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and avocado oil in the production
of meat analogues obtained by high moisture
extrusion and their physicochemical
characterization

Darianna Ur-Mora, a Oscar Hernández-Meléndez a and Eduardo Bárzana *b

The growing demand for plant-based protein foods that meet nutritional needs and are also palatable to

consumers has given way to meat analogues. This research studied their preparation by texturing

isolated soy protein by high moisture extrusion cooking, supplemented with avocado oil and pectin as

a binder. Operational conditions for the extrusion process that favored the formation of fibrous

structures were determined. The extruded samples were subjected to a proximate chemical analysis that

reported values of approximately 55% moisture and 27% protein. Avocado oil allowed for a more tender

and juicy product, and did not interfere with the formation of fibrous structures. Scanning electron

microscopy and Raman spectroscopy analyses showed that analogues with 4% pectin by weight

presented a more pronounced fibrous structure and the best chewing characteristic as determined by

the profile obtained in a texture analyzer.
Sustainability spotlight

Plant-based meat analogues are a more sustainable alternative to traditional meat and can mitigate the damage caused by the meat industry. This research
studied a formulation of isolated soy protein, avocado oil and pectin for the sustainable production of meat analogues via high moisture extrusion cooking,
which offered promising results that will promote a healthy lifestyle and combat hunger, thus contributing to the United Nations Sustainable Development
Goals (SDGs), in particular SDG 3 (Good Health and Well-Being) and SDG 2 (Zero Hunger). In addition, meat analogues will reduce the consumption of
traditional meat, which will decrease soil degradation and biodiversity loss, thus aligning with SDG 15 (Life On Land).
1 Introduction

The increase in population and socioeconomic development in
the world has led to a growing demand for meat of animal
origin. A reduction in its consumption will lead to a reduction in
greenhouse gas emissions, as well as a decrease in the carbon
footprint, water consumption and the loss of biodiversity. As
a result, several people have opted for a diet based on vegetable
protein inuenced by concerns for the environment, animal
welfare and the need for good nutrition, in addition to the
restrictions of various cultures on consuming meat of animal
origin.1,2 All this has led to an increase in the demand for foods
made from vegetable protein.

To satisfy this new demand, it is necessary that new alter-
native and analogous products to meat of animal origin meet
nutritional requirements and are also pleasant to the palate.
Despite important and ongoing technological advances, two
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challenges must be addressed: (a) the search for more
sustainable production methods, and (b) the achievement of
products with sensory attributes similar to those of meat.

High-moisture extrusion cooking is a widely used technique
for the development of meat analogues.3 Its versatility allows
a wide range of vegetable proteins to be processed in an effi-
cient, economical manner and with good yields. It is charac-
terized by subjecting the raw material to a cooking temperature
between 140 and 180 °C, which results in a practically sterile
material. Additionally, to achieve the desired partially brous
texture with a multilayer structure, it is necessary to include
a cooling unit at the equipment outlet. The residence time
ranges from 3 to 4 min to obtain a nished product with
a moisture content between 40 and 80%.4,5 Generally, the
intermediate products obtained are further processed to create
ready-to-eat meat analogues using conventional meat process-
ing operations such as mincing, marinating, and mixing.6

The screw prole conguration is a key element in extrusion
because it is modied according to the functions to be per-
formed in each of the different sections. Temperature is one of
the main operating parameters that guarantee the texturization
of vegetable proteins by thermal cooking. Although high
Sustainable Food Technol., 2025, 3, 1805–1815 | 1805

http://crossmark.crossref.org/dialog/?doi=10.1039/d5fb00162e&domain=pdf&date_stamp=2025-11-08
http://orcid.org/0009-0001-0915-4378
http://orcid.org/0000-0002-8270-4479
http://orcid.org/0000-0001-8484-008X
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5fb00162e
https://pubs.rsc.org/en/journals/journal/FB
https://pubs.rsc.org/en/journals/journal/FB?issueid=FB003006


Fig. 1 Twin-screw extruder.
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temperatures are not required for protein denaturation to take
place, temperatures between 100 and 200 °C are necessary for
good texturization.5,7 Several authors agree that to obtain
a pronounced brous structure the maximum temperature
should be in the range of 155 °C to 180 °C.8–10

