, in contrast to
merely 10% for those without active packaging. This notable
disparity underscores a signicant economic obstacle to the
broader implementation of active packaging technologies, as
the elevated costs may dissuade both manufacturers and
consumers, particularly in price-sensitive markets.

Despite the potential of natural biopolymers and active
additives, the development of composite lms using innovative
combinations-such as avocado seed starch with orange peel
extract (OPE), or soybean aqueous extract (SAE) combined with
beeswax (BW) and emulsiers like Span 20 (SP)-has not been
fully explored. SAE, a protein-rich byproduct containing 7S and
11S globulins, forms strong lm networks when heated and
enhances antioxidant properties due to its isoavone
content.13,16 To achieve optimal mechanical and functional
properties, it is crucial to carefully adjust factors like starch
concentration, plasticizer levels, temperature, and co-polymer
ratios when formulating edible lms. Traditional trial-and-
error approaches are ineffective for these complex multi-
variable systems. Therefore, optimization methods like
Response Surface Methodology (RSM) and Articial Neural
Networks (ANNs) have gained popularity. RSM offers a system-
atic statistical approach for experimental design, model devel-
opment, and optimization by evaluating linear, quadratic, and
interaction effects among independent variables (IV).17 One key
© 2025 The Author(s). Published by the Royal Society of Chemistry
tool within RSM is the Central Composite Design (CCD), which
allows for the effective analysis of complex parameter interac-
tions. On the other hand, ANN models excel in capturing
nonlinear relationships between inputs and outputs, providing
better predictive accuracy for multifactorial systems.18 In recent
years, both ANNs and RSM have been applied to optimize the
compositions of edible lms, predicting properties like tensile
strength, elongation at break, water vapor permeability, and
antimicrobial effectiveness. ANN-based feedforward-
backpropagation models, oen implemented in MATLAB,
have shown superior predictive accuracy and generalizability
compared to traditional regression models.

This research combines the latest developments in bio-based
packaging by creating biodegradable edible lms through the
use of various natural polymers, including corn starch, tama-
rind, avocado seed starch, soybean aqueous extract (SAE), and
chitosan. It also incorporates plasticizers such as glycerol, lipids
like beeswax, and bioactive additives including clove essential
oil (CEO) and orange peel extract (OPE). To stabilize the lipid-
protein matrix, emulsiers such as Span 20 were added. The
lms were produced via the solution casting technique and
optimized through Response Surface Methodology (RSM)
utilizing a face-centered CCD and ANN modeling, as evidenced
by similar optimization research.19,20

The predictive accuracy of the models was evaluated using
error metrics and response surface plots. FTIR spectroscopy was
employed to investigate the molecular interactions among the
lm components, conrming hydrogen bonding and compati-
bility between the biopolymers and additives.21 A detailed
characterization of the lms was performed, assessing
mechanical properties such as tensile strength (TS) and elon-
gation at break (EAB), barrier properties like water vapor
permeability (WVP), and moisture sensitivity indicators such as
moisture content (MC) and water solubility (WS). Optical
properties, including lightness (L), whiteness index (WI), yel-
lowness index (YI), and opacity (OP), were also measured to
evaluate the lms' visual characteristics and functional effec-
tiveness.22,23 By incorporating biodegradable materials and
bioactive compounds, this study supports the shi from
synthetic plastics to sustainable alternatives. It not only
improves understanding of edible lm formulations but also
highlights their potential in maintaining food safety and quality
in modern packaging solutions.24,25

2 Types of AI and ML models

The elds of Articial Intelligence (AI) and Machine Learning
(ML) have experienced considerable growth in food packaging,
especially in the creation of active and intelligent packaging
systems. These sophisticated computational models allow
researchers to examine intricate datasets, represent nonlinear
relationships, and accurately forecast a material's characteris-
tics.26 Fig. 2 depicts several AI and ML models frequently
utilized in food packaging research, highlighting their distinct
functions and applications.

1. Response Surface Methodology (RSM) is a statistical
approach used to model and optimize processes inuenced by
Sustainable Food Technol., 2025, 3, 1705–1722 | 1707
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Fig. 2 Types of AI andMLmodels used in food technology to optimize
formulations, predict quality, model complex processes, and improve
efficiency while reducing experimental time and cost.
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multiple variables. This technique helps in assessing the effects
of independent variables and their interactions on one or more
response variables (RVs) through structured experiments, such
as Central Composite Design (CCD) and Box-Behnken Design
(BBD).27,28 RSM uses a second-order polynomial equation to
analyze experimental data, allowing for the creation of response
surface and contour plots that assist in optimization. This
method reduces the number of experimental trials needed
compared to full factorial designs while providing valuable
insights into the process.29 In food packaging and biopolymer
research, RSM is widely used to improve lm formulations by
examining variables such as plasticizer concentrations, anti-
microbial agents, and nanoparticles to enhance mechanical,
barrier, and optical properties.30 Its applications also extend to
elds like analytical chemistry and other disciplines.31

2. Articial Neural Networks (ANNs) are computational
models inspired by the neural structure of the human brain.
These networks consist of layers of interconnected nodes, or
neurons, that process input data, identify patterns, and learn
from examples. ANNs are particularly effective at capturing
complex, nonlinear relationships between variables, making
them ideal for tasks such as prediction, classication, and
optimization.32 In elds like food engineering, materials
science, and biopolymer research, ANNs are used to predict
properties like tensile strength, barrier characteristics, biode-
gradability, and shelf life based on formulation or processing
parameters.33 Unlike traditional statistical models, ANNs do not
rely on predened equations; instead, they learn directly from
data through a training process. While Response Surface
Methodology (RSM) provides clear visualizations and insights,
ANNs typically offer superior accuracy in handling complex,
nonlinear relationships.34

3. Support Vector Machine (SVM) is a supervised machine
learning technique used for tasks like classication, regression,
and outlier detection. The SVM algorithm identies the optimal
hyperplane that best separates different classes or predicts
continuous outcomes with minimal error.35 SVM is particularly
known for its high accuracy, especially when the relationship
between input variables and outcomes is nonlinear. This ability
is enhanced by kernel functions, which transform input data
into a higher-dimensional space to improve separability. In
1708 | Sustainable Food Technol., 2025, 3, 1705–1722
elds like food science, materials research, and packaging, SVM
has been effectively used to predict lm properties, assess
quality attributes, and classify spoilage levels based on chem-
ical, physical, or sensory data.36 Compared to ANNs, SVM
generally performs better with smaller datasets and reduces the
risk of over-tting through structural risk minimization.

4. Decision trees are supervised learning algorithms used for
both classication and regression tasks. They work by splitting
data into branches based on decision rules derived from input
features, leading to predictions at the terminal nodes. Their
simplicity and visual representation make them useful for
analyzing the impact of individual variables.37 However, indi-
vidual decision trees are prone to overtting and may become
unstable over handling noisy datasets. To overcome these
issues, the Random Forest (RF) algorithm was introduced. RF
creates an ensemble of decision trees through bootstrap
aggregation (bagging) and random feature selection, improving
prediction accuracy and stability.38 In food science, materials
engineering, and biodegradable packaging, RF models are used
to predict lm properties, detect food spoilage or microbial
contamination, and optimize formulations with complex data-
sets.39 Random forest is particularly effective with high-
dimensional, nonlinear data and provides variable impor-
tance scores to help with feature selection.

