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D-CNNmodel for non-destructive
detection of natural adulterants in the wonder hot
variety of red chilli powder†

Dilpreet Singh Brar, *a Birmohan Singhb and Vikas Nandaa

AI revolutionizes the food sector by improving production, supply chains, quality assurance, and consumer

safety. Therefore, this work addresses the alarming issue of red chilli powder (RcP) adulteration, with the

introduction of an AI-driven framework for RcP adulteration detection, leveraging an empirical

evaluation of DenseNet-121 and 169. To optimize convergence and enhance the performance, the

AdamClr optimizer was incorporated, in a learning rate range between 0.00005 and 0.01. Two datasets

(DS I and DS II) were developed for evaluation of DenseNet models. DS I consists of two classes: Class 1

(Label = C1_PWH) representing pure RcP (variety = Wonder Hot (WH)) and Class 2 (Label = C2_AWH)

containing samples adulterated with five natural adulterants (wheat bran (WB), rice hull (RB), wood saw

(WS), and two low-grade RcP), whereas DS II comprises 16 classes, including one class of pure RcP and

15 classes representing adulterated RcP with varying concentrations of the five adulterants (each at 5%,

10%, and 15% concentration). For binary classification (for DS I), DenseNet-169 at batch size (BS) 16

delivered an accuracy of 99.99%, while, in multiclass classification (for DS II) for determination of the

percentage of adulterant, DenseNet-169 at BS 64 produced the highest accuracy of 95.16%.

Furthermore, Grad-CAM explains the DenseNet-169 predictions, amd the obtained heatmaps

highlighting the critical regions influencing classification decisions. The proposed framework

demonstrated high efficacy in detecting RcP adulteration in binary as well as multiclass classification.

Overall, DenseNet-169 and XAI present a transformative approach for enhancing quality control and

assurance in the spice industry.
Sustainability spotlight

Ensuring food safety and sustainability is essential in the global spice industry. This study presents an AI-driven framework to detect red chili powder (RcP)
adulteration, enhancing food quality assessment using DenseNet-121 and DenseNet-169 with the AdamClr optimizer. The model accurately identies
contaminants like wheat bran, rice hulls, and wood sawdust, improving consumer safety and regulatory compliance. This approach promotes ethical food
production, minimizes economic losses, and reduces the environmental impact of food fraud. explainable AI (XAI) through Grad-CAM ensures transparency,
fostering stakeholder trust. Additionally, the model's efficiency optimizes testing and quality control, supporting sustainable supply chains. By detecting
adulteration and ensuring RcP purity, this study advances sustainable food security. The AI-powered method revolutionizes quality assurance in the spice
industry and establishes a foundation for future AI applications in food fraud detection, reinforcing global efforts for a safer and more sustainable food system.
1. Introduction

Articial Intelligence (AI) is revolutionising the food sector from
farm to fork by enhancing production methods, streamlining
supply chain management, advancing quality assurance proto-
cols, and strengthening consumer safety.1 Moreover, as the food
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industry addresses critical challenges such as food safety, waste
reduction, labour shortages, and evolving consumer demands,
the AI-driven food technology market is projected to reach USD
27.73 billion by 2029.2 This growth is propelled by the demand
for tailored nutrition, stricter safety standards, supply chain
optimisation, and sustainability. These changes create a new
era for producing, distributing, and consuming food world-
wide.3 Additionally, there remains a long way to go to fully
advance the application of AI technology in food quality evalu-
ation, particularly in the accurate detection of adulteration.
This progress can be accelerated by focusing on specic sectors,
such as detecting adulteration in spices and rening AI-based
technology to address the challenges.4 By systematically
Sustainable Food Technol., 2025, 3, 1099–1113 | 1099

http://crossmark.crossref.org/dialog/?doi=10.1039/d5fb00118h&domain=pdf&date_stamp=2025-07-14
http://orcid.org/0000-0001-5068-3135
https://doi.org/10.1039/d5fb00118h
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5fb00118h
https://pubs.rsc.org/en/journals/journal/FB
https://pubs.rsc.org/en/journals/journal/FB?issueid=FB003004


Sustainable Food Technology Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ay
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
24

/2
02

5 
2:

13
:5

2 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
analysing the limitations and errors encountered during
implementation, these insights can inform iterative improve-
ments, leading to more robust and effective applications in
future deployments across the food industry.5

Despite India's legacy as the global leader in spice produc-
tion and export, the spice market remains highly vulnerable to
adulteration, driven by the pursuit of higher prots at the
expense of consumer health and safety. Among the diverse
spices produced in India, red chilli powder (RcP) stands out as
one of the most economically motivated products for adulter-
ation due to its high commercial and industrial demand,
vibrant colour, pungency, and signicant market value.5 The
substances used as adulterants to increase the bulk and the
colour intensity of RcP are broadly categorised into two major
classes. Class I adulterants are natural materials primarily
added to increase bulk, including low-grade or diseased red
chilli peppers, wheat bran, rice hulls, wood sawdust, chalk
powder, and brick powder. In contrast, Class II adulterants
consist of synthetic colouring agents such as Sudan dyes and
rhodamine B, which are added to enhance the visual appeal of
the product.6 Regular consumption of these adulterants, even in
small quantities, can lead to severe health issues ranging from
gastrointestinal disorders to carcinogenic effects.7 Therefore, it
is imperative to detect and prevent the illegitimate adulteration
of RcP to safeguard consumer health and ensure food safety.
These growing concerns underscore the urgent need for more
effective enforcement strategies, the development of advanced
rapid detection technologies, and increased public awareness to
mitigate the risks associated with adulterated RcP.8 Traditional
methods such as chromatography, DNA ngerprinting, and
spectroscopy are sophisticated in terms of operations, require
trained professionals, are time-consuming, and are economi-
cally expensive.9 The limitations of traditional methods can
easily be overcome using AI-driven approaches, such as Deep
Learning (DL), which deliver rapid and non-destructive solu-
tions for detecting RcP adulteration.