Once the material has been cooked, cooling the hot material
at the extruder outlet induces its solidication from the walls of
the cooling die towards the center. This stage leads to the
gradual development of ow conditions that promote the
generation of bers and overlapping layers in the nal product,
with an anisotropic ber-like structure.11–13 As the temperature
decreases in the cooling die, protein–protein interactions
increase and specic cross-linking occurs leading to the
formation of a dense ber product.9,14–16 In the extrusion
process, due to the effects of temperature and shear force of the
screws, the three-dimensional structure of certain proteins is
destroyed as a result of hydrolysis of peptide bonds, causing
amino acid chains to unfold. These are realigned due to the
formation of cross-links between the denatured protein chains
by means of amides, disulde bridges and hydrogen bonds and
nally transformed into a brous structure through new iso-
peptide bonds. Denaturation was previously considered a deci-
sive step in soy protein extrusion; however, it is now known that
the native structure is not a prerequisite for successful extru-
sion. This is because concentrates and isolates whose native
structure has been destroyed by heat and solvents in the
previous purication and extraction steps can lead to the same
results.5

Soy protein is among the main plant sources used to obtain
meat analogues due to its excellent properties, nutritional value
and a great capacity to produce brous structures.17 Solid fats
extracted from coconut, cocoa and oilseed oils, most commonly
canola and sunower, are oen used in meat analogues.
Linseed, algae, corn, safflower, olive and palm oil have also
been used.4,18 In order to improve the fatty acid prole in the
analogues, avocado oil was used in the present study based on
its nutritional properties. Avocado oil contains a low proportion
of saturated fatty acids, which depends on the variety and the
state of maturity (10–19%), a high amount of oleic acid (up to
80%), an acceptable level of polyunsaturated fatty acids (11–
15%), all of high nutritional quality, and no cholesterol.19 It is
important to note that there is no known report where avocado
oil has been used in the production of meat analogues based on
vegetable protein.

Previous studies have reported that to obtain a brous
structure it is necessary to have a mixture with thermodynamic
incompatibility, generally caused by electrostatic repulsions,
which result in phase separation.11,12,20,21 Therefore, a mixture of
thermodynamically incompatible biopolymers is a key require-
ment for the formation of anisotropic structures.11,12,20,22 Two
different ways are proposed: one is to use a less puried protein,
such as protein concentrate instead of the isolate, since the
concentrate contains carbohydrates; the other consists of using
a mixture of the protein isolate with polysaccharides. Following
the principle of the second route, Dekkers et al. (2016) recom-
mend the use of pectin, since it constitutes the main soluble
polysaccharide fraction of soy protein concentrate.22
1806 | Sustainable Food Technol., 2025, 3, 1805–1815
The objective of the present study was to develop a brous
product based on soy protein, avocado oil and pectin by extru-
sion cooking with high moisture content for use as a meat
analogue, and to characterize it through its morphological,
chemical and textural properties.
2. Materials and methods
2.1 Materials

ProWinner soy protein isolate (SPI) was used with a content of
85.3 g of protein, 4.6 g of lipids and 5.5 g of carbohydrates on
a dry basis per 100 g of commercial product, according to the
manufacturer's specications. The avocado oil (AO) used was
from El Real, Mexico. Citrus pectin was purchased from
Drogueŕıa Cosmopolita. All materials were obtained from
commercial suppliers in Mexico City.
2.2 Methods

2.2.1 Preparation of pectin/SPI mixtures. To maintain
a constant level of moisture in the feed to the extruder, all
formulations were prepared using ingredients measured on
a dry weight basis. Demineralized water was added to each
mixture to achieve a nal moisture content of 55%. The
proportion of pectin and SPI was varied by replacing part of SPI
with pectin between 2 and 6% by weight.

2.2.2 High moisture extrusion. The extrusion process was
carried out using a laboratory-scale co-rotating twin-screw
extruder (model Evolum 25, Clextral brand, Firminy, France),
shown in Fig. 1, located in the Department of Chemical Engi-
neering at the Faculty of Chemistry. The extruder screw has
a length of 100 cm, and its diameter is 2.5 cm for a L/D ratio of
40, which guarantees a correct thermomechanical treatment.