5. Deep Learning (DL) is a branch of machine learning that
uses multi-layered neural networks to automatically detect
complex patterns in large datasets. One of the most powerful
architectures in deep learning is Convolutional Neural
Networks (CNNs), which are particularly effective at processing
image, spatial, and grid-like data.40 CNNs are made up of layers
that perform convolution, pooling, and activation functions,
allowing the model to extract hierarchical features from raw
input with minimal preprocessing. Although CNNs are mainly
known for applications in image classication, object detection,
and segmentation, their use is growing in areas like food quality
evaluation, defect detection, and biomaterial surface analysis
using imaging data.41 In biopolymer packaging, CNNs and other
deep learning methods are becoming valuable tools for
assessing visual characteristics (such as opacity and surface
roughness) and predicting performance based on image or
high-dimensional sensory data.42 While deep learning requires
large datasets and signicant computational power, it offers
outstanding performance in solving complex, high-dimensional
problems.

6. K-Nearest Neighbor (KNN) is a simple, non-parametric
supervised learning algorithm used for both classication and
regression tasks. The algorithm works by comparing a new data
point to the ‘k’ nearest data point in the training dataset,
making predictions based on the majority class (for classica-
tion) or the average value (for regression) of its neighbors.43

KNN is known for its simplicity, ease of implementation, and
effectiveness with small to medium-sized datasets. However, its
performance can be inuenced by the choice of ‘k’, the distance
metric used, and the scaling of features. As the dataset size
increases, KNN can become computationally expensive, as it
requires storing and examining the entire training set during
the prediction phase.44 In elds such as food science, materials,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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and packaging, KNN has been used to predict quality attributes,
categorize product types, and detect spoilage based on chem-
ical, mechanical, or image data. While it may not perform as
well as deep learning for complex data, KNN remains a valuable
tool for creating baseline models, rapid prototyping, and
providing interpretable results.

3 Experimental design

RSM serves as a robust statistical instrument for designing,
analyzing, and optimizing experiments that involve several
variables. In the realm of food packaging research, especially
concerning the creation of biodegradable and active lms, RSM
is instrumental in elucidating the interactions between ingre-
dients and their effects on the properties of the lms. The
subsequent owchart as shown in Fig. 3 delineates the
methodical steps required to apply the RSM model, which
includes dening objectives, selecting variables, validating the
model, and implementing the optimized conditions.

The research examines four independent variables for the
development of biodegradable edible lms: Green Tea Extract
(GTE), beeswax (BW), zinc oxide (ZnO), and glycerol (GLY).
These variables are assessed within designated concentration
ranges: GTE at 0.5% to 2%, beeswax at 0.5% to 1.5%, zinc oxide
at 0.05% to 1%, and glycerol at 1% to 2%. Each variable is
analyzed at ve distinct levels to ensure the experimental
design's robustness and rotatability. These levels consist of low
(−1), indicating the minimum concentration within the speci-
ed range; medium (0), representing the midpoint; and high
(+1), denoting the maximum concentration. Furthermore, two
axial points, plus a (+a) and minus a (−a), are incorporated
beyond the established range to improve the rotatability and
reliability of the experimental framework.

1. Zinc oxide was chosen due to its antimicrobial charac-
teristics, which contribute to prolonging the shelf life of food by
preventing the proliferation of bacteria and fungi. Its integra-
tion into edible lms provides improved defense against
microbial contamination, an essential factor in food
packaging.45,46

2. GTE was selected due to its antioxidant properties, con-
taining polyphenols like catechins that neutralize free radicals
and safeguard food against oxidative degradation. This
Fig. 3 Flowchart for response surface methodology.

© 2025 The Author(s). Published by the Royal Society of Chemistry
contributes to preserving the freshness and nutritional integrity
of packaged food.47,48

3. Beeswax acts as a water-repellent barrier, signicantly
decreasing the permeability of water vapor in the lms. This
improves the moisture resistance of the edible packaging, aid-
ing in the preservation of food texture and quality by preventing
the absorption or loss of excess moisture.49,50

3.1 Levels of each independent variable

A three-level factorial design was utilized to examine the impact
of different formulation components on the characteristics of
biodegradable edible lms intended for active food packaging.
This experimental approach facilitates the assessment of both
the individual and interactive effects of the chosen factors on
the response variables, as shown in Table 1.

In Table 1, the parameters, that is, the four factors-GTE, BW,
ZnO, and GLY were tested at three levels: low (−1), medium (0),
and high (+1). GTE, ranging from 0.5% to 2%, is included as an
active ingredient with antioxidant and antimicrobial properties.
BW, ranging from 0.5% to 1.5%, is used to enhance the
hydrophobicity and barrier properties of the material. ZnO,
tested between 0.05% and 1%, is incorporated for its antimi-
crobial and UV-blocking qualities, while GLY, ranging from 1%
to 2%, serves as a plasticizer to improve the exibility of the lm
or coating. These factors and their ranges reect an experi-
mental design, likely RSM, aimed at optimizing the formulation
for optimal mechanical, barrier, and functional characteristics.
The medium levels may help explore non-linear effects, and the
overall goal is to create a biodegradable, active, and exible
material with enhanced performance.

3.2 CCD matrix

To enhance the formulation of biodegradable edible lms that
include functional bioactive and structural elements, a Central
Composite Design (CCD) was employed. This design aids in the
creation of predictive models by examining the linear,
quadratic, and interaction effects of various variables on the
targeted response characteristics which are shown in Tables 2
and 3, respectively.

3.2.1 Generalized coding for other factors. Similar calcu-
lations should be performed for BW, ZnO, and GLY using their
respective ranges.

Tables 2 and 3 illustrate the experimental ndings derived
from the CCD matrix, which investigates the inuence of GTE,
BW, ZnO, and GLY on the properties of lms. The tensile
strength (TS) was observed to range between 2.14 MPa and
3.90 MPa, while the elongation at break (EAB) uctuated from
142.55% to 205.61%, demonstrating the effects of these
components on mechanical characteristics. The moisture
content (MC) and water solubility (WS) exhibited signicant
variations, reecting the roles of hydrophilic and hydrophobic
elements. Water vapor permeability (WVP) was recorded to be
between 2.33 and 3.99 g mmm−2 day kPa, indicating its impact
on barrier properties. Additionally, optical characteristics such
as the whiteness index (WI) (ranging from 45.99 to 73.66) and
opacity (OP) (from 0.78 to 1.86) were affected by different
Sustainable Food Technol., 2025, 3, 1705–1722 | 1709
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Table 1 Experimental factors

Factor
Low (−1)
(minimum conc.)

Medium (0)
(midpoint conc.)

High (+1)
(maximum conc.)

Green tea extract (GTE) 0.5% 1.25% 2%
Beeswax (BW) 0.5% 1% 1.5%
Zinc oxide (ZnO) 0.05% 0.525% 1%
Glycerol (GLY) 1% 1.5% 2%
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formulations. These ndings underscore the signicance of
factor interactions in enhancing the mechanical, barrier, and
optical attributes of biodegradable lms.