DL, a specialised subset of Machine Learning (ML), trans-
forms various industries by enabling machines to mimic
human cognitive abilities. This advancement is largely driven
by Two-Dimensional Convolutional Neural Networks (2D-
CNNs), which excel in image analysis tasks.10 One of the core
strengths of DL lies in its ability to autonomously identify and
learn relevant patterns from extensive datasets, thus elimi-
nating the need for manual feature extraction.11 This makes DL
particularly effective in domains like food quality assessment,
especially for adulteration detection.5 However, the dataset is
crucial for developing deep learning-based techniques for
detecting adulterated test products, as carefully prepared and
labelled data are the foundation for AI models' wider and more
accurate applications. Therefore, several pre-trained 2D-CNN
models are currently utilised for food classication, including
ResNet,12 EfficientNet,13 DenseNet,14 and Visual Geometry
Group (VGG) networks.15

Despite their impressive performance, DL models oen face
criticism due to their lack of transparency, functioning as
“black boxes” with limited interpretability.16 This opacity raises
concerns in critical sectors like food safety, where trust and
1100 | Sustainable Food Technol., 2025, 3, 1099–1113
accountability are paramount.17 To mitigate this challenge,
explainable articial intelligence (XAI) emerges as a promising
eld to make DL models more understandable.18 Techniques
such as Shapley additive explanations (SHAP) and local inter-
pretable model-agnostic explanations (LIME) help identify key
features that inuence model predictions, thereby improving
the clarity and transparency of AI systems.19 Additionally, visu-
alisation tools like Gradient-weighted Class Activation Mapping
(Grad-CAM) and saliency maps highlight the crucial regions
within an image that guide the model's decision-making,
offering a more intuitive grasp of AI outputs.20 Collectively,
these methods enhance AI's reliability, trustworthiness, and
user acceptance in detecting natural adulterants in RcP.

The objective of this study is to develop an AI-driven model
capable of detecting adulteration in RcP. We designed the
model to detect the illegal blending of RcP with natural adul-
terants through empirical evaluation and ne-tuning of Den-
seNet (121 and 169) architectures in combination with the
AdamClr optimizer. To facilitate this, a dataset comprising
images of both pure and adulterated RcP from the Wonder Hot
(also known as Wonder Heart) variety was created under
controlled laboratory conditions. This dataset is used to eval-
uate 2D-CNN models with specied hyperparameters to classify
pure and adulterated RcP at various concentrations. To further
enhance interpretability, the explainable AI (XAI) method, Grad-
CAM is applied to visualise and justify the predictions made by
the most effective model. The results of this research under-
score the potential of AI technologies in ensuring food quality
assessment. Moreover, the developed model can serve as
a valuable tool for food safety authorities in identifying the
illegal addition of low-cost adulterants to RcP and similar food
products, thereby supporting global initiatives to mitigate food
fraud.
2. Materials and methods
2.1. Framework

The experimental design of the proposed methodology is pre-
sented in Fig. 1. This study leverages the integration of 2D-CNNs
with XAI tools to detect ve naturally occurring adulterants in
the nest Indian RcP variety (Wonder Hot/Wonder Heart, WH).
The methodological framework encompasses systematic
sample selection, preparation, controlled dataset acquisition,
and preprocessing. A comparative evaluation of pre-trained
DenseNet_121 and DenseNet_169 architectures optimized
using the Adam cyclic learning rate (AdamClr), is conducted to
assess classication performance. Furthermore, the interpret-
ability of the optimal model's predictions is achieved through
the application of Grad-CAM and LIME, offering insights into
the model's decision-making process.
2.2. Sample collection

In this study, a digital image dataset was developed comprising
images of pure RcP and RcP adulterated with ve different
natural adulterants. A premium-grade chilli variety, Wonder
Hot/Wonder Heart (WH), was sourced from Warangal,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Experimental framework for detection of adulteration in RcP (variety WH).
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Telangana, India, for pure sample preparation. The adulterants
included two lower-grade RcP varieties: Boriya Chilli (BM) from
Kanyakumari and Guntur Sanam (GM) from Andhra Pradesh—
along with three common natural adulterants: wheat bran
(WB), wood sawdust (WS), and rice hulls (RB), all procured from
Sangrur, Punjab.

Prior to grinding, all raw materials are washed to eliminate
surface contaminants and subsequently sun-dried. Once the
moisture content of the chilli pods and adulterants is reduced
to 7% or lower, the samples are ground using a rotating
hammer mill (Make: Natraj, Ahmedabad, Gujarat) equipped
© 2025 The Author(s). Published by the Royal Society of Chemistry
with a mesh No. 3 sieve (650 microns). We blended the pure RcP
and adulterants to prepare adulterated samples. Each adul-
terant is incorporated into the pure RcP (WH) at three
concentration levels—5%, 10%, and 15%—yielding 15 distinct
adulterated classes and a pure class, resulting in a total of 16
classes. To ensure homogeneity, each mixture is thoroughly
blended in a planetary mixer for 10 minutes and then passed
through a sieve (British Standard Sieve (BSS) No. 30). The nal
samples are stored in glass containers under refrigeration
conditions (4 °C) until further analysis.
Sustainable Food Technol., 2025, 3, 1099–1113 | 1101
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2.3. Sample preparation

We captured image samples of ve natural adulterants mixed
with high-grade RcP of the WH variety using a Canon EOS 7D
digital single-lens reex (DSLR) camera. The camera features
a 22.3 × 14.9 mm image sensor with a 3 : 2 aspect ratio and is
equipped with a Canon EF-S 18–55 mm f/3.5–5.6 IS STM lens.
Imaging parameters are set with an ISO sensitivity of 300,
a shutter speed of 1/50th second, and manual focus at 35 mm.