Based on preliminary results the screw speed was set at
230 rpm, with water ows of 2.6 and 3.5 L h−1 and an AO ow of
0.36 L h−1, which were pumped using a peristaltic pump in
modules 2 and 3 respectively. The hopper fed the raw material
at a rate of 0.7 kg h−1. A maximum barrel temperature of 165 °C
was used and, as an example, Table 1 shows the temperature
prole used per module. An elongated nozzle (i.e. module 10)
was placed at the extruder outlet and covered with dry ice to
promote the formation of the brous structure. This rectan-
gular nozzle chamber was 30 cm long. The inner rectangle of the
nozzle was 4 cm long and 0.5 cm wide. Water ow and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Temperature profile

Module 1 2 3 4 5 6 7 8 9 10

Temperature (°C) — 70 80 145 165 130 55 25 20 8

Fig. 2 Images of the extruded analogues at a water flow of 2.64 L h−1.
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temperature were varied to see if these changes inuenced the
nal texture of the extrudates. Once the best conditions were
selected, they were kept constant and only the concentration of
citrus pectin was varied. Dekkers et al. (2016) showed that
between 2 and 4% of pectin is sufficient to obtain a pronounced
brous structure.22

Four samples were formulated by varying the concentration
of citrus pectin.

DMD 1: SPI + AO.
DMD 2: SPI + AO + 2% by weight of pectin.
DMD 3: SPI + AO + 4% by weight of pectin.
DMD 4: SPI + AO + 6% by weight of pectin.
To determine the nal prole of the screw, several congu-

rations were tested and the one with a texture similar to real
meat was selected based on an empirical qualitative evaluation.
The location of the components and their classication are
presented in Table 2.

2.2.3 Scanning electron microscopy. Extrudates (∼1 cm2)
were xed in 2.5% glutaraldehyde for 8 h, rinsed with distilled
water overnight, and dehydrated through a graded acetone
series (10–100%, 2 h each). Samples were then dried using
critical point drying (QUORUM K850 located at the Institute of
Biology-UNAM) with CO2, stained, and gold–palladium coated
by cathodic sputtering. Micrographs at various magnications
were taken to observe the material's anisotropic structure in
a JEOL 5900-LV (Japan), located at USAII-FQ.

2.2.4 Proximal chemical analysis. The content of proteins,
ashes, carbohydrates, lipids and ber was quantied. The
moisture was determined by the oven drying method, proteins
by the Kjeldahl method, lipids by the Soxhlet method, total
carbohydrates by the phenol-sulfuric method, and the ash
content by drying. For the quantication of bers, the modied
Van Soest-Wine method described by Hernández-Meléndez
et al. (2016) was used.23

2.2.5 Raman spectroscopy. Raman spectroscopy of the
extrudates was performed at LUCE–ICAT-UNAM. For the anal-
ysis of the samples, an excitation wavelength of 532 nm was
established, and the output laser power was 300 mW. The
spectra were recorded in a scanning range of 400–2000 cm−1.
Each sample was normalized with a 1003 cm−1 band of
phenylalanine. The spectra were analyzed using OriginPro 9
soware for baseline adjustments and the disulde bonds were
Table 2 Components that make up the screw according to the nomen

Module 1 2 3 4

Type C2F (1) T2F (2) C2F (1) C2F (4) C2F (3) BB 45° (1) BB 90° (2) C2F

a C2F: double-ight conjugate conveyor screws; T2F: double-ight trap
following the screw component type indicate the quantity of elements.

© 2025 The Author(s). Published by the Royal Society of Chemistry
quantied from the Gaussian adjustment of the Raman vibra-
tion curves.

2.2.6 Instrumental texture prole. Instrumental texture
measurements were carried out using a TA.XTplus Texture
Analyzer (Stable Micro Systems, UK) equipped with a cylindrical
at-ended aluminum probe (SMSP/50; 50 mm diameter).
Extrudate samples, previously cut into squares of 40 mm × 5
mm, were analyzed in duplicate at room temperature (∼25 °C).
Each sample underwent a double compression cycle to 50% of
its original height, with a return distance of 20 mm, a test speed
of 10 mm s−1, and a contact force of 1 g. Force–time data were
recorded, and texture parameters such as hardness, cohesive-
ness, springiness, and chewiness were calculated according to
standard texture prole analysis procedures.

2.2.7 Statistical analysis. The nutritional composition and
textural parameters of the analogues were expressed as mean ±

standard error of the mean (SEM). Statistical differences among
formulations were evaluated by one-way analysis of variance
(ANOVA), using STATGRAPHICS Centurion, version 19. When
signicant differences were detected, Tukey's test was applied
for multiple comparisons, using a signicance level of p < 0.05.
Additionally, Pearson's correlation coefficient (r) was calculated
in Microso Excel to assess relationships between instrumental
texture parameters and proximate composition data.