3.2.2 Calculation of coded values for CCD. In a CCD, the
coded values (Xi) for a factor are determined using the equation:
Xi = (Ai − Acenter)/DA. Here, Ai denotes the actual value of the
factor at a specic level, Acenter signies the midpoint of the
factor's range, and DA represents the step size, calculated as DA
= (Ahigh − Alow)/2. In this scenario, Ahigh indicates the maximum
actual value (associated with the +1 level), while Alow indicates
the minimum actual value (linked to the−1 level). For instance,
when considering Green Tea Extract (GTE), if Alow is 0.5%, Acenter
is 1.25%, and Ahigh is 2.0%, we can compute the step size DA as
DA = (2.0 − 0.5%)/2 = 0.75%. Utilizing this step size, the coded
values for the various factor levels can subsequently be derived.
The alpha (±a) levels are established at ±0.25%, which corre-
spond to the extreme factor levels of −a = 0.25% and +a =

2.5%. Calculate step size DA

DA = (2.0 − 0.5)/2 = 1.5/2 = 0.75
Table 2 CCD matrix table with experimental results

Run GTE BW ZnO GLY TS EAB

1 0.00 0.000 0.000 0.00 2.75 185.07
2 −1.0 −1.00 −1.00 −1.0 3.90 142.55
3 −1.0 −1.00 1.000 1.00 3.46 156.29
4 0.00 0.000 1.682 0.00 3.20 162.97
5 0.00 1.682 0.000 0.00 2.31 171.05
6 1.00 1.000 −1.00 −1.0 2.52 170.15
7 1.00 −1.00 −1.00 −1.0 3.15 202.39
8 0.00 0.000 0.000 0.00 2.27 167.62
9 0.00 0.000 0.000 1.682 3.65 197.70
10 −1.0 −1.00 1.000 1.00 3.81 163.71

Table 3 CCD matrix table with experimental results (runs 11–20)

Run GTE BW ZnO GLY TS EAB

11 0.00 0.000 0.000 0.00 2.26 156.68
12 0.00 0.000 0.000 0.00 3.88 192.96
13 1.00 1.000 1.000 1.00 3.65 186.48
14 1.682 0.000 0.000 0.00 3.23 195.45
15 −1.68 0.000 0.000 0.00 3.12 185.42
16 −1.0 1.000 −1.00 1.00 3.95 174.42
17 −1.0 −1.00 1.000 −1.0 2.14 205.61
18 0.00 0.000 −1.68 0.00 2.92 191.50
19 0.00 0.000 0.000 −1.68 2.58 206.56
20 1.00 1.000 1.000 1.00 3.11 133.14

1710 | Sustainable Food Technol., 2025, 3, 1705–1722
Computed coded values are shown in Table 4.
Table 4 presents the coded values for GTE across various

levels. The actual GTE values range from 0.25% to 2.0%, with
coded values derived from a span of 0.75. The minus alpha (−a)
level is associated with an actual GTE value of 0.25%, yielding
a coded value of −1.33. The low (−1) level is dened at 0.5%,
which corresponds to a coded value of −1. The center (0) value
is established at 1.25%, resulting in a coded value of 0, while the
high (+1) level is linked to an actual GTE value of 2.0%, with
a coded value of +1.
3.3 Regression model polynomial equation

The response variable Y is dened by using the equation Y = B0
+ B1X1 + B2X2 + B3X3 + B12X1X2 + B13X1X3 + B23X2X3 + B21X1

2 +
B22X2

2 + B23X3
2. In this formulation, Y signies the response

variable, which may include TS, EAB, and WVP, among others.
The variables affecting Y consist of X1 (GTE), X2 (BW), X3 (ZnO),
and X4 (GLY). The constants B0, B1, B2, B3, and B4 serve as the
MC WS WVP WI YI L* OP

19.71 31.83 4.01 44.97 71.95 84.25 1.01
24.93 30.07 3.51 63.73 76.12 70.04 1.39
18.48 38.43 2.89 53.75 48.95 74.94 1.39
30.73 31.35 2.33 59.77 39.17 71.02 1.25
21.62 30.21 2.85 72.13 44.71 70.70 0.63
30.60 26.13 3.98 70.42 38.69 81.74 1.19
22.79 36.65 3.57 60.13 66.12 80.42 1.85
25.38 39.63 3.14 68.61 78.25 81.69 0.77
25.90 33.84 3.99 68.36 38.04 68.30 0.98
30.30 30.12 3.94 48.91 78.86 78.31 1.64

MC WS WVP WI YI L* OP

20.42 26.67 3.48 66.29 59.98 83.07 1.58
20.20 34.84 3.73 68.85 60.74 72.70 0.78
25.32 26.41 3.20 50.01 76.31 76.35 1.86
30.83 35.63 3.27 47.91 63.26 84.75 1.60
25.12 29.56 3.34 55.80 74.84 66.87 1.23
25.08 30.76 2.58 72.36 69.48 70.33 1.69
20.15 28.12 2.86 73.66 70.64 83.53 1.56
27.89 29.25 3.49 45.99 79.89 71.65 1.75
20.72 34.04 3.01 61.02 45.03 69.46 1.73
30.95 34.26 3.83 54.49 70.38 67.61 1.63

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Coded values for green tea extract (GTE)

Level Actual value (%) Coded value (X)

Minus alpha (−a) 0.25 (0.25 − 1.25)/0.75 = −1.33
Low (−1) 0.5 (0.5 − 1.25)/0.75 = −1
Center (0) 1.25 (1.25 − 1.25)/0.75 = 0
High (+1) 2.0 (2.0 − 1.25)/0.75 = 1
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linear coefficients for each respective factor, while B12, B13, B14,
B23, B24, and B34 represent the interaction coefficients for
combinations of factors. The quadratic coefficients for each
factor are indicated by B1

2, B2
2, B3

2, and B4
2.
3.4 ANOVA analysis of the RSM

Here is an example of analysis of variance (ANOVA) performed
to discuss about one response that is tensile strength in the
given Table 5, and similar calculations will be performed for the
rest of the responses one by one and the ANOVA table will be
formulated for each response respectively. Table 5 displays the
results of the ANOVA concerning the inuence of GTE, BW,
ZnO, and GLY on the properties of the lm, including their
interactions. The p-values are utilized to assess the statistical
signicance of each individual factor and their interactions.
The individual factors reveal non-signicant results at the 0.05
level, with GTE (p = 0.5158), BW (p = 0.2458), ZnO (p = 0.4995),
and GLY (p= 0.0768), the latter being the closest to signicance.
The squared terms (GTE2, BW2, ZnO2, and GLY2) also present
non-signicant p-values, indicating a lack of quadratic effects
Table 5 ANOVA table

Source Sum of squares DF F-value p-Value

GTE 0.1641 1 0.4766 0.5158
BW 0.5695 1 1.6543 0.2458
ZnO 0.1777 1 0.5162 0.4995
GLY 1.5678 1 4.5538 0.0768
GTE2 0.1978 1 0.5744 0.4772
BW2 0.0302 1 0.0876 0.7772
ZnO2 0.0974 1 0.2830 0.6138
GLY2 0.1409 1 0.4093 0.5460
GTE × BW 0.0239 1 0.0695 0.8009
GTE × ZnO 0.8634 1 2.5078 0.1644
GTE × GLY 0.3805 1 1.1052 0.3336
BW × ZnO 0.0229 1 0.0664 0.8052
BW × GLY 0.0049 1 0.0141 0.9092
ZnO × GLY 0.1195 1 0.3472 0.5772
Residual 2.0657 6 0.4766 0.5158

Table 6 Factor analysis results

Factor F-value p-Value Interpretation

GTE 0.4766 0.5158 Not signicant. GT
BW 1.6543 0.2458 Not signicant. BW
ZnO 0.5162 0.4995 Not signicant. Zi
GLY 4.5538 0.0768 Marginally signic

© 2025 The Author(s). Published by the Royal Society of Chemistry
on the outcome. Likewise, the interactions, including GTE ×

BW (p = 0.8009) and GTE × ZnO (p = 0.1644), do not demon-
strate signicant effects. The residual variance, with a p-value of
0.5158, implies that the unexplained variability in the model is
insufficient to indicate any signicant unexplained effects. This
indicates that, although the factors and their interactions may
have some inuence, they do not achieve statistical signicance
at the 0.05 level.

3.4.1 Interpretation of the ANOVA statistics. Table 6 pres-
ents a summary of the factor analysis ndings, detailing the F-
values and p-values associated with each factor's impact on TS.
The analysis indicates that GTE, which has an F-value of 0.4766
and a p-value of 0.5158, is not statistically signicant, suggest-
ing that the concentration of GTE does not have a meaningful
effect on tensile strength. Similarly, BW exhibits an F-value of
1.6543 and a p-value of 0.2458, indicating that it also lacks
a signicant inuence on TS, thereby implying that its vari-
ability has minimal individual effect. ZnO shows an F-value of
0.5162 and a p-value of 0.4995, further conrming the absence
of a signicant impact on TS. In contrast, GLY demonstrates an
F-value of 4.5538 and a p-value of 0.0768, which is marginally
signicant, suggesting that glycerol may have a potential effect
on tensile strength, warranting further investigation.