All images are taken under controlled conditions within
a custom-designed, white-walled wooden image box (IB). The IB
measures 1.5 × 1.5 × 1.5 feet (length × width × height) and
includes an adjustable sample stage, a voltage-regulated light
source, and a xed eyepiece (camera mount) positioned
perpendicular to the sample holder. The distance between the
camera and sample stage is adjustable between 10 cm and
25 cm; for this study, it is xed at 10 cm.

To ensure uniform sample presentation, powders are evenly
spread on 250 ml glass dishes using a 25 BSS sieve to avoid
clumping or empty spaces. The prepared dish is then placed on
the image box stage. For each of the 16 sample classes, four
high-resolution images (1728 × 2592 pixels) are taken by
rotating the camera to capture varied perspectives. All images
are stored and labelled for further analysis.
2.4. Data set preparation

Original images (1728 × 2592 × 3 pixels) were captured and
resized to 224 × 224 × 3 pixels to meet the input requirements
of the 2D-CNN model. Labelled images were processed to
extract patches of uniform dimensions and assigned to their
respective class folders.

Two datasets were developed for model training and evalu-
ation. Dataset I (DS I) targeted binary classication, comprising
pure WH samples (C1_PWH) and adulterated WH samples
(C2_AWH) with a total of 1638 images. To ensure class balance
in DSI, 62 images were randomly selected for each adulterant
group, as detailed in ESI Table 1.† Furthermore, Dataset II (DS
II) supported multi-class classication and included 16 classes:
one for pure WH RcP (WH00) and 15 for adulterated samples,
representing ve natural adulterants at three concentration
levels (5%, 10%, and 15%) and the total number of images in
DSII is 5852 (doi: 10.17632/mszn5hk9nv.1). A complete class
distribution is provided in ESI Table 1.†
2.5. Dataset processing

Prior to training the 2D-CNN model, both datasets (DS I and DS
II) are split into training and testing subsets, allocating 80% of
the data for training and the remaining 20% for testing.
Subsequently, normalization is applied by scaling the pixel
intensity values through division by 255, effectively trans-
forming the original pixel range of [0, 255] to a normalized
range of [0, 1]. This normalization step is critical to ensure
a consistent data scale, which facilitates stable model training,
mitigates the risk of gradient explosion or vanishing, enhances
the convergence speed during the optimization process, and
1102 | Sustainable Food Technol., 2025, 3, 1099–1113
ultimately improves the model's generalization performance on
unseen data.

2.6. Proposed approach

The DenseNet-121 and DenseNet-169 2D-CNN models were
initially trained on DS I for binary classication of pure WH and
adulteratedWH. Furthermore, similar models are trained on DS
II for determining the percentage of natural adulterants in the
WH variety. Besides the learning rate and epoch number were
xed. However, three Batch Sizes (BSs) (16, 32, and 64) were
used to train the 2D-CNN model to analyse the classication
performance.

2.7. Deep learning 2D-CNN models

The CNNs have proven highly effective in classication tasks
where understanding spatial correlations is essential. The
convolutional layers in 2D-CNNs systematically extract multi-
level features from grid-like data structures, such as images,
facilitating efficient and meaningful feature representation.
Due to their robust design, 2D-CNNs have found widespread
applications in domains like computer vision, image recogni-
tion, and data analysis. Their architecture typically consists of
a series of convolutional layers, oen followed by pooling layers,
which serve to down sample spatial dimensions while retaining
essential information. By identifying detailed local features,
including edges and textures, 2D-CNNs excel in a broad spec-
trum of image-related tasks.10 In the present study, DenseNet-
121 and 169 models are integrated with the AdamClr opti-
mizer, and their performance is assessed to determine the most
effective approach for detecting adulteration in RcP (variety:
WH). DenseNet (Dense Convolutional Network) is a deep
learning architecture that enhances information ow across
layers in a neural network. Unlike standard models, which only
connect one layer to the next, DenseNet provides direct
connections between all layers, allowing the network to reuse
features and learn more effectively. This architecture minimizes
the number of parameters, addresses the vanishing gradient
problem, and improves model performance, particularly for
difficult picture classication problems. A brief overview of
DenseNet-121 and 169 models is provided below.

2.7.1. DenseNet-121. DenseNet-121 is a compact yet
powerful DLmodel, designed for efficient feature extraction and
classication with relatively fewer parameters. The architecture
begins with an initial 7 × 7 convolution layer with a stride of 2
followed by a 3 × 3 max pooling layer to reduce spatial
dimensions early in the network. The model consists of four
dense blocks, which are the core components of DenseNet.
These dense blocks contain 6, 12, 24, and 16 convolutional
layers, respectively, with each layer receiving inputs from all
preceding layers within the block through feature concatena-
tion. Between the dense blocks, three transition layers are
incorporated to compress the feature maps using 1 × 1 convo-
lutions and 2 × 2 average pooling operations, effectively
reducing the model's complexity without sacricing perfor-
mance. Within each dense block, a bottleneck structure is
applied, comprising a 1 × 1 convolution followed by a 3 × 3
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Architecture details of DenseNet-121 and DenseNet-169