3. Results and discussion
3.1 Extrusion process

Preliminary tests were carried out to nd the extrusion condi-
tions that would provide a distinct brous structure. Various
water ows were used and the resulting samples were evaluated.
It was observed that when the ow rate was 2.64 L h−1, the result
was a very hard material, difficult to handle and almost petri-
ed, as can be seen in Fig. 2. When this ow rate increased to
3.5 L h−1 the material was fragile and very sticky (Fig. 3), due to
excessive hydration. It was concluded that an adequate water
ow should be between 2.64 and 3.5 L h−1, so it was decided to
use a water ow of 3 L h−1, with which an adequate texture was
clature used by the manufacturera

5 6 7 8 9 10

(1) C2F (4) BB 45° (1) BB 90° (2) C2F (1) C2F (4) C2F (4) C2F (4) C2F (5)

ezoidal conveyor screws; BB: 2-lobed kneading blocks. The numbers

Sustainable Food Technol., 2025, 3, 1805–1815 | 1807
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Fig. 3 Images of the extruded analogues at a water flow of 3.5 L h−1.
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obtained. The residence time of the extrusion process was
approximately 4 min.

Preliminary tests were carried out with a maximum barrel
temperature of 120 °C, which resulted in a smooth and homo-
geneous material that did not show a brous structure. There-
fore, other maximum barrel temperatures were examined (140,
150, 160, 170 °C), with no clear differences in the resulting
material. It should be noted that as the temperature increased
in the cooking zone, a transition was observed that led to the
formation of more pronounced brous structures, since high
temperatures promote chemical interactions and molecular
alignment that helps in the creation of brous structures. A
high temperature leads to a better alignment of the polymer
chains of the soy protein in the direction of the ow during the
extrusion process. This alignment allows for a more
pronounced brous structure. Molecular interactions such as
hydrogen bonds and disulde bridges are also favored, which
give stability to the extrudates. Osen et al. (2014) suggest that
high temperatures could cause macromolecules to unravel,
thus leaving available binding sites for further cross-linking.9

Polymer chain alignment andmolecular interactions contribute
to the formation of a three-dimensional network, which is
related to the chewy texture of meat analogues. Therefore, the
maximum barrel temperature selected for the extrusion process
was 165 °C, close to the limits of the equipment. Special care
was taken not to exceed the oil ow, since a higher value would
lead to an overly oily product that would interfere with the
formation of brous structures by reducing interactions
between protein molecules. Another crucial parameter in the
formation of bers is the cooling matrix placed at the exit of the
extruder and wrapped with dry ice to reach a minimum
temperature of −12 °C.

Lipids also play a positive role in the extrusion process due to
a lubricating effect in the mixing zones of the equipment.24 This
was conrmed when a test was performed that did not contain
Fig. 4 Images of the extruded analogues without avocado oil.

1808 | Sustainable Food Technol., 2025, 3, 1805–1815
oil and a very dry and hard product was obtained as can be seen
in Fig. 4. It was decided to incorporate AO at a ow rate of 0.36 L
h−1 and visualize its effect.

A formulation was developed with SPI and AO, but the
resulting extrudate did not show solid evidence of a brous
structure because there was no phase separation (Fig. 5a).
Therefore, other formulations were developed to which 2, 4 and
6% by weight of pectin was added (Fig. 5b–d). Pectin was used
as a binder with the aim of obtaining a mixture of incompatible
biopolymers that remain in separate phases. A possible mech-
anism is that the amine group of proteins in SPI establishes
electrostatic interactions with the carboxyl group of pectin,
allowing the molecules to group together and stabilize each
other.

They also exhibit hydrophobic interactions, since in an
aqueous medium, the hydrophobic regions of both molecules
tend to clump together to minimize their exposure to water. Xu
et al. (2022) suggest that the hydrophobic effect between SPI and
pectin is caused by the destruction of hydrogen bonds by
nonpolar molecules.25 Dekkers et al. (2016) suggest that the
formation of bers in a mixture of SPI and pectin is caused by
the fact that pectin forms weaker and elongated laments in the
mixture.22 When manually tearing the analogue obtained, the
formation of bers can be seen (Fig. 5b–d). At rst glance, it is
observed that the formulation containing 4% by weight of
pectin has a more brous structure compared to the formula-
tions containing 2 and 6% pectin.
3.2 Scanning electron microscopy