Table 7 provides an analysis of the interaction effects among
various factors. The interaction between GTE and BW (p =

0.8009) indicates an absence of synergistic effects. The GTE and
ZnO interaction (p = 0.1644) suggests some potential for
interaction, although it is not statistically signicant. The
interaction between GTE and GLY (p = 0.3336) is regarded as
a weak interaction. The BW and ZnO interaction (p = 0.8052)
reveals minimal interaction, while the BW and GLY interaction
(p = 0.9092) demonstrates a very weak effect. Finally, the
interaction between ZnO and GLY (p = 0.5772) shows no
signicant interaction.

GLY seems to be the primary factor impacting tensile
strength, although its inuence is only marginally signicant,
just exceeding the 0.05 signicance threshold. Other individual
E concentration does not signicantly affect tensile strength
(beeswax) variation has little individual effect

nc oxide does not independently inuence TS
ant glycerol shows a potential effect; may warrant further investigation

Table 7 Interaction effect analysis

Interaction p-Value Interpretation

GTE × BW 0.8009 No synergistic effect
GTE × ZnO 0.1644 Shows some interaction potential
GTE × GLY 0.3336 Weak interaction
BW × ZnO 0.8052 Negligible interaction
BW × GLY 0.9092 Very weak effect
ZnO × GLY 0.5772 No signicant interaction
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factors and their interaction effects do not demonstrate statis-
tical signicance at the 95% condence level. The analysis
suggests that tensile strength is largely unaffected by most
individual factors or their interactions, apart from GLY. Addi-
tional experiments or repetitions may provide further insight
into the unclear or borderline effects, especially concerning GLY
and the interaction between GTE and ZnO.

3.5 Summary of the design

In this research, the independent variables being examined are
Green tea extract (from 0.5% to 2%), beeswax (0.5% to 1.5%),
zinc oxide (0.05% to 1%), and glycerol (1% to 2%). Each variable
is evaluated at ve distinct levels: low (−1), medium (0), high
(+1), plus alpha (+a), and minus alpha (−a). The response
variables assessed include TS, EAB, WVP, MC, WS, L*, WI, YI,
and OP. The design includes 14 experimental runs and 6 center
points, totaling 20 trials designed to thoroughly explore the
interactions among the factors and their inuence on the
response variables.

4 Model optimization and validation
4.1 Optimization of independent variables

1. Multi-criteria approach: optimization was carried out using
a multi-criteria approach, meaning multiple response variables
(like tensile strength, elongation at break, moisture content,
etc.) were optimized simultaneously.

2. Derringer function/desirability function.
� This is a mathematical method used to nd the best

combination of independent variables.
� It transforms each response (such as tensile strength,

elongation at break, etc.) into a dimensionless desirability scale
(di) ranging from 0 (undesirable) to 1 (highly desirable).

� This helps in determining the best conditions for lm
formulation.

4.2 Desirability function application

Each response variable is given a desirability function, which
means:

1. Desirable responses (things we want to increase):
� Tensile Strength (TS) – a higher tensile strength means

a stronger lm.
� Whiteness Index (WI) – a higher WI means a whiter lm.
� Lightness (L*) – a higher value means the lm is lighter in

color.
2. Undesirable responses (things we want to decrease):
� Moisture Content (MC) – lower moisture content improves

lm stability.
� Elongation at break (EAB) – toomuch elongationmaymake

the lm too stretchy and weak.
� Water Vapor Permeability (WVP) – lower permeability

makes the lm more effective as a barrier.
� Water Solubility (WS) – a less soluble lm is more stable

under humid conditions.
� Yellowness Index (YI) – a lower YI means less yellowing of

the lm.
1712 | Sustainable Food Technol., 2025, 3, 1705–1722
� Opacity (OP) – lower opacity makes the lm more
transparent.

The goal of optimization was to nd the best combination of
independent variables (BW, CEO, SP, etc.) that maximize the
desirable properties and minimize the undesirable ones.
4.3 Optimization process

� Assigning goals: each response variable was assigned a goal
(maximize or minimize).

� Setting independent variables in the range: the concen-
tration levels of beeswax, clove essential oil, and other inde-
pendent variables were adjusted within a specic range.

�Highest priority to all responses: instead of optimizing just
one response, all were considered together.
4.4 Best condition selection

The combination of variables that gives the highest desirability
index (close to 1) was chosen as the optimized condition.
4.5 Optimization process validation

Once the optimal conditions were identied:
� Experimental values (actual lab results) were compared

with predicted values (from the optimization model).
� This ensures that the model's predictions are accurate and

reliable.
4.6 Example

The Derringer desirability function is used to convert each
response into a desirability score (0 to 1), where 0 means the
response is completely undesirable and 1 means fully desirable.
Each response is either maximized or minimized depending on
gaols:

Maximize: TS, WI, and L* (higher values are better)
Minimize: MC, EAB, WVP, WS, YI, and OP (lower values are

better)
Each response has a desirability function, which is a math-

ematical formula that assigns a desirability score based on
whether the response meets the desired range.

4.6.1 Example of optimization using the desirability func-
tion. This example demonstrates how to optimize the compo-
sition of a chitosan-starch lm incorporating GTE, BW, ZnO,
and GLY using a multi-criteria approach known as the desir-
ability function method.
5 Experimental design

Independent variables and their ranges are shown in Table 8.
Table 8 which presents the ranges of the independent variables
utilized in the experiments. The concentration of GTE varied
from 0.5% to 2%, BW from 0.5% to 1.5%, ZnO from 0.05% to
1%, and GLY from 1% to 2%.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 8 Independent variable ranges

Variable Range

Green tea extract (GTE) 0.5% to 2%
Beeswax (BW) 0.5% to 1.5%
Zinc oxide (ZnO) 0.05% to 1%
Glycerol (GLY) 1% to 2%

Table 9 Response variable categories

Category Variables

Mechanical properties Tensile Strength (TS)
Elongation at break (EAB)

Barrier properties Water Vapor Permeability (WVP)
Moisture Content (MC)
Water Solubility (WS)

Optical properties Lightness (L*), Whiteness
Index (WI), Yellowness Index
(YI), and opacity (OP)

Table 11 Experimental values and optimization goals for response
variables

Response variable Experimental value Goal

TS 3.5 MPa Max
EAB 150% Min
WVP 3.0 × 10−10 Min
MC 25% Min
WS 30% Min
WI 65 Max
YI 40 Min
L 82 Max
OP 1.1 Min

Table 12 Desirability scores for response variables

Response Value Desirability score (di)

TS (maximize) 3.5 0.33
EAB (minimize) 150 0.50
WVP (minimize) 3.0 0.67
MC (minimize) 25 0.42
WS (minimize) 30 0.50
WI (maximize) 65 0.60
YI (minimize) 40 0.50
L (maximize)* 80 0.50
OP (minimize) 1.1 0.57
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5.1 Response variables

Response variables according to their category are shown in
Table 9 presenting the various categories of response variables
assessed during the experiments.

5.2 Example data from one experimental run

The values of independent variables are given in Table 10.
All the experimental values and goals for optimization are

mentioned in Table 11.
Table 11 presents the experimental data and optimization

objectives for the response variables. The target for TS is to
achieve a maximum value of 3.5 MPa. For EAB, the objective is
to reduce the value to 150%. Additionally, theWVP, MC, andWS
should be minimized, with experimental values recorded at 3.0
× 10−10, 25%, and 30%, respectively. The WI and L* are to be
maximized, with experimental values of 65 and 82, respectively.
The YI should be minimized to 40, and OP should also be
minimized to 1.1.