Component

Conguration

DenseNet-121 DenseNet-169

Initial convolution 7 × 7 conv., stride 2 7 × 7 conv., stride 2
Initial pooling 3 × 3 max pooling, stride 2 3 × 3 max pooling, stride 2
Dense block 1 6 × (1 × 1 conv. + 3 × 3 conv.) 6 × (1 × 1 conv. + 3 × 3 conv.)
Transition layer 1 1 × 1 conv. + 2 × 2 avg. pooling 1 × 1 conv. + 2 × 2 avg. pooling
Dense block 2 12 × (1 × 1 conv. + 3 × 3 conv.) 12 × (1 × 1 conv. + 3 × 3 conv.)
Transition layer 2 1 × 1 conv. + 2 × 2 avg. pooling 1 × 1 conv. + 2 × 2 avg. pooling
Dense block 3 24 × (1 × 1 conv. + 3 × 3 conv.) 32 × (1 × 1 conv. + 3 × 3 conv.)
Transition layer 3 1 × 1 conv. + 2 × 2 avg. pooling 1 × 1 conv. + 2 × 2 avg. pooling
Dense block 4 16 × (1 × 1 conv. + 3 × 3 conv.) 32 × (1 × 1 conv. + 3 × 3 conv.)
Classication layer Global avg. pooling + fully connected

somax layer
Global avg. pooling + fully connected
somax layer

Total parameters ∼7.57 million ∼13.51 million
Growth rate 32 32
Total depth 242 layers 338 layers
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convolution, which optimizes computational efficiency. Aer
the nal dense block, the architecture includes a global average
pooling layer to convert feature maps into a feature vector,
which is then passed to a fully connected layer with somax for
classication. DenseNet-121 has a growth rate of 32, a depth of
242 (including all operations), and approximately 7.57 million
trainable parameters.14 This conguration allows DenseNet-121
to balance accuracy and computational cost, making it suitable
for tasks such as visual object recognition and food adulteration
detection; the architectural details are presented in Table 1.

2.7.2. DenseNet-169 architecture. DenseNet-169 builds
upon the same architectural philosophy as DenseNet-121 but
with increased depth and feature extraction capability, making
it more suitable for complex datasets and classication chal-
lenges. The model starts similarly with a 7 × 7 convolutional
layer and 3× 3 maxpooling, preparing the input for dense block
processing. DenseNet-169 incorporates four dense blocks with
a more intricate arrangement: 6, 12, 32, and 32 layers, respec-
tively. This increase in layers within the dense blocks enhances
the model's ability to capture complex patterns and hierarchical
features. Between the dense blocks, three transition layers
employing 1 × 1 convolutions and 2 × 2 average pooling reduce
the spatial dimensions and number of feature maps, main-
taining computational feasibility despite the model's depth.
Each layer inside the dense blocks consists of a bottleneck
structure (1 × 1 followed by 3 × 3 convolutions), and all layers
are densely connected within each block through feature map
concatenation. Aer passing through the dense blocks, the
network concludes with a global average pooling layer followed
by a fully connected somax layer for output classication.
DenseNet-169 features 82 sets of convolutional layers, resulting
in 164 convolutions across the network. It has a growth rate of
32, a total parameter count of approximately 13.51 million and
a depth of 338 layers, considering all operational elements.14

This deep structure allows DenseNet-169 to achieve high
performance in image-based tasks, with improved feature
learning capacity; the architectural details are presented in
Table 1.
© 2025 The Author(s). Published by the Royal Society of Chemistry
2.8. Optimizers

In deep learning (DL), optimizers play a crucial role by auto-
matically rening a model's parameters during the training
phase to minimize a predened loss function. These algorithms
support neural network training by continuously adjusting the
weights and biases based on incoming data, thereby improving
the learning process over successive iterations.

Several optimizers are commonly utilized in training 2D-
Convolutional Neural Networks (2D-CNNs), each providing
distinct advantages. Stochastic Gradient Descent (SGD) is
a fundamental technique that updates model parameters using
calculated gradients, while momentum-based SGD accelerates
convergence by incorporating a fraction of the previous gradient
into current updates. Root mean square propagation (RMSprop)
dynamically adjusts learning rates by normalizing gradients,
making it well-suited for tasks with non-stationary objectives.21

Adaptive moment estimation (Adam) merges the strengths of
RMSprop and momentum by applying adaptive learning rates,
and its variant, AdamW, further enhances generalization by
decoupling weight decay from gradient updates.22 Optimizers
like AdaGrad and AdaDelta also adjust learning rates based on
the accumulation of past gradients, which is particularly
benecial for handling sparse datasets, although they may lead
to diminishing learning rates over time.

For this research, AdamClr (Adam with a cyclical learning
rate) is selected due to its capacity to dynamically modulate the
learning rate, which aids in avoiding entrapment in local
minima and accelerates the convergence process. The cyclical
learning rate (Clr) strategy employed here allows the learning
rate to vary between a minimum of 0.00005 and a maximum of
0.001, promoting efficient exploration of the loss landscape and
mitigating premature convergence.23 The learning rate was
adjusted at a frequency determined by the step size, calculated
as 25 × (training size/batch size), enabling periodic updates
across training epochs. Additionally, a scaling function dened

as
1

ð2x�1Þ is applied to gradually decrease the amplitude of

learning rate oscillations over time, further rening the training
Sustainable Food Technol., 2025, 3, 1099–1113 | 1103
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process. The Adam optimizer, enhanced with Clr, effectively
leveraged both momentum and adaptive learning rates to
improve the overall model performance. The model's training
objective was guided by the categorical cross-entropy loss

function, expressed as: Loss ¼ �PN
i¼1 yi$logðŷiÞ; where N

represents the number of classes, yi denotes the true label for
class i (in the one-hot encoded form), and yi signies the pre-
dicted probability for class i, obtained through the somax
activation function in the output layer of the network. This loss
function quanties how closely the predicted probability
distribution ŷi aligns with the actual class distribution, ensuring
that the model learns to assign higher probabilities to correct
classications. Accuracy was used as the primary evaluation
metric for model performance.