Scanning Electron Microscopy (SEM) was used to obtain infor-
mation on the microstructure of the obtained extrudates. SEM
images showed structural differences on the surface of the
analyzed samples (Fig. 6). It was observed that the structure of
the formulation that did not include pectin was practically
smooth and isotropic, so no orientation was observed, reect-
ing that in this formulation no brous structures were formed.
In the images of the samples that contained 2, 4 and 6% by
Fig. 5 Images of the extruded analogues: (a) SPI + AO; (b) SPI + AO +
2% by weight of pectin; (c) SPI + AO + 4% by weight of pectin; (d) SPI +
AO + 6% by weight of pectin.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Images of the extruded analogues: (A and B) SPI + AO; (C and D) SPI + AO + 2% by weight of pectin; (E and F) SPI + AO + 4% by weight of
pectin; (G and H) SPI + AO + 6% by weight of pectin.
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weight of pectin, a more brous morphology containing several
elongated structures is obtained. These laments are more
imperceptible at a smaller scale; however, as the scale increases,
they become more visible. A collective observation of the la-
ments and layers at different magnications provides
a complete description of the brous structure of the meat
analogues extruded with high moisture. When the pectin
weight concentration increased from 2 to 4%, the formation of
bers also increased. When the pectin weight concentration
increased from 4 to 6%, a slight decrease in elongated struc-
tures could be observed, suggesting that low pectin concentra-
tions may have promoted phase separation of the protein–
polysaccharide mixture that contributed to ber formation.
When these concentrations were higher, they may have
inhibited molecular interactions between protein molecules,
resulting in a decrease in the formation of the brous structure.
Previous studies have shown that hydrophobic interactions,
hydrogen bonds, disulde bonds and their interactions collec-
tively maintain the structure of the protein extrudate.14

Considering that there was no evidence of the formation of
brous structures in the mixture without pectin, only the
samples containing 2, 4 and 6% by weight of pectin were
studied for future analyses.
3.3 Proximal chemical analysis

Data from the nutritional composition of the extruded
analogues were obtained on a dry basis; however, for a better
understanding and analysis, the corresponding calculations are
reported on a wet basis (Table 3).

Osen et al. (2014), Palanisamy et al. (2019), and Zhang et al.
(2020) agree that a moisture content of approximately 55% is
© 2025 The Author(s). Published by the Royal Society of Chemistry
suitable for obtaining brous structures.9,10,26 The moisture
content obtained through high-moisture extrusion is within the
range of corresponding meat analogues. Chen et al. (2011)
suggest that an increase in moisture content leads to an
increase in the interactions between disulde bonds and
hydrogen bonds and between disulde bonds and hydrophobic
interactions.14 Other extrusion tests were also carried out where
the moisture content was either too low (40%) or too high (70%)
and no pronounced brous organization was observed, which
corroborated that a moisture content of 55% was favorable for
the formation of a brous structure. This demonstrated that
moisture is directly related to the texture of the nal product.
Cheel et al. (1992) state that when the moisture content
exceeded 50% the products obtained were brous.12

It has been reported that a lipid content greater than 15%
interferes with the formation of a brous structure4,27 and that,
to obtain a well-aligned brous structure, the maximum lipid
content in a textured product should not exceed 10%.13 Higher
amounts act as barriers and prevent contact between the
protein molecules, thus avoiding the formation of disulde
bonds and hydrogen bonds. Therefore, it can be concluded that
the incorporation of AO did not interfere with the formation of
bers in the analogues obtained since the lipid content does not
exceed 5% on a wet basis in any of the formulations. In addition
to its nutritional contribution, AO resulted in amore tender and
juicier extrudate.

Research on the appropriate nutritional prole for meat
analogues has shown that an effective meat substitute should
have around 30% protein content.13,28 The analogues obtained
contain a substantial protein contribution; formulations with
pectin have between 25 and 32% protein on a wet basis, which
Sustainable Food Technol., 2025, 3, 1805–1815 | 1809
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Table 3 Nutritional composition of the extruded analoguesc

Components

DMD 2
(SPI + AO + 2% by weight of
pectin)

DMD 3
(SPI + AO + 4% by weight of
pectin)

DMD 4
(SPI + AO + 6% by weight of
pectin)