5.3 Transforming responses into desirability scores

Each response is transformed into a di ranging from 0 (unde-
sirable) to 1 (highly desirable).

Desirability function types.For maximized responses (TS,
WI, and L*):

d ¼ X � Xmin

Xmax � Xmin
Table 10 Values of independent variables

Independent variables Values

Green tea extract (GTE) 1.25%
Beeswax (BW) 1.0%
Zinc oxide (ZnO) 0.525%
Glycerol (GLY) 1.5%

© 2025 The Author(s). Published by the Royal Society of Chemistry
For minimized responses (EAB, WVP, MC, WS, YI, and OP):

d ¼ Xmax � X

Xmax � Xmin

Example desirability scores can be seen in Table 12.
Table 12 displays the desirability scores for the response

variables derived from their experimental values. These scores
are utilized to assess the proximity of the experimental
outcomes to the optimal objective, whether it is to maximize or
minimize. TS has a desirability score of 0.33, signifying that the
current measurement of 3.5 MPa is relatively distant from the
target aimed at maximizing this characteristic. EAB, recorded at
150%, possesses a desirability score of 0.50, indicating
a moderate alignment with the desired minimum. WVP,
measured at 3.0 × 10−10, achieves a desirability score of 0.67,
reecting a comparatively favorable outcome towards the
minimization goal. MC and WS both exhibit moderate desir-
ability scores of 0.42 and 0.50, respectively, suggesting potential
for enhancement in minimizing these attributes. The WI, with
a score of 65, attains a desirability score of 0.60, demonstrating
a strong alignment with the objective of maximizing this
property. The YI, at 40, has a desirability score of 0.50, indi-
cating that the result is midway towards the ideal minimum.
Lightness, with a value of 80 and a desirability score of 0.50,
suggests a balanced outcome in pursuing the maximization
goal. Opacity (OP), with a score of 0.57, reects moderate
success in minimizing this property.
Sustainable Food Technol., 2025, 3, 1705–1722 | 1713
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5.4 Calculating the overall desirability index

The overall desirability index (D) is computed as the geometric
mean of all desirability scores:

D = (d1 × d2 × d3 × / × dn)
1/n

For example:

D = (0.33 × 0.5 × 0.67 × 0.42 × 0.5 × 0.6 × 0.5 × 0.5 × 0.57)1/9

or, D z 0.49

5.5 Selecting the optimal formulation

� A higher desirability index (close to 1) means the formulation
is optimal.

� A low desirability index (closer to 0) suggests poor
performance.

� The formulation with the highest D value across all
experiments is selected as the best.

5.6 Response variable/mechanical properties

1. Tensile strength (TS) and elongation at break (EAB) which are
mechanical properties of the lms, specically TS and EAB,
were measured using the following formula:

TS ðMPaÞ ¼ maximum force ðNÞ
cross-sectional area ðmm2Þ

EAB ð%Þ ¼ final length� initial length

initial length
� 100

2. Moisture content (MC) and water solubility (WS) were
assessed using a modied version of the standard hot air oven
method. The moisture content was determined using the
formula:

Moisture content ð%Þ ¼ initial weight� final weight

initial weight
� 100

For the measurement of water solubility, the oven-dried lm
samples (initial weight = w1) were submerged in 50 mL of
distilled water at 25 °C for 24 hours, with occasional stirring.
Aer the soaking period, the undissolved lms were dried again
at 90 °C for 24 hours and weighed (nal weight = w2). Water
solubility was then calculated using the following equation:

Water solubility ð%Þ ¼ ðw1 � w2Þ
w3

� 100

3. Color and optical parameters where the lm's color was
dened through CIELAB values: L* (lightness, ranging from 0 =

black to 100 = white), a* (positive values indicate red, while
negative values indicate green), and b* (positive values denote
yellow, and negative values indicate blue). Using these values,
1714 | Sustainable Food Technol., 2025, 3, 1705–1722
the Whiteness Index (WI) and Yellowness Index (YI) were
derived through the following formulae:

WI ¼ 100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð100� LÞ þ a2 þ b2

p

YI = 142.86 × b

4. Opacity was assessed using rectangular samples
measuring 4 × 40 mm which were positioned in a spectropho-
tometer cuvette, with an empty cuvette serving as the blank
reference. Absorbance was measured at 600 nm, and opacity
was determined using the following formula:

OP = Abs600/d

where Abs600 = absorbance at 600 nm and d = lm thickness
(mm)

5.7 Characterization of optimized lms

Different characterization studies will be employed to investi-
gate the quality and basic properties of the optimized lms.
Antioxidant properties, thermal stability, and the structure, and
purity of thin lms can be understood using existing charac-
terization studies like antioxidant activity, thermogravimetric
analysis, SEM, FTIR and XRD, respectively.

1. The antioxidant properties of both the optimized lm and
the control lm (pure SAE) were assessed through the DPPH
free radical scavenging method. The DPPH scavenging activity
was determined using the formula:

DPPH scavenging activity ð%Þ ¼ ðADPPH � ASÞ
ADPPH

� 100

where ADPPH = absorbance of the DPPH solution without the
sample and AS = absorbance of the sample solution.

2. X-Ray Diffraction (XRD) determined the crystallinity,
purity, and structural arrangement of the lms.

3. Fourier Transform Infrared Spectroscopy (FTIR) was used
to examine the attached functional groups with the lms that
lead to the absorption of specic frequency and provides
information about bonding of different groups.

4. Thermogravimetric analysis (TGA) was used to investigate
the thermal stability of the optimized lm which was assessed
with a thermogravimetric analyzer.

5. Scanning Electron Microscopy (SEM) was employed to
investigate the surface and cross-sectional morphology of the
composite lms.

5.8 ANN modeling

Articial Neural Networks (ANNs) are computational models
inspired by the human brain, used for complex pattern recog-
nition and predictive modeling. In this study, an ANN model
was created to predict 9 response variables based on 3 input
variables using MATLAB R2018a. ANNs are powerful tools that
can capture complex, nonlinear relationships. In the develop-
ment of biodegradable lms, ANNs can be used to predict and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Flow chart for artificial neural networks.
Fig. 5 Artificial Neural Networks (ANNs) including input factors to
optimize the mechanical properties.
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improve lm properties based on variables like starch concen-
tration, plasticizer levels, and processing conditions. The ow-
chart shown in Fig. 4 outlines the steps involved in developing
and using an ANN model to optimize starch-based composite
lms, including stages such as problem identication, data
processing, model training, validation, and execution.

� Table 13 presents the input and output variables used in
the Articial Neural Network (ANN) model.

� Data processing: to improve model performance, the
dataset was preprocessed:

5.8.1 Normalization. Data values were scaled between −1
and 1. This avoids large variations and helps in faster conver-
gence during training.

Formula used for normalization:

Xscaled ¼ X � Xmin

Xmax � Xmin

� 2� 1

This makes sure that all variables contribute equally to the
model.

5.8.2 Data splitting: (random splitting, stratied, and cross
validation). The dataset was divided into:

Training set (70%)-used to teach the neural network.

Test and validation set (30%)-used to evaluate model.