2.9. Performance metrics

The effectiveness of the trained models is assessed through
various performance evaluation matrices derived from the
collected values of True Positives (TP), True Negatives (TN),
False Positives (FP), and False Negatives (FN). These values are
obtained from the confusion matrix generated during the
model's training and evaluation phases. Using these data, key
metrics, including accuracy, precision, recall, and the F1-score,
are computed according to standard formulae,8 as presented in
Table 2.

2.10. Explainable AI (XAI)

With the increased use of deep learning in food quality evalu-
ation, model transparency and trustworthiness are critical.
Therefore, the XAI model Gradient-weighted Class Activation
Mapping (Grad-CAM) provides insights into how trained 2D-
CNN delivers classication predictions by identifying critical
visual regions that inuence the decision-making of the model.

2.10.1. Gradient-weighted class activation mapping (Grad-
CAM). Grad-CAM (Gradient-weighted Class ActivationMapping)
is a widely used interpretability method in deep learning,
particularly suited for visualizing the internal decision
processes of 2D-CNN models. In this study, the training
outcomes of the DenseNet_169 architecture are analyzed using
Grad-CAM-generated heatmaps, which pinpointed the most
signicant regions in the input image that inuenced the
model's classication decisions.20
Table 2 CNN model performance evaluation matricesa

Metric Formulae

Accuracy TPþ TN
TPþ FPþ FNþ TN

Precision TP
FPþ TP

Recall (sensitivity) TP
FNþ TP

F1-score 2� ðRecall� PrecisionÞ
Recallþ Precision

a TP: True Positive; TN: True Negative; FP: False Positive; FN: False
Negative.

1104 | Sustainable Food Technol., 2025, 3, 1099–1113
The Grad-CAM process started by selecting the nal con-
volutional layer of the network, as this layer retains essential
spatial features while encapsulating high-level patterns critical
for classication tasks. The selection of this layer is key because
it maintains the spatial integrity of features relevant to the
target class. Following this, automatic differentiation was used
to compute the gradients of the output class score with respect
to the selected layer's feature maps. These gradients reect how
variations in the activation maps affect the model's condence
in its prediction.

Subsequently, a global average pooling operation was
applied to these gradients, yielding importance weights for each
feature map. These weights quantify the inuence of individual
feature maps on the nal output. To create the heatmap,
a weighted combination of the activation maps is calculated,
spotlighting regions with the highest contribution to the clas-
sication outcome. The ReLU function is employed at this stage
to remove negative values, ensuring that only features with
positive inuence are visualised. The resultant heatmap is
normalised to a 0–1 scale for consistency in intensity
representation.

For better visualisation, the heatmap is colour-coded using
OpenCV, where regions of high model attention are highlighted
in red or yellow, indicating strong activation. This coloured
heatmap is then overlaid onto the original image to provide
a clear depiction of the areas most responsible for the model's
decision.

This visualisation pipeline is applied across all test samples
in the dataset, and the generated heatmaps are stored for
comprehensive analysis. This approach enabled a detailed
examination of the model's reasoning, providing insights into
feature importance and enhancing model interpretability.

The important weights ak for each feature map Ak as eqn (1).

ak ¼ 1

Z

X
i

X
j

vyc

vAij
k

(1)

Here, yc denotes the score for the target class c, Akij is the acti-
vation at the spatial locations (i, j) in feature map k and Z rep-
resented the total number of feature maps. The nal Grad-CAM
feature map LcGrad-CAM is obtained through eqn (2).

Lc
Grad-CAM ¼ ReLU

 X
k

akA
k

!
(2)

The Re LU activation ensures that only positively contrib-
uting regions are highlighted. Grad-CAM thus helps identify the
specic parts of an image that most inuenced the model's
prediction, making it a valuable tool for model debugging,
transparency, and increasing condence in AI-driven decisions.
2.11. Computational specications

The 2D-CNNmodels employed in this work are developed using
the Keras Applications module, which offers access to pre-
trained networks designed for transfer learning and efficient
feature extraction.24 These architectures are obtained from the
Keras repository [https://keras.io/api/applications/], ensuring
© 2025 The Author(s). Published by the Royal Society of Chemistry
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that the experiments are reproducible and aligned with
standardised deep learning protocols. Model training and
evaluation are conducted on a workstation equipped with
dual Intel Xeon-4215 CPUs and a Nvidia A6000 GPU (48 GB),
supplemented by Kaggle's free GPU resources for additional
computational support.

3. Results and discussion

This study conducted an empirical analysis of two 2D-CNN
models i.e. DenseNet-121 and DenseNet-169 integrated with
AdamClr, at a xed epoch and cyclical learning rate with varying
BSs of 16, 32, and 64.

Both models are trained using two datasets (DS I and DS II).
DS I is utilized for binary classication to determine whether
a sample is pure or adulterated. In contrast, DS II is employed to
train the same models for multi-class classication, enabling
them to accurately classify test samples based on the concen-
tration of specic natural adulterants (WS, WB, RB, BM, and
GM) in pure RcP (WH). The classication performance of the
trained models is evaluated to detect and quantify adulteration
in RcP. Furthermore, the decision-making process of the best-
performing 2D-CNN model is analyzed using Grad-CAM and
explainable AI (XAI) techniques.

3.1. Results of 2D-CNN for binary classication for detection
of RcP adulteration

The DenseNet-121 and DenseNet-169 models are trained using
DS I for identifying the pure RcP from adulterated samples.
During the training cycle of the model, the BS (16, 32, and 64) is
varied, while the epochs (100), optimizer (AdamClr), and
learning rate (0.00005) are kept constant. The results of model
performance are reported in Table 4, which reveals the effi-
ciency of DenseNet-121 and DenseNet-169 trained at three BSs
(i.e., 16, 32, and 64) for binary classication to discriminate
pure and adulterated RcP. The reported values of performance
matrices, namely, accuracy, precision, recall and F1-score are,
99.99%, 99.99%, 99.99% and 99.99%, respectively (Table 3).