Standard error
of the mean

Moisturea 55.75a 54.95a 56.16a 0.33
Lipidsa 3.72a 4.30a 3.68a 0.15
Ashesa 1.69a 1.77b 1.56c 0.03
Fibersb 0.73a 0.84a 0.69a 0.04
Proteinsa 31.59a 26.44bd 25.51cd 0.96
Carbohydratesb 6.46a 11.64b 12.33c 1.17
Total 99.94 99.94 99.93

a Determinations performed in triplicate. b Determinations performed in duplicate. c a–dDifferent superscript letters within the same row indicate
signicant difference between samples (p < 0.05). It can be seen that the sum of the components is close to 100%.
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represents 50–65% of the daily reference value in adults. These
values together with the minimum lipid content contribute to
their use as an efficient nutritional substitute for traditional
meat.4

From Table 3, the increase in carbohydrate content was
found to be related to the presence of pectin in the samples,
because pectin content is included in the carbohydrate content
analysis and not in the one for ber. Although a high carbo-
hydrate content is considered undesirable, as it could modify
the internal structure of the mixture in the extruder, resulting in
a so and less compact product,29 the carbohydrate content is
not signicantly higher in our case.
Fig. 7 Raman curves of the meat analogues with their main bands.
3.4 Raman spectroscopy

Raman spectroscopy has been widely used for the study of meat
of animal origin; however, it has not been frequently employed
in the studies of meat analogues of plant origin. In this inves-
tigation, the data obtained by Raman spectroscopy were of great
help to elucidate themain spectroscopic bands in the analogues
obtained as well as for the quantication of the disulde
bridges and their relationship with the formation of brous
structures (Fig. 7).

The band assigned to CH, CH2 and CH3 near 1450 cm−1 may
represent the bending vibration of aliphatic residues. This band
in the Raman spectra is proposed to monitor hydrophobic
interactions between aliphatic residues. A higher intensity of
this band denotes an increase in the hydrophobic interac-
tion.30,31 In the Raman spectra of the extruded samples, this
band increases as the pectin concentration increases, which
seems to indicate that the hydrophobic interaction of the
aliphatic residues increased. Beattie et al. (2004) suggested that
Raman spectroscopy could be used to predict the sensorial
quality of meat, with the hydrophobicity of the myobrillar
environment being one of the most important aspects because
it contributes to the shear strength, tenderness and texture of
the meat.32

The Raman band located around 1650–1657 cm−1 was
assigned to the amide I vibrational mode, which mainly
involves C]O stretching vibrations and, in part, N–H in-plane
bending of peptide groups.33 The amide II vibration, expected
1810 | Sustainable Food Technol., 2025, 3, 1805–1815
between 1510 and 1560 cm−1, mainly involves in-plane NH
bending and CN stretching of the trans peptide bond. Due to
the small change in polarizability associated with amide II,
a distinct amide II Raman band cannot usually be detected in
proteins. The Raman band located between 1200 and 1300 cm−1

corresponds to amide III and involves CN stretching and in-
plane NH bending vibrations of the peptide bond, as well as
contributions from Ca–C stretching and C]O in-plane
bending.34

The intensity and localization of the phenylalanine band
located between 1003 and 1004 cm−1 are attributed to the
vibration of the benzene ring. This band is very intense and less
sensitive to protein conformation or microenvironmental
factors, so it is oen used for normalization of Raman spectra of
proteins. The intensity values of the Raman bands are deter-
mined aer spectral normalization.35,36

The disulde bond plays a very important role in the
formation of the brous texture of the analogues. To form
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Disulfide bond content of the obtained meat analogues. The t–
g–t mode represents intermolecular disulfide bonds, while the g–g–g
and g–g–t modes represent intramolecular disulfide bonds. Note: a–

cdifferent superscript letters in bars of the same color indicate signif-
icant difference between samples (p < 0.05).
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a brous structure, an additional formation of disulde bonds
is necessary.16 In order to quantify the disulde bridges present
in the extrudates, Gaussian tting of the Raman vibration
curves was performed using OriginPro 9 soware. The disulde
bridges are in the characteristic band between 500 and
550 cm−1 and are classied according to their different vibra-
tional spectra into 3 modes: 500–520 cm−1 is the gauche–gau-
che–gauchemode (g–g–g), 525–535 cm−1 is the gauche–gauche–
trans (g–g–t) mode, and 535–545 cm−1 is the trans–gauche–
trans (t–g–t) mode. The g–g–g and g–g–t modes represent
intramolecular disulde bonds, and the t–g–t mode represents
intermolecular disulde bonds. Fig. 8 shows the amount of
disulde bonds present in the samples expressed as
a percentage. It can be observed that the intramolecular g–g–g
mode is the predominant one in the extruded analogues ob-
tained, which corresponds to the dominant conformation for
soy proteins containing disulde bonds. Intermolecular bonds
are positively related to the formation of brous structures due
to the stability they provide. This arrangement allows a linear
Table 4 Values of textural parametersa

