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Modern digital and sensing technologies enable agile and modern food supply and value chains. These

technologies contributed to the development of analytical tools to assess food composition, food safety

and security (e.g. authenticity, contamination, fraud, and provenance). The utilization of digital and

sensing technologies determines that a large amount of data is generated during the analysis of food

ingredients and products. In this context, big data is defined as the rapid collection of complex data in

large quantities during the analysis of foods using sensors (e.g. electronic noses and infrared

spectroscopy). Therefore, to implement an application, the data must be analysed and interpreted using

different data analytics, statistics and machine learning tools. This paper presents the definition of big

data, as well as examples of the utilization of digital and sensing technologies combined with data

analytics to develop applications targeting food safety and security in the food supply and value chains.
Sustainability spotlight

The UN SDG dene improvements in the quality of life of the population in developed, emerging, and developing countries, covering social and economic
aspects, with a major focus on environmental sustainability. The incorporation of digital technologies into the agri-food sector has increased the efficiency,
productivity, and sustainability of the food systems. Innovations including articial intelligence (AI), robotics, in-ground and remote sensors, connectivity, and
internet of things (IoT) have been also recognized to be critical for the successful implementation of the UN-SDG. This article provides an overview of the
contribution of sensing technologies and data analytics, and advantages and challenges of their utilization in the food supply and value chain.
1. Introduction

Recent years have witnessed a wide range of disruptions in the
food supply and value chains directly or indirectly associated
with pandemics (e.g. COVID), regional wars, and climate
change.1–4 Furthermore, technological changes resulting from
the utilization of articial intelligence (AI), internet of things
(IoT), blockchain, machine learning (ML) and sensing tech-
nologies have led to disruptions that have inuenced not only
the food production systems but also the food supply and value
chains (see Fig. 1).5–7

Consumers and the food manufacturing industry demand
accurate and comprehensive analytical systems and quality
control (QC) tools to assure and monitor the chemical compo-
sition, safety, and provenance, of both food ingredients and
food products. This has become evenmore important due to the
increase in the number of cases associated with intentional or
unintentional adulteration and fraud in food ingredients and
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food products such as dairy products,8–10 seafood,11,12 meat and
meat products.13–16

This paper presents the denition of big data, as well as
examples of the utilization of digital and sensing technologies
combined with data analytics to develop applications targeting
food composition, safety and security in the food supply and
value chains.
2. Digital and sensing technologies
and big data
2.1. Digital and sensing technologies

Digital and sensing technologies (e.g. biosensors, electronic
noses, and infrared spectroscopy sensors) have been included
to analyse and monitor the composition, authenticity, and
functional properties of agricultural commodities and food
ingredients at the production site (e.g. farm), and along the
entire supply and value chains.17–19 A range of technologies has
boosted our analytical ability to measure the composition and
other characteristics of food ingredients and products at the
collection and distribution points (e.g. distribution centres and
supermarkets) minimising the possibility of deterioration and
damage to the food during transport of the sample to the
Sustainable Food Technol., 2025, 3, 181–187 | 181
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Fig. 1 The role of sensing technologies and data analytics in the sustainability of the food supply and value chain.
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traditional analytical laboratory location.17–19 Therefore, digital
and sensing technologies have improved the efficiency of the
current analytical and QC methods utilised by the food
manufacturing industry to assess and monitor composition,
quality and nutritional value of food ingredients and
products.17–19 Furthermore, the occurrence of digital technolo-
gies and sensors has provided a wide range of advantages
including the elimination or reduction of the need for expensive
and time-consuming analytical tools, as well as a reduction in
the cost of analysis along the food supply and value chains.
2.2. Big data

The denition of big data is concurrently associated with
rapidly collected and complex data in huge quantities.20–22 Big
data is linked with the large amounts of data generated using
both digital and sensing technologies (e.g. electronic noses,
biosensors, optical sensors, drones, etc.). Both the amount and
complexity of the data collected by the different types of sensors
and technologies, is represented and established by the amount
of data collected, as well as with the speed at which the infor-
mation is processed and interpreted.20–22 The generation of big
data has determined that different tools, including the imple-
mentation of a wide range of data analytics tools as well as the
development of different algorithms have been incorporated in
the analysis of foods.20–22
3. Sensing technologies and sensors