Fig. 2 and 3 illustrate the confusion matrix alongside the
model accuracy versus epoch plot and ROC-AUC, collectively
clarifying the model's performance and facilitating a compre-
hensive understanding of its predictive capabilities. The
DenseNet-121 achieves better classication accuracy across all
BSs, as demonstrated by the confusion matrix (Fig. 2(a, d and
g)), where no misclassications are observed. However, the
training and validation accuracy plots (Fig. 2(b, e and h))
Table 3 Binary class classification of detection of various natural adulte

Model Optimizer Batch_size

DenseNet_121 Adam Clr 16
32
64

DenseNet_169 Adam Clr 16
32
64

© 2025 The Author(s). Published by the Royal Society of Chemistry
indicated that smaller BSs produced more stable learning
trends, whereas larger BSs (BS 64) exhibited more pronounced
uctuations. These uctuations might be attributed to the
noisier gradient estimates associated with larger BSs, which
also supports the outcomes of the paper, Masters & Luschi.25

Nevertheless, the ROC-AUC curves (Fig. 2(c, f and i)) consistently
yield an AUC of 1.00 across all congurations, proclaiming the
model's excellent discriminatory power.

Similar to DenseNet-121, DenseNet-169 demonstrates good
classication accuracy, reected in the confusion matrix
(Fig. 3(a, d and g)), with zero misclassications observed. The
training and validation accuracy plots (Fig. 3(b, e and h)) also
reveal a high accuracy, but the model displays smoother
learning curves with smaller BSs, indicative of more stable
gradient updates. The ROC-AUC curves (Fig. 3(c, f and i)) ach-
ieve consistently high AUC scores of 1.00, indicating better class
discrimination.

This robust performance of evaluated models in this work
aligns with the dense connectivity principles of DenseNets,
which help to alleviate the vanishing gradient problem and
enhance feature reuse throughout the network. Moreover, both
DenseNet-121 and DenseNet-169 exhibit strong performance in
binary classication, attributable to their inherent architectural
advantages in feature propagation and gradient ow. The
ndings of the proposed research work are in accordance with
the ndings of research conducted by Huang et al.14 However,
DenseNet-169 may exhibit greater stability and convergence due
to its deeper architecture, which facilitates more complex
feature learning and gradient propagation. The observed uc-
tuations with larger BSs, particularly in DenseNet-121, are
consistent with the literature on large-batch training, where
noisier gradient estimates can affect convergence behaviour.26

Besides, this research work extends the application of Den-
seNets to multiclass classication to determine the percentage
of adulteration in RcP. The dataset size (DS II) is increased
further to evaluate the DenseNets' efficiency in RcP adulteration
detection.

3.2. Results of 2D-CNN for multiclass classication for
detection of RcP adulteration

Additionally, DenseNet-121 and DenseNet-169 are trained on
DS II for detecting the percentage of adulteration in RcP; the
results of various performance evaluations are presented in
Table 4. The results reveal that DenseNet-121 and DenseNet-169
trained at BS 16 show an accuracy of 91.93% and 89.98%,
respectively, whereas with an increase in the BS, an increase in
rants in WH RcP

Accuracy Precision Recall F1 score

99.99 99.99 99.99 99.99
99.99 99.99 99.99 99.99
99.99 99.99 99.99 99.99
99.99 99.99 99.99 99.99
99.99 99.99 99.99 99.99
99.99 99.99 99.99 99.99
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Fig. 2 Confusionmatrix ((a) BS 16, (d) BS 32 & (g) BS 64), training accuracy vs. epoch ((b) BS 16, (e) BS 32 & (h) BS 64), and ROC_AUC curve ((c) BS
16, (f) BS 32 & (i) BS 64), obtained from DenseNet-121 for binary classification of pure and adulterated RcP.
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the classication accuracy of both models is also observed.
DenseNet-121 at BS 32 and BS 64 delivers an accuracy of 92.03%
and 94.05%, respectively. On the other hand, the highest
accuracy (95.16%) is observed in DenseNet-169 trained at BS 64;
besides the values of precision, recall and F1-score are 95.16,
95.16 and 95.10, respectively (Table 4).

Converse to binary classication, in the multiclass problem,
the model must learn more complex feature representations.
Larger BSs provide more stable gradients, enhancing conver-
gence and class discrimination.27 Additionally, batch normali-
zation is more effective with larger batches, further improving
training stability in multiclass settings with high classication
accuracy.28

Furthermore, both models demonstrate strong classication
performance, as reected in the confusion matrices and ROC-
AUC curves (Fig. 4 and 5). However, training and validation
accuracy plots from DenseNet-169 reveal key differences
(Fig. 5(d, e and f)). Smaller BSs in multiclass settings oen
introduce greater variations in validation accuracy, suggesting
higher sensitivity to individual training examples, while the
larger BSs result in smoother learning curves but slower initial
convergence.
1106 | Sustainable Food Technol., 2025, 3, 1099–1113
The trade-off in gradient noise is also evident, where larger
BSs provide more stable but potentially less precise gradient
estimates, leading to consistent model updates but possibly
overlooking ner data details.25 In contrast, the smaller BS,
though noisier, can escape local minima but exhibit more
unstable training dynamics in multiclass settings.26 The
consistently high AUC scores (close to 1.0) across all classes and
BSs suggest that both models are highly effective in class
distinction, likely due to the inherent separability of extracted
features.29 Scientically, specic BSs play a crucial role in mul-
ticlass classication. And the results of this research work reveal
that multiclass classication using DenseNet-169 with a BS 64
exhibits a gradual and stable increase in both training and
validation accuracy (95.16%), ensuring smooth convergence
and improved generalisation, while minor uctuations indicate
better handling of overtting in complex feature hierarchies
(Fig. 5(f)).