5.8.3 ANN architectural selection. A multi-layer feed-
forward ANN was designed, which consists of an input layer
Table 13 ANN model input and output variables

Inputs (IV – 4 factors) Outputs (RV – 9 factors)

Beeswax (BW) Tensile Strength (TS)
Glycerol (GLY) Elongation at Break (EAB)
Zinc oxide (ZnO) Water Vapor Permeability (WVP)
Green Tea Extract (GTE) Moisture Content (MC)
— Water Solubility (WS)
— Whiteness Index (WI)
— Yellowness Index (YI)
— Lightness (L*)
— Opacity (OP)

© 2025 The Author(s). Published by the Royal Society of Chemistry
containing 4 input variables, hidden layers in which the
number of neurons varied between 1 to 20, and the number of
layers was 2, and an output layer which produced 9 predicted
response values as shown in Fig. 5–7. The best number of
neurons and layers was determined using Mean Squared Error
(MSE).

� Training the neural network: “training algorithm: back-
propagation algorithm (“trainlm”) was used.

Levenberg–Marquardt optimization was applied to update
the weights and biases for faster convergence.

Learning function: “learngdm” (gradient descent with
momentum weight & bias learning) was used to adjust the
weight updates.

� Model evaluation aer training, where the model's
performance was measured using: Mean Squared Error (MSE):
measures how close the predictions are to actual values:

MSE ¼ 1

n

Xn

i¼n

ðpi � tiÞ2

where ti represents experimental data, pi represents predicted
data, and n is the number of samples.

� Correlation coefficient (R): measures the strength of the
relationship between experimental and predicted values:
Fig. 6 Further derived components of films using Artificial Neural
Networks (ANNs).
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Fig. 7 Artificial Neural Network (ANN) optimized output.
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R ¼
Pn
i¼1

�
ti � t

�ðpi � pÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�
ti � t

�2s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðpi � pÞ2
s

where t�represents mean of experimental data and p�represents
mean of predicted data. If R is close to 1, the model predictions
are highly accurate.

� Optimization of the model.
The ANN was trained multiple times, testing different

neuron numbers and hidden layers. The best network was
selected for the lowest MSE and highest R-value which was
tested by comparing predicted values against actual experiment
values.
5.9 Analysis of the developed model

Comparing prediction performance of RSM and ANN models.
This section describes how the performance of RSM and

ANN models was compared using different statistical error
metrics. let's go step by step.

1. Performance metrics used for comparison to determine
which model (RSM or ANN) is better, the following metrics were
calculated as shown in Table 14.

2. Mathematical equation for each metric.
Mean absolute error (MAE)

MAE ¼ 1

n

X
jpi � tij
Table 14 Model evaluation metrics and their objectives

Metric Purpose

Coefficient of determination (R2) Measures how well
variability in data

Mean Absolute Error (MAE) Measures the avera
predicted and actua

Root Mean Squared Error (RMSE) Measures the squar
error. Penalizes larg

Chi-square (c2) Measures the differ
actual values, norm
values

1716 | Sustainable Food Technol., 2025, 3, 1705–1722
where pi: predicted value (ANN or RSM), ti: actual experimental
value and n: total number of samples.

Goal: a lower MAE means the model's predictions are closer
to the actual values.

Root mean squared error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
ðpi � tiÞ2

r

Note: similar to MSE, but taking the square root makes the
error comparable to the original data units.

Goal: a lower RMSE indicates better prediction accuracy.
Chi-square (c2)

c2 ¼
X ðpi � tiÞ2

pi

Note: this metric compares actual and predicted values
relative to the predicted values.

Goal: a lower c2 value indicates a better t.
3. Interpreting the results, a higher c2 value indicates

a better model having lower MAE, and RMSE values where c2

values indicate better predictive accuracy. If ANN has lower
RMSE, MAE, and c2 than RSM, then ANN is the more accurate
model.

When comparing Articial Neural Networks (ANNs) with
Response Surface Methodology (RSM), ANN consistently
demonstrated superior performance across all assessed char-
acteristics. This enhanced capability is due to ANN's prociency
in modeling complex, non-linear relationships among various
input variables and their corresponding outputs. Although RSM
is suitable for systems characterized by primarily linear or
moderately quadratic interactions, it tends to be inadequate in
addressing more complex, non-linear dependencies, an area
where ANN thrives thanks to its layered structure and adaptive
learning features.

6 Discussion & analysis
6.1 Tensile strength (TS) and elongation at break (EAB)

TS and EAB are key mechanical properties that affect the
performance of edible and biodegradable lms. High TS values
are important for maintaining structural stability during
handling, transportation, and storage.51 This study showed that
Goal for a good model

the model explains the Higher R2 (closer to 1)

ge absolute error between
l values

Lower MAE

e root of the average square
er errors more than MAE.

Lower RMSE

ence between predicted and
alized by the predicted

Lower c2

© 2025 The Author(s). Published by the Royal Society of Chemistry
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TS values were within the range reported in existing literature,
with variations due to the interactions among the lm's
components. A two-factor interaction (2FI) model explained
a signicant portion of the variability, indicating that both
individual and combined effects of the components can
signicantly inuence the lm's mechanical properties. In
some cases, adding specic components disrupted the polymer
matrix, resulting in reduced TS due to weaker intermolecular
bonds.52 Higher concentrations of certain hydrophobic or non-
polar additives may have created heterogeneity, decreasing the
lm's cohesive strength.53 However, in some instances,
combining these components led to synergistic effects that
improved mechanical performance, highlighting the
complexity of formulation interactions.

Similarly, EAB values showed a wide range, comparable to
that of biopolymer-based lms and traditional synthetic mate-
rials such as polyethylene terephthalate (PET) and poly(vinyl
alcohol-co-ethylene).51,54,55 A quadratic model provided a strong
statistical t for the EAB data, showing that both linear and
nonlinear interactions signicantly inuenced the lm's exi-
bility. A decrease in EAB was observed in formulations with
higher structural rigidity, likely due to restricted molecular
movement within the polymer network.56,57 Moreover, certain
dispersed phases may have disrupted the lm's continuity,
leading to brittleness and reduced stretchability.54

6.2 Moisture content (MC)

MC plays a vital role in determining the barrier, thermal, and
mechanical properties of biodegradable lms. In this study, the
observed MC values were consistent with those found in similar
formulations. A quadratic regression model, with a coefficient
of determination (R2 = 0.83), successfully demonstrated the
relationship between MC and the variables related to lm
composition. Statistical analysis through ANOVA showed that
changes in the types and concentrations of components had
a signicant impact on MC levels (p < 0.05). Adding hydro-
phobic components to the predominantly hydrophilic polymer
matrix resulted in a notable reduction in moisture retention.
This decrease is attributed to the reduced water-binding
capacity of the lm, as hydrophobic additives generally repel
moisture and reduce the lm's affinity for water.58 This nding
emphasizes the need to balance hydrophilic and hydrophobic
interactions during lm formulation to achieve optimal
moisture-related properties.

6.3 Water solubility

WS is a crucial characteristic of edible lms, particularly those
designed for high-moisture conditions where preserving struc-
tural integrity and product quality is important.59 This research
found that the solubility values of the lms were within a range
typical for protein-based edible lms and were notably lower
than those generally seen in polysaccharide-based lms.60,61 The
response of WS to changes in formulation was most accurately
represented by a quadratic regression model, achieving an R2

value of 0.83. Several linear and quadratic terms were found to
be statistically signicant, suggesting intricate interactions
© 2025 The Author(s). Published by the Royal Society of Chemistry
among the formulation variables. The addition of hydrophobic
components led to a reduction in WS, as these constituents
decreased the lm matrix's affinity for water by disrupting
hydrogen bonding and promoting hydrophobic interac-
tions.62,63 Furthermore, certain additives with low hydrophilic-
lipophilic balance (HLB) values further reduced solubility due
to their limited compatibility with water, impeding effective
interactions between the lm matrix and aqueous
environments.64
6.4 Water vapour permeability (WVP)