Recent advances in chemistry (e.g. analytical chemistry),
physics, electronics and computing science (e.g. hardware and
soware) have led to an increase in the availability and types of
sensors in food analysis. These sensors include biosensors,
electrochemical sensors, nanosensors, and optical
sensors.17–19,23,24 A sensor is dened as an analytical device that
182 | Sustainable Food Technol., 2025, 3, 181–187
combines a wide range of recognition components (e.g. anti-
bodies, nucleic acids, enzymes, whole cells and aptamers)
connected with a physicochemical transducer. The different
components and characteristics of the sensor combined with
a detector allow us to identify (e.g. what is it?) and quantify (e.g.
how much is it? = concentration) a single or several analytes,
molecules or compounds existing in a food sample.17–19,23,24

One of the main advantages of the utilization of sensing
technologies is that they can analyse and identify both biolog-
ical and chemical analytes or compounds present in any type of
food.17–19,23,24 In addition, the possibility of miniaturization and/
or portability of some of the sensing technologies provided
additional benets. This has allowed for the use of small
sample sizes or volumes during the analysis of the food
sample.17–19,23,24 Different types of sensors exist, and some of
them briey introduced and discussed in the following
sections.
3.1. Biosensors

Developments in nanomaterials, such as nanoparticles and
nanobers have also provided new alternatives for the minia-
turization in sensors such as biosensors.25–29 The inclusion of
nanomaterials has improved the analytical ability of electro-
chemical biosensors by ltering the response of the electrode by
increasing the surface area.25–29 The ability of this type of
sensors of providing with a better surface area to volume ratio,
give with a greater catalytic and analytics ability, warrant the
biocompatibility with the molecule to be analysed, resulting in
a lower mass transfer resistance.25–29 This characteristic has
improved the selectivity, sensitivity, time efficiency and cost
effectiveness of most of the current biosensors available in the
market which are utilised to detect contaminants in foods as it
provides conductivity and sensitivity, promotes greater inter-
action capacity, and lowers detection limits.25–29 Microuidics
© 2025 The Author(s). Published by the Royal Society of Chemistry
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have been incorporated into biosensors with some analytical
advantages.25–29 For example, microuidics has led to a reduc-
tion in both sample and reagent volume (e.g. nanolitre),
enhancing the sensitivity, and prompted the development of
a single platform for both sample preparation and
detection.25–29 However, the main advantage of using micro-
uidics is in their portability allowing for the development of
reusable or disposable and real-time recognition devices. This
has allowed for the instantaneous analysis of the analyte (e.g.
toxins, molecules, and compounds) in a single device with high
accuracy.25–29

3.2. Electronic noses and tongues

In addition to biosensors, electronic noses (E_nose) and elec-
tronic tongues (E_tongue), have been also used to assess food
safety as well as to measure or monitor volatile compounds in
food ingredients and products.30–33 An E_nose instrument has
been described as a device that simulates the perception of the
mammalian olfactory system.30–33 The main principle of an
E_nose instrument is associated with the recognition of odours
(e.g. volatile compounds) where an E_nose device offers the
ability to detect different volatiles or gases with no odour
activity.30–33 The E_nose can be improved to assess or monitor
specic molecules or compounds of importance to humans and
animals such as the scent of other animals, food ingredients, or
spoilage.30–33 A typical E_nose instrument consists of a series of
sensors where metal oxide sensors (MOX), mass spectrometry
(MS), ion mobility spectrometry (IMS), gas chromatography
(GC), and conducting organic polymers (COP) are the most
utilised in food applications.30–33 However, these types of
sensors are well known to lack both sensitivity (ppm or ppb
concentration) and selectivity and regrettably, this type of
devices cannot respond in a manner comparable with that of
the human olfactory system.30–33 The utilization of E_nose
instruments has been extensively evaluated in different food
applications such as in quality assurance in bakery products,34

investigating the quality and composition of alcoholic bever-
ages,35 and the quality control of edible oils.36

Similar to an E_nose, the E_tongue instrument is usually an
array composed of various electrodes.37,38 These electrodes
collect the response data obtained from the interaction between
the sample and the instrument.37,38 Different sensor types have
been described in the literature where potentiometric, volta-
metric and impedance sensors are the most commonly utilised
in food applications.37,38 The utilization of E_tongue instru-
ments or sensors is mainly associated with the analysis of liquid
samples or a liquid matrix.37,38