The consistently high AUC scores suggest that the model is
effective at discriminating between classes across different BSs,
highlighting their potential for real-world applications. The
above ndings indicate that DenseNet-169, trained with a BS 64,
outperforms comparable models in multiclass classication
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Confusion matrix ((a) BS 16, (d) BS 32 & (g) BS 64), training accuracy vs. epoch ((b) BS 16, (e) BS 32 & (h) BS 64) and ROC_AUC curve ((c) BS
16, (f) BS 32 & (i) BS 64) obtained from DenseNet-169 for binary classification of pure and adulterated RcP.

Table 4 Multiclass classification for detection of various levels of natural adulterants in WH RcP

Model Optimizer Batch_size Accuracy Precision Recall F1 score

DenseNet_121 Adam Clr 16 91.93 92.26 91.93 91.80
32 92.03 92.46 92.03 92.02
64 94.05 94.35 94.05 93.96

DenseNet_169 Adam Clr 16 89.98 90.50 89.98 89.79
32 91.93 92.32 91.93 91.81
64 95.16 95.16 95.16 95.10
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problems for detecting natural adulterants in pure RcP (WH). By
leveraging compound scaling to optimise parameter efficiency,
DenseNet-169 demonstrated superior adaptability to the image
dataset, efficiently differentiating adulterated samples from
authentic RcP. The synergy between its architectural enhance-
ments and BS optimisation (BS 64) established DenseNet-169 as
the most effective model for the classication task, achieving an
impressive accuracy of 99.99% for binary classication and
95.16% for multiclass classication in RCP adulteration
detection.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3.3. Evaluation of the best performing 2D-CNN model using
Grad-CAM

To ensure the reliability and transparency of DenseNet-169,
a multiclass classier trained with BS 64, Grad-CAM is applied
to analyse feature importance and decision-making patterns. It
visualises the key regions in an image that inuence the
predictions of the 2D-CNN model by generating a class-
discriminative heatmap. Grad-CAM calculates the gradients of
the predicted class score that contribute to the convolution
layer's feature maps. These feature maps are weighted based on
Sustainable Food Technol., 2025, 3, 1099–1113 | 1107
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Fig. 4 Confusion matrix ((a) BS 16, (d) BS 32 & (g) BS 64), training accuracy vs. epoch ((b) BS 16, (e) BS 32 & (h) BS 64) and ROC_AUC ((c) BS 16, (f)
BS 32 & (i) BS 64) curve obtained from DenseNet-121 multiclass classification to determine the percentage of adulteration in RcP.
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their signicance, and a heatmap is overlaid on the original
image. Red and yellow regions indicate high importance, while
blue signies lower relevance.20,30

The overlaid heatmaps generated by Grad-CAM are pre-
sented in Fig. 6, illustrating DenseNet-169's decision-making
process in detecting natural adulterants in pure RcP, which
involves a multiclass classication problem. The model detects
concentrations of ve natural adulterants, ranging from 5% to
15% (class = 15), with respect to the pure class of RcP.
According to Fig. 6, the original image is displayed alongside
the corresponding Grad-CAM heatmap visualisation used to
interpret the DenseNet-169 decision-making process. The
model predicts each class with a condence level greater than
0.95, demonstrating the perfect alignment of the predicted
sample with the true label and explaining the accurate classi-
cation of adulteration in RcP at different concentration levels.

The colour intensity corresponds to the region of interest,
with red indicating the highest relevance, highlighting features
that play a crucial role in the decision-making process. These
1108 | Sustainable Food Technol., 2025, 3, 1099–1113
regions may correspond to natural adulterant particles in Rcp,
which are associated with granule size, particle distribution,
colour intensity, and other physical attributes that are not easily
detectable by the human eye (Fig. 6). Meanwhile, blue regions
cover less critical areas, signifying minimal inuence on the
decision-making process.

This visualisation underscores the effectiveness of Grad-
CAM in offering valuable insights into the focal regions of
DenseNet-169, ensuring that multiclass classication decisions
are based on scientically relevant features rather than extra-
neous artefacts. Fig. 6(a, d, g, j and m) present heatmaps cor-
responding to classes containing 5% natural adulterants in RcP,
where the red regions indicate the presence of adulterant
particles. Furthermore, as the adulterant concentration in
samples increases up to 15%, the intensity of the red regions in
the heatmaps also increases, which is particularly evident in the
representations of classes with 10% and 15% adulteration
(Fig. 6). By highlighting the specic regions inuencing the
model's predictions, Grad-CAM enhances the interpretability of
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Confusion matrix ((a) BS 16, (d) BS 32 & (g) BS 64), training accuracy vs. epoch ((b) BS 16, (e) BS 32 & (h) BS 64) and ROC_AUC curve ((c) BS
16, (f) BS 32 & (i) BS 64) obtained from DenseNet-169 multiclass classification to determine the percentage of adulteration in RcP.
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the DenseNet-169 model and aids in validating its reliability for
detecting adulteration in RcP.31,32
3.4. Comparison with other studies

Existing literature includes limited studies on detecting RcP
adulteration using digital imaging techniques. However, these
studies primarily focus on identifying a single type of adulterant
in RcP. For instance, Sarkar et al.9 constructed a dataset con-
taining images of RcP (variety: Bullet Lanka) adulterated with
brick powder and employed various MLmodels based on colour
space features and achieved a maximum classication accuracy
of 90.49%. Building on this work, our research group addressed
dataset limitations by applying preprocessing, extracting
texture and histogram features, and implementing feature
selection, which increased the brick powder detection accuracy
to 99.31%.31

Expanding the scope of AI applications for detecting uneth-
ical adulteration in RcP, the presented research work develops
a more comprehensive labelled dataset incorporating multiple
© 2025 The Author(s). Published by the Royal Society of Chemistry
types of natural adulterants (ve) consisting of 16 classes.
DenseNet-169 with an AdamClr optimizer is trained to identify
adulteration, achieving an accuracy of 99.99% in binary classi-
cation, and for multiclass classication the accuracy is 95.16%
for distinguishing pure and adulterated RcP samples at various
concentrations. Furthermore, the interpretability of the trained
DenseNet-169 model is enhanced using the XAI technique,
which explains the novelty of the proposed study.