Samples Hardness (N) Springiness (%)

DMD 2 (SPI + AO + 2%
by weight of pectin)

40.15a 73.5a

DMD 3 (SPI + AO + 4%
by weight of pectin)

54.55b 63.5b

DMD 4 (SPI + AO + 6%
by weight of pectin)

33.10c 50.4c

Standard error of the mean 3.18 3.38

a a–dDifferent superscript letters within the same column indicate signic

© 2025 The Author(s). Published by the Royal Society of Chemistry
and extended orientation of the polypeptide chains, which
facilitates the formation of long and brous structures. Fig. 8
also shows an increase in these links when the pectin concen-
tration increases from 2 to 4%; however, a slight decrease is
observed when the pectin weight increases from 4 to 6%. This
decrease in the formation of brous structures is supported by
the images provided by scanning electron microscopy, where
a decrease in ber formation was observed when the pectin
weight concentration increased from 4 to 6%.
3.5 Instrumental texture prole

The analysis of the texture prole allowed the quantication of
the main textural mechanical parameters through the force–
time curves generated from compressions performed by the
texturometer. The values obtained are reported in Table 4. The
hardness and chewiness values increased when the pectin
weight concentration increased from 2 to 4%; however, when
this concentration increased from 4 to 6% a signicant decrease
in these parameters was observed. This suggests that low pectin
concentrations reinforced the texture of the meat analogues,
while high concentrations weakened it. Dekkers et al. (2016)
suggest that this weakening of the structure may be the result of
how the incorporation of pectin inhibits the formation of
a strong SPI network.22 In addition, high pectin concentrations
lead to more gelatinous products. The results obtained are
supported by previous studies that suggest that a higher
concentration of pectin weakens the structure.22,37,38 As
mentioned, the most important textural characteristics of meat
analogues are hardness, springiness, cohesiveness, chewiness
and resilience. Moisture and macronutrient content can greatly
inuence the textural properties of plant-based meat prod-
ucts.39 For this reason, the relationship between the textural
properties of the analogues and their moisture and protein
content was analyzed (Fig. 9 and 10).

It was observed that the analogues in Fig. 9 that had a lower
moisture content were, in turn, the hardest. Not surprisingly,
chewiness, being related to hardness according to its deni-
tion,40 followed the same trend. Hardness (r: −0.99) and
chewiness (r: −0.85) showed a negative correlation with mois-
ture content. Other research has shown how high moisture
content is responsible for obtaining soer meat
analogues.14,22,29,41–43 This relationship could be explained by the
need to use less force to break a structure that has a higher
Cohesiveness (%) Chewiness (N) Resilience (%)

78.2a 23.08ad 35.9a

69.8b 24.18bd 30.5bd

61.9c 10.33c 26.9 cd

2.39 2.27 1.43

ant difference between samples (p < 0.05).
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Fig. 9 Comparison between the parameters of the instrumental
texture profile and the moisture content of the analogues.

Fig. 10 Comparison between the parameters of the instrumental
texture profile and the protein content of the analogues.
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water content. Similarly, the springiness of the analogues ob-
tained is negatively correlated with the moisture content (r:
−0.49), that is, less springy products are obtained at higher
moisture content, since a higher water content can make it
difficult for the material to return to its original condition aer
compression. These results are supported by several authors.8,44

Mateen et al. (2023) state that cohesiveness is positively related
to moisture content.42 However, these results contradict those
obtained by Lin et al. (2000) and Wi et al. (2020) which, like the
results obtained in this research (r: −0.40), state that an
increase in water content negatively inuences the cohesiveness
of the analogues.41,45 Several studies suggest that moisture
content does not signicantly inuence the resilience of extru-
dates.29,42 The results obtained show a negative correlation
between moisture content and resilience (r: −0.31). From the
above, it can be concluded that analogues obtained by extrusion
that have a high moisture content will be less hard, less chewy,
less springy, less cohesive and less resilient. This can be justi-
ed because, as has been suggested, a higher moisture content
can cause incomplete texturization.41