3.3. Vibrational spectroscopy

Most of the optical instruments and sensors are based on the
utilization of light. Vibrational spectroscopy and the techniques
associated with it such as near (NIR) and mid (MIR) infrared
spectroscopy, Raman spectroscopy, as well as hyperspectral and
multispectral imaging methods have been extensively reported
in a wide range of food applications.24,39–44 Vibrational spec-
troscopy techniques allowed the measurement of molecular
© 2025 The Author(s). Published by the Royal Society of Chemistry
structures and chemical bonds as well as the identication of
specic molecular species in a food sample.39

These techniques capture the vibrational states of a given
molecule, providing insights into the chemical, functional, and
physical properties of a food sample.39 Overall, these techniques
have several advantages over other analytical methods as they
are rapid, require minimal sample pre-processing and prepa-
ration, and are relatively cheap and easy to use. Recently,
developments in hand-held, portable and miniature instru-
mentation have also provided new alternatives to assess and
monitor issues associated with food safety and security.40,41

Furthermore, developments in hyperspectral imaging hardware
and soware have also led to new applications in the analysis of
foods along the supply and value chain.45–47

4. Data analytics

The increasing amount of data generated by the practical
applications and implementation of digital and sensing tech-
nologies in food safety and security (e.g. authenticity and fraud)
requires the utilization of data mining, statistics, chemometrics
and ML techniques.47–50 The assessment of authenticity of food
ingredients and products is based on the utilization of data (e.g.
absorbance at specic wavelengths, concentration of nutrients,
pH, etc) as the input where classication (e.g. classes or
patterns) or regression models (e.g. prediction of concentration)
are used to generate different types of outputs.47–50 For example,
clusters, groups, patterns or even the concentration of specic
compounds (e.g. chemical composition, nutritional value,
origin or provenance) can be estimated or predicted from new
input data. The accuracy of the model is dependent on the
quality of the input variables (e.g. wavelength range, signal to
noise ratio, and sample presentation to the instrument) that are
used during the development of a model.47–50 In the application
of these techniques, two type of approaches or methods are
dened, untargeted and targeted analysis.47–50 Targeted
methods are based on the measurement of known character-
istics or properties in the food, or by targeting known ingredi-
ents or adulterants, while untargeted analysis is based on the
interpretation of the signals collected from the different
instrumental methods or techniques used.47

A wide range of algorithms exist, providing the means to
analyse different types of data in a wide range of food ingredi-
ents and food products.47–50 Examples of these algorithms
include Principal Component Analysis (PCA), Partial Least
Squares regression (PLS), Support Vector Machine (SVM) clas-
sication or regression, Articial Neural Networks (ANNs), K-
Nearest Neighbours (KNNs) and Convolutional Neural
Networks (CNNs).47–50 Recent application in the eld of food
ngerprinting has reported the utilization of so-called data
fusion methods.47–50 These methods have shown the ability to
analyse and combine data obtained from several instruments or
techniques.47–50

The implementation and combination of sensing technolo-
gies with data analytics require in most cases, some level of pre-
processing (e.g. baseline transformation and derivatives).51–53

This is usually required during the development of either
Sustainable Food Technol., 2025, 3, 181–187 | 183
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Fig. 2 Sensing technologies, big data and data analytics and the creation of information to be used to evaluate the food supply and value chains.
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a calibration or classication model.51–54 Furthermore, together
with the selection of the appropriate algorithms and pre-
processing methods, sampling and sample preparation are
important factors that should be considered when chemo-
metrics methods are utilised.55,56 Fig. 2 illustrates how sensing
technologies, big data and data analytics contribute to the
creation of information that can later be utilised to evaluate or
monitor the safety and composition of food ingredients and
products along the supply and value chains.
5. Benefits and challenges of big data
and sensing technologies in food

The implementation of both digital and sensing technologies
has improved the analytical ability of the QC laboratory,
reducing the cost of analysis of food ingredients and products
from farm to fork. The practical implementation of digital and
sensing technologies has led to the collection of large amounts
of data where the denition and use of big data have been
determined by different users. Nevertheless, the use of big data
has created new challenges with development and imple-
mentation of sensing technologies in food applications.