On the other hand, various studies applied AI methods for
quality evaluation of various food products. In a study Fatima
et al.32 implemented a Siamese network to detect papaya seed
adulteration in black pepper, achieving an accuracy of 92%.
Similarly, Rady et al.33 developed an adulteration detection
method for minced meat by integrating colour space and
texture features to train an ensemble linear discriminant clas-
sier, which attained 98% accuracy in differentiating pure and
adulterated samples. In another study, Brar et al.8 utilized a 2D-
CNN model to identify corn syrup adulteration in honey by
analysing images extracted from test sample videos, achieving
99% classication accuracy. Additionally, Sehirli et al.34
Sustainable Food Technol., 2025, 3, 1099–1113 | 1109
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Fig. 6 Visualisation of DensNet-169 prediction for classification of pure RcP and percentage of adulteration by using the Grad-CAMheatmap; (a)
to (o) adulterated class and (p) pure WH.
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investigated butter adulteration with vegetable fat, where both
articial neural networks (ANNs) and support vector machines
(SVMs) achieved an accuracy of 99%.

Moreover, the integration of explainable AI (XAI) with 2D-
CNN was explored for determining seabream freshness, where
the DenseNet-121 model achieved 100% classication accuracy.
This model was further analysed using Grad-CAM and LIME to
enhance interpretability.30 Moreover, InceptionV3 was
employed alongside LIME to enhance transparency and accu-
racy in sorting chicken meat into fresh and rotten categories,
attaining a sorting accuracy of 96.3%. A 2D-CNN-LIME-based
system further guided a robotic arm in processing 1000 fresh
and 300 rotten chicken meat samples, achieving precision rates
of 94.19% for fresh meat and 97.24% for rotten meat.16 Besides,
Benjamin,35 employed the YOLOv5 model for the accurate
recognition and classication of bread quality attributes. The
model was trained on a comprehensive dataset comprising
images of various bread types, each annotated with the corre-
sponding quality labels. By leveraging the advanced object
detection capabilities of YOLOv5, the system effectively iden-
ties and categorizes different quality attributes with an accu-
racy of 92.00%, ensuring a robust and efficient evaluation of
bread quality.

All in all, this research work demonstrates that the proposed
model serves as a reliable and effective approach for detecting
adulteration in RcP. Furthermore, explainable AI technique
Grad-CAM is utilized to interpret the decision-making process
of the highest-performing 2D-CNN model. Grad-CAM provides
visual insights by identifying key image regions that inuenced
classication. The combined analysis validates the model's
reliability and conrmed its ability to focus on adulteration-
specic features.
3.5. Limitations and future research directions

While the proposed framework demonstrates high accuracy in
detecting adulteration in RcP using DenseNet architectures,
several limitations must be acknowledged. First, the study is
currently limited to a specic variety (WH) of RcP and selected
natural adulterants; 36 thus, the scalability of the model to other
food products with varying physical characteristics remains
untested. Additionally, real-world deployment could face chal-
lenges such as variations in sample presentation, lighting
conditions, and adulterant types not included in the training
dataset, potentially affecting model robustness and
generalization.

Therefore, future research should focus on expanding the
dataset to include a broader range of food products and adul-
terants under diverse environmental conditions to enhance
model adaptability. Furthermore, investigating the perfor-
mance of alternative AI models, such as vision transformers,
lightweight CNN architectures, or hybrid deep learning
approaches, could further optimize detection accuracy and
computational efficiency. Incorporating real-time data acquisi-
tion systems and transfer learning strategies could also facili-
tate the practical deployment of AI-based adulteration detection
tools in industrial and regulatory settings.
© 2025 The Author(s). Published by the Royal Society of Chemistry
4. Conclusion

This work addresses the critical issue of RcP adulteration by
introducing a dataset and an advanced 2D-CNN-XAI framework
to detect the unauthorized blending of natural adulterants in
the most prominent RcP (WH) variety. The proposed system
includes a newly developed dataset comprising 16 labelled
classes, representing pure RcP and RcP adulterated with ve
natural adulterants at concentrations ranging from a minimum
of 5% to a maximum of 15%. An empirical evaluation of
DenseNet-121 and DenseNet-169 with the AdamClr optimizer is
conducted to identify the most effective model for classifying
pure and adulterated RcP. Additionally, explainability tech-
nique Grad-CAM is employed to interpret the classication
decisions of the best-performing model. Each model was
trained using two datasets (DS I for binary classication and DS
II for multiclass classication) at three different BSs (16, 32, and
64) with a xed cyclic learning rate (ranging from 0.00005 to
0.001). For binary classication an accuracy of 99.99% is
delivered by DenseNet-169 at BS 16. Whereas, for multiclass
classication DenseNet-169 at BS 64 effectively detects different
concentrations of adulterants in RcP with an accuracy value of
95.16%. Furthermore, XAI techniques, specically Grad-CAM
validated the decision-making process of DenseNet-169, con-
rming its ability to accurately differentiate between pure and
adulterated RcP samples. The superior performance of
DenseNet-169 underscores its potential for application in
quality assessment and adulteration detection in RcP. There-
fore, this study provides a highly effective and reliable AI-driven
solution for combating RcP adulteration. By integrating the XAI-
2D-CNN model, the framework ensures exceptional specicity
and reliability in quality evaluation.
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