Another important parameter in the analogues is their
protein content and how it affects their textural properties.
Several studies suggest a negative correlation between hardness
1812 | Sustainable Food Technol., 2025, 3, 1805–1815
and protein content.38,46 However, this research showed a virtu-
ally non-existent correlation between both parameters (r:
−0.05). Chewiness showed a positive correlation with protein
content (r: 0.56). These results are supported by those obtained
by Mateen et al. (2023);42 in addition, Wee et al. (2018) suggest
that foods with a higher protein content tend to be chewier.47 In
this research, protein content is positively correlated with
springiness (r: 0.90). Grahl et al. (2018) added spirulina as
a protein source to their mixtures and found that its content
only affected springiness, so they suggest that it is likely that soy
protein provides the products the ability to return to their
original size aer compression.44 This is in line with the results
that analogues with a high soy protein content have a good
correlation with springiness. Webb et al. (2023) in their
instrumental texture prole analyses demonstrate how the
springiness, cohesion and chewiness of textured extrudates
based on pea proteins are lower than those of SPI.48

These results reaffirm the properties of SPI to obtain meat
analogues with good textural properties. Cohesiveness, which is
dened as the strength of the internal bonds that make up the
material, was found to be positively correlated with protein
content (r: 0.93), since the higher the protein content, the easier
it will be for adjacent protein molecules to form bonds.41 A
positive correlation was also found between protein content and
resilience (r: 0.96). All of this leads to a rmer and more
consistent analogue, thus avoiding a facilitated disintegration
of the product. Other minor compounds, such as minerals and
vitamins, inuence the textural attribute. In this research, ash
content was positively correlated with the hardness of the
material (r: 0.95). These results correspond to what was
proposed by Zhang et al. (2023) that a high ash content leads to
stronger interactions between proteins through the presence of
more ionic bonds, leading to a harder meat analogue.49

From all the analyses carried out, specically scanning
electron microscopy on the analogues obtained by high mois-
ture extrusion, it is concluded that the sample that had 4% by
weight of pectin (DMD 3) showed a more evident brous
structure. Quantication of intermolecular disulde bridges (t–
g–t) (which are related to the formation of the brous structure),
by Gaussian adjustment of the Raman bands, showed that
sample DMD 3 had a greater amount of intermolecular disulde
bridges and, therefore, a greater brous structure. It was also
the case for the sample that had a moisture content closer to
55% in addition to better chewiness. It is important to highlight
that the samples that had 2 and 6% by weight of pectin also
presented a brous structure and their textural properties were
also within the range of those provided by the literature.

Finally, we acknowledge that a limitation of this study is the
absence of sensory evaluation, which is a crucial component for
understanding consumer acceptance of meat analogue prod-
ucts. Given the primary focus on the structural and functional
characterization of the samples, along with logistical
constraints during the research period, sensory testing was not
conducted. However, we recognize its importance and plan to
include comprehensive sensory analysis in future studies to
complement the physicochemical and functional ndings pre-
sented here.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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4 Conclusions

Fibrous samples were produced via high-moisture extrusion
using mixtures of soy protein isolate and pectin. The addition of
avocado oil improved tenderness and texture, while the oil-free
formulation yielded a dry, rough product. Proximate analysis of
well-structured analogues showed ∼55% moisture, 27%
protein, 10% carbohydrates, and 4% lipids. Scanning electron
microscopy revealed that samples without pectin lacked brous
structure, whereas formulations with 2–6% pectin exhibited
elongated bers due to biopolymer incompatibility. The 4%
pectin sample showed the most pronounced brous structure
and was also the hardest and chewiest, according to texture
prole analysis. Raman spectroscopy conrmed the predomi-
nance of intramolecular disulde bonds, typical of soy proteins,
with the highest proportion of intermolecular bonds—associ-
ated with ber formation—observed in the 4% pectin sample.
Moisture content negatively affected hardness, chewiness,
cohesiveness, springiness, and resilience, while protein content
had little effect on hardness but positively inuenced the other
texture parameters.

Author contributions

Darianna Ur-Mora: investigation, methodology, writing the
original dra. Oscar Hernández-Melendez: methodology, vali-
dation, project administration, supervision. Eduardo Bárzana:
conceptualization, supervision, resources, writing-review &
editing.

Conflicts of interest

There are no conicts to declare.

Data availability

The datasets supporting this manuscript are available in this
paper. The required information is available upon reasonable
request from the authors. All data extracted from the literature,
where applicable, have been duly acknowledged and cited.

Acknowledgements

CONAHCyT is acknowledged for grant CVU 1270184 to DUM.
The authors would like to thank the following persons for their
advice and technical support: M. C. Maŕıa Berenit Mendoza of
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