One of the main challenges during the application of these
tools is the lack of clarity of the objective and/or advantages of
the utilization of digital or sensing technologies to analyse food
ingredients and products. Sensors are utilised to collect large
amounts of data; however, these data are only used to analyse
one molecule or compound in a process called calibration.
Although this is a valid approach, the advantages of collecting
large amount of data (e.g. ngerprint of the sample or process),
is not universally explored to learn about the totality of the food
system or process. Furthermore, issues associated with the
signal collected (e.g. absorbance at specic wavelengths), the
signal to noise ratio, and dris in the collected signal during the
life of the sensors (e.g. biosensors and electronic noses) are not
well understood or ignored.51 Different data analytical
approaches or algorithms have been also evaluated for the
development of classication models (e.g. discriminant and
cluster analysis) or to build a regression model (e.g. calibration
models) to predict the concentration of specic compounds in
the food sample.

Different research reports and commercial applications
concluded that the use of sensing technologies allows for the
184 | Sustainable Food Technol., 2025, 3, 181–187
development of efficient and robust systems to assess and
monitor issues associated with food composition and safety in
a wide range of fresh products and food ingredients. The utili-
zation of sensing devices is providing the food industry with
a robust analytical tool that can be incorporated into decision
management systems or tools.57–60 The development of these
type of systems will provide better options to monitor food
chemical composition and properties of different types of
foods60 as well as to assure the safety (e.g. microbial contami-
nation) of food ingredients and products.

Despite the advantages that these technologies provide, the
implementation of these tools or systems is not fully embraced
by the food manufacturing industry.57–59 Traditional analytical
and QC methods such as proximate composition, high perfor-
mance liquid chromatography (HPLC), GC and MS spectrom-
etry, are still preferred by analysts over the use of sensing
technologies. In some cases, the utilization of sensing devices
or systems is still considered by both researchers and practi-
tioners in the eld of food science as “black box” approaches
due to many reasons.41,42,51 This can be attributed to the low cost
of the available devices compared with other types of laboratory
equipment, in addition to the lack of understanding of the time
and effort required to develop the whole application (e.g. cali-
bration development, model validation and maintenance). This
is oen exacerbated by the lack of training, the preference for
classical food safety analytical methods over the new technol-
ogies, and the lack of understanding of the principles under-
lying the development and implementation of these tools by the
food manufacturing industry.
6. Future directions and conclusions

As stated in the above sections the incorporation and imple-
mentation of digital and sensing technologies and data
analytics have led to different disruptions in the food supply
and value chain. However, the data generated by this type of
applications have enabled the development of systems that
better evaluate and monitor a wide range of attributes at the
different steps during the manufacturing, storage and transport
of foods. These data rich tools are providing the information
that can be used to better manage as well as understand the full
manufacturing process, including the quality of the product
and its safety.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Advances in handheld devices, sensor miniaturization, and
IoT, among others have determined that these tools move away
from the traditional laboratory settings into the production
facility, storage shed or even the supermarket. However, risks
associated with the excessive use of these techniques are also
concomitantly great. The lack of knowledge about the sensor
background (e.g. hardware and physics), data analytics and pre-
processing (e.g. algorithms) and the associated issues during
the development of the application are hindering the wide
utilization of these tools. Furthermore, the lack of training
beyond that provided by the company that sells the instrument,
or the soware is critical. These same issues can be considered
to enable the inclusion of other disciplines into the food
manufacturing industry, fostering an environment of collabo-
ration with different STEM disciplines (e.g. mathematics,
physics and data analysis).

Digital and sensing technologies have proven that they
provide high value data and information to assess and guar-
antee the safety of food ingredients and products along the
supply and value chain. The recent improvements n instru-
mentation (e.g. miniaturization, portability, and robustness),
and the timely training on the utilization and interpretation of
the models have the ability to expand trustworthiness,
contributing to the standardization of methods and systems
along the food supply and value chain. Increasing the amount
of data and information available about the food process,
beyond quality, will improve the efficiency and sustainability of
the system (e.g. monitor energy and water usage, monitor
changes in temperature during the process, and detect faults or
any issues during the manufacturing process) and reduce waste
along the supply and value chains. Awareness about the limi-
tations of these techniques, as well as a proper understanding
of the data analytics used to data mine the big data generated
will avoid doubtful conclusions being made from the applica-
tion of these techniques.
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