WVP is an essential factor that inuences a lm's ability to
regulate moisture transfer, which is crucial for maintaining
food quality and prolonging shelf life. In this research, the WVP
values fell within the range documented for comparable
biodegradable lms, consistent with earlier studies.65 The
changes in WVP were accurately modeled using a second-order
polynomial equation, which accounted for more than 90% of
the variability in the data. Certain hydrophobic elements
signicantly decreased WVP by enhancing the lm's resistance
to moisture movement through improved barrier properties.65

Notably, some additives exhibited concentration-dependent
effects-initially enhancing barrier performance by increasing
the tortuosity of the diffusion pathway, but ultimately under-
mining the lm's structural integrity at higher concentrations,
leading to increased WVP values.66,67 Additionally, the syner-
gistic effects of emulsiers and plasticizers were found to
enhance matrix cohesion and fortify hydrophobic regions,
further improving moisture barrier properties.68
6.5 Color

Lightness (L*) plays a crucial role in determining consumer
acceptance of edible lms. This research utilized a quadratic
regression model (R2 = 0.87) to effectively illustrate the rela-
tionship between formulation variables and the L*. Certain
ingredients were identied as enhancing lightness due to their
natural optical properties, while others, especially those with
darker or more saturated colors, negatively impacted lightness.
Furthermore, second-order interactions and nonlinear effects
contributed to additional decreases in lightness. The WI
exhibited a similar trend, increasing with lighter-colored agents
and decreasing with darker or chromophore-rich materials.
Notably, some emulsifying agents displayed a negative rela-
tionship with the WI, possibly due to their effects on pigment
distribution or polymer compatibility. The improvement of
both L* and theWI in certain formulations is likely linked to the
light-scattering properties of opaque components.65 However,
earlier studies indicate that the color response is signicantly
inuenced by the composition and structure of the lm matrix,
as well as the characteristics of the added particles.58,69

Conversely, lms that included naturally pigmented
compounds experienced a reduction in both lightness and
whiteness, accompanied by a signicant increase in the YI,
likely due to their inherent color and the presence of light-
absorbing phenolic compounds.70
Sustainable Food Technol., 2025, 3, 1705–1722 | 1717
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Fig. 8 (a) X-ray diffraction graph clearly illustrating the crystallinity
changes in pure chitosan (CH), corn starch (CS), tea polyphenols (TP),
and their composite films (CS/CH/TP-x%) as tea polyphenol content
increases, and (b) Fourier transform infrared spectroscopy (FTIR)
spectra of pure components-chitosan (CH), corn starch (CS), tea
polyphenols (TP)-and their composite films with increasing concen-
trations of tea polyphenols (CS/CH/TP-0.5% up to CS/CH/TP-3%).83

Adapted from Open access under the Creative Commons BY license.
Copyright 2021 MDPI.
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6.6 Opacity

Opacity plays a vital role in assessing the appropriateness of
packaging materials. A second-order regression analysis (R2 =

86.31%) revealed that opacity is primarily affected by linear
factors (p < 0.005). Certain additives can enhance opacity by
obstructing light transmission through the lm, likely due to
the development of light-scattering structures within the
material, a phenomenon corroborated by previous research.71

On the other hand, the addition of different substances may
compromise the dense structure of the lm, resulting in
reduced opacity and increased transparency. This effect may
stem from these substances modifying the microstructure and
potentially affecting the lm's refractive index through inter-
actions with water molecules, as noted by Gonzalez et al.72 and
Vargas et al.73 Furthermore, specic emulsiers have been
shown to boost opacity, a nding consistent with earlier
studies.74,75
6.7 Optimized lm characterization

6.7.1 Antioxidant activity. Antioxidant activity is an essen-
tial characteristic of edible lms, as it helps reduce the detri-
mental effects of free radicals in both food products and
biological systems.76 The commonly utilized DPPH assay serves
as a dependable method for assessing the free radical scav-
enging ability of a material, which is directly related to its
potential for prolonging the shelf life of packaged foods.77 In
this study, both the standard lm and its optimized version
demonstrated inherent antioxidant properties. The activity of
the standard sample is attributed to the natural free radical
scavenging capabilities of its primary polymer matrix, while the
improved performance of the optimized lm is associated with
the addition of natural bioactive compounds. These
compounds, which are typically abundant in phenolic struc-
tures, are recognized for their signicant role in neutralizing
free radicals, thus enhancing the overall antioxidant
capacity.13,78

6.7.2 X-ray diffraction (XRD) analysis. The XRD analysis
was performed to assess the structural arrangement and crys-
tallinity of the optimized lm. The resulting diffraction pattern
revealed a semi-crystalline character, exhibiting both amor-
phous and crystalline regions. A broad peak centered at
approximately 20° was associated with the amorphous charac-
teristics of the soy protein matrix, specically linked to the
presence of 7S and 11S amorphous globulins, which are typical
components of soy protein structures.79,80 Conversely, several
sharp and well-dened peaks observed at both lower and higher
diffraction angles, including those near 5.5°, 6.4°, 15.9°, 23.1°,
27.7°, and 34.8°, indicated the presence of crystalline domains
within the lm. These peaks were primarily attributed to the
addition of beeswax, which is recognized for its contribution to
the crystalline structure due to its orderly molecular congu-
ration. The emergence of these peaks signies a favorable level
of molecular organization and implies that the beeswax was
effectively integrated into the lm matrix. The degree of crys-
tallinity observed is also affected by the physical processing
conditions, particularly during the cooling and drying phases,
1718 | Sustainable Food Technol., 2025, 3, 1705–1722
which inuence the alignment and packing of molecules
throughout the lm formation process. These structural char-
acteristics not only validate the compatibility of the lm-
forming components but also indicate robust intermolecular
interactions that are essential for the mechanical strength and
barrier properties of the nal lm.81,82

Fig. 8(a) shows the XRD patterns of the chitosan (CH), corn
starch (CS), tea polyphenols (TP), and their composite lms (CS/
CH/TP-x%) in a brief study done by Gao et al.83 The diffraction
peaks for chitosan exhibited a broad peak at 19.7°, indicating
a predominance of amorphous regions, which is common for
chitosan due to its exible polymer chains. Corn Starch (CS)
showed sharp peaks at 14.9°, 17.0°, 18.1°, and 22.8°, indicating
an A-type crystalline structure and a higher degree of crystal-
linity, whereas tea polyphenols (TP) had a very broad and weak
peak at 23.2°, suggesting an amorphous or poorly crystalline
nature. Composite lms (CS/CH/TP-x%), regardless of TP
concentration, show a single broad peak at 19.5°, with the
disappearance of starch's sharp crystalline peaks. This indi-
cated a signicant decrease in overall crystallinity and the
formation of a more amorphous structure. The absence of new
peaks and the broadening of the main peak suggested strong
molecular interactions (such as hydrogen bonding) between
chitosan, starch, and tea polyphenols. These interactions di-
srupted the regular crystalline arrangement of starch and chi-
tosan, leading to a homogeneous amorphous matrix.

6.7.3 Fourier transform infrared spectroscopy (FTIR)
analysis. FTIR is an advanced analytical method employed to
identify chemical bonds and functional groups within materials
by examining their absorption of infrared (IR) light. When
subjected to IR radiation, the molecules of a material absorb
specic frequencies, leading to vibrational movements in the
bonds, such as stretching, bending, or twisting. These unique
absorption patterns generate a distinct spectral “ngerprint”
for the material. As noted by Coates84 a key reference for inter-
preting IR spectra is that, each type of chemical bond (such as
O–H, C–H, C]O, N–H, etc.) absorbs infrared radiation at
specic wavenumbers (expressed in cm−1). By scrutinizing
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Thermogravimetric analysis (TGA) of pure curmin, SFTG, GE,
and several film formulations (F1, F2, C1, and C2).91 Adapted from open
access under the Creative Commons BY license. Copyright 2022
MDPI.
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these absorption bands, researchers can identify the functional
groups present in a given sample. Various researchers have
studied the application of FTIR in the study of natural polymers,
specically starch. Their ndings indicated that starch displays
consistent IR absorption bands, which correlate with its
molecular structure, thereby aiding in the evaluation of its
composition and the detection of any modications.

The FTIR spectra shown in Fig. 8(b) illustrated the reec-
tance of various lms83 where wavenumbers between 3290–
3340 cm−1 were attributed to broad O–H and N–H stretching
indicating the presence of hydroxyl (from starch and poly-
phenols) and amino groups (from chitosan). The persistence of
this peak in all composite lms suggests that hydrogen bonding
remains a dominant interaction, and the blending process does
not disrupt these functional groups. Amide I and II bands at
1640–1690 cm−1 and 1550 cm−1 were associated with C]O
stretching and N–H bending, respectively, both characteristic of
protein and polysaccharide matrices. The composite lms
sometimes shied as compared to pure components, indicating
interactions (likely hydrogen bonding or electrostatic) between
chitosan, starch, and tea polyphenols. The shi towards lower
wavenumbers upon TP addition is evidence of strong intermo-
lecular interactions, likely due to the aromatic rings and
hydroxyl groups in polyphenols forming new hydrogen bonds
with the matrix. Peaks in the 1470–1410 cm−1 region were
attributed to –CH2 bending and –CH3 symmetrical deforma-
tion. The presence and intensity of these peaks in the composite
lms conrmed the integration of chitosan and starch, and
their modication, as TP concentration increases suggest
changes in the microstructure and packing of the polymer
chains. Furthermore, the ngerprint region below 1500 cm−1

represented the C–O, C–C, and C–H bending vibrations that
changed according to TP concentration reecting successful
incorporation and molecular interaction of TP within the CS/
CH matrix.

In a similar vein, Lii et al.85 employed FTIR to explore the
structure of xanthan gum, a type of polysaccharide. Their
research validated the effectiveness of FTIR in identifying
characteristic functional groups within complex carbohydrates,
which is instrumental in understanding molecular conforma-
tion and interactions with other substances. Additionally, FTIR
was used to examine glycerol, a simple polyol compound. Their
results underscored the capability of FTIR to identify hydroxyl (–
OH) groups and other molecular characteristics in small
organic molecules, proving valuable for the analysis of additives
or plasticizers in biopolymer systems.

6.7.4 Thermogravimetric analysis (TGA). TGA was utilized
to assess the thermal stability and decomposition characteris-
tics of the developed lms. This method also sheds light on how
composite interactions affect lm stability when subjected to
thermal stress.86 The TGA results for the optimized lm revealed
the correlation between mass loss and temperature, while the
derivative thermogravimetric (DTG) curve depicted the rate of
weight change during the heating process. Thermal degrada-
tion was observed to occur in three distinct phases. The rst
phase, occurring between 25 °C and approximately 112 °C, was
primarily characterized by the evaporation of free moisture and
© 2025 The Author(s). Published by the Royal Society of Chemistry
the loss of minor volatile components. The second phase, which
extended to around 243 °C, exhibited a signicant mass
reduction of approximately 28.96%. This reduction can be
linked to the degradation of low molecular weight additives,
partial breakdown of structural polymers, and the evaporation
of plasticizers.87–89 The nal phase, occurring between 243 °C
and 363 °C, involved the thermal decomposition of high
molecular weight compounds and the evaporation of bound
water, resulting in a sharp decrease in sample mass.90

The TGA curves depicted in the accompanying Fig. 9
demonstrate the thermal stability of various lms studied by
Amani et al.91 It could be observed that pure curcumin (curmin)
displays the highest thermal stability, with major weight loss
starting at around 270 °C and signicant residue remaining
even above 400 °C. SFTG (tragacanth gum) and GE (Gelatin)
degraded at lower temperatures than curcumin, 220 °C and
260–450 °C, respectively. All lm samples F1 (1GE:1SFTG), F2
(2GE:1SFTG), C1 (1GE:1SFTG/curcumin), and C2(2GE:1SFTG/
curcumin) showed similar degradation proles, with the main
weight loss (about 70%) occurring between 200–300 °C, attrib-
uted to polymer depolymerization. The nal decomposition
stage (about 10% mass loss) is due to the breakdown of the
remaining lm components. The lms have lower thermal
stability than pure curcumin, consistent with the observation
that blending curcumin with biopolymers reduces thermal
stability. The order of thermal stability was found to be curmin
>GE z F1 z F2 z C1 z C2 > SFTG, with all lm samples
clustering closely together.

6.7.5 Scanning electron microscopy (SEM) analysis. SEM
was utilized to examine the microstructural arrangement and
compatibility of the various elements within the composite lm.
This analysis yielded crucial information regarding both the
internal and surface morphology, which are vital for assessing
mechanical strength and barrier efficacy.58 The lm's surface
displayed signicant roughness and irregularities, likely
Sustainable Food Technol., 2025, 3, 1705–1722 | 1719
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resulting from the recrystallization and accumulation of
hydrophobic particles during the drying phase. These particles
disrupted the uniformity of the matrix, leading to a coarse and
uneven texture.82 Such morphological characteristics can
impact both optical clarity and surface integrity.

Internally, microporous structures were identied, possibly
formed by the evaporation of volatile substances during the lm
casting process. The distribution of lipophilic droplets
appeared to be well integrated within the continuous polymer
matrix, creating distinct regions that contributed to a loosely
arranged internal structure. While this porosity may enhance
breathability, it could also inuence moisture barrier properties
based on the overall density and connectivity of the pores.90

Despite the observed rough surface textures and internal
porosity, the composite lm exhibited a consistent distribution
of all components, with no signs of phase separation or
signicant aggregation. This structural uniformity indicates
effective miscibility and interaction among the lm-forming
agents, likely facilitated by ultrasonication and emulsifying
agents. The resulting homogeneity within the matrix promotes
improved mechanical cohesion and functional stability of the
composite lm.70

7 Conclusion

The development of biodegradable edible lms made from
natural biopolymers, bioactive additives, and nanomaterials
provides an eco-friendly alternative to conventional plastic
packaging. This review highlights signicant improvements in
the mechanical, barrier, and antimicrobial properties of these
lms, achieved by incorporating natural polymers such as
starch, chitosan, and essential oils, along with bioactive
compounds like zinc oxide nanoparticles. Advanced optimiza-
tion techniques, including Response Surface Methodology
(RSM) and Articial Neural Networks (ANNs), have been
instrumental in ne-tuning lm formulations to meet specic
performance criteria. The inclusion of bioactive agents such as
green tea extract and beeswax not only enhances the antioxidant
and antimicrobial properties of the lms but also improves
their mechanical strength and moisture resistance. Character-
ization methods like FTIR, SEM, and XRD have conrmed the
structural integrity and functional compatibility of the lms,
while AI-driven optimization models have demonstrated supe-
rior predictive accuracy compared to traditional techniques.
Besides this, the AI models can be incorporated to develop other
bio-based lms. These interdisciplinary innovations pave the
way for sustainable, high-performance food packaging solu-
tions that align with sustainability goals. Future research
should focus on scaling production, assessing real-world
biodegradability, and addressing regulatory challenges to
accelerate the commercialization of these groundbreaking bio-
based lms. Despite promising laboratory results, the absence
of shelf-life and antimicrobial testing on actual food products
limits the practical validation of these lms. Therefore, further
studies are needed to determine whether the existing models
can be applied to different biopolymer combinations and food
packaging applications. Before the widespread use and
1720 | Sustainable Food Technol., 2025, 3, 1705–1722
commercialization of these lms, it is crucial to conduct real-
world food testing and evaluate these models with other
natural materials.
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